

NXP Semiconductors

Page 1 of 24

Cortex-M4
Structural Core Self Test Library

User Manual

Rev. 1.2

23 January 2017

NXP Semiconductors

Page 2 of 24

Content

1 Introduction ..3

1.1 Abbreviations Used in the Document..3

1.2 Compiler Settings and Measurement Conditions ...3
1.3 Supported Devices ..4

2 Features ..5
3 Characteristics of the SCST Library ..6

3.1 Coverage ..6
3.2 Memory Consumption ..6

3.3 Execution Time ..6
4 Integration of the SCST Library to a User Application ..7

4.1 SCST Library Delivery Forms ..7
4.2 SCST Library-Related Files ..7

4.2.1 Core Tests ...7
4.2.2 Interrupt Vector Table and SCST ISRs ..8

4.2.3 TS SCST Library...8
4.3 Handling of Interrupts ..8

4.4 Compilation of Assembly Files ...9
4.5 Allocation of Custom Sections in the Linker File .. 10

5 Interaction between Application and SCST Library .. 12
5.1 Interface to the SCST Library ... 12

5.2 Stack Usage by SCST Library .. 12
5.3 Test Shell Result Processing ... 12

5.4 Incorrect Execution Control Flow ... 13
5.5 Error Injection into Core Test Execution Result .. 13

6 Type Specification .. 15
7 Global Variables ... 16

7.1 m4_scst_accumulated_signature ... 16
7.2 m4_scst_last_executed_test_number .. 16

7.3 m4_scst_test_was_interrupted .. 17
8 Function Specification .. 18

8.1 m4_scst_execute_core_tests ... 18
9 Core Tests Specification ... 20

NXP Semiconductors

Page 3 of 24

1 Introduction

This document contains information and description of the interface to the Structural Core

Self Test Library (SCST) for Cortex-M4 platform, defined custom code and data sections,

handling of interrupts, and a description of possible results that can be returned by the SCST

Library.

1.1 Abbreviations Used in the Document

HW Hardware

ISR Interrupt Service Routine

OS Operating System

RAM Random Access Memory (Static or Dynamic)

RTM Released To Market

SCST Structural Core Self Test

TS Test Shell

1.2 Compiler Settings and Measurement Conditions

This chapter provides information on execution time and memory consumption of the SCST

Library and its individual components. All the measurements were done on the object code

produced with the same compiler and same compiler switches.

Measurement of execution time was done on the SCSL Library object code executed on the

target device. In the process of measurement execution time, the Cortex-M4 core was forced

to run at 112 MHz. Measurements were done for the following case: Instruction and Data

Caches both enabled and the caches were invalidated just before every measurement. LPIT

(Low Power Interrupt Timer) timer was used to measure an execution time. The timer was

forced to run at 80MHz. The timer counter value was read for the first time at the start of

execution of the measured part of the SCST Library, and was read for the second time at end

of execution of the measured part. Number of elapsed LPIT timer clock cycles was

determined as a difference between first read value and the second read value. The obtained

difference was divided by 80.000.000 to obtain an execution time of the measured portion of

code in seconds.

Measurement of the memory consumption was done based on the information from the .map

file generated for a stub-model of application including SCST Library code. When SCST

Library code is integrated into the customer application, some minor mismatch in the

measured memory consumption can be observed due to different alignment of the custom

sections.

One of the following compilers together with compilers options was used to produce an object

code which was used for execution time and consumed memory measurements:

NXP Semiconductors

Page 4 of 24

Supported compiler:

 GreenHills compiler v2015.1.4 Compiler flags:
-cpu=cortexm4

-littleendian

-G

-dwarf2

-thumb_lib

-DM4_DEVICE_RESERVED_ADDR=0x08000000

Assembler flags:
-preprocess_assembly_files

 GCC (GNU Tools for ARM Embedded Processors) v4.9.3 20150529
-mcpu=cortex-m4

-march=armv7e-m

-mthumb

-mlittle-endian

-Wall

-gdwarf-2

-gstrict-dwarf

-DM4_DEVICE_RESERVED_ADDR=0x08000000

Assembler flags:
-x assembler-with-cpp

 IAR Embedded Workbench 7.50.2(3)
-cpu=Cortex-M4

-endian=little

-fpu=None

-M4_DEVICE_RESERVED_ADDR=0x08000000

1.3 Supported Devices

This chapter provides information about supported devices.

Supported devices:

 S32K144

 MWCT101xS

NXP Semiconductors

Page 5 of 24

2 Features

- The SCST library provides tests to achieve the claimed diagnostic coverage

(analytically estimated).

- The SCST library can be executed periodically at run time. This way, it contributes to

a Single-Point Fault metric. The library preserves execution context of application and

device configuration.

- The included tests cover most of the core instructions, as well as the tests targeting

specific IP blocks of the core:

o Core control logic (branch control, exception control);

o Core data path including:

 Register file and register multiplexing;

 ALU, multiplier, divider, load/store, and other execution units;

 SIMDSAT;

 Instruction decoder,16-Bit,32-Bit;

- Interrupts can be enabled during execution of the most of the tests. SCST library

provides its own interrupt vector table and wrappers for interrupt service routines,

which in case of unexpected for the library interrupt, forwards it to the corresponding

interrupt handler of the OS / user application. SCST library supports nested interrupts

without any limitations.

- SCST library can be compiled and linked with other SCST libraries (e.g. SCST library

for Cortex A5 core) within the same application for which a single .elf file is

generated.

NXP Semiconductors

Page 6 of 24

3 Characteristics of the SCST Library

3.1 Coverage

Details regarding the assessment of the coverage are contained in the document

M4_S32K144_SCST_Library_FaultCoverage_Estimation.xlsx which is delivered in safety

package.

3.2 Memory Consumption

The memory consumption of the SCST Library is specified in Table 1. Note that

measurement was done for one randomly selected compiler with compiler options listed in

Chapter 1.2.

Table 1. Memory usage by the SCST Library

Stack

(Bytes)

RAM Total

(Bytes)

(excluding stack)

Flash Total

(Bytes)

561+1042 208 60162

3.3 Execution Time

The SCST Library execution time is specified in Table 2 depending on the test invocation

scenario. Execution time of every individual test as well as user ISR invocation latency is

specified in Table 9.

Note that measurement was done for one randomly selected compiler with compiler options

listed in Chapter 1.2.

Table 2. Execution Time of the SCST Library

Test Invocation Scenario
Accumulated Tests Execution Time

(µs @ 112 MHz)

All atomic tests are invoked through a minimum calls to the
test shell:

result = m4_scst_execute_core_tests(0, 42);

1417,60

Every atomic test is invoked through a separate call to the test

shell:

result = m4_scst_execute_core_tests(0, 0);

result = m4_scst_execute_core_tests(1, 1);

…

result = m4_scst_execute_core_tests(43, 43);

1478,62

1 This is a stack used by the m4_scst_execute_core_tests() function for which assembly commands are generated

by compiler as it is written in C.
2 This is maximum stack value from Table 9.

NXP Semiconductors

Page 7 of 24

4 Integration of the SCST Library to a User Application

4.1 SCST Library Delivery Forms

The SCST Library can be delivered in two forms:

- As a source code files, and

- As an object code files.

For evaluation purposes, the library is delivered in a form of source code. In this case, a

customer has a possibility to get familiar with the library, get it integrated to an application

and execute. Moreover, a customer has a possibility to define a specific configuration of the

library, and compile it and execute with the customer-specific compiler options.

Once a customer decides to use the library for production, an official RTM release has to be

ordered. Within the order, a customer is expected to provide the compiler options as well as

the relevant library configuration. Once the order is received, the final tests of the SCST

library will be done applying the provided configuration and compiler options.

Per customer request, the RTM release of the library can be delivered in the form of an object

code, which will ensure that the SCST functionality will not be any more dependent on the

application-specific compiler options and versions.

4.2 SCST Library-Related Files

The SCST library consists of three parts:

- Set of atomic tests achieving the claimed fault coverage, and

- SCST library-specific interrupt vector table and Interrupt service routines ISR to

catch and process expected for the SCST Library interrupts and exceptions, and

catch and redirect to application / OS those interrupts and exceptions, occurrence

of which was unexpected for the SCST Library;

- Test Shell (TS) library providing run-time interface to the SCST library.

The following subchapters provide an overview of the related to each part files, names of

which and relative paths can be added by a user to project.

4.2.1 Core Tests

The SCST Library provides a set of tests which summarily achieve the claimed diagnostic

coverage. Table 3 provides an overview of all files that belong to the atomic tests.

Table 3. Core Tests Related Files

File Description

\SCST\src\asm\core_tests* Complete set of core tests achieving claimed diagnostic

coverage.

\SCST\src\asm\m4_scst_lib.s Code and data commonly used by two and more core tests.

NXP Semiconductors

Page 8 of 24

4.2.2 Interrupt Vector Table and SCST ISRs

The SCST library includes and allocates its own interrupt vector table and provides a

complete set of ISRs to catch all interrupts and exceptions. The Table 4 below provides an

overview of the related source files.

Table 4. SCST Interrupt Vector Table and ISRs Related Files

File Description

\SCST\src\asm\m4_scst_exception_wrappers.s Code of ISR wrappers.

\SCST\src\asm\m4_scst_exception_lib.s Commonly used functions by more and two

exception processing related tests.

\SCST\src\asm\m4_scst_vector_table.s SCST library specific interrupt vector table.

4.2.3 TS SCST Library

The TS library provides interface through which the core test functions are accessed.

Table 5 lists all files that belong to the TS SCST Library.

Table 5. Content of the TS SCST Library

File Description

\SCST\src\c\m4_scst_test_shell.c C-code of the test shell.

\SCST\src\c\m4_scst_data.c Array of core test descriptors.

\SCST\src\h\m4_scst_data.h Type definition for core test descriptor.

\SCST\src\h\m4_scst_test_shell.h Header file of the test shell contains function

prototypes and possible return values.

\SCST\src\h\m4_scst_configuration.h Contains definitions for possible configurations

of the SCST Library.

\SCST\src\h\m4_scst_typedefs.h Type definitions.

\SCST\src\h\m4_scst_compiler.h Contains compiler abstraction macros.

4.3 Handling of Interrupts

The SCST library includes set of test checking correct functionality of exception logic within

the core. The tests intentionally provoke different exceptions and observe whether they are

correctly taken, correctly processed, and correct return from a test-specific interrupt handler

takes place.

There is another set of tests, which destroy special purpose, configuration, and control

registers in the process of their testing. If application / OS specific interrupt is taken, it might

be processed incorrectly. Before application / OS ISR gets control, content of destroyed

special purpose registers has to be restored.

To support execution of these types of tests, the SCST library includes its own interrupt

vector table. When one of such tests is to be executed, the SCST library replaces the

NXP Semiconductors

Page 9 of 24

application / OS vector tables after which all the interrupts directed to the SCST specific one.

The SCST specific ISRs first recognize whether exception condition was triggered by the

SCST library and if not, determines matching application ISR, and with the documented in

Table 9 latency passes execution control to it.

SCST library fully supports nested interrupts. It correctly restores all the affected registers and

passes control to matching application / OS ISR independently on the number of pending

interrupts. After the first interrupt request reaches the application / OS ISR, it is safe to

assume (in hardware-fault-free case only) that application / OS interrupt vector table was

already restored back, so all interrupts would hit application / OS ISRs with no additional

delay.

When execution of the test is complete, the SCST library also restores original application /

OS vector table.

SCST library exception handlers are located in the custom section

.m4_scst_exception_wrappers. The SCST library vector table is located in section

.m4_scst_vector_table.

Application / OS ISRs shall be implemented in their “usual” way. They can rely on the

content of related registers and corresponding stack frame. Execution of ISRs shall be

terminated identically to the case when they are invoked directly upon taken interrupt.

4.4 Compilation of Assembly Files

Material in this chapter is applicable only in the case when the SCST Library is delivered for

evaluation purpose in a form of source code.

Some exception tests requires M4_DEVICE_RESERVED_ADDR preprocessor macro to be

defined. This macro is defined directly by the compiler and its value must be in the range of

the device reserved address space:

-DM4_DEVICE_RESERVED_ADDR=0x08000000

Most of the assembly files contain C directives. Therefore, before assembling, their code has

to be preprocessed by the C compiler.

When GreenHills compiler is used, the following directive shall be used:

-preprocess_assembly_files

When GCC compiler is used, the following directive shall be used:

-x assembler-with-cpp

NXP Semiconductors

Page 10 of 24

4.5 Allocation of Custom Sections in the Linker File

All the code, constants, variables and data structures of the SCST library are placed into the

custom sections in the source and assembly code. The Table 6 provides an overview of all

custom sections defined with the SCST library. It is a responsibility of a user to allocate these

sections correctly in the memory of the device by referencing them in linker command file.

Table 6. Overview of Custom Sections defined within SCST Library

Custom section name Target memory Description

.m4_scst_test_code
Flash, or RAM when

executed out of RAM

This section contains object code of all

core self tests that are to be invoked in the

privileged mode.

.m4_scst_test_code_unprivile

ged

Flash, or RAM when
executed out of RAM

This section contains object code of all

core self tests that are to be invoked in the
unprivileged mode.

.m4_scst_test_code1_unprivil

eged

Flash, or RAM when

executed out of RAM

This region is accessed by the branch test
and it contains part of the object code of

the branch test.

It can be located at any address depending

on the available memory and motivation

for testing specific target addresses but

maximum allowed distance between this

section and the
m4_scst_test_code_unprivileged
section cannot be higher than

approximately 16Mbytes.

.m4_scst_test_shell_code
Flash, or RAM when

executed out of RAM

This section contains object code of test

shell produced from the C code.

.m4_scst_test_shell_data
Initialized RAM data,

little endianness

Contains all global variables provided by

SCST library.

.m4_scst_rom_data
Flash, or RAM when

copied to RAM

Contains reference signatures of the tests

as well as their start addresses.

.m4_scst_exception_wrappers
Flash, or RAM when

copied to RAM

Contains SCST library-specific ISR-

wrappers.

.m4_scst_vector_table
Flash, or RAM when

copied to RAM

Contains SCST library-specific vector

table.

.m4_scst_ram_data
RAM data,

little endianness

Contains data structures of all core self

tests that are invoked in the privileged

mode.

.m4_scst_ram_data_target0

.m4_scst_ram_data_target1

RAM,

little endianness

This region is accessed by the load/store

tests. Can be located at any address

depending on the available memory and

motivation for testing specific target

addresses.

.m4_scst_ram_test_code
RAM code,

little endianness

This region is used for code which is

executed by the fetch test. Can be located

at any address depending on the available

memory.

NXP Semiconductors

Page 11 of 24

Table 7 provides information on the size of every custom section of the SCST Library

depending on the package configuration.

Note that measurements was done for one randomly selected compiler with compiler options

listed in Chapter 1.2.

Table 7. SCST Library Custom Section Size

Custom Section Name
Custom Section Size

(bytes)

.m4_scst_test_code 10204

.m4_scst_test_code_unprivileged 47656

.m4_scst_test_code1_unprivileged 720

.m4_scst_test_shell_code 278

.m4_scst_test_shell_data 20

.m4_scst_rom_data 352

.m4_scst_exception_wrappers 184

.m4_scst_vector_table 768

.m4_scst_ram_data 64

.m4_scst_ram_data_target0 52

.m4_scst_ram_data_target1 52

.m4_scst_ram_test_code 24

NXP Semiconductors

Page 12 of 24

5 Interaction between Application and SCST Library

5.1 Interface to the SCST Library

For using the SCST library, the follwoing header file has to be included into the customer

application:

m4_scst_test_shell.h

During normal operation, a user application shall interact with the SCST library by calling the

m4_scst_execute_core_tests() function, provided by the test shell, every time when

execution of core self tests is required. The function accepts two arguments for specification

of the range of tests to execute. The function executes one test after another – as long as no

test fails or interrupted – and generates a 32-bit value as an execution result of the requested

tests. Chapter 8.1 provides detailed specification of this function.

The test execution order and invocation time is fully determined by application.

m4_scst_execute_core_tests() function shall be invoked in the mode corresponding

to the mode of the requested for execution core tests (required execution mode for every core

test is apecified in Table 10). SCST library returns control to application in the same mode as

it was invoked.

The SCST library restores initial content of all the destroyed dedicated, special purpose,

control, and configuration registers before it returns execution control to application.

5.2 Stack Usage by SCST Library

The SCST library uses application stack. First, the m4_scst_execute_core_tests()

function may use the stack according to the generated assembly code by a C-compiler (since it

is written in C). Estimated stack usage is included in the number provided in Table 1.

Stack also is used in addition within each core test individually. Consumed stack size for

every core test is specified in Table 9.

5.3 Test Shell Result Processing

The test shell checks an execution result of each individual test even if multiple tests were

requested for execution within a single invocation of the

m4_scst_execute_core_tests() function. A result of each test represents a 32-bit

signature value. If the returned by core test value does not match an expected value, the test

shell completes its execution and returns the incorrect execution result of the failed test. The

number of the failed atomic test is contained in the

NXP Semiconductors

Page 13 of 24

m4_scst_last_executed_test_number global variable.

The test shell maintains a combined 32bit signature value, which is updated upon successful

completion of each atomic test. The algorithm for calculation of this signature represents an

XOR operation over the 32bit signatures of all atomic tests requested for execution. If all

requested atomic tests were executed and passed, the m4_scst_execute_core_tests()

function returns this combined signature to the user application. A user application, based on

the numbers of the executed tests and their expected signatures, shall also calculate the

combined signature and compare it to the returned value. If both values are identical, the call

to the m4_scst_execute_core_tests() function was successful and all the requested

tests passed.

If unexpected for the SCST Library interrupt occurs during its execution, a non-zero value is

stored to the global variable m4_scst_test_was_interrupted. In this case, the SCST

library returns control after completion of execution of the interrupted test to the application.

This is done to allow application requesting an execution of the same test again. The return

value from the m4_scst_execute_core_tests() function would be

M4_SCST_TEST_WAS_INTERRUPTED. Signature of the interrupted test can be incorrect.

Application needs to analyze a content of this global variable first, and only in case it

indicates uninterrupted execution of all the requested tests, analyze a returned signature.

For more details, refer to the specification of the m4_scst_execute_core_tests()

function. The test shell may also return values notifying about the errors in its invocation or

execution. Possible return values are listed in Chapter 8.1.

In some faulty cases, application needs to expect triggering of “illegal opcode” exception by

the SCST Library. It is done, for example, in the places where incorrect execution of branch

commands is detected.

SCST library provides a redundant test execution result returning path to application in a form

of m4_scst_accumulated_signature global variable, that can be accessible also from

other core within a multi-code device. Possible content of this variable and meaning of the

result is the same as possible return results of the m4_scst_execute_core_tests()

function.

5.4 Incorrect Execution Control Flow

The code of the SCST library includes safety measure for recognition incorrect passing of

execution control to its code. If this is the case, the safety measure intentionally triggers the

“illegal opcode” exception by executing illegal opcode.

5.5 Error Injection into Core Test Execution Result

For the purpose of testing reaction within application on a return of incorrect test execution

result, the SCST library provides possibility to inject error into execution of the core test. For

this purpose, the library provides the m4_scst_fault_inject_test_index global

variable that can be set within application to an index of the core test, in execution result of

which an error must be injected. The m4_scst_execute_core_tests() function when

gets control, compares an index of the core test it executes next with the index stored in this

NXP Semiconductors

Page 14 of 24

global variable. In case of a match, it sets content of other – internal – variable to a non-zero

value. The content of this internal variable is XOR-ed to an actual result of executed test.

Error injection affects a result returned by the m4_scst_execute_core_tests() function,

as well as a result stored in the m4_scst_accumulated_signature global variable. Error

injection is not applied in case test execution is interrupted.

NXP Semiconductors

Page 15 of 24

6 Type Specification

The table below specifies the integer data types used in the self-test code. These data types are

defined in the \SCST\src\h\m4_scst_typedefs.h file.

Table 8. Integer Data Types

Data Type Specification

m4_scst_int8_t signed 8-bit integer

m4_scst_uint8_t unsigned 8-bit integer

m4_scst_vint8_t volatile signed 8-bit integer

m4_scst_vuint8_t volatile unsigned 8-bit integer

m4_scst_int16_t signed 16-bit integer

m4_scst_uint16_t unsigned 16-bit integer

m4_scst_vint16_t volatile signed 16-bit integer

m4_scst_vuint16_t volatile unsigned 16-bit integer

m4_scst_int32_t signed 32-bit integer

m4_scst_uint32_t unsigned 32-bit integer

m4_scst_vint32_t volatile signed 32-bit integer

m4_scst_vuint32_t volatile unsigned 32-bit integer

NXP Semiconductors

Page 16 of 24

7 Global Variables

7.1 m4_scst_accumulated_signature

Variable Specification:

m4_scst_uint32_t m4_scst_accumulated_signature;

Description:

This global variable represents a redundant path of test execution result propagation to the

user application comparing to the return value from the

m4_scst_execute_core_tests() function. In hardware-fault-free case possible values

of this variable are exactly the same as possible return values of the

m4_scst_execute_core_tests() function. This variable can be used by application

running on one core for determining core tests execution status running on a different core

within the same multi-core device.

The m4_scst_accumulated_signature variable is located in the

.m4_scst_test_shell_data custom section.

7.2 m4_scst_last_executed_test_number

Variable Specification:

m4_scst_uint32_t m4_scst_last_executed_test_number;

Description:

This global variable contains the number of the atomic test being executed. It is set to a

corresponding index of the test before its execution. When test fails or its execution is

interrupted with unexpected interrupt, this variable can be used for determining the number of

the failed or interrupted test correspondingly. If no test failed and interrupted, and the test

shell returns control to the user application, this variable contains the value equal to the value

passed to the end parameter of the m4_scst_execute_core_tests() function.

The m4_scst_last_executed_test_number variable is located in the

.m4_scst_test_shell_data custom section.

NXP Semiconductors

Page 17 of 24

7.3 m4_scst_test_was_interrupted

Variable Specification:

m4_scst_uint32_t m4_scst_test_was_interrupted;

Description:

This global variable is set to a non-zero value in case of interruption of core test execution. If

multiple tests were requested for execution, the m4_scst_last_executed_test_number

variable can be used for determining index of the interrupted test, since the

m4_scst_execute_core_tests() function does not execute remaining tests in this case.

The m4_scst_test_was_interrupted variable is located in the

.m4_scst_test_shell_data custom section.

NXP Semiconductors

Page 18 of 24

8 Function Specification

8.1 m4_scst_execute_core_tests

Call:

m4_scst_uint32_t m4_scst_execute_core_tests(m4_scst_uint32_t start,

m4_scst_uint32_t end);

Arguments:

start in Index of the first core test to execute. See Table 9 column “Test Index”.

end in Index of the last atomic test to execute. See Table 9, column “Test Index”.

Description: This function executes all core tests whose numbers are greater or equal to

start and lower or equal to end. The function performs also various checks which may

result in error return values listed below. The corresponding constants are defined in the file

m4_scst_test_shell.h.

If execution control was passed to this function incorrectly, the function intentionally triggers

an exception by executing illegal opcode.

Returns:

Value Description

M4_SCST_WRONG_RANGE
The values retrieved from the start and end parameters

are incorrect.
M4_SCST_TEST_WAS_INTERRUPTED Execution of core test was interrupted.

<signature of the failed test>
The function returns actual (faulty) result of the failed
atomic test in a faulty case.

<combined signature of all executed
and passed tests>

The function returns combined signature of all executed
atomic tests when no failed test detected.

NXP Semiconductors

Page 19 of 24

Example:

m4_scst_uint32_t result;

/* Request execution of the tests with indices 2, 3, and 4 */

result = m4_scst_execute_core_tests (2, 4);

/* Here comes the code, which analyses:

- Content of global “m4_scst_test_was_interrupted” variable;

- Content of local “result” variable;

- Content of global “m4_scst_last_executed_test_number”

variable (should be 4 in the given example in fault-free

case).

*/

NXP Semiconductors

Page 20 of 24

9 Core Tests Specification

For each core test, Table 9 provides information on a corresponding index to be passed to the

start and end parameters of the m4_scst_execute_core_tests() function, expected

test result returned in fault-free case, latency of user ISR invocation once interrupt is triggered

during execution of the test, as well as overall test execution time and used stack.

Note that measurement was done for one randomly selected compiler with compiler options

listed in Chapter 1.2.

If a user ISR interrupt latency is specified as 0, this means that interrupt request, if occured,

directly hits a user application interrupt vector table, so no latency is introduced by the SCST

Library ISR wrapper code for the given test.

Table 9. Core Test Specification

Test name
Test

Index

Test
Reference
Signature

User ISR
Invocation

Latency
(μs)

Test
Execution

Time
(μs)

Used
Stack
Size1

(bytes)

m4_scst_exception_test_svc 0 0x000012E0 3.20 9.15 722

m4_scst_exception_test_pendsv 1 0x00000E7C 3.20 8.92 722

m4_scst_exception_test_systick 2 0x000006EA 3.20 8.82 722

m4_scst_exception_test_hard_fault1 3 0x00000D89 3.20 22.95 722

m4_scst_exception_test_hard_fault2 4 0x00001A69 3.20 18.0 722

m4_scst_exception_test_usage_fault 5 0x0000205A 3.20 16.70 722

m4_scst_exception_test_mem_fault 6 0x00000C3B 3.12 9.22 722

m4_scst_exception_test_bus_fault 7 0x00000FE3 3.20 11.12 722

m4_scst_exception_test_nmihf 8 0x0000256C 3.20 17.40 962

m4_scst_exception_test_tail_chain 9 0x00002784 3.20 11.10 722

m4_scst_exception_test_masking 10 0x00002B88 3.20 16.42 722

m4_scst_exception_test_handler_thread 11 0x0000302F 3.20 23.65 1042

m4_scst_regbank_test4 12 0x000047DB 3.12 9.90 362

m4_scst_alu_test7 13 0x00001C21 3.20 9.50 722

m4_scst_branch_test3 14 0x7E256E6B 3.20 19.92 722

m4_scst_status_test3 15 0x00003A0E 3.20 10.0 722

m4_scst_regbank_test6 16 0xB91BDE95 1.12 35.20 52

m4_scst_fetch_test 17 0xB14D3A0D 1.15 4.52 52

m4_scst_loadstore_test6 18 0xC19005EE 0.80 76.75 64

m4_scst_loadstore_test1 19 0xC63C044C 0.0 43.12 76

m4_scst_loadstore_test2 20 0xAE1D1D83 0.0 62.40 60

1 This is a stack used in addition to the portion used within m4_scst_execute_core_tests() function for which

assembly commands are generated by compiler as it is written in C.
2 Includes stack required by the exeptions which are intentionally triggered during tests.

NXP Semiconductors

Page 21 of 24

Test name
Test

Index

Test
Reference
Signature

User ISR
Invocation

Latency
(μs)

Test
Execution

Time
(μs)

Used
Stack
Size1

(bytes)

m4_scst_loadstore_test3 21 0x5B80787E 0.0 41.67 60

m4_scst_loadstore_test4 22 0x618271EE 0.0 48.95 92

m4_scst_loadstore_test5 23 0xF61A1F74 0.0 161.17 60

m4_scst_regbank_test1 24 0xE35DF821 0.0 74.77 52

m4_scst_regbank_test2 25 0x28D6AF31 0.0 73.85 52

m4_scst_regbank_test3 26 0xC726A3D2 0.0 86.45 52

m4_scst_regbank_test5 27 0x00001AC7 0.0 4.87 52

m4_scst_mac_test1 28 0x0000A828 0.0 21.5 52

m4_scst_mac_test2 29 0x00011B11 0.0 19.17 52

m4_scst_alu_test1 30 0x00002C09 0.0 12.27 52

m4_scst_alu_test2 31 0x0000ADEF 0.0 49.95 52

m4_scst_alu_test3 32 0x00003F51 0.0 14.97 52

m4_scst_alu_test4 33 0x00008C65 0.0 165.55 52

m4_scst_alu_test5 34 0x00006E5A 0.0 9.40 52

m4_scst_alu_test6 35 0x00002022 0.0 13.10 52

m4_scst_simdsat_test1 36 0x1C464F74 0.0 43.7 52

m4_scst_simdsat_test2 37 0x78C61FF0 0.0 29.7 52

m4_scst_simdsat_test3 38 0x24CA596B 0.0 41.75 52

m4_scst_simdsat_test4 39 0xC4527367 0.0 32.87 52

m4_scst_branch_test1 40 0x38A82153 0.0 18.27 60

m4_scst_branch_test2 41 0x53273023 0.0 22.95 52

m4_scst_status_test1 42 0x17A3FF6A 0.0 37.30 52

m4_scst_status_test2 43 0x75DB236C 0.0 11.30 52

NXP Semiconductors

Page 22 of 24

Table 10 provides information on the M4 core mode the function

m4_scst_execute_core_tests() has to be invoked in when a corersponding core test is

requested for execution.

Table 10. Core Test Invocation Mode

Test Index

Mode the function
m4_scst_execute_core_tests()

has to be invoked in when execution of
corresponding test is requested Test invocation constraints

Thread
Privileged

Thread
Unprivileged

Handler

0 Yes No No
It is recommended to run this test with
enabled interrupts

1 Yes No No
It is recommended to run this test with
enabled interrupts

2 Yes No No
It is recommended to run this test with
enabled interrupts

3 Yes No No
It is recommended to run this test with
enabled interrupts

4 Yes No No
It is recommended to run this test with
enabled interrupts

5 Yes No No
It is recommended to run this test with
enabled interrupts

6 Yes No No
It is recommended to run this test with
enabled interrupts

7 Yes No No
It is recommended to run this test with
enabled interrupts

8 Yes No No
It is recommended to run this test with
enabled interrupts

9 Yes No No
It is recommended to run this test with
enabled interrupts

10 Yes No No
It is recommended to run this test with
enabled interrupts

11 Yes No No
It is recommended to run this test with
enabled interrupts

12 Yes No No
It is recommended to run this test with
enabled interrupts

13 Yes No No
It is recommended to run this test with
enabled interrupts

14 Yes No No
It is recommended to run this test with
enabled interrupts

15 Yes No No None

16 Yes No No None

17 Yes Yes Yes None

18 Yes Yes Yes None

19 Yes Yes Yes None

20 Yes Yes Yes None

21 Yes Yes Yes None

NXP Semiconductors

Page 23 of 24

Test Index

Mode the function
m4_scst_execute_core_tests()

has to be invoked in when execution of
corresponding test is requested Test invocation constraints

Thread
Privileged

Thread
Unprivileged

Handler

22 Yes Yes Yes None

23 Yes Yes Yes None

24 Yes Yes Yes None

25 Yes Yes Yes None

26 Yes Yes Yes None

27 Yes Yes Yes None

28 Yes Yes Yes None

29 Yes Yes Yes None

30 Yes Yes Yes None

31 Yes Yes Yes None

32 Yes Yes Yes None

33 Yes Yes Yes None

34 Yes Yes Yes None

35 Yes Yes Yes None

36 Yes Yes Yes None

37 Yes Yes Yes None

38 Yes Yes Yes None

39 Yes Yes Yes None

40 Yes Yes Yes None

41 Yes Yes Yes None

42 Yes Yes Yes None

43 Yes Yes Yes None

NXP Semiconductors

Page 24 of 24

How to Reach Us:

Home Page:

www.nxp.com

Web Support:

www.nxp.com/support

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc.
NXP and NXP logo are trademarks of NXP Semiconductors.
All other product or service names are the property
of their respective owners.

© 2016 Freescale Semiconductor, Inc.,
© 2017 NXP Semiconductors
All rights reserved.

	1 Introduction
	1.1 Abbreviations Used in the Document
	1.2 Compiler Settings and Measurement Conditions
	1.3 Supported Devices

	2 Features
	3 Characteristics of the SCST Library
	3.1 Coverage
	3.2 Memory Consumption
	3.3 Execution Time

	4 Integration of the SCST Library to a User Application
	4.1 SCST Library Delivery Forms
	4.2 SCST Library-Related Files
	4.2.1 Core Tests
	4.2.2 Interrupt Vector Table and SCST ISRs
	4.2.3 TS SCST Library

	4.3 Handling of Interrupts
	4.4 Compilation of Assembly Files
	4.5 Allocation of Custom Sections in the Linker File

	5 Interaction between Application and SCST Library
	5.1 Interface to the SCST Library
	5.2 Stack Usage by SCST Library
	5.3 Test Shell Result Processing
	5.4 Incorrect Execution Control Flow
	5.5 Error Injection into Core Test Execution Result

	6 Type Specification
	7 Global Variables
	7.1 m4_scst_accumulated_signature
	7.2 m4_scst_last_executed_test_number
	7.3 m4_scst_test_was_interrupted

	8 Function Specification
	8.1 m4_scst_execute_core_tests

	9 Core Tests Specification

