
Freescale Semiconductor Document Number: USBSDNAUG

User’s Guide Rev. 1, 04/2015

© Freescale Semiconductor, Inc., 2015. All rights reserved.

Freescale KSDK USB Stack Developing

New Application User’s Guide

1 Read Me First

This document provides the detailed steps to

develop a new application based on the existing

classes in the USB Unified Stack. There are two

parts in this document:

 Developing a new USB device application

 Developing a new USB host application

Contents

1 Read Me First 1

2 Developing a New USB Device Application 2

3 Developing a New USB Host Application 20

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

2 Freescale Semiconductor

2 Developing a New USB Device Application

2.1 Application interfaces

The interface definition between the application and the classes includes the calls shown in the following table:

API Call Description

Class Initialize This API is used to initialize not only the class but also the lower driver

layers.

Receive Data This API is used by the application to receive the data from the host system.

Send Data This API is used by the application to send the data to the host system.

USB descriptor

related callback

Handles the callback to get the descriptor.

USB Device call

back function

Handles the callback by the class driver to inform the application about

various USB bus events.

USB Class specific

call back function

Handles the specific callback of the class.

USB Vendor call

back function

This is an optional callback and is not mandatory for the application to

support it. This callback is used to propagate any vendor specific request

that the host system sends.

Periodic Task This is an API call by the application to the class, so that it can complete

some tasks that it may want to execute in non-interrupt context.

2.2 How to develop a new device application

Perform these steps to develop a new device application:

1. Create a new application directory under …/usb/example/device/xxx to

<install_dir>/usb/example/device/xxx locate the application source files and header files. The xxx

is the class name, such as HID and CDC. The name of this directory is the same as the class name that

the application is based on, such as HID and CDC. For example,

<install_dir>/usb/example/device/hid/hid_test

2. Copy the following files from the similar existing applications to the application directory that is

created in Step 1.

usb_descriptor.c

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 3

usb_descriptor.h

The usb_descriptor.c and usb_descriptor.h files contain the USB descriptors that are dependent on

the application and the class driver.

3. Copy the bm directory from the similar existing application directory to the new application directory.

Remove the unused project directory from the bm directory. Modify the project directory name to the

new application project name. For example, if we want to create toolchain-IAR, board-frdmk64

class-hid related application, then we can create the new application hid_test based on a similar

existing application hid_mouse.

Change <install_dir>/examples/frdmk64f/demo_apps/usb/device/hid/hid_mouse/bm/iar

to <install_dir>/examples/frdmk64f/demo_apps/usb/device/hid/hid_test/bm/iar

4. Modify the project file name to the new application project file name, for example, from

dev_hid_mouse_frdmk64f_bm.ewp to dev_hid_test_frdmk64f.ewp. You can globally replace the

existing name to the new project name by editing the project files. The dev_hid_test_frdmk64f_bm.ewp

file includes the new application project setting.

5. Create a new source file to implement the main application functions and callback functions. The

name of this file is similar with the new application name, such as mouse.c and keyboard.c.

The following sections describe the detailed steps to change application files created in the steps above to

correspond with the new application.

2.2.1 Changing the usb_descriptor.c file

This file contains the class driver interface. It also contains USB standard descriptors such as device

descriptor, configuration descriptor, string descriptor, and the other class specific descriptors that are

provided to class driver when required.

The lists below show user modifiable variables for an already implemented class driver. The user should

also modify the corresponding MACROs defined in the usb_descriptor.h file

 Endpoint structures: Endpoint structure describes the property of endpoint such as the endpoint

number, size, direction, and type. This array should contain all the mandatory endpoints defined by

USB class specifications.

Data structure of endpoint descriptor:

typedef struct _usb_ep_struct

{

 uint8_t ep_num; /* endpoint number */

 uint8_t type; /* type of endpoint */

 uint8_t direction; /* direction of endpoint */

 uint32_t size; /* buffer size of endpoint */

} usb_ep_struct_t;

/* Strucutre Representing Endpoints and number of endpoints user want*/

typedef struct _usb_endpoints

{

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

4 Freescale Semiconductor

 uint8_t count;

 usb_ep_struct_t* ep;

} usb_endpoints_t;

/* Strucutre Representing interface*/

typedef struct _usb_if_struct

{

 uint8_t index;

 usb_endpoints_t endpoints;

} usb_if_struct_t;

/* Strucutre Representing how many interfaces in one class type*/

typedef struct _usb_interfaces_struct

{

 uint8_t count;

 usb_if_struct_t* interface;

} usb_interfaces_struct_t;

/* Strucutre Representing class info*/

typedef struct _usb_class_struct

{

 class_type type;

 usb_interfaces_struct_t interfaces;

} usb_class_struct_t;

/* Strucutre Representing composite info*/

typedef struct _usb_composite_info_struct

{

 uint8_t count;

 usb_class_struct_t* class;

} usb_composite_info_struct_t;

A brief diagram about the relationship between these items is as follows:

Class

Class Type

Interfaces

Class

interface

index

endpoints

endpoint

index

type

Direction

Interval

size

endpoint

index

type

Direction

Interval

size

count

ep

count

if

interface

index

endpoints

Class Type

Interfaces

interfaces

endpoints

count

class

Composite_info

Sample code implementation of endpoint descriptor for HID class is given below:

usb_ep_struct_t g_ep[HID_DESC_ENDPOINT_COUNT] =

{

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 5

 HID_ENDPOINT,

 USB_INTERRUPT_PIPE,

 USB_SEND,

 HID_ENDPOINT_PACKET_SIZE

};

/* structure containing details of all the endpoints used by this device */

usb_endpoints_t g_usb_desc_ep =

{

 HID_DESC_ENDPOINT_COUNT,

 g_ep

};

static usb_if_struct_t g_usb_if[1];

usb_class_struct_t g_usb_dec_class =

{

 USB_CLASS_HID,

 {

 1,

 g_usb_if

 }

 };

 g_device_descriptor

This variable contains the USB Device Descriptor.

Sample code implementation of device descriptor for HID class is given below:

uint8_t g_device_descriptor[DEVICE_DESCRIPTOR_SIZE] =

{

 DEVICE_DESCRIPTOR_SIZE, /* Device Descriptor Size */

 USB_DEVICE_DESCRIPTOR, /* Device Type of descriptor */

 0x00, 0x02, /* BCD USB version */

 0x00, /* Device Class is indicated in

 the interface descriptors */

 0x00, /* Device Subclass is indicated

 in the interface descriptors */

 0x00, /* Device Protocol */

 CONTROL_MAX_PACKET_SIZE, /* Max Packet size */

 0xA2,0x15, /* Vendor ID */

 0x01,0x01, /* Product ID (0x0101 for KBD) */

 0x02,0x00, /* BCD Device version */

 0x01, /* Manufacturer string index */

 0x02, /* Product string index */

 0x00, /* Serial number string index */

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

6 Freescale Semiconductor

 0x01 /* Number of configurations */

};

 g_config_descriptor

This variable contains the USB Configuration Descriptor.

Sample code implementation of configuration descriptor for HID class is given below:

uint8_t g_config_descriptor[CONFIG_DESC_SIZE] =

{

 CONFIG_ONLY_DESC_SIZE, /* Configuration Descriptor Size - always 9 bytes*/

 USB_CONFIG_DESCRIPTOR, /* "Configuration" type of descriptor */

 CONFIG_DESC_SIZE, 0x00, /* Total length of the Configuration descriptor */

 1, /* NumInterfaces */

 1, /* Configuration Value */

 0, /* Configuration Description String Index*/

 (USBCFG_DEV_SELF_POWER << USB_DESC_CFG_ATTRIBUTES_SELF_POWERED_SHIFT) |

(USBCFG_DEV_REMOTE_WAKEUP << USB_DESC_CFG_ATTRIBUTES_REMOTE_WAKEUP_SHIFT),

 /* S08/CFv1 are both self powered (its compulsory to set bus powered)*/

 /* Attributes.supportRemoteWakeup and self power */

 0x32, /* Current draw from bus */

 /* Interface Descriptor */

 IFACE_ONLY_DESC_SIZE,

 USB_IFACE_DESCRIPTOR,

 0x00,

 0x00,

 HID_DESC_ENDPOINT_COUNT,

 0x03,

 0x01,

 0x01, /* 0x01 for keyboard */

 0x00,

 /* HID descriptor */

 HID_ONLY_DESC_SIZE,

 USB_HID_DESCRIPTOR,

 0x00,0x01,

 0x00,

 0x01,

 0x22,

 0x3F,0x00, /* report descriptor size to follow */

 /*Endpoint descriptor */

 ENDP_ONLY_DESC_SIZE,

 USB_ENDPOINT_DESCRIPTOR,

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 7

 HID_ENDPOINT|(USB_SEND << 7),

 USB_INTERRUPT_PIPE,

 HID_ENDPOINT_PACKET_SIZE, 0x00,

 0x0A

};

 String Descriptors

Users can modify string descriptors to customize their product. String descriptors are written in the

UNICODE format. An appropriate language identification number is specified in USB_STR_0.

Multiple languages support can also be added.

Sample code implementation of string descriptors for the HID class application is given below:

/* number of strings in the table not including 0 or n. */

uint8_t g_usb_str_0[USB_STR_0_SIZE+USB_STR_DESC_SIZE] =

{

 sizeof(g_usb_str_0),

 USB_STRING_DESCRIPTOR,

 0x09,

 0x04/*equivalent to 0x0409*/

};

uint8_t g_usb_str_1[USB_STR_1_SIZE+USB_STR_DESC_SIZE] =

{

 sizeof(g_usb_str_1),

 USB_STRING_DESCRIPTOR,

 'F',0,

 'R',0,

 'E',0,

 'E',0,

 'S',0,

 'C',0,

 'A',0,

 'L',0,

 'E',0,

 ' ',0,

 'S',0,

 'E',0,

 'M',0,

 'I',0,

 'C',0,

 'O',0,

 'N',0,

 'D',0,

 'U',0,

 'C',0,

Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

8 Freescale Semiconductor

'T',0,

'O',0,

'R',0,

' ',0,

'I',0,

'N',0,

'C',0,

'.',0

};

uint8_t g_usb_str_2[USB_STR_2_SIZE+USB_STR_DESC_SIZE] =

{

sizeof(g_usb_str_2),

USB_STRING_DESCRIPTOR,

'M',0,

'C',0,

'U',0,

' ',0,

'K',0,

'E',0,

'Y',0,

'B',0,

'O',0,

'A',0,

'R',0,

'D',0,

' ',0,

'D',0,

'E',0,

'M',0,

'O',0,

' ',0

};

uint8_t g_usb_str_n[USB_STR_n_SIZE+USB_STR_DESC_SIZE] =

{

sizeof(g_usb_str_n),

USB_STRING_DESCRIPTOR,

'B',0,

'A',0,

'D',0,

' ',0,

'S',0,

'T',0,

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 9

 'R',0,

 'I',0,

 'N',0,

 'G',0,

 ' ',0,

 'I',0,

 'N',0,

 'D',0,

 'E',0,

 'X',0

};

uint8_t g_string_desc_size[USB_MAX_STRING_DESCRIPTORS+1] =

{

 sizeof(g_usb_str_0),

 sizeof(g_usb_str_1),

 sizeof(g_usb_str_2),

 sizeof(g_usb_str_n)

};

uint8_t *g_string_descriptors[USB_MAX_STRING_DESCRIPTORS+1] =

{

 g_usb_str_0,

 g_usb_str_1,

 g_usb_str_2,

g_usb_str_n

};

usb_language_t g_usb_language[USB_MAX_SUPPORTED_INTERFACES] =

{

 (uint16_t)0x0409,

 g_string_descriptors,

 g_string_desc_size

};

usb_all_languages_t g_languages =

{

 g_usb_str_0,

 sizeof(g_usb_str_0),

 USB_MAX_LANGUAGES_SUPPORTED,

 g_usb_language

};

 Standard Descriptor Table

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

10 Freescale Semiconductor

Users can modify the standard descriptor table to support additional class specific descriptors and

vendor specific descriptors.

Sample implementation for HID Class application is given below:

uint32_t g_std_desc_size[USB_MAX_STD_DESCRIPTORS+1] =

{

 0,

 DEVICE_DESCRIPTOR_SIZE,

 CONFIG_DESC_SIZE,

 0, /* string */

 0, /* Interfdace */

 0, /* Endpoint */

 #if HIGH_SPEED_DEVICE

 DEVICE_QUALIFIER_DESCRIPTOR_SIZE,

 OTHER_SPEED_CONFIG_DESCRIPTOR_SIZE,

 #else

 0, /* Device Qualifier */

 0, /* other sppedconfig */

 #endif

 REPORT_DESC_SIZE

};

uint8_t *g_std_descriptors[USB_MAX_STD_DESCRIPTORS+1] =

{

 NULL,

 g_device_descriptor,

 g_config_descriptor,

 NULL, /* string */

 NULL, /* Interfdace */

 NULL, /* Endpoint */

 #if HIGH_SPEED_DEVICE

 g_device_qualifier_descriptor,

 g_other_speed_config_descriptor,

 #else

 NULL, /* Device Qualifier */

 NULL, /* other sppedconfig*/

 #endif

 g_report_descriptor

};

 g_valid_config_values

This variable contains valid configurations for a device. This value remains fixed for a device.

uint_8 constg_valid_config_values[USB_MAX_CONFIG_SUPPORTED+1]={0,1};

 g_alternate_interface

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 11

This variable contains valid alternate interfaces for a given configuration. Sample implementation

uses a single configuration. If the user implements additional alternate interfaces, the

USB_MAX_SUPPORTED_INTERFACES macro (usb_descriptor.h) should be changed

accordingly.

static uint_8 g_alternate_interface[USB_MAX_SUPPORTED_INTERFACES];

The following interfaces are required to be implemented by the application in usb_descriptor.c.

These interfaces are called by class drivers.

 USB_Desc_Get_Descriptor

This interface function is invoked by the Class driver. This call is made when the Class driver

receives the GET_DESCRIPTOR call from the Host. Mandatory descriptors that an application is

required to implement are as follows:

o Device Descriptor

o Configuration Descriptor

o Class Specific Descriptors (For example, for HID class implementation, Report

Descriptor, and HID Descriptor)

Apart from the mandatory descriptors, an application should also implement various string

descriptors as specified by the Device Descriptor and other configuration descriptors.

Sample code for HID class application is given below:

/**//*!

 *

 * @name USB_Desc_Get_Descriptor

 *

 * @brief The function returns the correponding descriptor

 *

 * @param handle: handle

 * @param type : type of descriptor requested

 * @param sub_type : string index for string descriptor

 * @param index : string descriptor language Id

 * @param descriptor : output descriptor pointer

 * @param size : size of descriptor returned

 *

 * @return USB_OK When Successfull

 * USBERR_INVALID_REQ_TYPE when Error

 ***/

uint8_t USB_Desc_Get_Descriptor

(

 hid_handle handle,

 uint8_t type,

 uint8_t str_num,

 uint16_t index,

 uint8_t * *descriptor,

 uint32_t *size

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

12 Freescale Semiconductor

)

{

 UNUSED_ARGUMENT (handle)

 switch(type)

 {

 case USB_REPORT_DESCRIPTOR:

 {

 type = USB_MAX_STD_DESCRIPTORS;

 *descriptor = (uint8_t *)g_std_descriptors [type];

 *size = g_std_desc_size[type];

 }

 break;

 case USB_HID_DESCRIPTOR:

 {

 type = USB_CONFIG_DESCRIPTOR ;

 *descriptor = (uint8_t *)(g_std_descriptors [type]+

 CONFIG_ONLY_DESC_SIZE+IFACE_ONLY_DESC_SIZE);

 *size = HID_ONLY_DESC_SIZE;

 }

 break;

 case USB_STRING_DESCRIPTOR:

 {

 if(index == 0)

 {

 /* return the string and size of all languages */

 *descriptor =

 (uint8_t *)g_languages.languages_supported_string;

 *size = g_languages.languages_supported_size;

 }

 else

 {

 uint8_t lang_id=0;

 uint8_t lang_index=USB_MAX_LANGUAGES_SUPPORTED;

 for(;lang_id< USB_MAX_LANGUAGES_SUPPORTED;lang_id++)

 {

 /* check whether we have a string for this language */

 if(index ==

 g_languages.usb_language[lang_id].language_id)

 { /* check for max descriptors */

 if(str_num < USB_MAX_STRING_DESCRIPTORS)

 { /* setup index for the string to be returned */

 lang_index=str_num;

 }

 break;

 }

 }

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 13

 /* set return val for descriptor and size */

 *descriptor = (uint8_t *)

 g_languages.usb_language[lang_id].lang_desc[lang_index];

 *size =

 g_languages.usb_language[lang_id].

 lang_desc_size[lang_index];

 }

 }

 break;

 default :

 if (type < USB_MAX_STD_DESCRIPTORS)

 {

 /* set return val for descriptor and size*/

 *descriptor = (uint8_t *)g_std_descriptors [type];

 /* if there is no descriptor then return error */

 *size = g_std_desc_size[type];

 if(*descriptor == NULL)

 {

 return USBERR_INVALID_REQ_TYPE;

 }

 }

 else /* invalid descriptor */

 {

 return USBERR_INVALID_REQ_TYPE;

 }

 break;

 }/* End Switch */

 return USB_OK;

}

 USB_Desc_Get_Interface

This interface function is invoked by the Class driver. This function returns a pointer to the

alternate interface for the specified interface. This routine is called when the Class driver receives

the GET_INTERFACE request from the Host.

Sample code for the HID class application is given below:

/**//*!

 *

 * @name USB_Desc_Get_Interface

 *

 * @brief The function returns the alternate interface

 *

 * @param handle: handle

 * @param interface: interface number

 * @param alt_interface: output alternate interface

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

14 Freescale Semiconductor

 *

 * @return USB_OK When Successfull

 * USBERR_INVALID_REQ_TYPE when Error

 ***/

uint8_t USB_Desc_Get_Interface

(

 hid_handle handle,

 uint8_t interface,

 uint8_t * alt_interface

)

{

 UNUSED_ARGUMENT (handle)

 /* if interface valid */

 if(interface < USB_MAX_SUPPORTED_INTERFACES)

 {

 /* get alternate interface*/

 *alt_interface = g_alternate_interface[interface];

 return USB_OK;

 }

 return USBERR_INVALID_REQ_TYPE;

}

 USB_Desc_Set_Interface

This interface function is called from the Class driver. This function sets an alternate interface for

a specified interface. This routine is called when the Class driver receives the SET_INTERFACE

request from the host.

Sample code for the HID class application is given below:

uint8_t USB_Desc_Set_Interface

(

 hid_handle handle,

 uint8_t interface,

 uint8_t alt_interface

)

{

 UNUSED_ARGUMENT (handle)

 /* if interface valid */

 if(interface < USB_MAX_SUPPORTED_INTERFACES)

 {

 /* set alternate interface*/

 g_alternate_interface[interface]=alt_interface;

 return USB_OK;

 }

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 15

 return USBERR_INVALID_REQ_TYPE;

}

 USB_Set_Configation

This function is used to set the device configuration.

Sample code for the HID class application is given below:

uint8_t USB_Set_Configation

(

 hid_handle handle, uint8_t config

)

{

 UNUSED_ARGUMENT(handle)

 return USB_OK;

}

 USB_Desc_Get_Entity

This function is used to get some descriptor related entities which will be used in the USB stack.

For example, for the eventual endpoint configuration, one device may have several different

configuration descriptors, so the endpoint configuration may be different. The finalized

configuration can be obtained only after the Host calls the SET_CONFIGURATION, and then the

USB stack can get all the correct information about the interfaces and endpoints through the

USB_CLASS_INFO selector.

Sample code for the HID class application is given below:

uint8_t USB_Desc_Get_Entity(hid_handle handle,entity_type type, uint32_t * object)

{

 switch (type)

 {

 case USB_CLASS_INFO:

 g_usb_if[0].index = 1;

 g_usb_if[0].endpoints = g_usb_desc_ep;

 *object = (unsigned long)&g_usb_dec_class;

 break;

 default :

 break;

 }/* End Switch */

 return USB_OK;

}

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

16 Freescale Semiconductor

2.2.2 Changing the usb_descriptor.h file

This file is mandatory for the application to implement. The usb_descriptor.c file includes this file for

function prototype definitions. When the user modifies usb_descriptor.c, MACROs in this file should also

be modified.

2.2.3 Changing the application file

1. Main application function

The main application function is provided by two functions: APP_init and APP_task.

Sample code for the HID class application is given below:

void APP_init(void)

{

 hid_config_struct_t config_struct;

 OS_Mem_zero(&g_keyboard,sizeof(keyboard_global_variable_struct_t));

 OS_Mem_zero(&config_struct,sizeof(hid_config_struct_t));

#if (OS_ADAPTER_ACTIVE_OS == OS_ADAPTER_MQX)

 g_keyboard.rpt_buf = (uint8_t*)OS_Mem_alloc_uncached_align(KEYBOARD_BUFF_SIZE,

32);

 if(NULL == g_keyboard.rpt_buf)

 {

 printf("\nMalloc error in APP_init\n");

 return;

 }

 OS_Mem_zero(g_keyboard.rpt_buf,KEYBOARD_BUFF_SIZE);

#endif

 printf("\nbegin to test keyboard\n");

 config_struct.hid_application_callback.callback = USB_App_Callback;

 config_struct.hid_application_callback.arg = &g_keyboard.app_handle;

 config_struct.class_specific_callback.callback = USB_App_Param_Callback;

 config_struct.class_specific_callback.arg = &g_keyboard.app_handle;

 config_struct.desc_callback_ptr = &g_desc_callback;

 USB_Class_HID_Init(CONTROLLER_ID, &config_struct, &g_keyboard.app_handle);

}

void APP_task()

{

 USB_HID_Periodic_Task();

}

2. USB device call back function

Sample code for the HID class application is given below:

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 17

void USB_App_Callback(uint8_t event_type, void* val,void* arg)

{

 UNUSED_ARGUMENT (arg)

 UNUSED_ARGUMENT (val)

 switch(event_type)

{

 case USB_DEV_EVENT_BUS_RESET:

 g_keyboard.keyboard_init = FALSE;

 break;

 case USB_DEV_EVENT_ENUM_COMPLETE:

 g_keyboard.keyboard_init = TRUE;

 g_process_times = 1;

 KeyBoard_Events_Process();/* run the coursor movement code */

 break;

 case USB_DEV_EVENT_ERROR:

 /* user may add code here for error handling

 NOTE : val has the value of error from h/w*/

 break;

 default:

 break;

 }

 return;

 }

3. USB Class specific call back function

Sample code for the HID class application is given below:

uint8_t USB_App_Param_Callback

(

 uint8_t request,

 uint16_t value,

 uint8_t ** data,

 uint32_t* size,

 void* arg

)

{

 uint8_t error = USB_OK;

 uint8_t index = (uint8_t)((request - 2) & USB_HID_REQUEST_TYPE_MASK);

 if ((request == USB_DEV_EVENT_SEND_COMPLETE) && (value == USB_REQ_VAL_INVALID))

 {

 if((g_keyboard.keyboard_init)&& (arg != NULL))

 {

 #if COMPLIANCE_TESTING

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

18 Freescale Semiconductor

 uint32_t g_compliance_delay = 0x009FFFFF;

 while(g_compliance_delay--);

 #endif

 KeyBoard_Events_Process();/* run the coursor movement code */

 }

 return error;

 }

 /* index == 0 for get/set idle, index == 1 for get/set protocol */

 *size =0;

 /* handle the class request */

 switch (request)

 {

 case USB_HID_GET_REPORT_REQUEST :

 data = &g_keyboard.rpt_buf[0]; / point to the report to send */

 size = KEYBOARD_BUFF_SIZE; / report size */

 break;

 case USB_HID_SET_REPORT_REQUEST :

 for (index = 0; index < KEYBOARD_BUFF_SIZE ; index++)

 { /* copy the report sent by the host */

 // g_keyboard.rpt_buf[index] = *(*data + index);

 }

 break;

 case USB_HID_GET_IDLE_REQUEST :

 /* point to the current idle rate */

 *data = &g_keyboard.app_request_params[index];

 *size = REQ_DATA_SIZE;

 break;

case USB_HID_SET_IDLE_REQUEST :

 /* set the idle rate sent by the host */

 g_keyboard.app_request_params[index] =(uint8_t)((value & MSB_MASK) >>

 HIGH_BYTE_SHIFT);

 break;

 case USB_HID_GET_PROTOCOL_REQUEST :

 /* point to the current protocol code

 0 = Boot Protocol

 1 = Report Protocol*/

 *data = &g_keyboard.app_request_params[index];

 *size = REQ_DATA_SIZE;

 break;

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 19

 case USB_HID_SET_PROTOCOL_REQUEST :

 /* set the protocol sent by the host

 0 = Boot Protocol

 1 = Report Protocol*/

 g_keyboard.app_request_params[index] = (uint8_t)(value);

 break;

 }

 return error;

}

Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

20 Freescale Semiconductor

3 Developing a New USB Host Application

3.1 Background

In the USB system, the host software controls the bus and talks to the target devices under the rules

defined by the specification. A device is represented by a configuration that is a collection of one or more

interfaces. Each interface comprises one or more endpoints. Each endpoint is represented as a logical pipe

from the application software perspective.

The host application software registers for services with the USB host stack and describes the callback

routines inside the driver info table. The following figure shows the enumeration and detach flow.

usb_host_hid_keyboard_event

USB_ATTACH_EVENT Save the interface

information

USB_ATTACH_EVENT
Save the interface

information

USB_CONFIG_EVENT Select a interface

from all the

interfaces recevied

usb_host_open_dev_interface

is needed to be called

USB_INTF_OPENED_

EVENT
Interface has been

opened

USB_DETACH_EVENT
Wait for all the

transfer request

done

usb_host_close_dev_interface

is needed to be called to begin

the detach process

The USB host stack is a few lines of code executed before starting communication with the USB device.

The examples on the USB stack are written with class drivers APIs. Class drivers work with the host API

as a supplement to the functionality. They make it easy to achieve the target functionality (see example

sources for details) without dealing with the implementation of standard routines. The following code

steps are taken inside a host application driver for any specific device.

3.2 How to develop a new host application

3.2.1 Creating a project

Perform the following steps to create a project.

1. Create a new application directory under <install_dir>/usb/example/host/xxx to locate the

application source files and header files. The xxx is the class name, such as HID and CDC. The name

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 21

of this directory is the same as the class name that the application is based on, such as HID and CDC.

For example,

<install_dir>/usb/example/host/hid/test

2. Copy the bm directory from the similar existing applications directory to the new application

directory. Remove the unused project directory from the bm directory. Modify the project directory

name to the new application project name. For example, if we want to create toolchain-IAR,

board-frdmk64 class-hid related application, then we can create the new application test base on a similar

existing application mouse.

Change usb <install_dir>/examples/frdmk64f/demo_apps/usb/host/hid/mouse/bm/iar

to install_dir>/examples/frdmk64f/demo_apps/usb/example/host/hid/test/bm/iar

3. Modify the project file name to the new application project file name, for example, from

host_hid_mouse_frdmk64f_bm.ewp to host_hid_test_frdmk64f_bm.ewp. Then you can globally replace

the existing name to the new project name by editing the project files. The

host_hid_test_frdmk64f_bm.ewp file includes the new application project setting.

4. Create a new source file to implement the main application function and the callback function. The

new_app.h file contains the application types and definitions. The new_app.c file contains the driver

information, callback functions, event functions, and main function.

3.2.2 Defining a driver information table

A driver information table defines the devices that are supported and handled by this target application.

This table defines the PID, VID, class, and subclass of the USB device. The host/device stack generates an

attached callback when a device matches this table entry. The application now can communicate with the

device. The following structure defines one member of the table. If the Vendor-Product pair does not

match a device, then Class, Subclass, and Protocol are checked to match. Use 0xFF in Subclass and

Protocol structure member to match any Subclass/Protocol.

The following is a sample driver information table. See the example source code for samples. The

following table defines all HID KEYBOARD devices that are boot subclasses. A terminating NULL entry

in the table is always created for search end.

Because two classes (HID and HUB) are used in the HID KEYBOARD application, the DriverInfoTable

variable has three elements. There are two event callback functions for two classes:

usb_host_hid_keyboard_event for the HID class and usb_host_hub_device_event for the HUB class.

/* Table of driver capabilities this application wants to use */

static usb_host_driver_info_tDriverInfoTable[] = {

 {

 {0x00, 0x00}, /* Vendor ID per USB-IF */

 {0x00, 0x00}, /* Product ID per manufacturer */

 USB_CLASS_HID, /* Class code */

 USB_SUBCLASS_HID_BOOT, /* Sub-Class code */

 USB_PROTOCOL_HID_KEYBOARD, /* Protocol */

 0, /* Reserved */

 usb_host_hid_keyboard_event /* Application call back function */

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

22 Freescale Semiconductor

 },

 /* USB 1.1 hub */

 {

 {0x00, 0x00}, /* Vendor ID per USB-IF */

 {0x00, 0x00}, /* Product ID per manufacturer */

 USB_CLASS_HUB, /* Class code */

 USB_SUBCLASS_HUB_NONE, /* Sub-Class code */

 USB_PROTOCOL_HUB_ALL, /* Protocol */

 0, /* Reserved */

 usb_host_hub_device_event /* Application call back function */

 },

 {

 {0x00, 0x00}, /* All-zero entry terminates */

 {0x00, 0x00}, /* driver info list. */

 0,

 0,

 0,

 0,

 NULL

 }

};

3.2.3 Main application function flow

In the main application function, it is necessary to follow these steps

usb_host_init

usb_host_register

_driver_info

usb_host_register

_unsupported_dev

ice_notify

usb_host_hid_keyboard_event

Is registered in this API

Wait for USB

Events

1. Initialize the host controller.

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 23

The first step required to act as a host is to initialize the stack in a host mode. This allows the stack

to install a host interrupt handler and initialize the necessary memory required to run the stack. The

following example illustrates this:

status = usb_host_init(CONTROLLER_ID, &host_handle);

2. Register services.

Once the host is initialized, the USB host stack is ready to provide services. An application can

register for services as documented in Freescale USB Stack Host API Reference Manual

(USBHOSTAPIRM). The host API document describes how the application is registered for this

device, because the driver information table already registers a callback routine. The following

example shows how to register for a service on the host stack:

status = usb_host_register_driver_info(host_handle, (void *)DriverInfoTable);

3. Register the unsupported device notify. Register a callback function to get all the information

about the unsupported device.

status = usb_host_register_unsupported_device_notify(host_handle,

usb_host_hid_unsupported_device_event);

3.2.4 Event callback function

After the software has registered the driver info table and register for other services, it is ready to handle

devices. In the USB Host stack, customers do not have to write any enumeration code. When the device is

connected to the host controller, the USB Host stack enumerates the device and finds how many interfaces

are supported. In addition, for each interface, it scans the registered driver information tables and finds

which application has registered for the device. It provides a callback if the device criteria matches the

table. The application software has to choose the interface. You can implement the event callback function

as follows:

void usb_host_hid_keyboard_event(

/* [IN] pointer to device instance */

_usb_device_instance_handledev_handle,

/* [IN] pointer to interface descriptor */

_usb_interface_descriptor_handleintf_handle,

/* [IN] code number for event causing callback */

uint_32 event_code)

{

INTERFACE_DESCRIPTOR_PTR intf_ptr = (INTERFACE_DESCRIPTOR_PTR) intf_handle;

switch (event_code) {

case USB_ATTACH_EVENT:

case USB_CONFIG_EVENT:

<Add your code here>

break;

case USB_INTF_EVENT:

<Add your code here>

break;

case USB_DETACH_EVENT:

 Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

24 Freescale Semiconductor

<Add your code here>

break;

}

}

Here is the sample code for the HID KEYBOARD application. In this code, the kbd_hid_device variable

contains all the states and pointers used by the application to control or operate the device:

static void usb_host_hid_keyboard_event

(

 /* [IN] pointer to device instance */

 usb_device_instance_handledev_handle,

 /* [IN] pointer to interface descriptor */

 usb_interface_descriptor_handleintf_handle,

 /* [IN] code number for event causing callback */

 uint32_t event_code

)

{

usb_device_interface_struct_t* pHostIntf =

(usb_device_interface_struct_t*)intf_handle;

interface_descriptor_t* intf_ptr = pHostIntf->lpinterfaceDesc;

 switch (event_code)

 {

 case USB_ATTACH_EVENT:

 kbd_interface_info[kbd_interface_number] = pHostIntf;

 kbd_interface_number++;

 printf("----- Attach Event -----\r\n");

 printf("State = %d", kbd_hid_device.DEV_STATE);

 printf(" Interface Number = %d", intf_ptr->bInterfaceNumber);

 printf(" Alternate Setting = %d", intf_ptr->bAlternateSetting);

 printf(" Class = %d", intf_ptr->bInterfaceClass);

 printf(" SubClass = %d", intf_ptr->bInterfaceSubClass);

 printf(" Protocol = %d\r\n", intf_ptr->bInterfaceProtocol);

 break;

 case USB_CONFIG_EVENT:

 if(kbd_hid_device.DEV_STATE == USB_DEVICE_IDLE)

 {

 kbd_hid_device.DEV_HANDLE = dev_handle;

 kbd_hid_device.INTF_HANDLE = kbd_hid_get_interface();

 kbd_hid_device.DEV_STATE = USB_DEVICE_ATTACHED;

 }

 else

 {

 printf("HID device already attached - DEV_STATE = %d\r\n",

kbd_hid_device.DEV_STATE);

Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

Freescale Semiconductor 25

}

break;

case USB_INTF_OPENED_EVENT:

printf("----- Interfaced Event -----\r\n");

kbd_hid_device.DEV_STATE = USB_DEVICE_INTERFACE_OPENED;

break;

case USB_DETACH_EVENT:

<Add your code here>

default:

printf("HID Device state = %d??\r\n", kbd_hid_device.DEV_STATE);

kbd_hid_device.DEV_STATE = USB_DEVICE_IDLE;

break;

}

/* notify application that status has changed */

OS_Event_set(kbd_usb_event, USB_EVENT_CTRL);

}

3.2.5 Selecting an interface on the device

If the interface handle is obtained, the application software can select the interface that a retrieve pipe

handles. The following code demonstrates this procedure:

case USB_DEVICE_ATTACHED:

printf("\nKeyboard device attached\n");

kbd_hid_device.DEV_STATE = USB_DEVICE_SET_INTERFACE_STARTED;

status = usb_host_open_dev_interface(host_handle,

kbd_hid_device.DEV_HANDLE, kbd_hid_device.INTF_HANDLE,

(class_handle*)&kbd_hid_device.CLASS_HANDLE);

if (status != USB_OK)

{

printf("\nError in _usb_hostdev_open_interface: %x\n", status);

return;

}

break;

3.2.6 Sending/Receiving data to/from the device

The transfer flow is quite simple: Call the usb_class_xxx_xxxx API to begin the transfer. The transfer

result will be notified by the callback function registered in the usb_class_xxx_xxxx API parameter.

The HID Keyboard host uses the following code to receive data from the device:

kbd_hid_com->class_ptr = kbd_hid_device.CLASS_HANDLE;

kbd_hid_com->callback_fn = usb_host_hid_keyboard_recv_callback;

kbd_hid_com->callback_param = 0;

Freescale KSDK USB Stack Developing New Application User’s Guide, Rev. 1, 04/2015

26 Freescale Semiconductor

status = usb_class_hid_recv_data(kbd_hid_com, kbd_buffer, kbd_size);

4 Revision History

This table summarizes revisions to this document.

Table 1 Revision History

Revision number Date Substantial changes

1 04/2015 Kinetis SDK 1.2.0 release

0 12/2014 Kinetis SDK 1.1.0 release

Document Number: USBSDNAUG

Rev. 1

04/2015

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

www.freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary
over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, Kinetis, and the Freescale logo are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.

©2015 Freescale Semiconductor, Inc.

	Freescale KSDK USB Stack Developing New Application User’s Guide
	1 Read Me First
	2 Developing a New USB Device Application
	2.1 Application interfaces
	2.2 How to develop a new device application
	3 Developing a New USB Host Application
	3.1 Background
	3.2 How to develop a new host application
	Revision History

