USB Stack Device Reference Manual

Document Number: USBSDRM
Rev. 1, 04/2015

0WERED
@

ARMa

© Freescale Semiconductor, Inc., 2015. All rights reserved.
>

> freescale*

Contents

Chapter 1 Before You Begin 4
1.1 About this book 4
1.2 Acronyms and abbreviations 4
1.3 Function listing format 4

Chapter 2 Overview
2.1 USB overview 6
2.2 APl overview 7
2.3 Using the USB Device API 11

Chapter 3 USB Common Controller Driver API 14
3.1 ush_device_init 14
3.2 usb_device_postinit 14
3.3 usb_device_deinit 15
3.4 usb_device_recv_data 15
3.5 usb_device_send_data 16
3.6 ush_device_cancel_transfer 17
3.7 ush_device_register_service 17
3.8 ush_device_unregister_service 18
3.9 ush_device_init_endpoint 18
3.10 usb_device_deinit_endpoint 19
3.11 usb_device_stall_endpoint 19
3.12 usb_device_unstall_endpoint 20
3.13 usb_device_register_application_notify 21
3.14 usb_device_register_vendor_class_request_notify 21
3.15 usb_device_register_desc_request_notify 22
3.16 usb_device_get_status 23
3.17 usb_device_set_status 24

Chapter 4 USB Device Class API 25
4.1 CDC class API function listings 25
4.2 HID class API function listings 28
4.3 MSC class API function listings 32
4.4 Audio class API function listings 33
4.5 PHDC class API function listings 37

USB Stack Device Reference Manual, Rev. 1, 04/2015

2 Freescale Semiconductor

4.6

Composite class API function listings

Chapter 5 USB Device Descriptor

5.1
5.2
5.3
5.4
55

get_desc
get_desc_interface
set_desc_interface
set_configuration

get_desc_entity

Chapter 6 USB Device Configuration

Chapter 7 USB Device Data structures

7.1 USB common controller driver

7.2 CDC class data structure

7.3 HID class data structure

7.4 MSC class data structure

7.5 Audio class data structure

7.6 PHDC class data structure

7.7 Composite class data structure
Appendix

A, USB device stack tasks

USB Stack Device Reference Manual, Rev. 1, 04/2015

41

42
42
43
44
45
45

47

51
51
54
56
56
58
59
60

62
62

Freescale Semiconductor

Chapter 1 Before You Begin

1.1 About this book

This USB Stack Device Reference Manual describes the USB Device driver and the programming
interface in the USB Stack.

The audience should be familiar with the following reference material:
» Universal Serial Bus Specification Revision 1.1
* Universal Serial Bus Specification Revision 2.0

Use this book in addition to:

e Source Code

1.2 Acronyms and abbreviations

Table 1 Acronyms and abbreviations

Term Description
API Application Programming Interface
CDC Communication Device Class
HID Human Interface Device
MSD Mass Storage Device
MSC Mass Storage Class
PHDC Personal Healthcare Device Class
ZLT Zero Length Transfer
LAB Logical Address Block
LUN Logical Unit Number

1.3 Function listing format

This is the general format of an entry for a function, compiler intrinsic, or a macro.
function_name()

A short description of what function function_name() does.

Synopsis

USB Stack Device Reference Manual, Rev. 1, 04/2015

4 Freescale Semiconductor

Provides a prototype for function function_name().

<return_ type> function name (

<type 1> parameter 1,

<type 2> parameter 2,

<type n> parameter n)

Parameters

parameter 1 [in] — Pointer to x
parameter 2 [out] —Handle fory

parameter n [in/out] — Pointer to z

Parameter passing is categorized as follows:

n - indicates that the function uses one or more values in the parameter you give it without
storing any changes.

out - indicates that the function saves one or more values in the parameter you give it. You can
examine the saved values to find out useful information about your application.

In/out — indicates that the function changes one or more values in the parameter you give it and
saves the result. You can examine the saved values to find out useful information about your
application.

Description — Describes the function function_name(). This section also describes any special
characteristics or restrictions that might apply:

Function blocks or might block under certain conditions
Function must be started as a task

Function creates a task

Function has pre-conditions that might not be obvious

Function has restrictions or special behavior

Return value — Specifies any value or values returned by function function_name().

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

Chapter 2 Overview

2.1 USB overview

Universal Serial Bus (USB) is a polled bus. The USB Host configures the devices attached to it, either
directly or through a USB hub, and initiates all bus transactions. The USB Device responds only to the
requests sent to it by a USB Host.

The USB Device software consists of the following parts:

USB Device application
USB Device Class Driver (contains USB Device Class APIs)
USB Device Common Controller Driver APIs (independent of hardware)

USB Device controller interface (DCI) - low-level functions used to interact with the USB Device
controller hardware

OS adapter to provide unified OS API to USB Stack
Board releated initialization: USB Device Stack defines a weak function as follow
#ifdef cplusplus
extern "C" {
#endif
usb_status bsp usb dev board init(uint8 t controller id);
#ifdef cplusplus
}
#endif

It is called in the process of usb device initialization. Application can rewrite it in C function way
to implement the USB device board initialization. The controller id is the enum
CONTROLLER INDEX.

Note

As a result of the FS controller (KHCI) IP limitation, one endpoint can be
enabled for one direction only, either IN or OUT. It can't be enabled for
both directions.

The whole architecture and components of USB stack are as follows:

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

I
| —
|
APP |
: MQX RTOS
| Implementation
|
]L | 0
! S
Class Driver :
: A BareMetel
A Do n) Implementation
T[N—V]A NV
Ve | P
i Common | T '
Controller : E
Driver | R Other RTOS
A : Implementation
|
|
L5 - |
|
KHCI Driver EHCI Driver :
i L]
_—__jf _______ ___jE____I
FS Controller HS Controller
1]

Figure 1 USB Device stack architecture

2.2 API overview

This section describes the API functions. The interfaces between the USB Common Controller driver and
xHCI driver are not listed here. All USB device APIs can’t be invoked during the interrupt service routine
except when the operating system is bare metal.

Table 2 summarizes the USB Common Controller driver APIs.
Table 2 USB Device Controller driver APIs

No. API Function Description
1 usb_device init() Initializes the USB device controller
2 usb_device postinit() Some additional initialization actions need to

be done after the device is initialized

3 usb_device deinit() Un-initializes the device controller

4 usb_device recv_data() Receives data from a specified endpoint

5 usb_device send data() Sends data to a specified endpoint

6 usb_device cancel transfer() Cancels all the pending transfers in a specified
endpoint

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 7

7 usb_device register service() Registers a callback function for the service

8 usb_device unregister service() | Unregisters a callback function for the service

9 usb_device init_endpoint() Initializes the specified endpoint

10 usb_device deinit _endpoint() Un-initializes the specified endpoint

11 usb_device stall endpoint() Stalls the specified endpoint

12 usb_device unstall endpoint() Un-stalls the specified endpoint

13 usb_device register application | Registers the callback function for the
notify() application related event

14 usb_device register vendor class | Registers the callback function for the vendor
_request_notify() class related event

15 usb_device register desc request | Registers the callback function for the
_notify() descriptor related event

16 usb_device set status() Sets the current status of the selected item

17 usb_device get status() Gets the current status of the selected item

Table 3 summarizes the common class APIs.

Table 3 Common class driver APls

No. API Function Description

1 USB_Class_Init() Initializes the class module

2 USB_Class_Deinit() Un-initializes the class module

3 USB Class_Send Data() | Sends data on the specified endpoint

Table 4 summarizes the CDC class APIs.
Table 4 CDC class driver APIs

No.

API Function

Description

USB_Class CDC_Init()

Initializes the CDC class

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

2 USB Class CDC Deinit() | Un-initializes the CDC class driver

3 USB_Class CDC_Recv Receives data on the specified endpoint
_Data ()

4 USB Class CDC Send Sends data on the specified endpoint
Data()

5 USB_Class CDC Cancel(| Cancels all the uncompleted transfers in the
) specified endpoint

6 USB Class CDC Get Sp | Get current USB speed of the CDC device
eed()

Table 5 summarizes the HID class APIs.
Table 5 HID class driver APIs

No. API Function Description

1 USB_Class_HID_Init() Initializes the HID class

2 USB_Class HID Deinit() Un-initializes the HID class driver

3 USB Class HID Send Sends data on the specified endpoint
_Data()

4 USB Class HID Cancel() Cancels all the uncompleted transfers in the

specified endpoint

5 USB Class HID Recv Data | Receives data on the specified endpoint
0

6 USB Class HID Get Speed | Get current USB speed of the HID device
0

Table 6 summarizes the MSC class APIs.
Table 6 MSC class driver APIs

No.

API Function

Description

USB_Class MSC._nit()

Initializes the MSC class

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

2 USB Class MSC Deinit() | Un-initializes the MSC class driver
3 USB_Class MSC_Get Spe | Get current USB speed of the MSC device
ed()

Table 7 summarizes the AUDIO class APIs.
Table 7 AUDIO class driver APIs

No. API Function Description

1 USB Class Audio Init() Initializes the AUDIO class

2 USB Class Audio Deinit() Un-initializes the AUDIO class driver

3 USB_Class_Audio Recv Receives data on the specified endpoint
_Data()

4 USB_Class Audio_Send Sends data on the specified endpoint
_Data()

5 USB_Class_Audio Cancel() Cancels all the uncompleted transfers in the

specified endpoint
6 USB_Class_Audio Get Speed() | Get current USB speed of the Audio device

Table 8 summarizes the PHDC class APIs.

Table 8 PHDC class driver APls

No. API Function Description

1 USB_Class PHDC Init() Initializes the PHDC class

2 USB_Class PHDC Deinit() Un-initializes the PHDC class driver

3 USB_Class PHDC Recv Receives data on the specified endpoint
_Data ()

4 USB_Class PHDC_Send Sends data on the specified endpoint
_Data()

USB Stack Device Reference Manual, Rev. 1, 04/2015

10

Freescale Semiconductor

5 USB Class PHDC Cancel() Cancels all the uncompleted transfers in the
specified endpoint

6 USB_Class PHDC Get Speed() | Get current USB speed of the PHDC device

Table 9 summarizes the Composite class APIs.
Table 9 Composite Class driver APIs

No. API Function Description

1 USB_Composite_Init() Initializes the Composite class

2 USB Composite Deinit() Un-initializes the Composite class driver

6 USB_Composite_Get Speed() Get current USB speed of the Composite device

2.3 Using the USB Device API

2.3.1 Using USB Common Controller driver API

It is not recommend using the USB Common Controller driver directly to implement the USB function,
but you can refer to the code implemented in the class driver provided by Freescale for detailed
information.

2.3.2 Using CDC class driver API
To use CDC class layer API functions from the application:

1. Call USB_Class_CDC_Init() to initialize the class driver, all the layers below it, and the device
controller. Event callback functions are also passed as parameter to this function.

2. When the callback function is called with the USB_ DEV_EVENT ENUM_ COMPLETE event,
the application should move into the connected state.

3. Call USB_Class CDC _Send_Data() to send data to the host through the device layers, when
required.

4. Call USB_Class CDC_Recv_Data() when the callback function is called with the
USB DEV_EVENT DATA_ RECEIVED event, which implies that the previous reception of data
from the host is done.

2.3.3 Using HID class driver API

To use HID class layer API functions from the application:

USB Stack Device Reference Manual, Rev. 1, 04/2015
Freescale Semiconductor 11

2.3.4

Call USB_Class_HID_Init() to initialize the class driver, all the layers below it, and the device
controller. Event callback functions are also passed as a parameter to this function.

When the callback function is called with the USB. DEV_EVENT ENUM COMPLETE event,
the application should move into the ready state.

Call USB_Class HID Send_Data() to send data to the host through the device layers, when
required.

Using MSC class driver API

To use MSD class layer API functions from the application:

1.

2.3.5

Call USB_Class_MSC_Init() to initialize the class driver, all the layers below it, and the device
controller. Event callback functions are also passed as a parameter to this function.

When the callback function is called with the USB_ DEV_EVENT ENUM_COMPLETE event,
the application should move into the ready state.

The callback function is called with the USB_ MSC DEVICE READ REQUEST event to get
data from the storage device before sending it to the USB bus. It reads data from the mass storage
device to the driver buffer.

The callback function is called with the USB_ MSC DEVICE WRITE REQUEST event to
prepare the storage device buffer for USB transfer.

The callback function is called with the USB_ DEV_EVENT DATA RECEIVED event to write
the storage device buffer data the storage device.

Using AUDIO class driver API

To use AUDIO class layer API functions from the application:

1.

2.3.6

Call USB_Class_Audio_Init() to initialize the class driver, all the layers below it, and the device
controller. Event callback functions are also passed as parameter to this function.

When the callback function is called with the USB. DEV_EVENT ENUM_COMPLETE event,
the application should move into the connected state.

Call USB_Class_Audio_Send_Data() to send data to the host through the device layers, when
required.

Call USB_Class_Audio_Recv_Data() when the callback function is called with the
USB DEV_EVENT DATA_ RECEIVED event, which implies that the previous reception of data
from the host is done.

Using PHDC class driver API

To use PHDC class layer API functions from the application:

1.

Call USB_Class_ PHDC_Init() to initialize the class driver, all the layers below it, and the device
controller. Event callback functions are also passed as parameter to this function.

USB Stack Device Reference Manual, Rev. 1, 04/2015

12

Freescale Semiconductor

2. When the callback function is called with the USB_ DEV_EVENT ENUM COMPLETE event,
the application should move into the connected state.

3. Call USB_Class PHDC_ Send_Data() to send data to the host through the device layers, when
required.

4. Call USB_Class PHDC Recv_Data() when the callback function is called with the
USB_DEV_EVENT DATA RECEIVED event, which implies that the previous reception of data
from the host is done.

2.3.7 Using composite class driver API

1. Call USB_Composite Init() to initialize the composite class driver, all the layers below it, and the
device controller. Event callback functions for each interface are also passed as parameter to this
function.

2. Read class_handle to get every class handle for each interface composited in the composited
device.

3. When the callback function is called with the USB_APP_ENUM_COMPLETE event, the
application should move into the connected state.

4. Call the corresponding Send API to send data to the host through the device layers, when required.
For example, if the device is composited of HID and AUDIO, USB_Class_Audio_Send_Data()
can be used to send data to the host with the handle obtained from class_handle.

5. Call the corresponding receive API when the callback function is called with the
USB DEV_EVENT DATA RECEIVED event, which implies that the previous reception of data
from the host is done. For example, if the device is composited of HID and AUDIO,
USB_Class_Audio_Recv_Data() can be used to send data to the host with the handle obtained
from class_handle.

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 13

Chapter 3 USB Common Controller Driver API

3.1 usb_device init
Initializes the USB device controller

Synopsis
usb status usb device init

(

uint8 t controller id,
usb _device handle* handle
)
Parameters
controller id [in] — controller ID, such as USB_ CONTROLLER KHCI 0
handle [out] — USB Device handle
Description

The function initializes the device controller specified by the controller id and a device handle can be
returned from the handle.

Return value
« USB_OK (success)
* Other (failure)

3.2 usb_device postinit
Initializes the USB device controller

Synopsis
usb status usb device postinit

(

uint8 t controller 1id,
usb_device handle handle
)
Parameters
controller id [in] — controller ID, such as USB_ CONTROLLER KHCI 0
handle [in] — USB Device handle
Description

The function starts the initialization process that cannot be done in the usb_device_init() API. For
example, the call back functions need to be registered after the device handle can be obtained from the
usb_device_init() APIL. Therefore, the USB interrupt cannot be enabled in usb_device_init(); otherwise,

USB Stack Device Reference Manual, Rev. 1, 04/2015

14 Freescale Semiconductor

the USB interrupt can be issued before the callback functions are registered. To avoid this issue, the USB
interrupt will be enabled in the post initialization process.

Return value
* USB_OK (success)
* Other (failure)

3.3 usb_device deinit
Un-initializes the USB device controller

Synopsis
usb_status usb device deinit

(

usb_device handle handle
)
Parameters
handle [in] - USB Device handle
Description

The function un-initializes the device controller specified by the handle.
Return value
* USB_OK (success)

* other (failure)

3.4 usb_device recv_data
Receives data from a specified endpoint

Synopsis
usb _status usb device recv_data

(

usb_device handle handle,
uint 8 ep_ index,
uint 8%* buff ptr,
uint 32 size
)
Parameters
handle [in] - USB Device handle
ep_index [in] - endpoint index
buff ptr [in] - memory address to receive the data

USB Stack Device Reference Manual, Rev. 1, 04/2015
Freescale Semiconductor 15

size [in] — length of the packet to be received
Description

The function is used to receive data from a specified endpoint. For each endpoint, this function can only be
called once, before the last transmission completed.

Return value
« USB_OK (success)
* other (failure)

Note: The return value just indicates if the receiving request is successful or not; the transfer done is
notified by the corresponding callback function.

The transmission includes recv_data and send data.

3.5 usb_device send data
Sends data from a specified endpoint

Synopsis
usb status usb _device send data

(

usb_device handle handle,

uint 8 ep index,

uint 8%* buff ptr,

uint 32 size

)
Parameters
handle [in] - USB Device handle
ep index [in] - endpoint index
buff ptr [in] - memory address hold the data need to be sent
size [in] - length of the packet to be received
Description

The function is used to send data to a specified endpoint. For each endpoint, this function can only be
called once, before the last transmission completed.

Return value
« USB_OK (success)
* other (failure)

Note: The return value just indicates if the sending request is successful or not and the completed transfer
is notified by the corresponding callback function.

USB Stack Device Reference Manual, Rev. 1, 04/2015

16 Freescale Semiconductor

The transmission includes recv_data and send data.

3.6 usb_device cancel_transfer

Cancels all the pending transfers in a specified endpoint.

Synopsis
usb status

(

usb _device

uint 8

uint 8

)
Parameters
handle
ep index
direction

Description

usb device cancel transfer

handle handle,
ep index,

direction

[in] - USB Device handle
[in] - endpoint index

[in] - direction of the endpoint

The function is used to cancel all the pending transfer in a specified endpoint which is determined by the
endpoint index and the direction.

Return value

« USB_OK (success)

* other (failure)

3.7 usb_device register_service

Registers a callback function for one specified endpoint.

Synopsis
usb status

(

usb _device

uint8 t

usb device register service

handle handle,
type,

usb_event service t service,

void*

)
Parameters

handle

arg

[in] — USB Device handle

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

17

type [in] — service type, type & OxF is the endpoint index

service [in] — callback function
arg [in] — second parameter for the callback function
Description

The function is used to register a callback function for one specified endpoint.

Return value
* USB_OK (success)

* other (failure)

3.8 usb_device unregister_service
Unregisters a callback function for one specified endpoint.

Synopsis
usb status usb _device unregister service

(

usb_device handle handle,
uint8 t type
)
Parameters
handle [in] — USB Device handle
type [in] — service type, type & OxF is the endpoint index
Description

The function is used to unregister a callback function for one specified endpoint.

Return value
« USB_OK (success)

* other (failure)

3.9 usb_device_init_endpoint
Initializes the specified endpoint.

Synopsis
usb_status usb device init endpoint

(

usb_device handle handle,
usb _ep struct t* ep ptr,
uint 8 flag

USB Stack Device Reference Manual, Rev. 1, 04/2015
18 Freescale Semiconductor

)

Parameters

handle [in] — USB Device handle

ep ptr [in] — endpoint information, see Section 7.1.1
flag [in] — whether the ZLT is enabled for this endpoint
Description

The function is used to initialize a specific endpoint which is determined by the ep ptr.
Return value
USB_OK (success)

* other (failure)

3.10 usb_device deinit_endpoint
Un-initializes the specified endpoint.

Synopsis
usb status usb device deinit endpoint

(

usb_device handle handle,
uint8 t ep_num,
uint 8 direction
)
Parameters
handle [in] — USB Device handle
ep_num [in] — endpoint index
direction [in] —endpoint direction
Description

The function is used to un-initialize a specific endpoint which is determined by the endpoint index and
endpoint direction.

Return value
 USB_OK (success)

» other (failure)

3.11 usb_device_stall_endpoint
Stalls the specified endpoint.

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 19

Synopsis
usb_status usb_device stall endpoint

(

usb device handle handle,

uint8 t ep_num,

uint 8 direction

)
Parameters
handle [in] - USB Device handle
ep _num [in] - endpohnindex
direction [in] - endpoint direction
Description

The function is used to stall a specific endpoint which is determined by the endpoint index and endpoint
direction.

Return value
* USB_OK (success)

» other (failure)

3.12 usb_device unstall_endpoint
Un-stalls the specified endpoint.
Synopsis

usb _status usb device unstall endpoint

(

usb_device handle handle,

uint8 t ep_num,

uint 8 direction

)
Parameters
handle [in] - USB Device handle
ep_num [in] - endpoint index
direction [in] - endpoint direction
Description

The function is used to un-stall a specific endpoint which is determined by the endpoint index and
endpoint direction.

Return value

USB Stack Device Reference Manual, Rev. 1, 04/2015
20 Freescale Semiconductor

USB_OK (success)

* other (failure)

3.13 usb_device register_application_notify
Registers the callback function for the application related event.

Synopsis
usb_status usb device register application notify

(

usb _device handle handle,
usb_device notify t device notify callback,
void* device notify param
)
Parameters
handle [in] — USB Device handle

device notify callback [in] — callback function

device notify param [in] — parameter for the callback function

Description

The function is used to register a callback function for the application related event. Currently the
following events are supported:

Event Description

USB DEV_EVENT BUS RESET A BUS reset is received.

USB _DEV_EVENT ENUM COMPLETE | The device enumerated process completes.

USB_DEV_EVENT CONFIG _CHANGED | Host sends a set_configuration.

USB DEV_EVENT ERROR Error.

Return value
« USB_OK (success)

» other (failure)
3.14 usb_device register vendor_class_request_notify

Registers the callback function for the vendor class related event.

USB Stack Device Reference Manual, Rev. 1, 04/2015
Freescale Semiconductor 21

Synopsis
usb_status usb _device register vendor class request notify

(

usb _device handle handle,
usb _request notify t request notify callback,
voidx* request notify param
)
Parameters
handle [in] — USB Device handle

request notify callback [in] — callback function

request notify param [in] - parameter for the callback function

Description

The function is used to register a callback function for the vendor class request related event. Currently the
vendor class is not implemented, so both the request_notify callback and request_notify _param can be
set to NULL.

Return value
* USB_OK (success)

» other (failure)

3.15 usb_device register_desc_request_notify
Registers the callback functions for the device descriptor related request.

Synopsis
usb _status usb device register desc request notify

(

usb_device handle handle,
usb _desc request notify struct t* desc_request notify callback,
void* desc_request notify param
)

Parameters

handle [in] — USB Device handle

desc request notify callback [in] — callback function

desc request notify param [in] — parameter for the callback function

Description

USB Stack Device Reference Manual, Rev. 1, 04/2015
22 Freescale Semiconductor

The function is used to register a set of callback functions for the device descriptor related event. For
details, see Section 7.1.7.

Return value
* USB_OK (success)

* other (failure)

3.16 usb_device get_status

Gets the internal USB device state.

Synopsis

usb status usb device get status

(

usb device handle handle,

uint8 t component,

uintlo t* status

)

Parameters

handle [in] — USB Device handle
component [in] - callback function
status [out] — requested status
Description

The function is used to get the status of the specified component. The supported components include:

« USB STATUS DEVICE STATE

+ USB STATUS OTG

« USB _STATUS DEVICE

« USB_STATUS _ENDPOINT, the LSB nibble carries the endpoint number
Return value

« USB_OK (success)

* other (failure)

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

23

3.17 usb_device set status
Sets the internal USB device state.
Synopsis

usb_status usb_device set status

(

usb_device handle handle,

uint8 t component,

uintlé_t status

)

Parameters

handle [in] - USB Device handle
component [in] - callback function
status [in] - status to set
Description

The function is used to set the status of the specified component. The supported components include:
« USB STATUS DEVICE STATE
+ USB_STATUS OTG
« USB STATUS DEVICE
Return value
« USB_OK (success)

» other (failure)

USB Stack Device Reference Manual, Rev. 1, 04/2015
24 Freescale Semiconductor

Chapter 4 USB Device Class API

This section describes the API functions provided as part of class implementations.

4.1 CDC class API function listings

4.1.1 USB_Class_CDC Init()
Initializes the CDC class.

Synopsis

usb_status USB Class CDC Init

(

uint8 t controller id,

cdc _config struct t* cdc _config ptr,

cdc_handle t* cdc_handle ptr
)
Parameters
controller id [in] - controller ID, such as USB_ CONTROLLER KHCI 0
cdc_config ptr [in] - CDC configuration structure, refer to cde_config_struct_t
cdc_handle ptr [out] - pointer point to the initialized CDC class, refer to cdc_handle_t
Description

The application calls this API function to initialize the CDC class, the underlying layers, and the controller

hardware.

Return Value
« USB_OK (success)
* Others (failure)

4.1.2 USB_Class_CDC_Deinit()
Un-initializes the CDC class.

Synopsis
usb_status USB Class CDC Deinit

(
cdc_handle t cdc_handle

)

Parameters

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

25

cdc_handle [in] - The CDC class handler

Description

The application calls this API function to un-initialize the CDC class, the underlying layers, and the
controller hardware.

Return Value
« USB_OK (success)
* Others (failure)

4.1.3 USB_Class_CDC_Recv_Data()
Receive the CDC data.

Synopsis

usb_status USB Class CDC_Recv Data

(

cdc_handle t cdc_handle,
uint8 t ep_num,
uint8 t* app_buff,
uint32 t size

)

Parameters

cdc_handle [in] - CDC class handler

ep_num [in] - endpoint number

app buff [in] - buffer to save the data from the host

size [in] - buffer length to receive

Description

The application calls this API function to receive data from the host. Once the data is received, the
application layer receives a callback event USB_ DEV_EVENT DATA RECEIVED. The transfer failed
when the value of the object that the pointer size points is OXFFFFFFFF in callback event

USB DEV_EVENT DATA RECEIVED.

Return Value
« USB_OK (success)
* Others (failure)

USB Stack Device Reference Manual, Rev. 1, 04/2015
26 Freescale Semiconductor

4.1.4 USB_Class_CDC_Send_Data()
Sends the CDC data.

Synopsis
usb status USB Class CDC_Send Data
(

cdc_handle t cdc_handle,
uint8 t ep_num,
uint8 t* app_buff,
uint32 t size
)

Parameters

cdc_handle [in] - CDC class handler

ep num [in] - endpoint number

app buff [in] - buffer to send

size [in] - buffer length to send

Description

The application calls this API function to send DIC data specified by app buff and size. Data is sent
through DIC_ BULK IN ENDPOINT. Once the data is sent, the application layer receives a callback
event USB DEV_EVENT SEND COMPLETE. The transfer failed when the value of the object that the
pointer size points is OXFFFFFFFF in callback event USB. DEV_EVENT SEND COMPLETE. The
application reserves the buffer until it receives a callback event indicating that the data is sent.

Return Value
« USB_OK (success)
* Others (failure)

4.1.5 USB_Class_CDC_Cancel()
Cancels all the uncompleted transfers in the specified endpoint.

Synopsis
usb status USB Class CDC Cancel
(

cdc_handle t cdc_handle,
uint8 t ep_num
)
Parameters
cdc_handle [in] - CDC class handler

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 27

ep_num [in] - endpoint number

Description

The application calls this API function to cancel all the uncompleted transfers in the specified endpoint.

Return Value
« USB_OK (success)
* Others (failure)

4.1.6 USB_Class_CDC_Get_Speed()
Get the USB speed of the CDC device.

Synopsis
usb status USB Class CDC _Get Speed
(

cdc_handle t cdc_handle,
uintleée t * speed
)
Parameters
cdc_handle [in] - CDC class handler
speed [out] - current speed
Description

The application calls this API function to get the USB speed of the CDC device.

Return Value
« USB_OK (success)
* Others (failure)

4.2 HID class API function listings

4.2.1 USB_Class_HID_Init()
Initializes the HID class.

Synopsis
usb _status USB Class HID Init
(

uint8 t controller id,
hid config struct t* hid config ptr,

hid handle t* hidHandle

USB Stack Device Reference Manual, Rev. 1, 04/2015

28

Freescale Semiconductor

Parameters
controller id [in] - controller ID, such as USB_CONTROLLER KHCI 0

hid config ptr [in] - HID configuration structure, refer to hid config struct t

hidHandle [out] - pointer point to the initialized HID class, refer to hid _handle t
Description

The application calls this API function to initialize the HID class, the underlying layers, and the controller
hardware.

Return Value
 USB_OK (success)
* Others (failure)

4.2.2 USB_Class_HID_Deinit()
Un-initializes the HID class.

Synopsis
usb _status USB Class HID Deinit
(

hid handle t handle
)
Parameters
handle [in] - HID class handler
Description

The application calls this API function to un-initialize the HID class, the underlying layers, and the
controller hardware.

Return Value
« USB_OK (success)
* Others (failure)

4.2.3 USB_Class_HID_Send_Data()
Sends the HID data.

Synopsis
usb status USB Class HID Send Data

(
hid handle t handle,

uint8 t ep num,

USB Stack Device Reference Manual, Rev. 1, 04/2015
Freescale Semiconductor 29

uint8 t* app_buff,

uint32 t size

)
Parameters
handle [in] - HID class handler
ep num [in] - endpoint number
app_buff [in] - buffer to send
size [in] - buffer length to send
Description

The application calls this API function to send HID data specified by app buff and size. Once the data
is sent, the application layer receives a callback event USB. DEV_EVENT SEND COMPLETE. This
means that the transfer failed when the value of the object that the pointer size points to, is OXFFFFFFFF in
the callback event USB_ DEV_EVENT SEND COMPLETE. The application reserves the buffer until it
receives a callback event indicating that the data is sent.

Return Value
« USB_OK (success)
* Others (failure)

4.2.4 USB_Class_HID_ Cancel()
Cancels all the uncompleted transfers in the specified endpoint.

Synopsis
usb status USB Class HID Cancel
(

hid handle t handle,
uint8 t ep _num,
uint8 t direction
)

Parameters

handle [in] - HID class handler

ep_num [in] - endpoint number

direction [in] - direction of the endpoint

Description

The application calls this API function to cancel all the uncompleted transfers in the specified endpoint.

Return Value

USB Stack Device Reference Manual, Rev. 1, 04/2015
30 Freescale Semiconductor

USB_OK (success)
* Others (failure)

4.2.5 USB_Class_HID Recv_Data()
Sends the HID data.

Synopsis
usb status USB Class HID Recv_ Data
(

hid handle t handle,
uint8 t ep_num,
uint8 t* app_buff,
uint32 t size
)

Parameters

handle [in] - HID class handler

ep num [in] - endpoint number

app buff [in] - buffer to recv

size [in] - buffer length to recv

Description

The application calls this API function to send HID data specified by app buff and size. Once the data
is sent, the application layer receives a callback event USB. DEV_EVENT DATA RECEIVED. The
transfer fails when the value of the object that the pointer size points is OXFFFFFFFF in callback event
USB_DEV_EVENT DATA_ RECEIVED. The application reserves the buffer until it receives a callback
event indicating that the data is received.

Return Value
« USB_OK (success)
* Others (failure)

4.2.6 USB_Class_HID_Get_Speed()
Get the USB speed of the HID device.

Synopsis
usb status USB Class HID Get Speed

(
hid handle t handle,
uintleé t * speed

USB Stack Device Reference Manual, Rev. 1, 04/2015
Freescale Semiconductor 31

Parameters

handle [in] - HID class handler
speed [out] - current speed
Description

The application calls this API function to get the USB speed of the HID device.
Return Value

 USB_OK (success)

* Others (failure)

4.3 MSC class API function listings

4.3.1 USB_Class_MSC_Init()
Initializes the MSC class.

Synopsis
usb status USB Class MSC Init
(

uint8 t controller id,

msc_config struct t* msd _config ptr,

msd _handle t* msd_handle

)
Parameters
controller id [in] - controller ID, like USB_ CONTROLLER KHCI 0
msd config ptr [in] - MSD configuration structure, refer to msc config struct t
msd_handle [out] - pointer point to the initialized MSD class, refer to msd handle t
Description

The application calls this API function to initialize the MSD class, the underlying layers, and the
controller hardware.

Return Value
* USB_OK (success)
* Others (failure)

4.3.2 USB_Class_MSC_Deinit()
Un-initializes the MSC class.

Synopsis

USB Stack Device Reference Manual, Rev. 1, 04/2015
32 Freescale Semiconductor

usb_status USB Class MSC Deinit
(

msd _handle t msd_handle
)
Parameters
msd_handle [in] - MSD class handler
Description

The application calls this API function to un-initialize the MSD class, the underlying layers, and the
controller hardware.

Return Value
« USB_OK (success)
* Others (failure)

4.3.3 USB_Class_ MSC_Get_Speed()
Get the USB speed of the MSD device.

Synopsis
usb status USB Class MSC Get Speed
(

msd_handle_ t handle,
uintlé t * speed
)
Parameters
handle [in] - MSD class handler
speed [out] - current speed
Description

The application calls this API function to get the USB speed of the MSD device.

Return Value
« USB_OK (success)
* Others (failure)

4.4 Audio class API function listings

4.4.1 USB_Class_Audio_Init()
Initializes the AUDIO class.

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

33

Synopsis
usb_status USB Class_ Audio_ Init
(

uint8 t controller id,
audio config struct t* audio_config ptr,
audio _handle t* audioHandle
)
Parameters

controller id [in] - controller ID, such as USB_CONTROLLER KHCI 0

audio config ptr [in] - AUDIO configuration structure, refer to audio config struct t

audioHandle [out] - pointer point to the initialized AUDIO class, refer to audio handle t

Description

The application calls this API function to initialize the AUDIO class, the underlying layers, and the

controller hardware.
Return Value
« USB_OK (success)
* Others (failure)

4.4.2 USB_Class_Audio_Deinit()
Un-initializes the AUDIO class.

Synopsis
usb _status USB Class_ Audio Deinit
(

audio handle t handle
)
Parameters
handle [in] - AUDIO class handler
Description

The application calls this API function to un-initialize the AUDIO class, the underlying layers, and the

controller hardware.
Return Value
« USB_OK (success)
* Others (failure)

USB Stack Device Reference Manual, Rev. 1, 04/2015

34

Freescale Semiconductor

4.4.3 USB_Class_Audio_Recv_Data()
Receives the AUDIO data.

Synopsis
usb_status USB Class_ Audio Recv_Data
(

audio handle t audio handle,
uint8 t ep_num,
uint8 t* app_buff,
uint32 t size
)
Parameters
audio handle [in] - AUDIO class handler
ep num [in] - endpoint number
app buff [in] - buffer to save the data from the host
size [in] - buffer length to receive
Description

The application calls this API function to receive data from host. Once the data is received, the application
layer receives a callback event USB_ DEV_EVENT DATA RECEIVED.

Return Value
USB_OK (success)
* Others (failure)

4.4.4 USB_Class_Audio_Send_Data()
Sends the AUDIO data.

Synopsis
usb status USB Class Audio_Send Data
(

audio_handle t handle,
uint8 t ep num,
uint8 t* app_buff,
uint32 t size
)

Parameters

handle [in] - AUDIO class handler

ep_num [in] - endpoint number

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 35

app buff [in] - buffer to send
size [in] - buffer length to send
Description

The application calls this API function to send data specified by app buff and size. Once the data is sent,
the application layer receives a callback event USB. DEV_EVENT SEND COMPLETE. The
application reserves the buffer until it receives a callback event indicating that the data is sent.

Return Value
* USB_OK (success)
* Others (failure)

4.4.5 USB_Class_Audio_Cancel()
Cancels all the uncompleted transfers in the specified endpoint.

Synopsis
usb status USB Class Audio Cancel
(

audio_handle t handle,
uint8 t ep_num,
uint8 t direction
)
Parameters
handle [in] - AUDIO class handler
ep_num [in] - endpoint number
direction [in] - direction of the endpoint
Description

The application calls this API function to cancel all the uncompleted transfers in the specified endpoint.
Return Value

« USB_OK (success)

* Others (failure)

4.4.6 USB_Class_Audio_Get_Speed()
Get the USB speed of the Audio device.

Synopsis
usb status USB Class Audio Get Speed
(

USB Stack Device Reference Manual, Rev. 1, 04/2015
36 Freescale Semiconductor

audio_handle_ t audio_handle,

uintle t * speed
)
Parameters
audio_handle [in] - Audio class handler
speed [out] - current speed
Description

The application calls this API function to get the USB speed of the Audio device.
Return Value

USB_OK (success)

* Others (failure)

4.5 PHDC class API function listings

4.5.1 USB_Class_PHDC Init()
Initializes the PHDC class.

Synopsis
usb status USB Class PHDC Init
(

uint8 t controller id,

phdc config struct t* phdc _config ptr,

phdc_handle t* phdcHandle
)
Parameters
controller id [in] - controller ID, like USB_ CONTROLLER KHCI 0
phdc config ptr [in] - PHDC configuration structure, refer to phdc config struct t

phdcHandle [out] - pointer point to the initialized PHDC class, refer to phdc handle t

Description

The application calls this API function to initialize the PHDC class, the underlying layers, and the
controller hardware.

Return Value
« USB_OK (success)
* Others (failure)

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 37

4.5.2 USB_Class_PHDC_Deinit()
Un-initializes the PHDC class.

Synopsis
usb _status USB Class_PHDC Deinit
(

phdc_handle t handle
)
Parameters
handle [in] - PHDC class handler
Description

The application calls this API function to un-initialize the PHDC class, the underlying layers, and the
controller hardware.

Return Value
* USB_OK (success)
* Others (failure)

45.3 USB_Class PHDC_ Recv_Data()
Receives the PHDC data.

Synopsis
usb status USB Class PHDC Recv Data
(

phdc_handle t handle,
uint8 t gos,
uint8 t* buff ptr,
int32 t size
)

Parameters

handle [in] - PHDC class handler

gos [in] - the qos of the transfer

buff ptr [in] - buffer to save the data from the host

size [in] - buffer length to receive

Description

The application calls this API function to receive data from host. Once the data is received, the application
layer receives a callback event USB. DEV_EVENT DATA RECEIVED. The transfer failed when the

USB Stack Device Reference Manual, Rev. 1, 04/2015
38 Freescale Semiconductor

value of the object that the pointer size points is OXFFFFFFFF in callback event
USB DEV_EVENT DATA RECEIVED.

Return Value
* USB_OK (success)
* Others (failure)

4.5.4 USB_Class_PHDC_Send_Data()
Sends the PHDC data.

Synopsis
usb status USB Class PHDC Send Data
(

phdc_handle t handle,
bool meta data,
uint8 t num tfr,
uint8 t gos,
uint8 t* app_buff ,
uint32 t size
)
Parameters
handle [in] - PHDC class handler
meta data [in] - the packet is metadata or not
num tfr [in] - the number of transfers
gos [in] - current qos of the transfer
app buff [in] - buffer to send
size [in] - buffer length to send
Description

The application calls this API function to send data specified by app buff and size. Once the data is sent,
the application layer receives a callback event USB. DEV_EVENT SEND COMPLETE. The
application reserves the buffer until it receives a callback event stating that the data is sent. The transfer
failed when the value of the object that the pointer size points is OXFFFFFFFF in callback event

USB DEV_EVENT SEND COMPLETE.

Return Value
« USB_OK (success)
* Others (failure)

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 39

455 USB_Class_PHDC_Cancel()
Cancels all the uncompleted transfers in the specified endpoint.

Synopsis
usb status USB Class_ PHDC Cancel
(

phdc _handle t handle,
uint8 t ep_num,
uint8 t direction
)
Parameters
handle [in] - PHDC class handler
ep num [in] - endpoint number
direction [in] - direction of the endpoint
Description

The application calls this API function to cancel all the uncompleted transfers in the specified endpoint.

Return Value
* USB_OK (success)
* Others (failure)

4.5.6 USB_Class_PHDC_Get_Speed()
Get the USB speed of the PHDC device.

Synopsis
usb status USB Class PHDC Get Speed
(

phdc_handle t handle,
uintle t * speed
)
Parameters
handle [in] - PHDC class handler
speed [out] - current speed
Description

The application calls this API function to get the USB speed of the PHDC device.

Return Value

USB Stack Device Reference Manual, Rev. 1, 04/2015

40

Freescale Semiconductor

USB_OK (success)
* Others (failure)

4.6 Composite class API function listings

4.6.1 USB_Composite_Init()
Initializes the composite class.

Synopsis
usb_status USB Composite Init
(

uint8 t controller id,
composite config struct t* composite callback ptr,
composite handle t* compositeHandle
)
Parameters
controller id [in] - controller ID, like USB_ CONTROLLER KHCI 0
composite callback ptr [in] - amnposﬂeconﬁguraﬁonschUne,reﬁxto

composite config struct t

compositeHandle [out] - pointer point to the initialized composite class, refer to
composite handle t

Description

The application calls this API function to initialize the composite class, the underlying layers, and the
controller hardware.

Return Value
* USB_OK (success)
* Others (failure)

4.6.2 USB_Composite_Deinit()
Un-initializes the Composite class.

Synopsis
usb _status USB_Composite Deinit

(

composite handle t handle

)
Parameters

handle [in] - composite class handler

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

Description

The application calls this API function to un-initialize the composite class, the underlying layers, and the
controller hardware.

Return Value
« USB_OK (success)
* Others (failure)

4.6.3 USB_Composite_Get_Speed|()
Get the USB speed of the Composite device.

Synopsis
usb status USB Composite Get Speed
(

composite handle t handle,

uintle t * speed
)
Parameters
handle [in] - Composite class handler
speed [out] - current speed
Description

The application calls this API function to get the USB speed of the Composite device.
Return Value

« USB_OK (success)

* Others (failure)

Chapter 5 USB Device Descriptor

During the enumeration process, the host needs to get the device’s descriptor. The USB Device Stack
defines a set of callback functions to get the device’s descriptor from the application and then passes it to
the host to finish the enumeration process.

5.1 get desc

Synopsis
uint8 t (CODE PTR get desc)

(
uint32 t handle,
uint8 t type,

USB Stack Device Reference Manual, Rev. 1, 04/2015

42 Freescale Semiconductor

uint8 t desc_index,

uintleé t index,

uint8 t * * descriptor,

uint32 t * size

)7
Parameters
handle [in] - class handler returned by the class initialization API
type [in] — descriptor type
desc index [in] —index of descriptor
index [in] —language ID if the type is USB_ DESC TYPE STR
descriptor [out] — pointer point to the buffer to hold the descriptor
size [out] — descriptor size
Description

This callback function needs to be implemented by the application to provide different types of descriptor
to the USB Device Stack, and the specified descriptor will be returned through the descriptor and size.

The following descriptors need to be supported in the implementation:
« USB DESC TYPE DEV
« USB DESC TYPE CFG
« USB DESC TYPE STR
« USB DESC TYPE DEV_QUALIFIER
« USB DESC TYPE OTHER SPEED CFG
For different classes, the following descriptor may need to be supported:
« USB HID DESCRIPTOR
« USB REPORT DESCRIPTOR
Return Value
* 0 (success)

* Others (failure)

5.2 get _desc_interface

Synopsis
uint8 t (CODE PTR_get desc interface)

(
uint32 t handle,

USB Stack Device Reference Manual, Rev. 1, 04/2015
Freescale Semiconductor 43

uint8 t interface,

uint8 t* alt interface
)7
Parameters
handle [in] — class handler returned by the class initialization API
interface [in] — interface index
alt interface [out] — alternate setting for the interface
Description

This callback function needs to be implemented by the application to get the current alternate setting for
the specified interface.

Return Value
* 0 (success)

* Others (failure)

5.3 set _desc_interface

Synopsis
uint8 t (CODE PTR set desc_interface)
(

uint32 t handle,
uint8 t interface,
uint8 t alt interface
)7
Parameters
handle [in] — class handler returned by the class initialization API
interface [in] — interface index
alt interface [in] — alternate setting for the interface
Description

This callback function needs to be implemented by the application to set the current alternate setting for
the specified interface.

Return Value
* 0 (success)

* Others (failure)

USB Stack Device Reference Manual, Rev. 1, 04/2015
44 Freescale Semiconductor

5.4 set_configuration

Synopsis
uint8 t (CODE PTR set configuration)
(

uint32 t handle,
uint8 t config
)
Parameters
handle [in] — The class handler returned by the class initialization API
config [in] — The configuration index
Description

This callback function needs to be implemented by the application to get to know which configuration is
active by the host.

Return Value
* 0 (success)

» Others (failure)

5.5 get _desc_entity

Synopsis
uint8 t (CODE PTR_get desc_entity)
(

uint32 t handle,
entity type type,
uint32 t * object
)
Parameters
handle [in] — class handler returned by the class initialization API
type [in] — entity type need to be obtained
object [out] — target entity object pointer
Description

This callback function needs to be implemented by the application to provide descriptor/device related
information to the USB Device stack.

The type could be:
« USB CLASS INFO

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 45

Must be implemented by all kinds of devices to provide all the descriptor related information
USB_AUDIO_UNITS

Must be implemented by the AUDIO device to provide the AUDIO units related information
USB_MSC LBA INFO

Must be implemented by the MSC device to provide mass storage LAB related information
USB_COMPOSITE INFO

Must be implemented by the composite device to provide composite device’s descriptor related
information

USB_RNDIS INFO
Must be implemented by the CDC RNDIS device to provide RNDIS related information
USB_CLASS_INTERFACE_INDEX_INFO

Must be implemented by the composite device to provide the class index.

Return Value

0 (success)

Others (failure)

USB Stack Device Reference Manual, Rev. 1, 04/2015

46

Freescale Semiconductor

Chapter 6 USB Device Configuration
The USB Device stack supports different configurations customized by the user in different cases.

The configuration varies depend on different boards, so you can get the configuration file in
<install dir>/usb/<USB_ROOT>/usb_core/device/include/<BOARD NAME>.

The following configuration items are supported in the USB Device Stack:
+ USBCFG _DEV_KHCI
o 1 indicates that the KHCI controller (Full Speed) is enabled.
o 0 indicates that the KHCI controller (Full Speed) is disabled.
« USBCFG_DEV_EHCI
o 1 indicates that the EHCI controller (High Speed) is enabled.
o 0 indicates that the EHCI controller (High Speed) is disabled.
« USBCFG_DEV_KHCI NUM

o The MACRO indicates how many KHCI devices can be active at the same time. When this
MACRO is bigger, more RAM is needed. [f USBCFG_DEV_KHCI is nonzero, the default
value is 1. Others, the value is 0.

« USBCFG DEV_EHCI NUM

o The MACRO indicates how many EHCI devices can be active at the same time. When this
MACRO is bigger, more RAM is needed. If USBCFG_DEV_EHCI is nonzero, the default
value is 1. Others, the value is 0.

+ USBCFG_DEV_NUM

o The MACRO indicates how many devices can be active at the same time. When this
MACRO is bigger, more RAM is needed. The default value is sum of
USBCFG_DEV_KHCI NUM and USBCFG_DEV_EHCI NUM.

+ USBCFG _DEV_HID
o 1 indicates that the HID class driver is enabled.
o 0 indicates that the HID class driver is disabled.
« USBCFG_DEV_PHDC
o 1 indicates that the PHDC class driver is enabled.
o 0 indicates that the PHDC class driver is disabled.
+ USBCFG_DEV_AUDIO
o 1 indicates that the AUDIO class driver is enabled.
o 0 indicates that the AUDIO class driver is disabled.

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 47

USBCFG_DEV_CDC

o 1 indicates that the CDC class driver is enabled.

o 0 indicates that the CDC class driver is disabled.
USBCFG_DEV_MSC

o 1 indicates that the MSC class driver is enabled.

o 0 indicates that the MSC class driver is disabled.
USBCFG_DEV_COMPOSITE

o 1 indicates that the COMPOSITE class driver is enabled.

o 0 indicates that the COMPOSITE class driver is disabled.

o Should be enabled only when composite device needs to be enabled. Default value is 0.
USBCFG_DEV_SELF POWER

o 1 indicates self power.

o 0 indicates bus power.
USBCFG_DEV_REMOTE WAKEUP

o 1 indicates that remote wakeup is enabled.

o 0 indicates that remote wakeup is disabled.
USBCFG_DEV_MAX ENDPOINTS

o The MACRO indicates how many endpoints can be used in a device. When this MACRO
is bigger, more RAM is needed. The default value is 6.

USBCFG DEV_MAX_XDS

o The MACRO indicates how many internal transfer descriptors can be used in a device.
When this MACRO is bigger, more RAM is needed. The default value is 12.

USBCFG DEV_MAX_CLASS OBJECT

o The MACRO indicates how many instances can be supported for one class type device.
When this MACRO is bigger, more RAM is needed. The default value is 1.

USBCFG_KHCI 4BYTE ALIGN FIX
o Effective when USBCFG_DEV_ EHCI is nonzero.

o The Full Speed controller requires that all the buffers used for the transfer need to be 4
bytes aligned (both the start address and the length). If the application can guarantee it, then
the MACRO USBCFG_KHCI 4BYTE ALIGN FIX can be set to 0. Otherwise, it needs
to set to 1, and then the USB Device Stack will use an internal 4 bytes aligned buffer to
replace the buffer provided by the user so that the above requirement can be meet. The
internal buffer size is assigned by the MACRO.

USB Stack Device Reference Manual, Rev. 1, 04/2015

48

Freescale Semiconductor

USBCFG_DEV_KHCI SWAP BUF MAX.

o Effective when USBCFG_DEV_EHCI is nonzero.

o Effective when USBCFG _KHCI 4BYTE ALIGN FIX is nonzero.
USBCFG_DEV_KHCI ADVANCED ERROR HANDLING

o 1 indicates that the error event will be sent to the application.

o 0 indicates that the error event will not be sent to the application.

o Effective for the Full Speed controller only.
USBCFG_DEV_EHCI MAX ENDPOINTS

o The MACRO indicates how many endpoints can be used in a high speed device. The
default value is depended on the Chip.

o Effective for the High Speed controller only.
USBCFG_DEV_EHCI MAX DTD

o The MACRO indicates how many DTD can be used in a high speed device. When this
MACRO is bigger, more RAM is needed. The default value is 16.

o Effective for the High Speed controller only.
USBCFG_DEV_EHCI ADVANCED ERROR_ HANDLING

o 1 indicates that the error event will be sent to the application.

o 0 indicates that the error event will not be sent to the application.

o Effective for the High Speed controller only.
USBCFG_DEV_KEEP ALIVE MODE

o 1 indicates that keep alive is enabled.

o 0 indicates that keep alive disabled.

o Effective for the Full Speed controller only.
USBCFG_DEV_BUFF PROPERTY CACHEABLE

o 1 indicates that the cache maintenance in USB Device Stack is enabled.

o 0 indicates that the cache maintenance in USB Device Stack is disabled.

o If the application does not use the cacheable memory in the USB transfer, this MACRO
needs to be set to 0. Otherwise, it needs to be set to 1, and the application needs to make
sure that the cacheable memory is CACHE LINE size aligned (both start address and
length).

USBCFG_DEV_ADVANCED SUSPEND RESUME

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 49

o Whether the suspend/resume needs to be enabled. It can be set to 0 only, because
suspend/resume is not implemented yet.

« USBCFG_DEV_ADVANCED CANCEL ENABLE

o Whether the cancel operation needs to be enabled. The default value is 1.
« USBCFG_DEV_DETACH _ENABLE

o Whether the device detach function needs to be enabled. The default value is 0.
« USBCFG_DEV 10 DETACH_ENABLE

o Whether the device detach function uses IO to implement when device detach function is
enabled. The default value is 0.

USB Stack Device Reference Manual, Rev. 1, 04/2015
50 Freescale Semiconductor

Chapter 7 USB Device Data structures
This section describes the data structures that need to be used from the application.

7.1 USB common controller driver

7.1.1 usb_ep_struct_t
Description

Obtains the endpoint data structure.
Synopsis

typedef struct usb ep struct
{

uint8 t ep_num;

uint8 t type;

uint8 t direction;

uint32 t size;

} usb_ep struct t;

Fields

ep number — endpoint number

type - type of endpoint

direction — direction of endpoint

size —maximum packet size of endpoint

7.1.2 usb_endpoints_t
Description

Obtains the endpoint group.
Synopsis

typedef struct usb endpoints
{

uint8 t count;
usb _ep struct t* ep;
} usb_endpoints_t;
Fields
count - how many endpoints are described

ep - detailed information of each endpoint

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

7.1.3 usb_if_struct_t

Description
Obtains the interface data structure.
Synopsis

typedef struct usb if struct
{

uint8 t index;
usb_endpoints t endpoints;
} usb_if struct t;
Fields
index - interface index

endpoints - endpoints in this interface

7.1.4 usb_interfaces_struct t

Description
Obtains the interface group.
Synopsis

typedef struct usb interfaces struct
{

uint8 t count;

usb if struct t* interface;

} usb_interfaces struct t;
Fields
count —how many interfaces are described
interface - detailed information of each interface

7.1.5 usb_class_struct _t

Description
Obtains the class data structure.
Synopsis

typedef struct usb class_ struct
{
class_ type type;
usb _interfaces struct t interfaces;
} usb _class struct t;

USB Stack Device Reference Manual, Rev. 1, 04/2015

52

Freescale Semiconductor

Fields
index — class type
interfaces — interfaces in this class

7.1.6 usb_composite_info_struct _t

Description
Obtains the composite information data structure.
Synopsis
typedef struct usb composite info struct
{
uint8 t count;
usb class struct t* class;
} usb composite info struct t;

Fields
count - how many classes in the composite device
class — detailed information of each class

7.1.7 usb_desc _request_notify_struct t

Description

Obtains the data structure of the descriptor related callback function. The application needs to implement
them and passes it as the configuration parameter.
Synopsis
typedef struct usb desc request notify struct
{
#ifdef USBCFG_OTG
uint32 t handle;
#endif
uint8 t (CODE PTR_ get desc) (uint32 t handle,uint8 t type,uint8 t desc_ index,
uintlé t index,uint8 t * *descriptor,uint32 t *size);
uint8 t (CODE PTR_ get desc interface) (uint32 t handle,uint8 t interface,
uint8 t * alt interface);
uint8 t (CODE PTR_ set desc_interface) (uint32 t handle,uint8 t interface,
uint8 t alt interface);
uint8 t (CODE PTR set configuration) (uint32 t handle, uint8 t config);

uint8 t (CODE PTR get desc entity) (uint32 t handle, entity type type, uint32 t *
object);

USB Stack Device Reference Manual, Rev. 1, 04/2015
Freescale Semiconductor 53

} usb _desc _request notify struct t;

Fields

get desc — to get the descriptor whose type is specified by the type

get _desc_interface —to get the interface’s alternate setting
set_desc_interface — to set the interface’s alternate setting
set_configuration — to inform the application whose configuration is active
get desc_entity —to get the descriptor/device related information

7.2 CDC class data structure

7.2.1 cdc_handle_t
Description
Represents the CDC class handle.
Synopsis
typedef uint32 t cdc handle t;

7.2.2 _ip_address
Description
Represents the IP address.
Synopsis
typedef uint32 t ip address;

7.2.3 cdc_app_data_struct_t
Description

Holds the information of CDC data struct.
Synopsis

typedef struct cdc app data struct

{
uint8 t* data ptr;
uint32 t data size;

}cdc_app_data struct t;
Fields

data ptr - pointer to buffer
data_size - buffer size

USB Stack Device Reference Manual, Rev. 1, 04/2015

54 Freescale Semiconductor

7.2.4 usb_rndis_info_struct_t
Description

Holds the detailed information about the RNDIS.
Synopsis

typedef struct usb rndis info struct
{

enet address t mac_address;

_1p address ip address;

uint32 t rndis max frame size;
} usb_rndis_info struct t;

Fields

mac_address — MAC address

ip address — IP address

rndis max frame size— maximum frame size

7.2.5 cdc_config_struct _t

Description

Holds the detailed information about the CDC configuration.

Synopsis
typedef struct cdc config struct
{
usb _application callback struct t
usb vendor req callback struct t
usb class specific callback struct t
usb _desc request notify struct t*

}cde config struct t;

Fields

cdc_application callback;
vendor req callback;
class_specific callback;

desc_callback ptr;

cdc_application callback — application callback function to handle the Device status related event

vendor req callback —application callback function to handle the vendor request related event,

reserved for future use

class_specific_callback —application callback function to handle all the class related events

desc callback ptr—descriptor related callback function data structure

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

55

7.3 HID class data structure

7.3.1 hid_handle_t
Description
Represents the HID class handle.
Synopsis
typedef uint32 t hid handle t;

7.3.2 hid_config_struct_t

Description

Holds the detailed information about the HID class configuration.
Synopsis

typedef struct hid config struct
{

usb_application callback struct t hid application callback;
usb _vendor req callback struct t vendor req callback;

usb class specific callback struct t class_specific callback;
usb desc request notify struct t* desc_callback ptr;

t}hid config struct t;
Fields

hid application callback — application callback function to handle the Device status related event

vendor req callback —application callback function to handle the vendor request related event,
reserved for future use

class_specific_callback —application callback function to handle all the class related event
desc callback ptr—descriptor related callback function data structure.

7.4 MSC class data structure

7.4.1 msc_handle_t
Description
Represents the MSC class handle.
Synopsis
typedef uint32 t msc handle t;

USB Stack Device Reference Manual, Rev. 1, 04/2015

56 Freescale Semiconductor

7.4.2 msc_app_data_struct_t
Description

Holds the information of MSC app data struct.
Synopsis

typedef struct msc app data struct

{
uint8 t* data ptr;
uint32 t data size;

}msc_app_data struct t;

Fields
data ptr - pointer to buffer
data size - buffer size

7.4.3 Iba_app_struct_t

Description

Holds the information used to perform the logical block access.
Synopsis

typedef struct 1lba app struct
{

uint32 t offset;
uint32 t size;
uint8 t* buff ptr;

}1ba app_ struct t;
Fields

offrset — Offset of target block need to access
size —Size need to access
buff ptr— used to save the content by access the target block

7.4.4 device_lIba info_struct t
Description

Holds the detailed information about the LAB.
Synopsis

typedef struct device lba info struct

{

uint32 t total 1lba device supports;
uint32 t length of each lab of device;
uint8 t num_lun_ supported;

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor

57

}device lba info struct t;

Fields
total lba device supports— blocks number
length_of_each_lab;of_device——QZEOfeaChlﬂOCk

num_lun_supported——HWﬂberOfLJJN

7.4.5 msc_config_struct_t

Description

Holds the detailed information about the MSC configuration.
Synopsis

typedef struct msc config struct

{

usb_application callback struct t msc_application callback;
usb _vendor req callback struct t vendor req callback;

usb class specific callback struct t class_specific callback;
usb _desc request notify struct t* desc_callback ptr;

}msc _config struct t;

Fields
msc_application callback — application callback function to handle the Device status related event

vendor req callback —application callback function to handle the vendor request related event,
reserved for future use

class_specific_callback —application callback function to handle all the class related event
desc callback ptr—descriptor related callback function data structure.

7.5 Audio class data structure

7.5.1 audio_handle _t
Description
Represents the AUDIO class handle.
Synopsis
typedef uint32 t audio handle t;

7.5.2 audio_app_data_struct_t

Description
Holds the information of audio app data struct.
Synopsis

USB Stack Device Reference Manual, Rev. 1, 04/2015

58 Freescale Semiconductor

typedef struct audio_app data struct
{
uint8 t* data ptr;
uint32 t data size;
}audio app data struct t;
Fields
data_ptr - pointer to buffer

data_size - buffer size

7.5.3 audio_config_struct _t

Description

Holds the detailed information about the AUDIO configuration.
Synopsis

typedef struct audio config struct

{

usb_application callback struct t audio_application callback;
usb _vendor req callback struct t vendor req callback;

usb class specific callback struct t class_specific callback;
usb _desc request notify struct t* desc_callback ptr;

}audio_config struct t;

Fields
audio application callback — application callback function to handle the Device status related event

vendor req callback —application callback function to handle the vendor request related event,
reserved for future use

class_specific_callback —application callback function to handle all the class related event
desc callback ptr—descriptor related callback function data structure.

7.6 PHDC class data structure

7.6.1 phdc_handle_t
Description
Represents the PHDC class handle.
Synopsis
typedef uint32 t phdc handle t;

7.6.2 phdc_app_data_struct_t
Description
Holds the buffer information along with the send complete event.

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 59

Synopsis
typedef struct phdc app data struct
{
uint8 t gos;
uint8 t* buffer ptr;
uint32 t size;

} phdc_app data struct t;
Fields

gos - the gos of the transfer
buffer ptr—the buffer point
size - the buffer size

7.6.3 phdc_config_struct _t

Description

Holds the detailed information about the PHDC configuration.
Synopsis

typedef struct phdc config struct
{

usb _application callback struct t phdc_application callback;
usb vendor req callback struct t vendor req callback;

usb _class specific callback struct t class_specific callback;
usb desc request notify struct t* desc_callback ptr;

}phdc_config struct t;
Fields

phdc application callback —application callback function to handle the Device status related event

vendor req callback — application callback function to handle the vendor request related event,
reserved for future use

class _specific_callback —application callback function to handle all the class related event
desc callback ptr - descriptor related callback function data structure.

7.7 Composite class data structure

7.7.1 composite_handle_t
Description

Represents the composite class handle.
Synopsis

typedef uint32 t composite handle t;

USB Stack Device Reference Manual, Rev. 1, 04/2015

60 Freescale Semiconductor

7.7.2 class_config_struct_t

Description

Holds the information one type of class configuration.
Synopsis

typedef struct class config struct

{

usb_application callback struct t application callback;
usb vendor req callback struct t vendor req callback;

usb class specific callback struct t class_specific callback;
usb _desc request notify struct t* desc_callback ptr;
uint32 t class_handle;

class type type;

}class _config struct t;

Fields

application callback — application callback function to handle the Device status related event for the
specified type of class

vendor req callback — application callback function to handle the vendor request related event,
reserved for future use

class specific callback — application callback function to handle all the class related event for the
specified type of class

desc callback ptr—descriptor related callback function data structure for the specified type of class.
class handle —the handle of the class.
type — class type

7.7.3 composite_config_struct_t

Description

Holds the detailed information about the MSC configuration.
Synopsis

typedef struct composite config struct
{
uint8 t count;
class_config struct ptr class _app_callback;

}composite config struct t;

Fields
count —how many classes are supported for the composite device
class_app callback — detailed information for each class

USB Stack Device Reference Manual, Rev. 1, 04/2015

Freescale Semiconductor 61

Appendix

A. USB device stack tasks

There are one task as follow:

Task name Priority macro Priority value

DEV task USB DEVICE TASK PRIORITY 6

Note

For RTOS, application unblocked tasks’ priorities should be lower than the
above priority.

B. Revision History

This table summarizes revisions to this document.

Table 1 Revision History

Revision number Date Substantial changes
1 04/2015 Kinetis SDK 1.2.0 release
0 12/2014 Kinetis SDK 1.1.0 release

USB Stack Device Reference Manual, Rev. 1, 04/2015

62 Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
www.freescale.com/support

Document Number: USBSDRM
Rev. 1
04/2015

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, Kinetis, and the Freescale logo are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.

©2015 Freescale Semiconductor, Inc.

-,
-

> freescale"

	USB Stack Device Reference Manual
	Chapter 1 Before You Begin
	1.1 About this book
	1.2 Acronyms and abbreviations
	1.3 Function listing format
	Chapter 2 Overview
	2.1 USB overview
	2.2 API overview
	2.3 Using the USB Device API
	Chapter 3 USB Common Controller Driver API
	3.1 usb_device_init
	3.2 usb_device_postinit
	3.3 usb_device_deinit
	3.4 usb_device_recv_data
	3.5 usb_device_send_data
	3.6 usb_device_cancel_transfer
	3.7 usb_device_register_service
	3.8 usb_device_unregister_service
	3.9 usb_device_init_endpoint
	3.10 usb_device_deinit_endpoint
	3.11 usb_device_stall_endpoint
	3.12 usb_device_unstall_endpoint
	3.13 usb_device_register_application_notify
	3.14 usb_device_register_vendor_class_request_notify
	3.15 usb_device_register_desc_request_notify
	3.16 usb_device_get_status
	3.17 usb_device_set_status
	Chapter 4 USB Device Class API
	4.1 CDC class API function listings
	4.2 HID class API function listings
	4.3 MSC class API function listings
	4.4 Audio class API function listings
	4.5 PHDC class API function listings
	4.6 Composite class API function listings
	Chapter 5 USB Device Descriptor
	5.1 get_desc
	5.2 get_desc_interface
	5.3 set_desc_interface
	5.4 set_configuration
	5.5 get_desc_entity
	Chapter 6 USB Device Configuration
	Chapter 7 USB Device Data structures
	7.1 USB common controller driver
	7.2 CDC class data structure
	7.3 HID class data structure
	7.4 MSC class data structure
	7.5 Audio class data structure
	7.6 PHDC class data structure
	7.7 Composite class data structure
	Appendix
	A. USB device stack tasks
	Revision History

