
S32SDK User Manual
S32K1xx RTM 4.0.2

Generated by Doxygen 1.8.10

Fri Jun 11 2021 08:14:09

ii CONTENTS

Contents

1 S32 SDK 1

2 Components 2

3 PAL vs PD usage 4

4 Supported Platforms 4

5 Installation 4

6 Build Tools 5

7 IDE Support 6

8 Configuration 6

9 Acronyms and Abbreviations 7

10 MISRA Compliance 7

11 Development guidelines 7

12 Error detection and reporting 8

13 Examples and Demos 8

13.1 Introduction . 9

13.2 Usage . 9

13.2.1 How to build . 9

13.2.2 How to debug . 9

13.2.3 Using terminal emulator . 10

13.3 Demo Applications . 12

13.3.1 ADC Low Power . 12

13.3.2 CSEC BOOT PROTECTION . 15

13.3.3 Hello World - Makefile . 17

13.3.4 FreeMASTER . 18

13.3.5 FreeRTOS . 20

13.3.6 Hello World . 23

13.3.7 AMMCLib . 24

13.3.8 Structural Core Self Test Example . 27

13.3.9 Hello World . 28

13.3.10 LIN MASTER . 30

13.3.11 LIN SLAVE . 32

13.4 Driver Examples . 34

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

CONTENTS iii

13.4.1 Analog Driver Examples . 34

13.4.2 ADC Hardware Trigger . 35

13.4.3 ADC PAL example . 37

13.4.4 ADC Software Trigger . 39

13.4.5 CMP DAC . 41

13.4.6 Communication Driver Examples . 43

13.4.7 LIN MASTER BAREMETAL . 44

13.4.8 LIN SLAVE BAREMETAL . 46

13.4.9 LPI2C MASTER . 48

13.4.10 LPI2C SLAVE . 49

13.4.11 LPSPI Transfer . 51

13.4.12 LPSPI DMA . 54

13.4.13 SPI PAL . 55

13.4.14 UART PAL . 57

13.4.15 LPUART . 59

13.4.16 I2C PAL . 61

13.4.17 I2S PAL MASTER . 62

13.4.18 I2S PAL SLAVE . 64

13.4.19 FLEXIO I2C . 67

13.4.20 FLEXIO I2S MASTER . 68

13.4.21 FLEXIO SPI . 70

13.4.22 FLEXIO I2S SLAVE . 73

13.4.23 FLEXIO UART . 75

13.4.24 CAN PAL . 77

13.4.25 System Driver Examples . 79

13.4.26 CRC Checksum . 80

13.4.27 MPU PAL Memory Protection . 83

13.4.28 MPU Memory Protect Unit . 85

13.4.29 CSEc key configuration . 86

13.4.30 FLASH Partitioning . 88

13.4.31 EIM INJECTION . 90

13.4.32 ERM REPORT . 92

13.4.33 EWM Interrupt . 93

13.4.34 SECURITY PAL . 95

13.4.35 WDOG Interrupt . 97

13.4.36 Trigger MUX Control . 98

13.4.37 EDMA transfer . 100

13.4.38 Power Mode Switch . 101

13.4.39 WDG PAL Interrupt . 104

13.4.40 Timer Driver Examples . 106

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

iv CONTENTS

13.4.41 FTM Combined PWM . 107

13.4.42 FTM Periodic Interrupt . 109

13.4.43 FTM PWM . 110

13.4.44 FTM Signal Measurement . 112

13.4.45 IC PAL . 114

13.4.46 LPTMR Periodic Interrupt . 116

13.4.47 LPTMR Periodic Interrupt . 118

13.4.48 PDB Periodic Interrupt . 119

13.4.49 RTC Alarm . 120

13.4.50 TIMING PAL . 122

13.4.51 PWM PAL . 124

13.4.52 OC PAL . 125

13.4.53 LPIT Periodic Interrupt . 126

14 Module Index 128

14.1 Modules . 128

15 Data Structure Index 131

15.1 Data Structures . 131

16 Module Documentation 132

16.1 ADC Driver . 132

16.1.1 Detailed Description . 132

16.1.2 Data Structure Documentation . 138

16.1.3 Enumeration Type Documentation . 141

16.1.4 Function Documentation . 144

16.2 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL) 153

16.2.1 Detailed Description . 153

16.2.2 Data Structure Documentation . 158

16.2.3 Typedef Documentation . 161

16.2.4 Enumeration Type Documentation . 161

16.2.5 Function Documentation . 161

16.3 Automotive Math and Motor Control Library . 166

16.4 Backward Compatibility Symbols for S32K144 . 167

16.5 CRC Driver . 168

16.5.1 Detailed Description . 168

16.5.2 Data Structure Documentation . 168

16.5.3 Enumeration Type Documentation . 169

16.5.4 Function Documentation . 169

16.6 CSEc Driver . 173

16.6.1 Detailed Description . 173

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

CONTENTS v

16.6.2 Data Structure Documentation . 178

16.6.3 Macro Definition Documentation . 180

16.6.4 Typedef Documentation . 181

16.6.5 Enumeration Type Documentation . 181

16.6.6 Function Documentation . 183

16.7 Clock . 194

16.7.1 Detailed Description . 194

16.7.2 Function Documentation . 194

16.8 Clock Manager . 195

16.8.1 Detailed Description . 195

16.9 Clock Manager Driver . 196

16.9.1 Detailed Description . 196

16.9.2 Data Structure Documentation . 202

16.9.3 Macro Definition Documentation . 220

16.9.4 Typedef Documentation . 221

16.9.5 Enumeration Type Documentation . 221

16.9.6 Function Documentation . 228

16.9.7 Variable Documentation . 232

16.10Common Core API. 233

16.10.1 Detailed Description . 233

16.10.2 Macro Definition Documentation . 233

16.11Common Transport Layer API . 235

16.11.1 Detailed Description . 235

16.11.2 Macro Definition Documentation . 235

16.11.3 Function Documentation . 238

16.12Comparator (CMP) . 239

16.12.1 Detailed Description . 239

16.13Comparator Driver . 243

16.13.1 Detailed Description . 243

16.13.2 Data Structure Documentation . 245

16.13.3 Macro Definition Documentation . 249

16.13.4 Typedef Documentation . 249

16.13.5 Enumeration Type Documentation . 249

16.13.6 Function Documentation . 252

16.14Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 259

16.14.1 Detailed Description . 259

16.14.2 Data Structure Documentation . 264

16.14.3 Enumeration Type Documentation . 268

16.14.4 Function Documentation . 269

16.15Controller Area Network with Flexible Data Rate (FlexCAN) . 276

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

vi CONTENTS

16.15.1 Detailed Description . 276

16.16Cooked API . 278

16.16.1 Detailed Description . 278

16.16.2 Function Documentation . 278

16.17Cryptographic Services Engine (CSEc) . 280

16.17.1 Detailed Description . 280

16.18Cyclic Redundancy Check (CRC) . 281

16.18.1 Detailed Description . 281

16.19Diagnostic services . 283

16.19.1 Detailed Description . 283

16.19.2 Function Documentation . 284

16.20Driver and cluster management . 287

16.20.1 Detailed Description . 287

16.20.2 Function Documentation . 287

16.21EDMA Driver . 288

16.21.1 Detailed Description . 288

16.21.2 Data Structure Documentation . 293

16.21.3 Macro Definition Documentation . 300

16.21.4 Typedef Documentation . 300

16.21.5 Enumeration Type Documentation . 300

16.21.6 Function Documentation . 303

16.22EIM Driver . 313

16.22.1 Detailed Description . 313

16.22.2 Data Structure Documentation . 315

16.22.3 Macro Definition Documentation . 315

16.22.4 Function Documentation . 316

16.23ERM Driver . 318

16.23.1 Detailed Description . 318

16.23.2 ERM Driver Initialization . 318

16.23.3 ERM Driver Operation . 318

16.23.4 Data Structure Documentation . 320

16.23.5 Enumeration Type Documentation . 321

16.23.6 Function Documentation . 321

16.24EWM Driver . 323

16.24.1 Detailed Description . 323

16.24.2 Data Structure Documentation . 325

16.24.3 Enumeration Type Documentation . 326

16.24.4 Function Documentation . 326

16.25Enhanced Direct Memory Access (eDMA) . 328

16.25.1 Detailed Description . 328

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

CONTENTS vii

16.26Error Injection Module (EIM) . 329

16.26.1 Detailed Description . 329

16.27Error Reporting Module (ERM) . 331

16.27.1 Detailed Description . 331

16.28External Watchdog Monitor (EWM) . 333

16.28.1 Detailed Description . 333

16.29Flash Memory (Flash) . 334

16.29.1 Detailed Description . 334

16.29.2 Data Structure Documentation . 337

16.29.3 Macro Definition Documentation . 338

16.29.4 Typedef Documentation . 342

16.29.5 Enumeration Type Documentation . 342

16.29.6 Function Documentation . 342

16.29.7 Variable Documentation . 351

16.30Flash Memory (Flash) . 354

16.30.1 Detailed Description . 354

16.31FlexCAN Driver . 357

16.31.1 Detailed Description . 357

16.31.2 Data Structure Documentation . 363

16.31.3 Typedef Documentation . 368

16.31.4 Enumeration Type Documentation . 368

16.31.5 Function Documentation . 371

16.32FlexIO Common Driver . 379

16.32.1 Detailed Description . 379

16.32.2 Enumeration Type Documentation . 379

16.32.3 Function Documentation . 379

16.33FlexIO I2C Driver . 382

16.33.1 Detailed Description . 382

16.33.2 Data Structure Documentation . 385

16.33.3 Function Documentation . 386

16.34FlexIO I2S Driver . 391

16.34.1 Detailed Description . 391

16.34.2 Data Structure Documentation . 394

16.34.3 Typedef Documentation . 397

16.34.4 Function Documentation . 397

16.35FlexIO SPI Driver . 409

16.35.1 Detailed Description . 409

16.35.2 Data Structure Documentation . 412

16.35.3 Typedef Documentation . 415

16.35.4 Enumeration Type Documentation . 416

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

viii CONTENTS

16.35.5 Function Documentation . 416

16.36FlexIO UART Driver . 423

16.36.1 Detailed Description . 423

16.36.2 Data Structure Documentation . 425

16.36.3 Enumeration Type Documentation . 427

16.36.4 Function Documentation . 427

16.37FlexTimer (FTM) . 432

16.37.1 Detailed Description . 432

16.37.2 Data Structure Documentation . 438

16.37.3 Macro Definition Documentation . 442

16.37.4 Enumeration Type Documentation . 445

16.37.5 Function Documentation . 447

16.37.6 Variable Documentation . 469

16.38FlexTimer Input Capture Driver (FTM_IC) . 470

16.38.1 Detailed Description . 470

16.38.2 Data Structure Documentation . 472

16.38.3 Enumeration Type Documentation . 474

16.38.4 Function Documentation . 475

16.39FlexTimer Module Counter Driver (FTM_MC) . 478

16.39.1 Detailed Description . 478

16.39.2 Data Structure Documentation . 479

16.39.3 Function Documentation . 480

16.40FlexTimer Output Compare Driver (FTM_OC) . 482

16.40.1 Detailed Description . 482

16.40.2 Data Structure Documentation . 484

16.40.3 Enumeration Type Documentation . 485

16.40.4 Function Documentation . 485

16.41FlexTimer Pulse Width Modulation Driver (FTM_PWM) . 488

16.41.1 Detailed Description . 488

16.41.2 Data Structure Documentation . 495

16.41.3 Macro Definition Documentation . 500

16.41.4 Enumeration Type Documentation . 500

16.41.5 Function Documentation . 501

16.42FlexTimer Quadrature Decoder Driver (FTM_QD) . 505

16.42.1 Detailed Description . 505

16.42.2 Data Structure Documentation . 507

16.42.3 Enumeration Type Documentation . 508

16.42.4 Function Documentation . 509

16.43Flexible I/O (FlexIO) . 511

16.43.1 Detailed Description . 511

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

CONTENTS ix

16.44FreeRTOS . 512

16.45I2S - Peripheral Abstraction Layer (I2S PAL) . 513

16.45.1 Detailed Description . 513

16.45.2 Data Structure Documentation . 515

16.45.3 Enumeration Type Documentation . 517

16.45.4 Function Documentation . 517

16.46Initialization . 521

16.46.1 Detailed Description . 521

16.46.2 Function Documentation . 521

16.47Input Capture - Peripheral Abstraction Layer (IC PAL) . 522

16.47.1 Detailed Description . 522

16.47.2 Data Structure Documentation . 526

16.47.3 Enumeration Type Documentation . 528

16.47.4 Function Documentation . 528

16.48Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 531

16.48.1 Detailed Description . 531

16.48.2 Data Structure Documentation . 535

16.48.3 Enumeration Type Documentation . 538

16.48.4 Function Documentation . 538

16.49Interface management . 546

16.49.1 Detailed Description . 546

16.49.2 Function Documentation . 546

16.50Interrupt Manager (Interrupt) . 548

16.50.1 Detailed Description . 548

16.50.2 Typedef Documentation . 549

16.50.3 Function Documentation . 549

16.51Interrupt vector numbers for S32K144 . 553

16.52J2602 Specific API . 554

16.53J2602 Transport Layer specific API . 555

16.53.1 Detailed Description . 555

16.54LIN 2.1 Specific API . 556

16.54.1 Detailed Description . 556

16.54.2 Function Documentation . 556

16.55LIN Core API . 558

16.55.1 Detailed Description . 558

16.56LIN Driver . 559

16.56.1 Detailed Description . 559

16.56.2 LIN Driver Overview . 559

16.56.3 LIN Driver Device structures . 559

16.56.4 LIN Driver Initialization . 560

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

x CONTENTS

16.56.5 LIN Data Transfers . 561

16.56.6 Autobaud feature . 561

16.56.7 Data Structure Documentation . 564

16.56.8 Macro Definition Documentation . 568

16.56.9 Typedef Documentation . 568

16.56.10Enumeration Type Documentation . 568

16.56.11Function Documentation . 569

16.56.12Variable Documentation . 577

16.57LIN Stack . 578

16.57.1 Detailed Description . 578

16.58LPI2C Driver . 581

16.58.1 Detailed Description . 581

16.58.2 Data Structure Documentation . 584

16.58.3 Enumeration Type Documentation . 587

16.58.4 Function Documentation . 587

16.59LPIT Driver . 597

16.59.1 Detailed Description . 597

16.59.2 Data Structure Documentation . 601

16.59.3 Macro Definition Documentation . 602

16.59.4 Enumeration Type Documentation . 603

16.59.5 Function Documentation . 603

16.60LPSPI Driver . 612

16.60.1 Detailed Description . 612

16.60.2 Data Structure Documentation . 614

16.60.3 Enumeration Type Documentation . 620

16.60.4 Function Documentation . 621

16.60.5 Variable Documentation . 629

16.61LPTMR Driver . 630

16.61.1 Detailed Description . 630

16.61.2 Data Structure Documentation . 633

16.61.3 Enumeration Type Documentation . 634

16.61.4 Function Documentation . 636

16.62LPUART Driver . 640

16.62.1 Detailed Description . 640

16.62.2 Data Structure Documentation . 643

16.62.3 Enumeration Type Documentation . 647

16.62.4 Function Documentation . 647

16.63Local Interconnect Network (LIN) . 655

16.63.1 Detailed Description . 655

16.64Low Power Inter-Integrated Circuit (LPI2C) . 656

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

CONTENTS xi

16.64.1 Detailed Description . 656

16.65Low Power Interrupt Timer (LPIT) . 657

16.65.1 Detailed Description . 657

16.66Low Power Serial Peripheral Interface (LPSPI) . 658

16.66.1 Detailed Description . 658

16.67Low Power Timer (LPTMR) . 661

16.67.1 Detailed Description . 661

16.68Low Power Universal Asynchronous Receiver-Transmitter (LPUART) 662

16.68.1 Detailed Description . 662

16.69Low level API . 663

16.69.1 Detailed Description . 663

16.69.2 Data Structure Documentation . 666

16.69.3 Macro Definition Documentation . 682

16.69.4 Typedef Documentation . 684

16.69.5 Enumeration Type Documentation . 684

16.69.6 Function Documentation . 689

16.69.7 Variable Documentation . 693

16.70MPU Driver . 695

16.70.1 Detailed Description . 695

16.70.2 Data Structure Documentation . 700

16.70.3 Enumeration Type Documentation . 702

16.70.4 Function Documentation . 706

16.71MPU PAL . 709

16.71.1 Detailed Description . 709

16.71.2 Data Structure Documentation . 712

16.71.3 Typedef Documentation . 714

16.71.4 Enumeration Type Documentation . 716

16.71.5 Function Documentation . 717

16.72Memory Protection Unit (MPU) . 720

16.72.1 Detailed Description . 720

16.73Memory Protection Unit Peripheral Abstraction Layer (MPU PAL) 722

16.73.1 Detailed Description . 722

16.74Node configuration . 727

16.74.1 Detailed Description . 727

16.74.2 Function Documentation . 727

16.75Node configuration . 729

16.75.1 Detailed Description . 729

16.75.2 Function Documentation . 729

16.76Node identification . 734

16.76.1 Detailed Description . 734

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

xii CONTENTS

16.76.2 Function Documentation . 734

16.77Notification . 735

16.78OS Interface (OSIF) . 736

16.78.1 Detailed Description . 736

16.78.2 Macro Definition Documentation . 738

16.78.3 Function Documentation . 738

16.79Output Compare - Peripheral Abstraction Layer (OC PAL) . 745

16.79.1 Detailed Description . 745

16.79.2 Data Structure Documentation . 748

16.79.3 Enumeration Type Documentation . 750

16.79.4 Function Documentation . 751

16.80PDB Driver . 756

16.80.1 Detailed Description . 756

16.80.2 Data Structure Documentation . 760

16.80.3 Enumeration Type Documentation . 761

16.80.4 Function Documentation . 762

16.81PINS Driver . 768

16.81.1 Detailed Description . 768

16.81.2 Data Structure Documentation . 768

16.81.3 Typedef Documentation . 769

16.81.4 Enumeration Type Documentation . 769

16.81.5 Function Documentation . 770

16.82Peripheral access layer for S32K144 . 773

16.83Pins Driver (PINS) . 774

16.83.1 Detailed Description . 774

16.84Power Manager . 776

16.84.1 Detailed Description . 776

16.84.2 Data Structure Documentation . 777

16.84.3 Typedef Documentation . 779

16.84.4 Enumeration Type Documentation . 780

16.84.5 Function Documentation . 781

16.84.6 Variable Documentation . 785

16.85Power Manager Driver . 786

16.86Power_s32k1xx . 788

16.86.1 Detailed Description . 788

16.86.2 Data Structure Documentation . 789

16.86.3 Enumeration Type Documentation . 790

16.86.4 Function Documentation . 792

16.87Programmable Delay Block (PDB) . 794

16.87.1 Detailed Description . 794

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

CONTENTS xiii

16.88Pulse-width modulation - Peripheral Abstraction Layer (PWM PAL) 795

16.88.1 Detailed Description . 795

16.88.2 Data Structure Documentation . 798

16.88.3 Enumeration Type Documentation . 800

16.88.4 Function Documentation . 800

16.89RTC Driver . 804

16.89.1 Detailed Description . 804

16.89.2 Data Structure Documentation . 806

16.89.3 Macro Definition Documentation . 810

16.89.4 Enumeration Type Documentation . 811

16.89.5 Function Documentation . 812

16.90Raw API . 819

16.90.1 Detailed Description . 819

16.90.2 Function Documentation . 819

16.91Real Time Clock Driver (RTC) . 821

16.91.1 Detailed Description . 821

16.92S32K144 SoC Header file . 825

16.92.1 Detailed Description . 825

16.93S32K144 System Files . 826

16.94Schedule management . 827

16.94.1 Detailed Description . 827

16.94.2 Function Documentation . 827

16.95Security PAL . 828

16.95.1 Detailed Description . 828

16.95.2 Data Structure Documentation . 830

16.95.3 Enumeration Type Documentation . 830

16.95.4 Function Documentation . 832

16.96Security Peripheral Abstraction Layer - SECURITY PAL . 846

16.96.1 Detailed Description . 846

16.97Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL) 849

16.97.1 Detailed Description . 849

16.97.2 Data Structure Documentation . 852

16.97.3 Enumeration Type Documentation . 855

16.97.4 Function Documentation . 856

16.98Signal interaction . 861

16.99SoC Header file (SoC Header) . 862

16.99.1 Detailed Description . 862

16.100SoC Support . 863

16.100.1Detailed Description . 863

16.101Structural Core Self Test . 865

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

xiv CONTENTS

16.102System Basis Chip Driver (SBC) - UJA116xA Family . 867

16.102.1Detailed Description . 867

16.103TRGMUX Driver . 872

16.103.1Detailed Description . 872

16.103.2Data Structure Documentation . 873

16.103.3Typedef Documentation . 874

16.103.4Function Documentation . 875

16.104Timing - Peripheral Abstraction Layer (TIMING PAL) . 879

16.104.1Detailed Description . 879

16.104.2Data Structure Documentation . 883

16.104.3Enumeration Type Documentation . 886

16.104.4Function Documentation . 886

16.105Transport layer API . 890

16.105.1Detailed Description . 890

16.106UJA116xA SBC Driver . 891

16.106.1Detailed Description . 891

16.106.2Data Structure Documentation . 898

16.106.3Macro Definition Documentation . 914

16.106.4Typedef Documentation . 914

16.106.5Enumeration Type Documentation . 915

16.107Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL) 932

16.107.1Detailed Description . 932

16.107.2Data Structure Documentation . 937

16.107.3Enumeration Type Documentation . 938

16.107.4Function Documentation . 939

16.108User provided call-outs . 945

16.108.1Detailed Description . 945

16.108.2Function Documentation . 945

16.109WDG PAL . 946

16.109.1Detailed Description . 946

16.109.2Data Structure Documentation . 947

16.109.3Enumeration Type Documentation . 948

16.109.4Function Documentation . 949

16.110WDOG Driver . 953

16.110.1Detailed Description . 953

16.110.2Data Structure Documentation . 956

16.110.3Enumeration Type Documentation . 957

16.110.4Function Documentation . 958

16.111Watchdog Peripheral Abstraction Layer (WDG PAL) . 962

16.111.1Detailed Description . 962

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

CONTENTS xv

16.112Watchdog timer (WDOG) . 965

16.112.1Detailed Description . 965

17 Data Structure Documentation 966

17.1 adc_callback_info_t Struct Reference . 966

17.1.1 Detailed Description . 966

17.1.2 Field Documentation . 966

17.2 adc_instance_t Struct Reference . 966

17.2.1 Detailed Description . 966

17.2.2 Field Documentation . 967

17.3 can_instance_t Struct Reference . 967

17.3.1 Detailed Description . 967

17.3.2 Field Documentation . 967

17.4 drv_config_t Struct Reference . 967

17.4.1 Detailed Description . 968

17.4.2 Field Documentation . 968

17.5 i2c_instance_t Struct Reference . 968

17.5.1 Detailed Description . 968

17.5.2 Field Documentation . 968

17.6 i2s_instance_t Struct Reference . 969

17.6.1 Detailed Description . 969

17.6.2 Field Documentation . 969

17.7 ic_instance_t Struct Reference . 969

17.7.1 Detailed Description . 969

17.7.2 Field Documentation . 970

17.8 lin_product_id_t Struct Reference . 970

17.8.1 Detailed Description . 970

17.8.2 Field Documentation . 970

17.9 mpu_instance_t Struct Reference . 971

17.9.1 Detailed Description . 971

17.9.2 Field Documentation . 971

17.10oc_instance_t Struct Reference . 971

17.10.1 Detailed Description . 971

17.10.2 Field Documentation . 972

17.11oc_pal_state_t Struct Reference . 972

17.11.1 Detailed Description . 972

17.12pwm_instance_t Struct Reference . 972

17.12.1 Detailed Description . 972

17.12.2 Field Documentation . 972

17.13spi_instance_t Struct Reference . 973

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1 S32 SDK 1

17.13.1 Detailed Description . 973

17.13.2 Field Documentation . 973

17.14timer_chan_state_t Struct Reference . 973

17.14.1 Detailed Description . 974

17.15timing_instance_t Struct Reference . 974

17.15.1 Detailed Description . 974

17.15.2 Field Documentation . 974

17.16uart_instance_t Struct Reference . 974

17.16.1 Detailed Description . 975

17.16.2 Field Documentation . 975

17.17wdg_instance_t Struct Reference . 975

17.17.1 Detailed Description . 975

17.17.2 Field Documentation . 975

Index 977

1 S32 SDK

Introduction

This topic provides an introduction to the S32 software development kit (S32 SDK), including intended audience,
purpose and scope, and detailed sections on technical considerations.

Intended Audience

S32 SDK documentation is written for software developers and system engineers who have a technical background,
and a working knowledge of embedded programming. The audience for the S32 SDK are users of S32 Processors.

Purpose and Scope

The S32 SDK is a embedded oriented development kit. It allows users to

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

2 CONTENTS

1. Evaluate and explore the features of the S32 processors; experience how they are supported by working "out
of the box" on NXP development boards.

2. Develop embedded solutions; the NXP SDK is thoroughly tested from development to production.

S32 SDK Architecture Overview

The S32 SDK is an extensive suite of robust hardware interface and hardware abstraction layers, peripheral drivers,
RTOS, stacks, and middleware designed to simplify and accelerate application development on NXP S32 SOCs.
The addition of Processor Expert technology for software and board configuration provides unmatched ease of use
and flexibility. Included in the S32 SDK is full source code under a permissive open-source license for all hardware
abstraction and peripheral driver software. See the Release Notes for details. The S32 SDK consists of the following
runtime software components written in C:

2 Components

Header file

The S32 SDK contains a device-specific header files which provide direct access to the peripheral registers. Each
supported device in S32 SDK has an overall System-on-Chip (SoC) memory-mapped header file. This header file
contains the memory map and register base address for each peripheral and the IRQ vector table with associated
vector numbers.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

2 Components 3

Feature Header File

The PAL is designed to be reusable regardless of the peripheral configuration differences from one SOC device
to another. An overall Peripheral Feature Header File is provided for device to define the feature or configuration
differences for each SOC sub-family device.

Peripheral Abstraction Layer

The PAL provides unified interfaces for families of peripherals, allowing for cross-platform compatibility of application
code. The main goal is to provide an application programming interface that is independent of the underlying
peripheral implementation.

The PAL supports all instances of each peripheral from a certain family instantiated on the SOC by using a simple
integer parameter for the peripheral instance number.

The PAL instances should be configured bearing in mind possible limitations of the underlying peripherals - some
features may not be supported on some hardware modules. It is the user's responsibility to correctly handle hard-
ware resources, especially when porting the application to a different platform.

The PAL drivers can be found in the platform/pal directory.

Peripheral Drivers

The Peripheral Drivers are high-level drivers that implement high-level logic transactions based on an internal reg-
ister access abstraction layer, other Peripheral Drivers, and/or System Services. For example, the UART register
access abstraction layer mainly focuses on byte-level basic functional primitives, while the UART Peripheral Driver
operates on an interrupt-driven level using data buffers to transfer a stream of bytes. In general, if a driver, that
is mainly based on one peripheral, interfaces with functions beyond the register access abstraction layer and/or
requires interrupt servicing, the driver is considered a high-level Peripheral Driver.

The Peripheral Drivers support all instances of each peripheral instantiated on the SOC by using a simple integer
parameter for the peripheral instance number.The user of the Peripheral Driver does not need to know the peripheral
memory-mapped base address.

The Peripheral Drivers operate on a high-level logic that requires data storage for internal operation context handling.
However, the Peripheral Drivers do not allocate this memory space. Rather, the user passes in the memory for the
driver internal operation through the driver initialization function.

The Peripheral Drivers are designed to handle the entire functionality for a targeted use-case. An application should
be able to use only the Peripheral Driver to accomplish its purpose.

The Peripheral Drivers can be found in the platform/drivers directory.

System Services

The System Services contain a set of software entities that can be used by the Peripheral Drivers. They may be
used with PAL Drivers to build the Peripheral Drivers or they can be used by an application directly. The following
sections describe each of the System Services software entities. These System Services are in the platform/drivers
directory.

Interrupt Manager

The Interrupt Manager provides functions to enable and disable individual interrupts within the Nested Vector In-
terrupt Controller (NVIC). It also provides functions to enable and disable the ARM core global interrupt (via the
CPSIE and CPSID instructions) for bare-metal critical section implementation. In addition to providing functions for
interrupt enabling and disabling, the Interrupt Manager provides Interrupt Service Routine (ISR) registration that
allows the application software to register or replace the interrupt handler for a specified IRQ vector. The drivers do
not set interrupt priorities. The interrupt priority scheme is entirely determined by the specific application logic and
its setting is handled by the user application. The user application manages the interrupt priorities.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

4 CONTENTS

Clock Manager

The Clock Manager provides centralized clock-related functions for the entire system. It can dynamically set the
system clock and perform clock gating/un-gating for specific peripherals. The Clock Manager also maintains knowl-
edge of the clock sources required for each peripheral and provides functions to obtain the clock frequency for each
supported clock used by the peripheral. The Clock Manager provides a notification framework which the software
components, such as drivers, uses to register callback functions and execute the predefined code flow during the
clock mode transition.

Power Manager

The Power Manager provides centralized power-related functions for the entire system. It dynamically sets the sys-
tem power mode. The Power Manager provides a notification framework which the software components, such as
drivers, uses to register callback functions and execute the predefined code flow during the power mode transition.

Examples

The examples provided show how to build user applications using the S32 SDK. The examples can be found in the
top-level example directory. For details please see Examples_and_Demos .

3 PAL vs PD usage

PAL - Peripheral Abstraction layer

• Interface abstraction for a family of peripherals (E.g. LPUART + LINFlexD_UART + eSCI + FlexIO_UART +
etc.)

• Single layer per SDK

• Same generic API on multiple platforms

PD - Peripheral Drivers

• IP dedicated low-level drivers

• Designed for efficiency and IP features set coverage

When to use the Peripheral Abstraction Layer (PAL)?

• Whenever an application needs a simplified, generic interface that abstracts as much as possible the under-
lying silicon features.

• Whenever developing portable higher level generic code that is meant to run on different NXP platforms. This
may include anything from low level console utility libraries to communication stacks like TCP/IP.

When to use Peripheral Drivers?

• Whenever developing for high efficiency (code size, execution speed, etc.) or planning to use specific periph-
eral features.

4 Supported Platforms

Supported board and SoC versions can be found in the Release Notes. (SDK\ReleaseNotes.pdf)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

5 Installation 5

5 Installation

Prerequisites

SDK can be used in two ways: bundled in S32 Design Studio and standalone.

S32 SDK is delivered bundled in the S32 Design Studio. In this case it’s already configured and ready to use.

S32 SDK is also delivered through a standalone installer. Using the standalone installer is recommended when
using a compiler which is not supported in S32 Design Studio or when the graphical interface is not required. In this
case the installer can configure an existing S32 Design Studio to use the configuration files delivered in the installer.

If the integration with the S32 Design Studio is not needed the path to S32 Design Studio can be left empty – and
in this case only the S32 SDK will be installed and configured.

Steps

1. Start the installer S32_SDK_<ReleaseSpecifc>.exe

2. Set the destination folder for the SDK, give optional location of S32DS and install. Example of S32DS path:
C:\NXP\S32ARMv1.3

3. Start using the SDK by creating a new project or importing a project

Background

The installer does the following things in background:

• Puts the SDK in the selected destination directory.

• Appends to S32SDK_PATH the path of the SDK.

– Note: Please make sure you uninstall previous SDK so that this variable will be empty.

• Copies necessary files into S32 Design Studio installation location.

• Overwrites existing SDK from S32 Design Studio with the version from destination directory

Uninstaller

When the SDK is installed using the standalone the installer, the user can use "uninst.exe" from the root of the
destination to uninstall the SDK.

Note: If you want to reinstall the SDK please use a clean copy of S32DS. When you uninstall this does not delete
the copied files (ex: Config_01.pez), so a clean copy is needed.

6 Build Tools

Introduction

S32 SDK supports and is tested with multiple compiler toolchains.

Note

The toolchain list, versions and their options specific for the platform and release can be found in the Release
Notes. (SDK\ReleaseNotes.pdf)
Toolchain versions and options can be found in the Release Notes. (SDK\ReleaseNotes.pdf)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

6 CONTENTS

Compiler warnings disabled for S32 SDK

For Wind River DIAB Compiler the following warnings are not checked at S32 SDK build time:

• #1824: explicit cast discards volatile qualifier
Motivation: this warning has been deactivated because of false positive occurrences reported for Wind River
DIAB Compiler 5.9.4.8 under tickets TCDIAB-13994, TCDIAB-14098.

• #5387: explicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
Motivation: this warning has been disabled because it is reported for conversions required by the internal
SDK algorithms. Intermediary results requiring high precision are stored as uint64_t variables and converted
into uint32_t variables. Checks have been put in place to ensure that the cast is only done if the value to be
converted fits on 32 bits.

• #5388: conversion from pointer to same-sized integral type (potential portability problem)
Motivation: for S32 SDK conversions between uint32_t and memory addresses are made assuming that
pointers are stored on 32bits.

Makefiles

Multiple makefile projects are provided in the 'examples' folder, for all supported compilers. These projects can be
modified by adding application code, or the makefiles can be reused in different projects, after reconfiguring the
paths/variables. Please note that these projects require the designated compiler to be already installed on the host;
also, the makefile path to compiler executable must be updated before running make utility.

S32 Design Studio

S32 Design Studio is delivered with platform specific gcc cross compiler included ("{S32_Design_Studio_install_←↩

path}\Cross_Tools). Eclipse plugins for gcc are already installed in S32 Design Studio IDE, so new projects for this
toolchain can be created and built directly from the IDE. To add S32 SDK source files to a clean S32 Design Studio
project, eclipse "linked resources" feature can be used: project properties->New->Folder->Advanced->'Link to
alternate location' (e.g. "{S32_SDK_PATH}"). For S32 Design Studio project with Processor Expert support, please
import a project from "{S32_SDK_PATH} Name".

7 IDE Support

S32 Design Studio

• S32 Design Studio is delivered with Processor Expert support included. Please see Configuration chapter.

• To configure the S32 SDK path of the project, eclipse "S32 SDK Specific" feature can be used: patch project
properties->Processor Expert->S32 SDK Specific->SDK path

• Processor Expert repositories and paths can be configured as it follows: Window -> Preferences -> Proces-
sor Expert -> Repositories and Paths.

• S32 Design Studio projects can be imported from S32 SDK package. Please see Examples_and_Demos
chapter.

IAR Embedded Workbench

• NOT applicable to platforms which do not support IAR compiler. Please see Release Notes.

• There is no configuration support for S32 SDK in IAR.

• IAR Embedded Workbench projects can be imported from S32 SDK package. Please see Examples_and←↩

_Demos chapter.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

8 Configuration 7

8 Configuration

Processor Expert software allows generation of configuration structures for peripheral drivers from S32 SDK. With
the help of Eclipse based graphical interface where you can configure your driver and generate corresponding
configuration structure. This tool doesn't generate source code for S32 family, it only generates configurations data
structures.

Processor Expert generates configuration header files that are included by application source code. The configu-
ration data structures from these files are defined in S32 SDK. All these header files are generated by this tool in
${ProjName}/Generated_Code directory.

Peripheral drivers are not stored directly in the project directory, these drivers are stored in S32 SDK repository.
Shared peripheral drivers repository is advantageous when more projects should share the same version of pe-
ripheral drivers. In this case, peripheral drivers are not physically placed in the project directory but each project is
virtually linked with shared, common repository from S32 SDK. This way the management of the projects’ drivers
can be done in one place and any changes made in the shared repository is automatically distributed across all of
the linked projects, for example in case of bug fixing or library update and also backup or archiving of the peripheral
drivers versions is very simple.

9 Acronyms and Abbreviations

Acronym Description
CPSIE, CPSID Change Processor State Interrupt Enable / Disable
EAR Early Access Release
EVB Evaluation board
PAL Peripheral Abstraction Layer
IRQ Interrupt Request
ISR Interrupt Service Routine
LLWU Low Leakage Wakeup Unit
NVIC Nested Vector Interrupt Controller
RTOS Real Time Operating System
S32DS S32 Design Studio
SDK Software Development Kit
SOC System-on-Chip
UART Universal Asynchronous Receiver / Transmitter

10 MISRA Compliance

This section describes how the S32 SDK project addresses MISRA Compliance.

The S32 SDK SW components which are implemented to be compliant with MISRA C 2012 are:

• all drivers & PALs

• generated driver code (including Cpu.c & .h)

• main.c (generated via graphical configurator)

Violations of MISRA C 2012 guidelines which remain not fixed, shall be documented as deviations at file level.

Other SW components included in the S32 SDK package which are not subject to MISRA C 2012 compliance:

• demo_apps & driver examples

• FreeRTOS

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

8 CONTENTS

11 Development guidelines

Set of guidelines to improve the usability of the S32 SDK.

Some usual guidelines on SDK programming model:

1. Driver state structures should be declared as global or static variables as they are used in the whole time
when the driver is used.

2. Driver state structures content should not be used or modified by the application code.

3. Peripheral drivers, PALs and Middleware code are not handling clock and pins initialization. Configuration of
the clock and pins driver has to be done by the application.To make sure these are properly initialized before
other modules are used, please call the corresponding initialization:

/* Initialize and configure clocks */
CLOCK_SYS_Init(g_clockManConfigsArr, CLOCK_MANAGER_CONFIG_CNT,

g_clockManCallbacksArr, CLOCK_MANAGER_CALLBACK_CNT);
CLOCK_SYS_UpdateConfiguration(0U,

CLOCK_MANAGER_POLICY_AGREEMENT);

/* Initialize pins */
PINS_DRV_Init(NUM_OF_CONFIGURED_PINS, g_pin_mux_InitConfigArr);

Note

The configuration structure names used in this example are the default names generated by Processor
Expert components for clock and pins. Applications not using Processor Expert might have different
names for these structures.

4. The recommended approach at development time is to add DEV_ERROR_DETECT symbol to the compiler
defines. This will enable DEV_ASSERT mechanism which can catch application code errors in the early
development stage.

5. High care should be taken to have a backup option when debug pins are routed to other functionalities.

12 Error detection and reporting

S32 SDK drivers can use a mechanism to validate data coming from upper software layers (application code) by
performing a number of checks on input parameters' range or other invariants that can be statically checked (not
dependent on runtime conditions). A failed validation is indicative of a software bug in application code, therefore it
is important to use this mechanism during development.

The validation is performed by using DEV_ASSERT macro. A default implementation of this macro is provided
in this file. However, application developers can provide their own implementation in a custom file. This requires
defining the CUSTOM_DEVASSERT symbol with the specific file name in the project configuration (for example:
-DCUSTOM_DEVASSERT="custom_devassert.h")

The default implementation accommodates two behaviors, based on DEV_ERROR_DETECT symbol:

• When DEV_ERROR_DETECT symbol is defined in the project configuration (for example: -DDEV_ER←↩

ROR_DETECT), the validation performed by the DEV_ASSERT macro is enabled, and a failed validation
triggers a software breakpoint and further execution is prevented (application spins in an infinite loop) This
configuration is recommended for development environments, as it prevents further execution and allows
investigating potential problems from the point of error detection.

• When DEV_ERROR_DETECT symbol is not defined, the DEV_ASSERT macro is implemented as no-op,
therefore disabling all validations. This configuration can be used to eliminate the overhead of development-
time checks.

It is the application developer's responsibility to decide the error detection strategy for production code: one can
opt to disable development-time checking altogether (by not defining DEV_ERROR_DETECT symbol), or one can
opt to keep the checks in place and implement a recovery mechanism in case of a failed validation, by defining
CUSTOM_DEVASSERT to point to the file containing the custom implementation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13 Examples and Demos 9

13 Examples and Demos

Applications that show the user how to initialize the peripherals for the basic use cases

13.1 Introduction

S32 SDK examples structure:

• Demo Applications (SDK/examples/<CPU>/demo_apps), are demo applications for various IDEs and com-
pilers. Also this examples are using more advanced use-cases - FreeRTOS integration, LIN Stack, FlexCAN
usage and Clock Setup.

• Driver Examples (SDK/examples/<CPU>/driver_examples), are simple applications which exemplify a basic
use-case for a specific driver.

13.2 Usage

13.2.1 How to build

For makefile project

There are makefile projects in all compilers supported. In order to used them:

• Make utility (eg. GNU Make)

• Toolchain (eg. GCC Toolchain)

• Make sure the make and compiler are in Path (for Microsoft Windows : System -> Environmental
Variables)

• From command line execute the makefile: make all

The makefiles generate binary files for both RAM and FLASH configurations.

For IAR Embedded Workbench

From IAR Workbench for ARM use File > Open > Workspace and browse to the desired project. After the project
was opened you can see the files in "Workspace Files". Finally, the project can be executed from Project > Down-
load and Debug. Make sure that the debug probe you are using is selected and configured in Project options >
Debugger > Driver.

For S32 Design Studio

From S32 Design Studio (See Release notes for the S32 Design Studio version), go to File -> New -> New Project
from Example and select the example you wish to import. This will copy the example project into workspace. Next
steps:

• Examples will run without an active configuration, however if any changes are required, a configuration needs
to be generated. Use Open S32 Configuration button, make the desired changes (if any) then click on the
"Update Code" button.

• Use Project > Build to build the project

• Use Project > Debug and launch your preferred debug configuration

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

10 CONTENTS

13.2.2 How to debug

This section explains how to upload and debug the binary files generated after build. This assumes that you have a
debug probe(see release notes for supported debug probes) and a debug software installed on the machine.

Generic steps:

1. Launch the debug software

2. Load the binary file into the MCU

3. Execute the application

Loading with PEmicro OpenSDA/MultiLink:

• Download and install the latest drivers and GDB server, named P&E GDB Server for Kinetis with Windows
GUI, from their site

• Download your favorite GDB client (eg. arm-none-eabi-gdb)

• Browse to PEmicro GDB Server installation folder and launch P&E GDB Server for Kinetis

• Select the appropriate part from the device list and click on Connect

• Open the GDB client and connect to the configured port - by default localhost:7224

• Upload the file and execute (see GDB client user manual for details regarding the commands used)

The following table is a small list of commands used in GNU ARM GDB with PEmicro GDB server to connect and
run the application:

Command Description
target remote:PortNumber Connect to the remote target at a specified port.

Please replace PortNumber with the port configured
in the GDB server.

monitor reset Reset the target MCU
file ApplicationName.elf Load the file and symbols. Please change

ApplicationName with your application name
load Download the executable to the target MCU
continue Begin executing the application

13.2.3 Using terminal emulator

To run the examples that use LPUART to help you visualize data you must download a terminal emulator (eg. Putty,
Termite, TeraTerm) and configure it.

Unless otherwise noted the standard communication parameters are:

• 115200 baud

• One stop bit

• No parity

• No flow control

Example configuration for Termite using OpenSDA

1) Download Termite from their site
2) Run the installer. Wait for the installation to be completed
3) Go to Start -> All Programs -> Termite and launch the program. The window from Fig.1 will appear ...

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

https://www.pemicro.com
http://www.compuphase.com/software_termite.htm

13.2 Usage 11

Termite
window

4) Click on Settings
5) As seen in Fig.2, configure the following communication parameters:

• Port(1) : COMx - where x must be replaced with the COM port number

• Baud Rate(2) : 115200

• Data Bits(3) : 8

• Stop Bits(4) : 1

• Parity(5) : None

• Flow Control(6) : None

• Forward(7) : None

Settings window

6) Click OK. Now the terminal should be configured

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

12 CONTENTS

Note

For further help consult the terminal's documentation

13.3 Demo Applications

Applications that show more advanced use cases

Available demo applications:
Click on one of the project to see the corresponding documentation

• ADC Low Power

• CSEC BOOT PROTECTION

• Hello World - Makefile

• FreeMASTER

• FreeRTOS

• Hello World

• AMMCLib

• Structural Core Self Test Example

• Hello World

• LIN MASTER

• LIN SLAVE

13.3.1 ADC Low Power

Demonstrates ADC trigger scheme using TRGMUX and LPIT, switches the power mode to stop and sends data
using LPUART and DMA

Application description

The purpose of this demo application is to show you the usage of a subset of the peripherals found on the S32←↩

K144W SoC.

• The application uses LPIT to trigger ADC conversions every 100ms via TRGMUX with the CPU in sleep
mode. The ADC is using Hardware Compare feature to validate an conversion only if the value is greater than
half of the reference voltage, in this case VDD/2. This way the CPU is woken up from sleep mode only if the
condition is met.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 13

• When the conversion is complete the data is transformed into a bar graph and it is sent via LPUART using
DMA memory to peripheral transfer to the host PC. This way, the CPU can be put into a low power mode to
reduce the energy used.

How the example works:

• Connect to the serial port using settings found in Notes section

• The user should receive a welcome message on the terminal emulator, with application details (user can refer
the message in the main.c file)

• The value of Vref will display

• The user must press "A" or "a" for the example to run

• The potentiometer(R44 - connected to ADC1 channel 10) must be rotated in order to generate valid ADC
conversions

• Once a valid conversion is done then a bargraph will be printed on the terminal emulator, like: "Start-
ing example ... Move potentiometer to get a bargraph and some information displayed. ADC1-CH10
[################################] Vin=4034mV Raw=4095"

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V

• 1 Personal Computer

• 1 PEMicro Multilink Debugger

• 1 USB Type-B cable for UART connect to J16 on mother board

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K14xCVD-Q064 PCB XS32K14WEVB-Q064
ADC POT ADC1 Channel 10 (PTE2) - wired

on the board
ADC0 Channel 9 (PTC1) - wired
on the board

Make sure the following jumpers are set:

Jumper Name S32K-MB

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

14 CONTENTS

JP20 Set jumper on position 1-2
JP20 Set jumper on position 4-5
JP21 Set jumper on position 1-2

Jumper Name XS32K14WEVB-Q064
J10 Set jumper on position 2-3

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select adc_low_power_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
adc_low_power_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
adc_low_power_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 15

13.3.2 CSEC BOOT PROTECTION

Basic application that presents the boot protection functionality of the CSEc module

Note

This example works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is available on your
device.
The first time when running the example on the board, or after a key erase, this example should be ran
from RAM.
After the user key was loaded using this example, any further full erase of the Flash requires a
Challenge-Authentication process. This can be done by setting the FLASH_MODIFY macro to 1.
After partitioning Flash for CSEc operation, using the JLink Flash configuration of any other project
will not work anymore. Workaround:

• Run csec_boot_protection example with FLASH_MODIFY 1, using PEmicro Flash debug configuration

Application description

The purpose of this demo application is to show the user how to use the boot protection feature of the Cryptographic
Services Engine module from the S32K144W MCU with the S32 SDK API.

The implementation demonstrates the following:

• the enablement of the CSEc module, by showing how the Flash should be partitioned (using the Flash driver);

• configuring the MASTER_ECU key;

• configuring the first user key, using the MASTER_ECU key as an authorization with boot protection enabled;

• configuring and enabling secure boot;

• availability of the user key after a secure boot when the flash was modified or not.
Erasing all the configured keys (including the MASTER_ECU key) and disabling the secure boot can be done
by changing the value of the FLASH_MODIFY macro to 1. This will place the part back into factory status
(the partition command will need to be run again).
Here is a table describing the outcome based on the value of FLASH_MODIFY and if the FLASH_TARGET
is defined:

FLASH_MODIFY FLASH_TARGET Result
0 UNDEFINED Write initial code to flash
1 UNDEFINED Write modified code to flash
0 DEFINED Write keys and enable secure

boot
1 DEFINED Erase keys and partition flash

Application usage

1. The first step is to run the application from RAM having the FLASH_MODIFY macro set to 1 in order to
partition the flash. After this step, comment the #define INIT_PHASE line

2. Load the test program to it by setting the FLASH_MODIFY to 0 and running the application from FLASH.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16 CONTENTS

3. Run the application from RAM with the FLASH_MODIFY macro set to 0 in order to load the keys necessary
for secure boot and the test key with boot protection enabled.

4. Run the application from FLASH with the FLASH_MODIFY macro set to 0 in order to test secure boot. The
secure boot process and the encryption using the test key should be successful.

5. Run the application from FLASH with the FLASH_MODIFY macro set to 1 this time in order to modify the
flash. This will result in the secure boot to fail and the test key will be unavailable so the encryption operation
will be unsuccessful.

6. Run the application from FLASH with the FLASH_MODIFY macro set to 0 in order to successfully secure
boot. The test key is available again and the encryption operation is successful.

7. Set the FLASH_MODIFY macro to 1 and run the application from RAM in order to erase the keys and flash.

Note

If the FLASH_MODIFY is set to 1 at step 2 then the secure boots after the step 3 will be successful only
if the FLASH_MODIFY macro is set to 1 and unsuccessful if it is set to 0.
If an assert fails at step 3, start over at step 1, decommenting the #define INIT_PHASE line and setting
FLASH_MODIFY to 1.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q064 with
S32K-MB

LED_RED (PTC0) LED0 - wired on the board
LED_GREEN (PTC1) LED1 - wired on the board
LED_RED (PTE0) RGB_RED - wired on the board
LED_GREEN (PTE7) RGB_GREEN - wired on the board

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 17

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From and select csec_boot_protection_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
csec_boot_protection_s32k144w_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debuggers

csec_boot_protection_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.3 Hello World - Makefile

Basic application that presents the project scenarios for S32 SDK using makefiles for various compilers

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K144W platform,
using S32 SDK. The demo uses Pins and Clock driver to initialize the MCU and to toggle two LEDs alternatively.

There are five projects delivered with this package:

• Makefile project (GCC compiler)

• Makefile project (GHS compiler)

• Makefile project (IAR compiler)

• Makefile project (DCC compiler)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

18 CONTENTS

• Makefile project (ARM compiler)

Note

For information about how to run the makefile please refer to Usage

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q064 with
S32K-MB

LED1 (PTE0/PTC0) RGB_RED - wired on the board LED_0 - JP49 (wired on the board)
LED2 (PTE7/PTC1) RGB_GREEN - wired on the board LED_1 - JP50 (wired on the board)

13.3.4 FreeMASTER

Example application showing FreeMASTER Serial Communication usage

Application description

The purpose of this demo application is to show you how to use the FreeMASTER serial communication using
S32K144W on OpenSDA with this SDK.

This demo uses the FreeMASTER Run-Time Debugging Tool to visualise ADC conversions and allows the user to
monitor the ADC sampling rate for different ADC configurations (ADC sampling time and resolution can be controlled
through FreeMASTER Application Commands).

The ADC is configured to perform continous conversions and generate an interrupt after each conversion. The
LPTMR is configured to generate a periodic interrupt at 10 ms which reads the number of ADC conversions.

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144W board

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 19

• 1 Power Adapter 12V

• 1 Dupont male to male cable

• 1 Personal Computer

• Debug probe (JLink, PEmicro, OpenSDA)

• FreeMASTER host application

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064
LPUART1 TX (PTC9) UART_TX - wired on the board
LPUART1 RX (PTC8) UART_RX - wired on the board
ADC0 Input 9 (PTC1) POT - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select freemaster_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
freemaster_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

20 CONTENTS

freemaster_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Open the FreeMASTER project (freemaster_s32k144w.pmp) and set the communication parameters:

• Go to Project -> Options -> Comm, choose Direct RS232 and set the COM port and speed 9600.

• Go to Project -> Options -> MAP Files and make sure the ∗.elf file of your project's current Debug Config-
uration is selected and set file format to ELF/DWARF.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

FreeMASTER host application can be downloaded from NXP's website. FreeMASTER Serial Communication is
included into the project (V2.0).

13.3.5 FreeRTOS

Demo application showing the integration of FreeRTOS and S32 SDK

Application description

The purpose of this demo application is to show you how to use the FreeRTOS with the S32 SDK for the S32K144W
MCU.

This project defines a very simple demo that creates two tasks, one queue, and one timer. It also demonstrates
how Cortex-M4 interrupts can interact with FreeRTOS tasks/timers.

The idle hook function: The idle hook function demonstrates how to query the amount of FreeRTOS heap space
that is remaining (see vApplicationIdleHook() defined in this file).

The main() Function: main() creates one software timer, one queue, and two tasks. It then starts the scheduler.

The Queue Send Task: The queue send task is implemented by the prvQueueSendTask() function in this file. prv←↩

QueueSendTask() sits in a loop that causes it to repeatedly block for 200 milliseconds, before sending the value 100
to the queue that was created within main(). Once the value is sent, the task loops back around to block for another
200 milliseconds.

The Queue Receive Task: The queue receive task is implemented by the prvQueueReceiveTask() function in this
file. prvQueueReceiveTask() sits in a loop that causes it to repeatedly attempt to read data from the queue that
was created within main(). When data is received, the task checks the value of the data, and if the value equals
the expected 100, toggles LED0. The 'block time' parameter passed to the queue receive function specifies that the
task should be held in the Blocked state indefinitely to wait for data to be available on the queue. The queue receive
task will only leave the Blocked state when the queue send task writes to the queue. As the queue send task writes
to the queue every 200 milliseconds, the queue receive task leaves the Blocked state every 200 milliseconds, and
therefore toggles LED0 every 200 milliseconds.

The LED Software Timer and the Button Interrupt: The user button BTN0 is configured to generate an interrupt
each time it is pressed. The interrupt service routine switches LED1, and resets the LED software timer. The LED
timer has a 5000 millisecond (5 second) period, and uses a callback function that is defined to just turn the LED off
again. Therefore, pressing the user button will turn the LED on, and the LED will remain on until a full five seconds
pass without the button being pressed.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 21

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144W board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 PEMicro Multilink Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q064 S32K-MB
LED0 (PTD15) RGB_RED - wired on

board
LED0 - wired on the
board

JP49.1 - JP49.2

LED1 (PTD16) RGB_GREEN - wired on
board

LED1 - wired on the
board

JP50.1 - JP50.2

BTN0 (PTC13) SW2 - wired on board BTN0 - wired on the
board

JP39.1 - JP39.2 and
J70.1 - J70.2 and J69.2 -
J69.3

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select freertos_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration to be initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

22 CONTENTS

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 23

Configuration Name Description
freertos_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
freertos_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.6 Hello World

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K144 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle
two LEDs alternatively.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q064 with
S32K-MB

LED1 (PTE0/PTC0) RGB_RED - wired on the board LED_0 - JP49 (wired on the board)
LED2 (PTE7/PTC1) RGB_GREEN - wired on the board LED_1 - JP50 (wired on the board)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

24 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select hello_world_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
hello_world_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
hello_world_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.7 AMMCLib

Provides an example of integration of AMMCLib and S32 SDK

Application description

The purpose of this demo application is to show you how to integrate the S32 SDK with AMMCLib.

The application starts by sending a welcome message to the terminal with instructions regarding how to select
between the two parts:

1. The first part:

• The board sends a welcome message to the console with the supported operations and how to return
to the menu.

• It uses LPUART to communicate with the user and get the simple mathematical expressions.

• The received expression is then interpreted and the result is calculated using mathematical functions
from AMMCLib and then sent back to the terminal as a floating point with a precision of 4.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 25

2. The second part:

• The board sends a welcome message to the console with further instructions and how to return to the
menu.

• It uses LPTMR to generate samples of a sinusoidal signal, once every 1 ms, using trigonometric func-
tions from the AMMCLib.
The sinusoidal signal can be seen using the FreeMASTER host application.
Calculated signal samples are then scaled to be in the range of the FTM PWM duty cycle and are used
to change the intensity of the RGB leds.
The frequency of each sine can be controlled with the command set_RGB_frequency() from FreeMA←↩

STER project. The frequency sent is in mHz and the default value is 0,25Hz.

• Also, it implements an exponential moving average filter using the Potentiometer on ADC channel 12 as
input.
The output of the filter can be seen using the FreeMASTER host application.
The filter's smoothing factor (lambda) can be controlled using the command set_FilterMA_lambda() from
FreeMASTER project.

Note

For more detailed information on the AMMCLib's functions please consult the available documentation.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro

• FreeMASTER host application

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K14xCVD-Q064 with
S32K-MB

XS32K14WEVB-Q064

FTM1 Channel 0 D10 - wired on the board RGB_RED J2.6 - J3.8
FTM1 Channel 1 D19 - wired on the board RGB_GREEN J2.5 - J3.6
FTM1 Channel 2 D20 - wired on the board RGB_BLUE J5.9 - J3.14
ADC1 Input 11 (PTE6) R45(POT) - wired on the board R13(POT) - wired on the board

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

26 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select ammclib_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click
on the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In
S32 Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of
those will generate all the components. Pay attention to any error and warning message. If any configured value is
invalid, they will be shown for user. Make the desired changes (if any) then click "Update Code". Wait for the code
generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be one debug configuration for this project:

Configuration Name Description
ammclib_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

A terminal emulator configured with the following communication parameters is needed by this application:

• 9600 Baud rate

• 8 Data bits

• 1 Stop bit

• No parity

• No flow control

For the first part of the application follow the instructions in the terminal.
For the second part of the application you need to:

1. exit the mathematical section by typing exit in the terminal

2. select second section by typing 2 in the terminal

3. disconnect the terminal and start FreeMASTER.

Open the FreeMASTER project (ammclib.pmp) and set the communication parameters:

• Go to Project -> Options -> Comm, choose Direct RS232 and set the COM port and speed 9600.

• Go to Project -> Options -> MAP Files and make sure the ∗.elf file of your project's current Debug Config-
uration is selected and set file format to ELF/DWARF.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 27

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

FreeMASTER host application can be downloaded from NXP's website.
FreeMASTER Serial Communication is included into the project (V2.0).

13.3.8 Structural Core Self Test Example

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo application is to show you how to integrate the S32 SDK with sCST.

• The application will run the core self tests from the Structural Core Self Test library and will report the result
using the user leds.

• Please consult the sCST manual for more information about the library.

Note

This application uses a modified version of the linker file which defines the section used by the library.
As a consequence, the application will only run in flash.

Verification:

• If the tests do not find any error, LED2 will be turned on. Otherwise LED1 will be turned on.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• Debug probe (PEmicro)

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

https://www.nxp.com

28 CONTENTS

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q064 with
S32K-MB

LED1 (PTE0) RGB_RED - wired on board D17 - wired on the board
LED2 (PTE7) RGB_GREEN - wired on board D18 - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select scst_s32k144w. Then
click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
scst_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.9 Hello World

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo application is to show you the usage of the FlexCAN module configured to use Flexible
Data Rate and the CSEc module from the S32K144W CPU using the S32 SDK API.

• In the first part, the application will setup the board clocks, pins and other system functions such as SBC if
the board uses this module as a CAN transceiver.

• Then it will configure the FlexCAN module features such as FD, Bitrate and Message buffers

• The application will wait for frames to be received on the configured message buffer or for an event raised by
pressing one of the two buttons which will trigger a frame send to the recipient.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 29

• Pressing SW3 2 button of board 1 shall trigger a CAN transfer that results in toggling the BLUE led on board
2.

• Pressing SW2 1 button of board 1 shall trigger a CAN transfer that results in toggling the GREEN led on board
2.

• Pressing both SW3 2 and SW2 1 buttons shall enable the encrypted communication. This event is signaled
by the RED led toggling.

• The frames are sent in plain text by default.

• This demo application requires two boards, one configured as master and the other one configured as slave
(see MASTER/SLAVE defines in application code).

• NOTE: Red led will turn on when init ,so when Pressing SW3 2 or SW2 1 buttons the light on can be a mix of
red and green, blue lights.

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144EVB-Q100(or another S32K EVB board which supports FLEXCAN)

• 1 XS32K14WEVB-Q064

• 1 Power Adapters 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEMicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K144EVB-Q100
CAN HIGH (∗) CAN HIGH - J109.8 CAN HIGH - J13.1
CAN LOW (∗) CAN LOW - J109.7 CAN LOW - J13.2
GND (GND) GND - J109.6 GND - J13.4
BUTTON 1 (PTD2) SW2 - wired on the board SW2 - wired on the board
BUTTON 2 (PTD3) SW3 - wired on the board SW3 - wired on the board
RED_LED (PTE0) RGB_RED - wired on the board RGB_RED - wired on the board
GREEN_LED (PTE3) RGB_GREEN - wired on the board RGB_GREEN - wired on the board
BLUE_LED (PTE7) RGB_BLUE - wired on the board RGB_BLUE - wired on the board

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
CAN transceiver. The CAN transceiver should be in Forced Normal Mode operation (default mode). To
reset the CAN transceiver to default mode connect the SBC transceiver in next configuration with the board
XS32K14WEVB-Q064 power off : • pin RSTN from SBC is held LOW • CANH(J109.8) is pulled up to VBA←↩

T(J109.5) • CANL(J109.7) is pulled down to GND(J109.6) Power on the board with external supply 12V (J16)
This project only applies to S32K14W board. For S32K144EVB board or other S32K EVB boards, please refer
corresponding example to get the right way to setup hardware correctly.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

30 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select hello_world_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
flexcan_encrypted_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

flexcan_encrypted_s32k144w_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.10 LIN MASTER

Example that shows the usage of the LIN driver in master mode

Application description

This example demonstrates the LIN communication between S32K144W Master and Slave using unconditional
frames.

• The Master SeatECU is in NormalTable schedule table and it uses the LIN frame Motor1State_Cycl to re-
ceive temperature signal Motor1Temp from Slave Motor1 and send selection signal Motor1Selection to Slave
Motor1 by frame Motor1Control. The first turn on GREEN_LED, then 5s GREEN_LED and BLUE_LED will
toggle alternately.

• If value of temperature signal is higher than MOTOR1_OVER_TEMP value, Master SeatECU will send STOP
command through Motor1Selection signal to stop motor and turn on RED_LED.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 31

• If value of temperature signal is in range from MOTOR1_MAX_TEMP value to MOTOR1_OVER_TEMP value,
master SeatECU will send DECREASE MOTOR SPEED command through Motor1Selection signal to reduce
motor speed and turn on BLUE_LED.

• If value of temperature signal is lower than MOTOR1_MAX_TEMP value, master will send INCREASE MO←↩

TOR SPEED command through Motor1Selection signal to increase motor speed and turn on GREEN_LED.

• When users press button BUTTON 0 on the Master board, the Master SeatECU switches its schedule table
to go-to-sleep table. So the Slave and Master enter sleep mode, RGB LEDS are off.

• When LIN cluster is in sleep mode, users press button BUTTON 1 on the Master board, the Master board
sends a wakeup signal to wakeup slave nodes, then switches its table to NormalTable.

Prerequisites

To run the example you will need to have the following items:

• 2 XS32K14WEVB-Q064 boards

• 1 Power Adapter 12V

• 2 Dupont female to female cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064-Slave XS32K14WEVB-Q064-Master
BUTTON 0 (PTD2) SW2 - wired on the board SW2 - wired on the board
BUTTON 1 (PTD3) SW3 - wired on the board SW3 - wired on the board
RED_LED (PTE7) RGB_RED - wired on the board RGB_RED - wired on the board
GREEN_LED (PTE0) RGB_GREEN - wired on the board RGB_GREEN - wired on the board
BLUE_LED (PTE3) RGB_BLUE - wired on the board RGB_BLUE - wired on the board
LIN (∗) J11-1 - LIN J11-1 - LIN
GND (GND) J11-4 - GND J11-4 - GND

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_master_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

32 CONTENTS

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(lin_master_s32k144w). Select the "ConfigTools"
menu then click on the desired configuration (Pins, Clocks, Peripherals etc...). Clicking on any one of those will
generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lin_master_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
lin_master_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.11 LIN SLAVE

Example that shows the usage of the LIN driver in slave mode

Application description

This example demonstrates the LIN communication between S32K144W Master and Slave using unconditional
frames.

• The Master SeatECU is in NormalTable schedule table and it uses the LIN frame Motor1State_Cycl to re-
ceive temperature signal Motor1Temp from Slave Motor1 and send selection signal Motor1Selection to Slave
Motor1 by frame Motor1Control. The first turn on GREEN_LED, then 5s GREEN_LED and BLUE_LED will
toggle alternately.

• When user press button BUTTON 0 on the Slave board, value of temperature signal (Motor1_temp) will be
increased 60 unit.

• When user press button BUTTON 1 on the Slave board, value of temperature signal will be set to value which
is lower MOTOR1_MAX_TEMP value and turn on GREEN_LED.

• If value of temperature signal is higher than MOTOR1_OVER_TEMP value, Master SeatECU will send STOP
command through Motor1Selection signal to stop motor and turn on RED_LED.

• If value of temperature signal is in range from MOTOR1_MAX_TEMP value to MOTOR1_OVER_TEMP value,
master SeatECU will send DECREASE MOTOR SPEED command through Motor1Selection signal to reduce
motor speed and turn on BLUE_LED.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.3 Demo Applications 33

• If value of temperature signal is lower than MOTOR1_MAX_TEMP value, master will send INCREASE MO←↩

TOR SPEED command through Motor1Selection signal to increase motor speed and turn on GREEN_LED.

• When users press button BUTTON 0 on the Master board, the Master SeatECU switches its schedule table
to go-to-sleep table. So the Slave and Master enter sleep mode, all LEDs are off.

• When LIN cluster is in sleep mode, users press button BUTTON 1 on the Master board, the Master board
sends a wakeup signal to wakeup slave nodes, then switches its table to NormalTable.

Prerequisites

To run the example you will need to have the following items:

• 2 XS32K14WEVB-Q064 boards

• 1 Power Adapter 12V

• 2 Dupont female to female cable

• 1 Personal Computer

• 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064-Slave XS32K14WEVB-Q064-Master
BUTTON 0 (PTD2) SW2 - wired on the board SW2 - wired on the board
BUTTON 1 (PTD3) SW3 - wired on the board SW3 - wired on the board
RED_LED (PTE7) RGB_RED - wired on the board RGB_RED - wired on the board
GREEN_LED (PTE0) RGB_GREEN - wired on the board RGB_GREEN - wired on the board
BLUE_LED (PTE3) RGB_BLUE - wired on the board RGB_BLUE - wired on the board
LIN (∗) J11-1 - LIN J11-1 - LIN
GND (GND) J11-4 - GND J11-4 - GND

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_slave_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(lin_slave_s32k144w). Select the "ConfigTools"
menu then click on the desired configuration (Pins, Clocks, Peripherals etc...). Clicking on any one of those will
generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

34 CONTENTS

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lin_slave_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
lin_slave_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4 Driver Examples

Applications that show the user how to initialize the peripherals for the basic use cases

There are currently examples for the following categories:
Click on one of the categories to see the available projects

• Analog Driver Examples

• Communication Driver Examples

• System Driver Examples

• Timer Driver Examples

13.4.1 Analog Driver Examples

Applications that show the user how to initialize the analog peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

• ADC Hardware Trigger

• ADC PAL example

• ADC Software Trigger

• CMP DAC

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 35

13.4.2 ADC Hardware Trigger

How to trigger the ADC by hardware

Application description

The purpose of this demo application is to show you the usage of the ADC module triggered in hardware by the
Programmable Delay Block from the S32K144W CPU using the S32 SDK API.

• The application uses PDB to trigger ADC conversions every 1s.

• When the conversion is complete the data is sent to the host PC using LPUART.

How the example works:

• Connect to the serial port using settings found in Notes section

• The user should receive a welcome message on the terminal emulator, with application details (user can refer
the message in the main.c file)

• The potentiometer(R44 - connected to ADC1 channel 10) must be rotated in order to generate valid ADC
conversions

• Once a valid conversion is done then converted value will be printed on the terminal emulator, like: "ADC
result: 1.8371 V ADC result: 1.8372 V ADC result: 1.8420 V"

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro debugger

• 1 USB Type-B cable for UART

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K14xCVD-Q064 PCB XS32K14WEVB-Q064

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

36 CONTENTS

ADC POT ADC1 Channel 10 (PTE2) - wired
on the board

ADC0 Channel 9 (PTC1) - wired
on the board

Make sure the following jumpers are set:

Jumper Name S32K-MB
JP20 Set jumper on position 1-2
JP20 Set jumper on position 4-5
JP21 Set jumper on position 1-2

Jumper Name XS32K14WEVB-Q064
J10 Set jumper on position 2-3

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select adc_hwtrigger_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration to be initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
adc_hwtrigger_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
adc_hwtrigger_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 37

• One stop bit

• No parity

• No flow control

13.4.3 ADC PAL example

Example for ADC PAL usage

Application description

The purpose of this demo application is to present the basic functionality of the Analog to Digital Converter Periph-
eral Abstraction Layer (ADC PAL) on S32K14x MCU.

The application uses ADC PAL to trigger multiple executions of two groups of ADC conversions: first group con-
figured for SW triggering and second group for HW triggering. For each execution of a group of conversions, an
average conversion value is computed in SW, and the average value is printed on UART.
example is divided in 2 parts:

• Part 1: SW triggered group of conversions
After each complete execution of the group, results are read, the average value is calculated and printed to
console. A delay is inserted and then the SW group is triggered again. The process is repeated for a fixed
number of iterations.

• Part 2: HW triggered group of conversions
LPTMR is configured to provide a trigger event with a fixed periodicity. The selected HW group is enabled.
After each complete execution of the group, results are read, the average value is calculated and printed to
console. After a fixed number of iterations, the HW trigger group of conversions is disabled, and the LPTMR
is stopped.

How the example works:

• Connect to the serial port using settings found in Notes section

• The user should receive a welcome message on the terminal emulator, with application details

• A message announcing part 1 will be displayed followed by the values gathered from the software triggered
conversions

• A message announcing part 2 will be displayed followed by the values gathered from the hardware triggered
conversions

• The potentiometer(R44 - connected to ADC1 channel 10) can be rotated to change the value being read by
the ADC module

• After the fixed number of iterations of the part 2 of the example, a message will be displayed announcing that
the execution finished

• The user can refer to these messages in the main.c file

Note: both HW and SW triggered groups are configured to run all conversions on a single ADC InputChannel(A←↩

DC1 channel 10) because it is connected to a potentiometer(R44 on S32K-MB). However, the ADC PAL supports
different InputChannels to be used in the same group. For more details please refer to the ADC PAL documentation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

38 CONTENTS

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEMicro Multilink Debugger

• 1 USB Type-B cable for UART

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K14xCVD-Q064 PCB XS32K14WEVB-Q064
ADC POT ADC1 Channel 10 (PTE2) - wired

on the board
ADC0 Channel 9 (PTC1) - wired
on the board

Make sure the following jumpers are set:

Jumper Name S32K-MB
JP20 Set jumper on position 1-2
JP20 Set jumper on position 4-5
JP21 Set jumper on position 1-2

Jumper Name XS32K14WEVB-Q064
J10 Set jumper on position 2-3

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select adc_pal_s32k142w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration to be initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 39

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
adc_pal_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
adc_pal_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

13.4.4 ADC Software Trigger

How to trigger ADC by software

Application description

The purpose of this demo application is to show you the usage of the ADC module triggered by software from the
S32K144 CPU using the S32 SDK API.

• The application measures the value generated by the potentiometer(R44 on S32K-MB) connected to ADC1
Channel 10.

• The application uses software to trigger ADC conversions every 1s.

• When the conversion is complete the data is sent to the host PC using LPUART.

How the example works:

• Connect to the serial port using settings found in Notes section

• The user should receive a welcome message on the terminal emulator, with application details (user can refer
the message in the main.c file)

• The value read from the ADC value, converted in volts will be displayed

• The potentiometer(R44 - connected to ADC1 channel 10) can be rotated to change the value being read by
the ADC module

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

40 CONTENTS

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEMicro Multilink Debugger

• 1 USB Type-B cable for UART

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K14xCVD-Q064 PCB XS32K14WEVB-Q064
ADC POT ADC1 Channel 10 (PTE2) - wired

on the board
ADC0 Channel 9 (PTC1) - wired
on the board

Make sure the following jumpers are set:

Jumper Name S32K-MB
JP20 Set jumper on position 1-2
JP20 Set jumper on position 4-5
JP21 Set jumper on position 1-2

Jumper Name XS32K14WEVB-Q064
J10 Set jumper on position 2-3

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select adc_swtrigger_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration to be initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 41

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
adc_swtrigger_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
adc_swtrigger_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

13.4.5 CMP DAC

Driver examples showing the basic usage scenario of the CMP

Application description

The purpose of this demo application is to show you how to use the Analog Comparator of the S32K144W MCU
using the S32 SDK API.
The Comparator is configured to compare analog input 0(AIN0) with half the reference voltage generated with the
internal DAC. Based on the input from the potentiometer the LEDs light by the following rules:

• 1) Vin < DAC voltage : RED on, GREEN off

• 2) Vin > DAC voltage : RED off, GREEN on

• 3) Unknown state : RED on, GREEN on

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board or S32K-MB

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

42 CONTENTS

• 1 Power Adapter 12V

• 1 Personal Computer

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• S32K-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K144W-MB
LED0 (PTC2 MB) RGB_RED - wired on the board JP51.1 - JP51.2
LED1 (PTC3 MB) RGB_GREEN - wired on the board JP52.1 - JP52.2
CMP Input 0 (PTA0) J5.4 - J5.7 J21.1 - J9.31

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select cmp_dac_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 Configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated.
The initial configuration will have the same settings as the default example settings. Right click on the current
project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar).
In S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one
of those will generate all the components.
Pay attention to any error and warning message. If any configured value is invalid, they will be shown for user.
Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
cmp_dac_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 43

cmp_dac_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.6 Communication Driver Examples

Applications that show the user how to initialize the communication peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

• LIN MASTER BAREMETAL

• LIN SLAVE BAREMETAL

• LPI2C MASTER

• LPI2C SLAVE

• LPSPI Transfer

• LPSPI DMA

• SPI PAL

• UART PAL

• LPUART

• I2C PAL

• I2S PAL MASTER

• I2S PAL SLAVE

• FLEXIO I2C

• FLEXIO I2S MASTER

• FLEXIO SPI

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

44 CONTENTS

• FLEXIO I2S SLAVE

• FLEXIO UART

• CAN PAL

13.4.7 LIN MASTER BAREMETAL

Example that shows the usage of the LIN driver in master mode

Application description

This example demonstrates the LIN communication between S32K144W Master and Slave using LIN driver without
LIN Stack

• A frame contains header and data. The Master node can send header and data, but Slave node only can
send data. Base on header, Master node or Slave node will take corresponding action. On Master node:

• Press BUTTON 0:

– For the first time, Master node sends FRAME_MASTER_RECEIVE_DATA header and require slave
node responds by sending data (txBuff2).

– For the second time, Master sends FRAME_SLAVE_RECEIVE_DATA header, then continue sending
data (txBuff1) and slave node will receive the data.

– If node successful receives data, this node will turn on LED2/GREEN_LED, otherwise turn on LED1/←↩

RED_LED.

• Press BUTTON 1:

– Master node will check current node state. If the state is LIN_NODE_STATE_SLEEP_MODE, Master
node will send wakeup signal and LED0/BLUE_LED will be turned on both nodes, otherwise Master
node will send header to set Master node and Slave node to sleep mode and all LED will be turned off
both nodes.

Prerequisites

To run the example you will need to have the following items:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 XS32K14WEVB-Q064 Board

• 1 Power Adapter 12V

• 4 Dupont female to female cable

• 1 Personal Computer

• 1 PEmicro Debugger

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 45

Boards supported

The following boards are supported by this application:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K-MB XS32K14WEVB-Q064
BUTTON 0 (PTB12/PTD2) BUTTON 0 - wired on the

board(set J39, J70 1-2, J69 2-3)
SW2

BUTTON 1 (PTB13/PTD3) BUTTON 1 - wired on the
board(set J38, J68 1-2, J67 2-3)

SW3

LED0 (PTC0/PTCD3) LED0 - wired on the board(set
JP49)

BLUE_LED

LED1 (PTC1/PTCD7) LED1 - wired on the board(set
JP50)

RED_LED

LED2 (PTC2/PTCD0) LED2 - wired on the board(set
JP51)

GREEN_LED

GND (GND) J6 - Slave GND J11.4 - Slave GND
LIN (∗) J48.4 - Slave LIN(set J51(2-3,5-6),

J26(1-2), JP31(2-3), JP53(1-2))
J11.1 - Slave LIN

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_master_baremetal←↩

_s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(lin_master_baremetal_s32k144w). Select the
"ConfigTools" menu then click on the desired configuration (Pins, Clocks, Peripherals etc...). Clicking on any one of
those will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update
Code" button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

46 CONTENTS

Configuration Name Description
lin_master_baremetal_s32k144w_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debuggers

lin_master_baremetal_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.8 LIN SLAVE BAREMETAL

Example that shows the usage of the LIN driver in slave mode

Application description

This example demonstrates the LIN communication between S32K144W Master and Slave using LIN driver without
LIN Stack

• A frame contains header and data. The Master node can send header and data, but Slave node only can
send data. Base on header, Master node or Slave node will take corresponding action.

• If Slave node receives FRAME_MASTER_RECEIVE_DATA header, Slave node will respond by sending data
(txBuff2).

• If Slave node receives FRAME_SLAVE_RECEIVE_DATA header, Slave node will receive and check data. If
data is success, Slave node will turn on LED2/GREEN_LED, otherwise turn on LED1/RED_LED

• If Slave node receives FRAME_GO_TO_SLEEP header, Slave node will go to sleep mode and turn off all
led.

• If Slave node receives a wakeup signal, it will check current node state, if the node state is sleep mode, Slave
node will wakeup and turn on LED0/BLUE_LED, otherwise wakeup signal is aborted and keep the previous
state.

Prerequisites

To run the example you will need to have the following items:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 XS32K14WEVB-Q064 Board

• 1 Power Adapter 12V

• 4 Dupont female to female cable

• 1 Personal Computer

• 1 PEmicro Debugger

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 47

Boards supported

The following boards are supported by this application:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K-MB XS32K14WEVB-Q064
BUTTON 0 (PTB12/PTD2) BUTTON 0 - wired on the board(

set J39, J70 1-2, J69 2-3)
SW2

BUTTON 1 (PTB13/PTD3) BUTTON 1 - wired on the board(
set J38, J68 1-2, J67 2-3)

SW3

LED0 (PTC0/PTCD3) LED0 - wired on the board(set
JP49)

BLUE_LED

LED1 (PTC1/PTCD7) LED1 - wired on the board(set
JP50)

RED_LED

LED2 (PTC2/PTCD0) LED2 - wired on the board(set
JP51)

GREEN_LED

GND (GND) J6 - Master GND J11.4 - Master GND
LIN (∗) J48.4 - Master LIN(set

J51(2-3,5-6), J26(1-2), JP31(2-3),
JP53(1-2))

J11.1 - Master LIN

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_slave_baremetal_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go
to Project Explorer View in S32 DS and select the current project(lin_slave_baremetal_s32k144w). Select the
"ConfigTools" menu then click on the desired configuration (Pins, Clocks, Peripherals etc...). Clicking on any one of
those will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update
Code" button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

48 CONTENTS

Configuration Name Description
lin_slave_baremetal_s32k144w_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debuggers

lin_slave_baremetal_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.9 LPI2C MASTER

Driver example that will show the LPI2C Master functionality

Application description

The purpose of this demo application is to show you the usage of the LPI2C module available on the S32K144W
MCU as a master using S32 SDK.

• The application uses S32 SDK API to initialize the LPI2C module as a master node and in Fast operation
speed after configuring the clocks and pins needed to use the I2C. The example sends to requests to a slave,
found at the configured address, the first being a TX request, while the other being a RX request. Run Slave
first, after that Run Master. The master buffers will be checked after each transfer by the application, RED
or GREEN led will be turn on or turn off depending on the check result. Red led will turn on if data does not
match. Green led will turn on if then data is transfered correctly.

Prerequisites

To run the example you will need to have the following items:

• 1 S32K14xCVD-Q064 with S32K-MB

• 1 S32K144WEVB-Q064

• 3 Dupont cables (male to male or female to female depending on the boards)

• 1 Personal Computer

• 1 PEmicro

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 49

PIN FUNCTION S32K14xCVD-Q064 with
S32K-MB

XS32K14WEVB-Q064

LPI2C SCL (PTA3) J9-30 - Slave SCL J1.2 - Slave SCL
LPI2C SDA (PTA2) J9-29 - Slave SDA J1.1 - Slave SDA
GND (GND) J6 - Slave GND J2.7 - Slave GND

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select lpi2c_master_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lpi2c_master_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
lpi2c_master_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.10 LPI2C SLAVE

Driver example that will show the LPI2C Slave functionality

Application description

The purpose of this demo application is to show you the usage of the LPI2C module available on the S32K144W
MCU as a slave using S32 SDK.

• The application uses S32 SDK API to initialize the LPI2C module as a slave node and in Fast operation speed

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

50 CONTENTS

after configuring the clocks and pins needed to use the I2C. example uses the LPI2C callback to respond to
requests such as:

– data receive

– data transmit

– buffer full or empty. Run Slave first, after that Run Master. The slave buffers will be checked after each
transfer by the application, RED or GREEN led will be turn on or turn off depending on the check result.
Red led will turn on if data does not match. Green led will turn on if then data is transfered correctly.

Prerequisites

To run the example you will need to have the following items:

• S32K14xCVD-Q064 with S32K-MB

• XS32K14WEVB-Q064

• 3 Dupont cables (male to male or female to female depending on the boards)

• 1 Personal Computer

• 1 PEmicro

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K14xCVD-Q064 with
S32K-MB

XS32K14WEVB-Q064

LPI2C SCL (PTA3) J9-30 - Master SCL J1.2 - Master SCL
LPI2C SDA (PTA2) J9-29 - Master SDA J1.1 - Master SDA
GND (GND) J6 - Master GND J2.7 - Master GND

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select lpi2c_slave_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 51

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lpi2c_slave_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
lpi2c_slave_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.11 LPSPI Transfer

Driver example that will show the LPSPI Master and Slave functionalities

Application description

The purpose of this application is to show the user how to use the Low Power Serial Peripheral Interface on the
S32K144W using the S32 SDK API.

• The application uses two on board instances of LPSPI, one in master configuration and the other one is slave
to communicate data via the SPI bus. Data will be gathered periodically from the ADC input and will be sent
to the master device which transforms it into a PWM signal. In this way the potentiometer controls the LED
intensity.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V

• 6 Dupont male to male cables

• 1 Personal Computer

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• S32K-MB

• XS32K14WEVB-Q064

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

52 CONTENTS

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 53

PIN FUNCTION XS32K14WEVB-Q064 S32K-MB
LPSPI0 CS (PTB5) J2.3 - J5.8 J10.28 - J13.32
LPSPI0 SCK (PTD15) J1.3 - J2.2 J12.18 - J12.31
LPSPI0 MOSI (PTB4) J2.4 - J2.1 J10.27 - J12.32
LPSPI0 MISO (PTD16) J1.4 - J3.6 J12.15 - J13.31
LPSPI1 CS (PTE1) J2.3 - J5.8 J13.32 - J10.28
LPSPI1 SCK (PTD0) J1.3 - J2.2 J12.31 - J12.18
LPSPI1 MOSI (PTD1) J2.4 - J2.1 J12.32 - J10.27
LPSPI1 MISO (PTE0) J1.4 - J3.6 J13.31 - J12.15
ADC0 Input 9 (PTC1) wired on the board J21.1 - J11.32
FTM0 Chn 7 (PTE7) wired on the board J13.26 - J5.1

Note that on the EVB, the Green LED is connected to PTE0 so you will see it lights up. In which case, on a
successful transfer, the Red LED will lights up after, resulting a yellow-ish light

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpspi_transfer_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 Configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated.
The initial configuration will have the same settings as the default example settings. Right click on the current
project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar).
In S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one
of those will generate all the components.
Pay attention to any error and warning message. If any configured value is invalid, they will be shown for user.
Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
lpspi_transfer_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
lpspi_transfer_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

54 CONTENTS

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.12 LPSPI DMA

Driver example that will show the LPSPI Master and Slave functionalities

Application description

The purpose of this application is to show you how to use the Low Power Serial Peripheral Interface on the S32←↩

K144W using the S32 SDK API.

The application uses two on board instances of LPSPI, one in master configuration and the other one is slave to
communicate data via the SPI bus using DMA.

To check if the transmission is successful the user has to verify that the data sent is the same as the received data.
If transfer is successful, RED led will be on, otherwise it will be off.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V

• 4 Dupont male to male cables

• 1 Personal Computer

• 1 PEMicro Debugger

Boards supported

The following boards are supported by this application:

• S32K-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K-MB
LPSPI0 CS (PTB5) J2.3 - J5.8 J10.28 - J13.32
LPSPI0 SCK (PTD15) J1.3 - J2.2 J12.18 - J12.31
LPSPI0 MOSI (PTB4) J2.4 - J2.1 J10.27 - J12.32
LPSPI0 MISO (PTD16) J1.4 - J3.6 J12.15 - J13.31
LPSPI1 CS (PTE1) J2.3 - J5.8 J13.32 - J10.28
LPSPI1 SCK (PTD0) J1.3 - J2.2 J12.31 - J12.18
LPSPI1 MOSI (PTD1) J2.4 - J2.1 J12.32 - J10.27
LPSPI1 MISO (PTE0) J1.4 - J3.6 J13.31 - J12.15

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 55

LED (PTE7) LED - wired on the board J13.26 - J5.1

Note that on the EVB, the Green LED is connected to PTE0 so you will see it lights up. In which case, on a
successful transfer, the Red LED will lights up after, resulting a yellow-ish light

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpspi_dma_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 Configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated.
The initial configuration will have the same settings as the default example settings. Right click on the current
project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar).
In S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one
of those will generate all the components.
Pay attention to any error and warning message. If any configured value is invalid, they will be shown for user.
Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
lpspi_dma_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
lpspi_dma_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.13 SPI PAL

Driver example using SPI

Application description

The purpose of this application is to show you how to use the LPSPI Interfaces over SPI PAL on the S32K144W
using the S32 SDK API.

The application uses one board instance of LPSPI in slave configuration and other board instance of LPSPI in
master configuration to communicate data via the SPI bus using interrupts. It also verifies that the data sent is the
same as the received data. If transfer is successful, RED led will be on, otherwise it will be off.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

56 CONTENTS

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064

• 1 Power Adapter 12V

• 1 Personal Computer

• 4 Dupont male to male cable

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• S32K-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K-MB
LPSPI0 CS (PTB5) J2.3 - J5.8 J10.28 - J13.32
LPSPI0 SCK (PTD15) J1.3 - J2.2 J12.18 - J12.31
LPSPI0 MOSI (PTB4) J2.4 - J2.1 J10.27 - J12.32
LPSPI0 MISO (PTD16) J1.4 - J3.6 J12.15 - J13.31
LPSPI1 CS (PTE1) J2.3 - J5.8 J13.32 - J10.28
LPSPI1 SCK (PTD0) J1.3 - J2.2 J12.31 - J12.18
LPSPI1 MOSI (PTD1) J2.4 - J2.1 J12.32 - J10.27
LPSPI1 MISO (PTE0) J1.4 - J3.6 J13.31 - J12.15
LED (PTE7) LED - wired on the board J13.26 - J5.1

Note that on the EVB, the Green LED is connected to PTE0 so you will see it lights up. In which case, on a
successful transfer, the Red LED will lights up after, resulting a yellow-ish light

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select spi_pal. Then click on
Finish.
The project should now be copied into you current workspace.

2. Generating the S32 Configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated.
The initial configuration will have the same settings as the default example settings. Right click on the current
project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar).
In S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one
of those will generate all the components.
Pay attention to any error and warning message. If any configured value is invalid, they will be shown for user.
Make the desired changes (if any) then click "Update Code".

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 57

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
spi_pal_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
spi_pal_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.14 UART PAL

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo is to show the user how UART PAL works over FLEXIO_UART or LPUART peripherals.
The user can choose whether to use FLEXIO_UART or LPUART (see USE_FLEXIO_UART define from The board
sends a welcome message to the console with further instructions.)

• The welcome message is sent via UART: "This example is an simple echo using UART_PAL it will send
back any character you send to it. The board will greet you if you send 'Hello!' Now you can begin typing:"
- User shall send "Hello!" string. If the board receives the user's string, then the "Hello World!" string shall
be sent again. User need to add EOL character to string which will be sent to board. Blue led(devkit) or led
1(Motherboard) shall be turned on if the communication is done over FLEXIO_UART; similarly the led shall
be turned off if the communication is done over LPUART.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 PEmicro

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

58 CONTENTS

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q64 PCB S32K-MB
RGB_BLUE (PTE3) wired on the board
LED1 (PTC1) wired on the board JP50 - jump 50 on

motherboard
LPUART1 TX (PTC9) UART_TX - wired on the

board
UART_TX - wired on the
board

J20.3 - J20.2

LPUART1 RX (PTC8) UART_RX - wired on the
board

UART_RX - wired on the
board

J20.6 - J20.5

FLEXIO_UART TX
(PTD1)

J2.1 - J6.6 wired on the board J12.32 - J20.5

FLEXIO_UART RX
(PTD0)

J2.2 - J6.5 wired on the board J12.31 - J20.2

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select hello_world_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
uart_pal_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
uart_pal_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 59

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 9600 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

13.4.15 LPUART

Example application using the LPUART driver

Application description

The purpose of this demo application is to show you how to use the Low Power UART from the S32K144W CPU
using the S32 SDK API.

• The welcome message is sent via UART: "This example is an simple echo using LPUART it will send back
any character you send to it. The board will greet you if you send 'Hello Board' Now you can begin typing:" -
User shall send "Hello Board" string. If the board receives the user's string, then the "Hello World" string shall
be sent again. User need to add EOL character to string which will be sent to board.

Prerequisites

To run the example you will need to have the following items: To run the example you will need to have the following
items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro debugger

• 1 USB type B connect with J16 on Mother Board S32K-MB (if using S32K14xCVD-Q064 with S32K-MB)

• UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

60 CONTENTS

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q64 PCB S32K-MB
UART_TX LPUART1 TX (PTC9) -

wired on the board
LPUART2 TX (PTD7) -
wired on the board

J20.1 - J20.2

UART_RX LPUART1 RX (PTC8) -
wired on the board

LPUART2 RX (PTD6) -
wired on the board

J20.4 - J20.5

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpuart_s32k144W. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
lpuart_s32k144W_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
lpuart_s32k144W_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 9600 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 61

13.4.16 I2C PAL

Driver example using I2C

Application description

The purpose of this application is to show you how to use the LPI2C and FLEXIO Interfaces on the S32K144W
using the S32 SDK API.

The application uses one board instance of LPI2C in slave configuration and one board instance of FLEXIO in
master configuration to communicate data via the I2C bus using interrupts.

The RED or GREEN led will be turn on or turn off depending on the check result. Red led will turn on if data does
not match. Green led will turn on if then data is transfered correctly.

Prerequisites

To run the example you will need to have the following items:

• 1 S32K14xCVD-Q064 with S32K-MB

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 1 Personal Computer

• 2 Dupont female to female cable

• 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K14xCVD-Q064 with
S32K-MB

XS32K14WEVB-Q064

FLEXIO SDA (PTD0) J9.29 - J12.31 J3.10 - J1.1
FLEXIO SCL (PTA11) J9.30 - J9.22 J3.16 - J1.2
LPI2C SDA (PTA2) J9.29 - J12.31 J1.1 - J3.10
LPI2C SCL (PTA3) J9.30 - J9.22 J1.2 - J3.16

The pull-up resistors should be connected one between VCC(J3.7) and SDA pin(J3.10) and the second one between
VCC(J3.7) and SCL pin(J3.16).

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select i2c_pal_s32k144w. Then
click on Finish.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

62 CONTENTS

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There are two debug configurations for this project:

Configuration Name Description
i2c_pal_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
i2c_pal_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.17 I2S PAL MASTER

Driver example using I2S

Application description

The purpose of this application is to show you how to use the i2s_pal driver on the S32K144W.

The application uses one instance of FLEXIO in slave board and one instance of FLEXIO in master board to
communicate data via the I2S bus using both of interrupts and DMA The application will work in conjunction with
the i2s_pal_slave demo on S32K1xx.

The application displays on the host PC terminal a menu in which the user can select to: For Slave board: "Press:
1) [Slave] Send data 2) [Slave] Received data Enter your input:"

For Master board: "Press: 1) [Master] Send data 2) [Master] Received data Enter your input:"

Select Send/Receive on Slave first. After that select Receive/Send on Master.

The slave buffers and master buffers will be checked after each transfer by the application:

• On EVB: RED or GREEN led will be lit depend on the check result.

• Red led will turn if data does not match.

• Green led will turn if then data is transfered correctly.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 63

• On mother board: LED0 or LED1 will be lit depend on the check result.

• LED0 led will turn if data does not match.

• LED1 led will turn if then data is transfered correctly.

Prerequisites

To run the example you will need to have the following items:

• 2 S32K MOTHER BOARD (SCH-28767) + 2 S32K14xCVD-Q064 (SCH-29454) or 2 S32K144WEVB-Q64

• 1 Personal Computer

• 4 male to male jump wires

• 2 J-link Lite Debugger (optional, users can use Open SDA)

• 2 Power Adapter 12V (if the board can't be powered from the USB)

Boards supported

The following boards are supported by this application:

• S32K MOTHER BOARD (SCH-28767)

• S32K14xCVD-Q064 (SCH-29454) or

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 MASTER XS32K14WEVB-Q064 SLAVE
FLEXIO SCK J2.2 (PTD0) J1.1 (PTA2)
FLEXIO WS J2.1 (PTD1) J1.2 (PTA3)
FLEXIO MASTER TX - SLAVE RX J5.4 (PTA0) J6.1 (PTD3)
FLEXIO MASTER RX - SLAVE TX J5.3 (PTA1) J6.2 (PTD2)
RED_LED (PTE7) RGB_RED - wired on board RGB_RED - wired on board
GREEN_LED (PTE0) RGB_GREEN - wired on board RGB_GREEN - wired on board
UART Wired on board Wired on board

PIN FUNCTION MB - MASTER MB - SLAVE
FLEXIO SCK J12.31 (PTD0) J9.29 (PTA2)
FLEXIO WS J12.32 (PTD1) J9.30 (PTA3)
FLEXIO MASTER TX - SLAVE RX J9.31 (PTA0) J12.30 (PTD3)
FLEXIO MASTER RX - SLAVE TX J9.32 (PTA1) J12.29 (PTD2)
LED0 J13.26 (PTE7) - JP49.1 J13.26 (PTE7) - JP49.1
LED1 J13.31 (PTE0) - JP50.1 J13.31 (PTE0) - JP50.1
UART Wired on board Wired on board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select i2s_pal_master_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

64 CONTENTS

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(i2s_pal_master_s32k144w). Select the "Config←↩

Tools" menu then click on the desired configuration (Pins, Cocks, Peripherals etc...). Clicking on any one of those
will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
i2s_pal_master_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers
i2s_pal_master_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 9600 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

13.4.18 I2S PAL SLAVE

Driver example using I2S

Application description

The purpose of this application is to show you how to use the i2s_pal driver on the S32K144W.

The application uses one instance of FLEXIO in slave board and one instance of FLEXIO in master board to
communicate data via the I2S bus using both of interrupts and DMA The application will work in conjunction with
the i2s_pal_master demo on S32K1xx.

The application displays on the host PC terminal a menu in which the user can select to: For Slave board: "Press:
1) [Slave] Send data 2) [Slave] Received data Enter your input:"

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 65

For Master board: "Press: 1) [Master] Send data 2) [Master] Received data Enter your input:"

Select Send/Receive on Slave first. After that select Receive/Send on Master.

The slave buffers and master buffers will be checked after each transfer by the application:

• On EVB: RED or GREEN led will be lit depend on the check result.

• Red led will turn if data does not match.

• Green led will turn if then data is transfered correctly.

• On mother board: LED0 or LED1 will be lit depend on the check result.

• LED0 led will turn if data does not match.

• LED1 led will turn if then data is transfered correctly.

Prerequisites

To run the example you will need to have the following items:

• 2 S32K MOTHER BOARD (SCH-28767) + 2 S32K14xCVD-Q064 (SCH-29454) or 2 S32K144WEVB-Q64

• 1 Personal Computer

• 4 male to male jump wires

• 2 J-link Lite Debugger (optional, users can use Open SDA)

• 2 Power Adapter 12V (if the board can't be powered from the USB)

Boards supported

The following boards are supported by this application:

• S32K MOTHER BOARD (SCH-28767)

• S32K14xCVD-Q064 (SCH-29454) or

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 MASTER XS32K14WEVB-Q064 SLAVE
FLEXIO SCK J2.2 (PTD0) J1.1 (PTA2)
FLEXIO WS J2.1 (PTD1) J1.2 (PTA3)
FLEXIO MASTER TX - SLAVE RX J5.4 (PTA0) J6.1 (PTD3)
FLEXIO MASTER RX - SLAVE TX J5.3 (PTA1) J6.2 (PTD2)
RED_LED (PTE7) RGB_RED - wired on board RGB_RED - wired on board
GREEN_LED (PTE0) RGB_GREEN - wired on board RGB_GREEN - wired on board
UART Wired on board Wired on board

PIN FUNCTION MB - MASTER MB - SLAVE
FLEXIO SCK J12.31 (PTD0) J9.29 (PTA2)
FLEXIO WS J12.32 (PTD1) J9.30 (PTA3)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

66 CONTENTS

FLEXIO MASTER TX - SLAVE RX J9.31 (PTA0) J12.30 (PTD3)
FLEXIO MASTER RX - SLAVE TX J9.32 (PTA1) J12.29 (PTD2)
LED0 J13.26 (PTE7) - JP49.1 J13.26 (PTE7) - JP49.1
LED1 J13.31 (PTE0) - JP50.1 J13.31 (PTE0) - JP50.1
UART Wired on board Wired on board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select i2s_pal_slave_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(i2s_pal_slave_s32k144w). Select the "Config←↩

Tools" menu then click on the desired configuration (Pins, Cocks, Peripherals etc...). Clicking on any one of those
will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
i2s_pal_slave_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers
i2s_pal_slave_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 9600 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 67

13.4.19 FLEXIO I2C

Example application showing FlexIO I2C driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO I2C driver found on the S32K144W
SoC using S32 SDK API.

The application uses FlexIO I2C driver as master to make a send and a receive data request. The slave device for
this example is the LPI2C instance, which is configured to act as a bus slave. The setup can't be changed to use
FlexIO I2C as slave because this mode is not supported by FlexIO module. The slave and master buffers will be
checked after each transfer by the application, user shall check isTransferOk variable to see if the transmissions
are successful. If transfers is Ok, the LED on board will turn Green, otherwise the LED will turn RED.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 1 Personal Computer

• 1 PEMicro Multilink Debugger

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064
FLEXIO SDA (PTD0) J2.2 - J1.1
FLEXIO SCL (PTD1) J2.1 - J1.2
LPI2C SDA (PTA2) J1.1 - J2.2
LPI2C SCL (PTA3) J1.2 - J2.1
RED_LED (PTE7) RGB_RED - wired on board
GREEN_LED (PTE0) RGB_GREEN - wired on board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select flexio_i2c_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

68 CONTENTS

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_i2c_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
flexio_i2c_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.20 FLEXIO I2S MASTER

Example application showing FlexIO I2S driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO I2S driver found on the S32K144W
SoC using S32 SDK API.

The application uses FlexIO I2S driver to make a data transfer of a defined size. The application will work in
conjunction with the flexio_i2s_slave demo on S32K14xw.

The application displays on the host PC terminal a menu in which the user can select to: For Slave board: "Press:
1) [Slave] Send data 2) [Slave] Received data Enter your input:"

For Master board: "Press: 1) [Master] Send data 2) [Master] Received data Enter your input:"

Select Send/Receive on Slave first. After that select Receive/Send on Master.

The slave buffers and master buffers will be checked after each transfer by the application:

• On EVB: RED or GREEN led will be lit depend on the check result.

• Red led will turn if data does not match.

• Green led will turn if then data is transfered correctly.

• On mother board: LED0 or LED1 will be lit depend on the check result.

• LED0 led will turn if data does not match.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 69

• LED1 led will turn if then data is transfered correctly.

The MASTER I2S driver is configured to use DMA for transfers.

Data size is configured by TRANSFER_SIZE define, by default is configured to be 64 Bytes.

Prerequisites

To run the example you will need to have the following items:

• 2 XS32K14WEVB-Q064 board or S32K MB

• 2 Power Adapter 12V (if the board can't be powered from the USB)

• 4 Dupont male to male cable

• 1 Personal Computer

• 2 PEMicro Multilink Debugger (optional, users can use J-link)

Boards supported

The following boards are supported by this application:

• S32K MOTHER BOARD (SCH-28767)

• S32K14xCVD-Q064 (SCH-29454) or

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work: Connect each FlexIO pin board
master to pin board slave.

PIN FUNCTION XS32K14WEVB-Q064 MASTER XS32K14WEVB-Q064 SLAVE
FLEXIO SCK J2.2 (PTD0) J1.1 (PTA2)
FLEXIO WS J2.1 (PTD1) J1.2 (PTA3)
FLEXIO MASTER TX - SLAVE RX J5.4 (PTA0) J6.1 (PTD3)
FLEXIO MASTER RX - SLAVE TX J5.3 (PTA1) J6.2 (PTD2)
RED_LED (PTE7) RGB_RED - wired on board RGB_RED - wired on board
GREEN_LED (PTE0) RGB_GREEN - wired on board RGB_GREEN - wired on board
UART Wired on board Wired on board

PIN FUNCTION S32K-Mother MASTER S32K-Mother SLAVE
FLEXIO SCK J12.31 (PTD0) J9.29 (PTA2)
FLEXIO WS J12.32 (PTD1) J9.30 (PTA3)
FLEXIO MASTER TX - SLAVE RX J9.31 (PTA0) J12.30 (PTD3)
FLEXIO MASTER RX - SLAVE TX J9.32 (PTA1) J12.29 (PTD2)
LED0 J13.26 (PTE7) - JP49.1 J13.26 (PTE7) - JP49.1
LED1 J13.31 (PTE0) - JP50.1 J13.31 (PTE0) - JP50.1
UART Wired on board Wired on board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select flexio_i2s_master_←↩

s32k144W. Then click on Finish.
The project should now be copied into you current workspace.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

70 CONTENTS

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_i2s_master_s32k144W_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debuggers

flexio_i2s_master_s32k144W_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 9600 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

13.4.21 FLEXIO SPI

Example application showing FlexIO SPI driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO SPI driver found on the S32K144W
SoC using S32 SDK API.

The application uses FlexIO SPI driver to make a data transfer of a defined size. The slave device for this example
is a second FlexIO SPI driver using the same FlexIO instance, which is configured to act as a bus slave. The slave
and master buffers will be checked after each transfer by the application, user shall check isTransferOk variable to
see if the transmissions are successful(Green led will turn on), otherise red led will turn on.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 71

Prerequisites

To run the example you will need to have the following items:

• 1 S32K14xCVD-Q064 with S32K-MB

• 1 XS32K14WEVB-Q064

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 1 Personal Computer

• 1 PEMicro Multilink Debugger

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144W-MB XS32K14WEVB-Q064
FLEXIO_MASTER SS (PTD0) J12.31 - J9.29 J2.2 - J1.1
FLEXIO_MASTER SCK (PTD1) J12.32 - J9.30 J2.1 - J1.2
FLEXIO_MASTER MOSI (PTA0) J9.31 - J13.27 J5.4 - J6.10
FLEXIO_MASTER MISO (PTA1) J9.32 - J13.28 J5.3 - J6.9
FLEXIO_SLAVE SS (PTA2) J9.29 - J12.31 J1.1 - J2.2
FLEXIO_SLAVE SCK (PTA3) J9.30 - J12.32 J1.2 - J2.1
FLEXIO_SLAVE MOSI (PTE4) J13.27 - J9.31 J6.10 - J5.4
FLEXIO_SLAVE MISO (PTE5) J13.28 - J9.32 J6.9 - J5.3
RED_LED (PTE7) RGB_RED - wired on board J13.12 - JP49.2
GREEN_LED (PTE0) RGB_GREEN - wired on board J13.12 - JP50.2

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select flexio_spi_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

72 CONTENTS

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 73

Configuration Name Description
flexio_spi_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
flexio_spi_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.22 FLEXIO I2S SLAVE

Example application showing FlexIO I2S driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO I2S driver found on the S32K144W
SoC using S32 SDK API.

The application uses FlexIO I2S driver to make a data transfer of a defined size. The application will work in
conjunction with the flexio_i2s_master demo on S32K14xw.

The application displays on the host PC terminal a menu in which the user can select to: For Slave board: "Press:
1) [Slave] Send data 2) [Slave] Received data Enter your input:"

For Master board: "Press: 1) [Master] Send data 2) [Master] Received data Enter your input:"

Select Send/Receive on Slave first. After that select Receive/Send on Master.

The slave buffers and master buffers will be checked after each transfer by the application:

• On EVB: RED or GREEN led will be lit depend on the check result.

• Red led will turn if data does not match.

• Green led will turn if then data is transfered correctly.

• On mother board: LED0 or LED1 will be lit depend on the check result.

• LED0 led will turn if data does not match.

• LED1 led will turn if then data is transfered correctly.

The SLAVE I2S driver is configured to use interrupt for transfers.

Data size is configured by TRANSFER_SIZE define, by default is configured to be 64 Bytes.

Prerequisites

To run the example you will need to have the following items:

• 2 XS32K14WEVB-Q064 board or S32K MB

• 2 Power Adapter 12V (if the board can't be powered from the USB)

• 4 Dupont male to male cable

• 1 Personal Computer

• 2 PEMicro Multilink Debugger (optional, users can use J-link)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

74 CONTENTS

Boards supported

The following boards are supported by this application:

• S32K MOTHER BOARD (SCH-28767)

• S32K14xCVD-Q064 (SCH-29454) or

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 MASTER XS32K14WEVB-Q064 SLAVE
FLEXIO SCK J2.2 (PTD0) J1.1 (PTA2)
FLEXIO WS J2.1 (PTD1) J1.2 (PTA3)
FLEXIO MASTER TX - SLAVE RX J5.4 (PTA0) J6.1 (PTD3)
FLEXIO MASTER RX - SLAVE TX J5.3 (PTA1) J6.2 (PTD2)
RED_LED (PTE7) RGB_RED - wired on board RGB_RED - wired on board
GREEN_LED (PTE0) RGB_GREEN - wired on board RGB_GREEN - wired on board
UART Wired on board Wired on board

PIN FUNCTION MB - MASTER MB - SLAVE
FLEXIO SCK J12.31 (PTD0) J9.29 (PTA2)
FLEXIO WS J12.32 (PTD1) J9.30 (PTA3)
FLEXIO MASTER TX - SLAVE RX J9.31 (PTA0) J12.30 (PTD3)
FLEXIO MASTER RX - SLAVE TX J9.32 (PTA1) J12.29 (PTD2)
LED0 J13.26 (PTE7) - JP49.1 J13.26 (PTE7) - JP49.1
LED1 J13.31 (PTE0) - JP50.1 J13.31 (PTE0) - JP50.1
UART Wired on board Wired on board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select flexio_i2s_slave_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 75

Configuration Name Description
flexio_i2s_slave_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
flexio_i2s_slave_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 9600 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

13.4.23 FLEXIO UART

Example application showing FlexIO UART driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO UART driver found on the S32K144W
SoC using S32 SDK API.

Two instances of the FlexIO UART driver are used to display a welcome message ("Hello World") and then echo
the data received from host.

User shall send a string. If the board receives the user's string, then the same string shall be sent again.

Prerequisites

To run the example you will need to have the following items:

• 1 S32K14xCVD-Q064 with S32K-MB

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 1 Personal Computer

• 2 Dupont female to female cable

• 1 PEmicro Debugger (optional, users can use Open SDA)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

76 CONTENTS

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144W-MB
FLEXIO_UART RX (PTD1) J12.32 - J20.5
FLEXIO_UART TX (PTD0) J12.31 - J20.2

PIN FUNCTION XS32K14WEVB-Q064
FLEXIO_UART TX (PTD1) J2.1 - J6.6
FLEXIO_UART RX (PTD0) J2.2 - J6.5

Note

The application uses on board USB - UART chips to transfer data from board to host PC. Use an USB type B
cable to connect to the J16 connector on the mainboard.

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select flexio_uart_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_uart_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 77

flexio_uart_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 115200 baud

• One stop bit

• No parity

• No flow control

13.4.24 CAN PAL

Demo application showing the CAN PAL functionalities

Application description

The purpose of this demo application is to show you the usage of the CAN PAL module configured to use Flexible
Data Rate from the S32K144W CPU using the S32 SDK API.

• In the first part, the application will setup the board clocks, pins and other system functions such as SBC if
the board uses this module as a CAN transceiver.

• Then it will configure the CAN PAL module features such as FD, Bitrate and buffers

• The application will wait for frames to be received on the configured buffer or for an event raised by pressing
one of the two buttons which will trigger a frame send to the recipient.

• Pressing SW3 button of board 1 shall trigger a CAN transfer that results in toggling the GREEN led on board
2.

• Pressing SW2 button of board 1 shall trigger a CAN transfer that results in toggling the RED led on board 2.

• This demo application requires two boards, one configured as master and the other one configured as slave
(see MASTER/SLAVE defines in application code).

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144EVB-Q100(or another S32K EVB board which supports CAN)

• 1 XS32K14WEVB-Q064

• 2 Power Adapters 12V

• 3 Dupont female to female cable

• 1 Personal Computer

• 1 PEMicro Debugger (optional, users can use Open SDA for S32K144EVB-Q100)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

78 CONTENTS

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K144EVB-Q100
CAN HIGH (∗) CAN HIGH - J109.8 CAN HIGH - J13.1
CAN LOW (∗) CAN LOW - J109.7 CAN LOW - J13.2
GND (GND) GND - J109.6 GND - J13.4
BUTTON 0 (PTD2) SW2 - wired on the board SW2 - wired on the board
BUTTON 1 (PTD3) SW3 - wired on the board SW3 - wired on the board
LED0 (PTE7) RGB_RED - wired on the board RGB_RED - wired on the board
LED1 (PTE0) RGB_GREEN - wired on the board RGB_GREEN - wired on the board

(∗) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
CAN transceiver.
The CAN transceiver should be in Forced Normal Mode operation (default mode).
To reset the CAN transceiver to default mode connect the SBC transceiver in next configuration with the
board XS32K14WEVB-Q064 power off:

• pin RSTN from SBC is held LOW

• CANH(J109.8) is pulled up to VBAT(J109.5)

• CANL(J109.7) is pulled down to GND(J109.6)

Power on the board with external supply 12V (J16) This project only applies to S32K14W board. For S32K144←↩

EVB board or other S32K EVB boards, please refer corresponding example to get the right way to setup hardware
correctly.

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select can_pal_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 79

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
can_pal_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
can_pal_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.25 System Driver Examples

Applications that show the user how to initialize the communication peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

• CRC Checksum

• MPU PAL Memory Protection

• MPU Memory Protect Unit

• CSEc key configuration

• FLASH Partitioning

• EIM INJECTION

• ERM REPORT

• EWM Interrupt

• SECURITY PAL

• WDOG Interrupt

• Trigger MUX Control

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

80 CONTENTS

• EDMA transfer

• Power Mode Switch

• WDG PAL Interrupt

13.4.26 CRC Checksum

Example application showing the usage of the CRC module

Application description

The purpose of this demo application is to show you how to use the Cyclic Redundancy Check of the S32K144W
with this SDK.

In this example, The CRC is configured to generate a configuration for CCITT standard following:

• CCITT 16 bits standard:

{
.crcWidth = CRC_BITS_16,
.seed = 0xFFFFU,
.polynomial = 0x1021U,
.writeTranspose = CRC_TRANSPOSE_NONE,
.readTranspose = CRC_TRANSPOSE_NONE,
.complementChecksum = false

}

The application:

1. After reset starts with both LED0 and LED1 turned off.

2. Initializes CRC module with the above CCITT 16 bits standard configuration.

3. Pressing the SW button CRC calculation is initialized with CRC_data array from input_data.c file.

4. If the result is correct LED0 is turned on. Otherwise LED1 will be turned on.

5. The program stops.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 81

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

82 CONTENTS

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q064 with
S32K-MB

LED0 (PTE0/PTC0) RGB_GREEN - wired on the board LED_0 - JP49 (wired on the board)
LED1 (PTE7/PTC1) RGB_RED - wired on the board LED_1 - JP50 (wired on the board)
SW (PTD3/PTB12) SW3 BUTTON 0 - wired on the board

Make sure the following jumpers are set:

Jumper Name S32K-MB
JP49 Set jumper on position 1-2
JP50 Set jumper on position 1-2
JP39 Set jumper on position 1-2
J69 Set jumper on position 1-2
J70 Set jumper on position 2-3

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From and select crc_checksum_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
crc_checksum_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
crc_checksum_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Notes

The CRC module in S32K platform supports both big endian and little endian in source data.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 83

13.4.27 MPU PAL Memory Protection

Example application that shows how to use the MPU PAL

Application description

The purpose of this demo application is to show you how to use the Memory Protection Unit PAL of the S32K144W
MCU with this SDK.

In this example, MPU PAL regions are configured to have access rights as following:

Region Core Debugger DMA Address
0 — rwx rwx 0x00000000 -

0xFFFFFFFF
1 rwx rwx rwx 0x00000000 -

0x0007FEFF
2 -wx rwx rwx 0x0007FF00 -

0x0007FF1F
3 r– rwx rwx 0x0007FF00 -

0x0007FF1F
4 rwx rwx rwx 0x0007FF20 -

0xFFFFFFFF

Run the example

1. After reset, MPU PAL will be initialized according to configuration above.

2. Read flash memory at address 0x0007FF04 is permitted.

3. Press button (SW) on the board to ignore read permission by disabling region 3.

4. Read flash memory at address 0x0007FF04 is violated.

5. MPU PAL report the detail of error access on slave port 0 (Crossbar slave port 0 -> Flash Controller).

Verification

1. LED0 on indicate that MPU PAL initialization successful.

2. LED1 on (LED0 off) indicate that there is violated read access reported by MPU PAL.

Prerequisites

To run the example you will need to have the following items:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 Board XS32K14WEVB-Q064

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro Debugger

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

84 CONTENTS

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• Board XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K-MB XS32K14WEVB-Q064
LED0 (PTC0/PTE0) LED0 - JP49 LED GREEN - D11
LED1 (PTC1/PTE7) LED1 - JP50 LED RED - D11
SW (PTB12/PTD2) BUTTON0 - J69(2-3), J70(1-2),

JP39
SW2

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select mpu_pal_memory_←↩

protection_s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"."

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
mpu_pal_memory_protection_s32k144w_debug←↩

_ram_pemicro
Debug the RAM configuration using PEMicro
debuggers

mpu_pal_memory_protection_s32k144w_debug←↩

_flash_pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 85

13.4.28 MPU Memory Protect Unit

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo application is to show you how to use the Memory Protection Unit of the S32K144W MCU
with this SDK. In this example, MPU regions are configured to have access rights as following:

Region Core Debugger DMA Address
0 — rwx rwx 0x00000000 -

0xFFFFFFFF
1 rwx rwx rwx 0x00000000 -

0x0007FEFF
2 -wx rwx rwx 0x0007FF00 -

0x0007FF1F
3 r– rwx rwx 0x0007FF00 -

0x0007FF1F
4 rwx rwx rwx 0x0007FF20 -

0xFFFFFFFF

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• Board XS32K14WEVB-Q064

Run the example

1. After reset, MPU will be initialized according to configuration above.

2. Read flash memory at address 0x0007FF04 is permitted.

3. Press button (SW) on the board to ignore read permission by disabling region 3.

4. Read flash memory at address 0x0007FF04 is violated.

5. MPU report the detail of error access on slave port 0 (Crossbar slave port 0 -> Flash Controller).

Verification

1. LED1 on indicate that MPU initialization successful.

2. LED0 on (LED1 off) indicate that there is violated read access reported by MPU.

Prerequisites

To run the example you will need to have the following items:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 Board XS32K14WEVB-Q064

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro Debugger

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

86 CONTENTS

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K-MB XS32K14WEVB-Q064
LED0 (PTC0/PTE0) LED0 - JP49 LED GREEN - D11
LED1 (PTC1/PTE7) LED1 - JP50 LED RED - D11
SW (PTB12/PTD2) BUTTON0 - J69(2-3), J70(1-2),

JP39
SW2

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select mpu_memory_←↩

protection_s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"."

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
mpu_memory_protection_s32k144w_debug_←↩

ram_pemicro
Debug the RAM configuration using PEMicro
debuggers

mpu_memory_protection_s32k144w_debug_←↩

flash_pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.29 CSEc key configuration

Basic application that presents basic usecases for the CSEc driver

Note

This example works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is available on your
device.
The first time when running the example on the board, or after a key erase, this example should be ran
from RAM.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 87

The user keys are non-volatile. Once the key was loaded, in order to update it, the counter should be
increased.
After the user key was loaded using this example, any further full erase of the Flash requires a
Challenge-Authentication process. This can be done by setting the ERASE_ALL_KEYS macro to 1.
After partitioning Flash for CSEc operation, using the JLink Flash configuration of any other project
will not work anymore. Workaround:

• Run csec_keyconfig example with ERASE_ALL_KEYS 1, using PEmicro Flash debug configuration

Application description

The purpose of this demo application is to show the user how to use the Cryptographic Services Engine module
from the S32K144W MCU with the S32 SDK API.

The implementation demonstrates the following:

• the enablement of the CSEc module, by showing how the Flash should be partitioned (using the Flash driver);

• configuring the MASTER_ECU key;

• configuring the first user key, using the MASTER_ECU key as an authorization;

• using the user key for an encryption. In order to update the user key after they were configured using the
example, the user should increase the counter used for loading the key. Please note that user should increase
counter in order to keep the encryption take its place successfully for 2 cases:

• The user key was already loaded by previous run.

• The example already ran from RAM for CSEc partition. Erasing all the configured keys (including the MA←↩

STER_ECU key) can be done by changing the value of the ERASE_ALL_KEYS macro to 1. This will place
the part back into factory status (the partition command will need to be run again). Please note that when
the Flash is partitioned (the first time running the example on the board, or after a key erase), the example
should not be run from Flash (please use the RAM configuration).

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

88 CONTENTS

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q064 with
S32K-MB

LED_ERROR (PTC0) N/A LED0 - wired on the board
LED_OK (PTC1) N/A LED1 - wired on the board
LED_ERROR (PTE0) RGB_RED - wired on the board N/A
LED_OK (PTE7) RGB_GREEN - wired on the board N/A

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From and select csec_keyconfig_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
csec_keyconfig_s32k144W_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
csec_keyconfig_s32k144W_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.30 FLASH Partitioning

Example application which shows the basic operations of the FLASH driver

Application description

The purpose of this demo application is to show you the usage of the FLASH driver with the S32 SDK API.

The examples does the following operations:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 89

• Partitions the flash

• Configures FlexNVM region as EEPROM

• Erases flash

• Programs flash

• Write data to EEPROM. Check the status of API which confirms activities of flash module. In addition, user
can view value at memory from address 0x7F000 when erases or programs flash. Checks the value at
memory from address 0x14000000 when writes data to EEPROM.

Note

The FlexNVM memory is partitioned to EEPROM use and is blocked for some erase commands (Erase Sector
and Erase Block). As a consequence, loading the program to flash memory may fail on some debuggers.
Please perform a mass erase operation on Flash to remove this partitioning after running the example to be
able to update your application on target.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K144-MB

Hardware Wiring

No connections are required for this example.

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flash_partitioning_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

90 CONTENTS

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
flash_partitioning_s32k144w_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debuggers

flash_partitioning_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.31 EIM INJECTION

Driver example that shows the user how to use the Error Injection Module

Application description

The EIM module enables the user to inject 1 bit error or 2 bit errors into bus data, when read from a designated
RAM area. The ECC module must correct all 1 bit errors. The ERM module reports any detected memory error.
The example runs only on FLASH.

Run the code

1. After reset, LED_RED is turned off, LED_GREEN is turned on and the value of the test address is initialized.

2. Press button BUTTON0 to initialize the ERM and EIM modules.

3. Read the initialized address; if the value read from the test address is the same as the initialized value, then
LED_GREEN will be turned off and LED_RED will be turned on.

If application runs success, LED_GREEN will be turned off and LED_RED will be turned on after press button 0.

Prerequisites

To run the example you will need to have the following items:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro Debugger (optional OpenSDA)

• 1 XS32K14WEVB-Q064 board

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 91

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with s32k144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064
RED_LED (PTE7) LED_0 - Wired on the board
GREEN_LED (PTE0) LED_1 - Wired on the board
SW (PTD2) SW2-BTN0

PIN FUNCTION S32K-MB
RED_LED (PTC0) LED_0 - JP49 (wired on the board)
GREEN_LED (PTC1) LED_1 - JP50 (wired on the board)
SW (PTB12) BUTTON0 - J69(2-3), J70(1-2), JP39

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select eim_injection_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be one debug configuration for this project:

Configuration Name Description
eim_injection_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

92 CONTENTS

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.32 ERM REPORT

Driver example that shows the user how to use the Error reporting module.

Application description

The EIM module enables the user to inject 1 bit error or 2 bit errors into bus data, when read from a designated
RAM area. The ECC module must correct all 1 bit errors. The ERM module reports any detected memory error.
The example runs only on FLASH

Run the code

1. After reset, LED_RED is turned off, LED_GREEN is turned on and the value for address used to test is
initialized.

2. Press button SW2(BUTTON0) to initialize ERM and EIM modules.

3. Read the address which was initialized, ERM will trigger an interrupt notification which also turns off LED_←↩

GREEN, and turns on the LED_RED to report a single-bit correction event.

4. Error event details are reported by ERM.

Prerequisites

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro Debugger (optional OpenSDA)

• 1 XS32K14WEVB-Q064 board

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 93

LED0 (PTE7) LED_0 - Wired on the board
LED1 (PTE0) LED_1 - Wired on the board
SW (PTD2) SW2-BTN0

PIN FUNCTION S32K144W-MB
LED0 (PTC0) LED_0 - JP49 (wired on the board)
LED1 (PTC1) LED_1 - JP50 (wired on the board)
SW (PTB12) BUTTON0 - J69(2-3), J70(1-2), JP39

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select erm_report_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be one debug configuration for this project:

Configuration Name Description
erm_report_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.
This Example only run on Flash

13.4.33 EWM Interrupt

Driver example that shows the user how to use the External Watchdog Monitor

Application description

The purpose of this driver application is to show the user how to use the EWM from the S32K144w using the S32
SDK API.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

94 CONTENTS

Run the code

1. Turn off LED0 and LED1.

2. The examples uses the SysTick timer from the ARM core to refresh the EWM counter for 30 times. After each
refresh, LED0 is also toggled. Within this interval the user can press the button associated with the EWM
input pin to assert the interrupt and output pin.

3. After the EWM counter is refreshed 30 times or the user presses the button before refreshing ends, the EWM
interrupt is triggered and both LED0 and LED1 are turned ON, then SysTick timer is disabled.

Expected output:

• If the button 0 is not pressed, the LED0 is toggled 30 times, after that LED0 and LED0 are turned ON.

• If the button 0 is pressed, LED0 and LED1 are turned ON immediately.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 PEMicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064
LED0 (PTE7) RGB_RED - wired on the board
LED1 (PTE0) RGB_GREEN - wired on the board
EWM_IN (PTA3) J1.2(EWM INPUT) - J6.2(SW2_BTN0)

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ewm_interrupt_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 95

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
ewm_interrupt_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
ewm_interrupt_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.34 SECURITY PAL

Basic application that presents basic usecases for the Security PAL.

Note

This example works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is available on your
device.
The first time when running the example on the board, or after a key erase, this example should be ran
from RAM.
This example generates a random number.
This example demonstrates CBC Encryption/Decryption.

Application description

The purpose of this demo application is to show the user how to use the Security PAL in conjuction with Crypto-
graphic Services Engine module from the S32K14x MCU with the S32 SDK API.

The implementation demonstrates the following:

• the enablement of the Security PAL, used over CSEc module, by showing how the Flash should be partitioned
(using the Flash driver);

• initializing the Random Number Generator and generating a vector of 128 random bits;

• configuring the RAM key, with a 128-bit plaintext;

• using the user key for a CBC encryption and a CBC decryption;

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

96 CONTENTS

If no errors occur during the cryptographic operations, the LED0 will be turned on upon completion; if the red LED1
is lit, the program failed during one of the steps.

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144W board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro debugger

Boards supported

The following boards are supported by this application:

• S32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select security_pal. Select "Copy
projects into workspace" and then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"."

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
security_pal_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers
security_pal_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 97

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.35 WDOG Interrupt

Example application that will show the usage of the Watchdog

Application description

The purpose of this driver application is to show the user how to use the WDOG from the S32K144w using the S32
SDK API.

The examples uses the SysTick timer from the ARM core to refresh the WDOG counter for 8 times. After this the
Watchdog counter will expire and the CPU will be reset. If the FLASH configuration will be used, then the code will
use the Reset Control Module to detect if the reset was caused by the Watchdog and will stop the execution of the
program.

Run the example on Devkit:

1. After reset, LED 0 and LED 1 is off.

2. Initialize WDOG Interrupt above then LED 0 is toggle 8 times(on 4 times and off 4 times).

3. Watchdog timeout happen then MCU reset and LED 0 and LED 1 is on and The program will stopped.

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144W board

• 1 Power Adapter 12V

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q064 S32K-MB
LED0 RGB_RED - wired on the

board
LED0 - wired on the
board

JP49.1 - JP49.2

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

98 CONTENTS

LED1 RGB_GREEN - wired on
the board

LED1 - wired on the
board

JP50.1 - JP50.2

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select wdog_interrupt_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32CT configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"."

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be one debug configurations for this project:

Configuration Name Description
wdog_interrupt_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.36 Trigger MUX Control

Example application showing the usage of the TRGMUX module

Application description

The purpose of this demo application is to show you how to use the Trigger MUX Control of the S32K14xW MCU
with this SDK.

The examples use TRGMUX to connect Pin Trigger Mux In3 and LPIT channel 0 on motherboard or connect Pin
Trigger Mux In5 and LPIT channel 1 in EVB board

• Initialize TRGMUX with source trigger from TRGMUX_IN3 and target module is LPIT_CH0 for motherboard
or Initialize TRGMUX with source trigger from TRGMUX_IN5 and target module is LPIT_CH1 for EVB board

• Initialize the LPIT Channel 0 for motherboard or Initialize the LPIT Channel 1 for EVB board.

• LED ORANGE on Motherboard or RGB_RED led in EVB board is used to blink led

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 99

• Each time when user presses button SW4 on Motherboard or SW2 in EVB board will generate a trigger signal
that actives LPIT via TRGMUX. After 1s, LPIT will create an event interrupt and toggle LED

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144W board (S32K14xCVD-Q064)

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144W-MB

• XS32K14WEVB-Q064

Hardware Wiring

PIN FUNCTION S32K144W-MB XS32K14WEVB-Q064
LED0 (PTC0) JP49.1 - JP49.2 REG_RED (PTE7)- wired on the

board
BUTTON3 () JP36.1-JP42.1, J63.2-3, J64.1-2 SW2 (PTD2) -wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select trgmux_lpit_s32k144W.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

100 CONTENTS

Configuration Name Description
trgmux_lpit_s32k144W_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
trgmux_lpit_s32k144W_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

The TRGMUX module in S32K platform supports both big endian and little endian in source data.

13.4.37 EDMA transfer

Example application showing the usage of the EDMA module

Application description

The purpose of this driver example is to show you how to use the eDMA in the following transfer scenarios for the
S32K144W MCU using the S32 SDK API.

• Loop memory-to-memory transfer

If the application works correctly, the data shall be transfered correctly to destination memory and a transmission
complete interrupt shall be triggered. And the application will not jump to any DEV_ASSERT.

Prerequisites

To run the example you will need to have the following items:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 1 Personal Computer

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 101

Hardware Wiring

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select edma_transfer_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(edma_transfer_s32k144w). Select the "Config←↩

Tools" menu then click on the desired configuration (Pins, Cocks, Peripherals etc...). Clicking on any one of those
will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be one debug configurations for this project:

Configuration Name Description
edma_transfer_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
edma_transfer_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.38 Power Mode Switch

Example application demonstrating S32K144W power modes

Application description

The purpose of the application is to show the user how to enter various power modes of the S32K144 SoC using
the S32 SDK API.

The application displays on the host PC terminal a menu in which the user can select to enter:

• Normal Run (RUN)

• Very Low Power Run (VLPR)

• STOP mode 1 (STOP1)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

102 CONTENTS

• STOP mode 2 (STOP2)

• Very Low Power Stop (VLPS)

When user selects a mode, PC terminal will show the following text:

Press:
1) for RUN
2) for VLPR
3) for STOP1
4) for STOP2
5) for VLPS
–>Press SW3 to wake up the CPU from STOP1,STOP2 or VLPS mode
Enter your input:

Expected Output:

• If STOP1, STOP2 or VLPS is selected by entering the character: '3', '4' or '5' into PC terminal, LED_RED will
turn on, LED_GREEN will turn off and the PC terminal will show:

Mode The content informs
STOP1 ∗∗∗∗∗∗∗∗ CPU is going in STOP1 mode...
STOP2 ∗∗∗∗∗∗∗∗ CPU is going in STOP2 mode...
VLPS ∗∗∗∗∗∗∗∗ CPU is going in VLPS mode...

• The CPU can be woken up from sleep modes by pressing button SW3 in EVB board, then LED_RED turn
off, LED_GREEN turn on and PC terminal will show:

Mode The content informs
STOP1 CPU was entered STOP1 mode successfully and

then woke up to exit STOP1 mode.
STOP2 CPU was entered STOP2 mode successfully and

then woke up to exit STOP2 mode.
VLPS CPU was entered VLPS mode successfully and

then woke up to exit VLPS mode.

• If user selects RUN or VLPR, the PC terminal will show:

Mode The content informs
RUN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CPU is in RUN

mode
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Core frequency:
48000000[Hz]

VLPR ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CPU is in VLPR
mode
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Core frequency:
1000000[Hz]

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144W board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro Debugger

• 1 Micro Usb Cable

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 103

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064
GREEN_LED (PTE0) RGB_RED - wired on board
RED_LED (PTE7) RGB_GREEN - wired on board
BUTTON (PTD3) SW3 - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From and select power_mode_switch_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated.
The initial configuration will have the same settings as the default example settings. Left click on the current project,
then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar).
In S32 Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of
those will generate all the components.
Pay attention to any error and warning message. If any configured value is invalid, they will be shown for user. Make
the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button.
Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
power_mode_switch_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

104 CONTENTS

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 9600 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

Clock source is remained in SIRC (8 MHz) before MCU switches from RUN to VLP mode.
In order to set to default clock for RUN mode. User presses option for RUN or re-initializes clock configuration.

13.4.39 WDG PAL Interrupt

Example application that will show the usage of the Watchdog

Application description

The purpose of this driver application is to show the user how to use the WDG PAL from the S32K144W using the
S32 SDK API.

The example uses the SysTick timer from the ARM core to refresh the WDG PAL counter for 30 times. LED0 will
toggle when WDG PAL counter is refreshed. After this the WDG PAL counter will expire, WDG PAL interrupt will
happen and turn off LED0, LED1. Then the CPU will be reset. If the FLASH configuration will be used, then the
program will use the Reset Control Module to detect if the reset was caused by the Watchdog and will stop the
execution of the program and turn on LED0, LED1.

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144W board

• 1 Power Adapter 12V

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 105

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

106 CONTENTS

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q064 S32K-MB
LED0 RGB_RED - wired on the

board
LED0 - wired on the
board

JP49.1 - JP49.2

LED1 RGB_GREEN - wired on
the board

LED1 - wired on the
board

JP50.1 - JP50.2

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select wdg_pal_interrupt_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Right click
on the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In
S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of
those will generate all the components. Pay attention to any error and warning message. If any configured value is
invalid, they will be shown for user. Make the desired changes (if any) then click "Update Code"." Wait for the code
generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be one debug configurations for this project:

Configuration Name Description
wdg_pal_interrupt_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.40 Timer Driver Examples

Applications that show the user how to initialize the timer peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

• FTM Combined PWM

• FTM Periodic Interrupt

• FTM PWM

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 107

• FTM Signal Measurement

• IC PAL

• LPTMR Periodic Interrupt

• LPTMR Periodic Interrupt

• PDB Periodic Interrupt

• RTC Alarm

• TIMING PAL

• PWM PAL

• OC PAL

• LPIT Periodic Interrupt

13.4.41 FTM Combined PWM

Example application showing the FTM's combined PWM functionality

Application description

The purpose of this demo application is to show you the usage of the Combined PWM mode of the FlexTimer
module on S32K144W using S32 SDK API.

The examples does the following operations:

• Increment or decrement duty cycle

• Update channel duty cycle

• Wait for a number of cycles to make the change visible

Run the example

1. After reset, The LED0 and LED1 of S32K144-MB will increment or decrement light intensity

2. Use oscilloscope to verify the output signal

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 or 1 S32K144-MB

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

108 CONTENTS

• 1 Personal Computer

• 1 microUSB cable

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144-MB XS32K14WEVB-Q064
FTM0 Channel 0 LED0 - wired on the board - JP49

(1-2)
RGB_GREEN - J3.6 - J4.2

FTM0 Channel 1 LED1 - wired on the board - JP50
(1-2)

RGB_RED - J5.7 - J3.8

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_combined_pwm_←↩

s32k144w. Then click on Finish.
The project should now be copied into your current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go
to Project Explorer View in S32 DS and select the current project(ftm_combined_pwm_s32k144w). Right click
on the current project ->" S32 Configuration Tool" menu then click on the desired configuration (Pins, Cocks,
Peripherals etc...). Clicking on any one of those will generate all the components. Make the desired changes(if any)
then click on the "ConfigTools->Update Code" button.

3. Building the project

Select the configuration FLASH (Debug_FLASH) or RAM (Debug_RAM) to be built by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There are two debug configurations for this project:

Configuration Name Description
ftm_combined_pwm_s32k144w_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debugger

ftm_combined_pwm_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debugger

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 109

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.42 FTM Periodic Interrupt

Example application showing the FTM's Timer functionality

Application description

The purpose of this demo application is to show you the usage of the FlexTimer's Timer functionality on S32K144W
CPU using the S32 SDK API

• The application configures FTM to generate an interrupt every 1 second

• The interrupt will blink the configured LED wired on the board

Prerequisites

To run the example you will need to have the following items:

• 1S32K144-MB or 1 XS32K14WEVB-Q064

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 microUSB cable

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• S32K144-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144-MB XS32K14WEVB-Q064
LED0 (wired on the board) LED0 (PTC0) - JP49 (1-2) RGB_GREEN (PTE0)

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_periodic_interrupt←↩

_s32k144w. Then click on Finish.
The project should now be copied into your current workspace.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

110 CONTENTS

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go
to Project Explorer View in S32 DS and select the current project(ftm_periodic_interrupt_s32k144w). Right
click on the current project ->" S32 Configuration Tool" menu then click on the desired configuration (Pins, Cocks,
Peripherals etc...). Clicking on any one of those will generate all the components. Make the desired changes(if any)
then click on the "ConfigTools->Update Code" button.

3. Building the project

Select the configuration FLASH (Debug_FLASH) or RAM (Debug_RAM) to be built by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There are two debug configurations for this project:

Configuration Name Description
ftm_periodic_interrupt_s32k144w_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debuggers

ftm_periodic_interrupt_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.43 FTM PWM

Example application showing the FTM's PWM functionality

Application description

The purpose of this demo application is to show you the usage of the PWM mode of the FlexTimer module found
on the S32K144W using S32 SDK API. The examples does the following operations:

• Increment or decrement duty cycle

• Update channel duty cycle

• Wait for a number of cycles to make the change visible

Run the example

1. After run debug, the LED wired on board will increment or decrement light intensity

2. Use oscilloscope to verify the output signal

Prerequisites

To run the example you will need to have the following items:

• 1S32K144-MB or 1 XS32K14WEVB-Q064

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 111

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 microUSB cable

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• S32K144-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144-MB XS32K14WEVB-Q064
FTM0 Channel 0 (PTC0) LED0 wired on the board - JP49

(1-2)
FTM0 Channel 7 (PTE7) RGB_RED - LED0 wired on the

board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_pwm_s32k144w.
Then click on Finish.
The project should now be copied into your current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(ftm_pwm_s32k144w). Right click on the current
project ->" S32 Configuration Tool" menu then click on the desired configuration (Pins, Cocks, Peripherals etc...).
Clicking on any one of those will generate all the components. Make the desired changes(if any) then click on the
"ConfigTools->Update Code" button.

3. Building the project

Select the configuration FLASH (Debug_FLASH) or RAM (Debug_RAM) to be built by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There are two debug configurations for this project:

Configuration Name Description
ftm_pwm_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debugger

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

112 CONTENTS

ftm_pwm_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debugger

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.44 FTM Signal Measurement

Example application showing the FTM's Signal Measurement functionality

Application description

The purpose of this demo application is to show you the usage of the FlexTimer's Signal Measurement functionality
from the S32K144W CPU using the S32 SDK API.

• The application is configured to generate a PWM signal with a variable frequency which will be measured by
another FTM instance. The frequency will range from 1000 Hz to 3000 Hz. Each step changes 100 Hz. The
measurement result will be sent to the host PC via LPUART. User is able to compare pwm frequency and
measurement frequency.

The pwm frequency must be in measurable frequency range of FTM_IC. For example, here are the measur-
able ranges corresponding to the clock source = System clock (48 MHz)

Clock source prescaler Maximum frequency (Hz) Minimum frequency (Hz)
1 48,000,000 732.42
2 24,000,000 366.21
4 12,000,000 183.10
8 6,000,000 91.55
16 3,000,000 45.77
32 1,500,000 22.88
64 750,000 11.44
128 375,000 5.72

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 or 1 S32K144-MB

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 microUSB cable

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K144-MB

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 113

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

114 CONTENTS

PIN FUNCTION S32K144-MB XS32K14WEVB-Q064
FTM0 Output Channel 0 (PTC0) J11.31 - J10.29 J4.06 - J2.06
FTM1 Input Channel 0 (PTB2) J10.29 - J11.31 J2.06 - J4.06
UART_TX J20.01 - J20.02 Wired on the board
UART_RX J20.04 - J20.05 Wired on the board
USB_MICRO_AB J41 - microUSB cable J7 - microUSB cable

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 9600 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_signal_←↩

measurement_s32k144w. Then click on Finish.
The project should now be copied into your current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go
to Project Explorer View in S32 DS and select the current project(ftm_signal_measurement_s32k144w). Right
click on the current project ->" S32 Configuration Tool" menu then click on the desired configuration (Pins, Cocks,
Peripherals etc...). Clicking on any one of those will generate all the components. Make the desired changes(if any)
then click on the "ConfigTools->Update Code" button.

3. Building the project

Select the configuration FLASH (Debug_FLASH) to be built by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There is a debug configuration for this project:

Configuration Name Description
ftm_signal_measurement_s32k144w_debug_←↩

flash_pemicro
Debug the FLASH configuration using PEMicro
debugger

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

5. Output display on Terminal

Welcome message:

This example will show you how to use FTM’s signal measurement feature.
To achieve that we will generate a modifiable frequency PWM and read

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 115

it with Input Capture
Press any key to initiate a new conversion...

Expected output:

PWM frequency: 1000 Measured frequency: 1000 [Hz]
PWM frequency: 1100 Measured frequency: 1100 [Hz]
PWM frequency: 1200 Measured frequency: 1200 [Hz]
PWM frequency: 1300 Measured frequency: 1300 [Hz]
PWM frequency: 1400 Measured frequency: 1400 [Hz]
PWM frequency: 1500 Measured frequency: 1500 [Hz]
PWM frequency: 1600 Measured frequency: 1600 [Hz]
PWM frequency: 1700 Measured frequency: 1700 [Hz]
PWM frequency: 1800 Measured frequency: 1800 [Hz]
PWM frequency: 1900 Measured frequency: 1900 [Hz]
PWM frequency: 2000 Measured frequency: 2000 [Hz]
PWM frequency: 2100 Measured frequency: 2100 [Hz]
PWM frequency: 2200 Measured frequency: 2200 [Hz]
PWM frequency: 2300 Measured frequency: 2300 [Hz]
PWM frequency: 2400 Measured frequency: 2400 [Hz]
PWM frequency: 2500 Measured frequency: 2500 [Hz]
PWM frequency: 2600 Measured frequency: 2600 [Hz]
PWM frequency: 2700 Measured frequency: 2700 [Hz]
PWM frequency: 2800 Measured frequency: 2800 [Hz]
PWM frequency: 2900 Measured frequency: 2900 [Hz]
PWM frequency: 3000 Measured frequency: 3000 [Hz]
Press any key to initiate a new conversion...

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.45 IC PAL

Example application showing the IC's Signal Measurement functionality

Application description

The purpose of this demo application is to show you the usage of the IC's Signal Measurement functionality from
the S32K144W CPU using the S32 SDK API.

• The application is configured to generate a PWM signal with a variable frequency which will be measured by
IC_PAL. The frequency will range from 1000 Hz to 3000 Hz. Each step changes 100 Hz. The measurement
result will be sent to the host PC via LPUART. User is able to compare pwm frequency and measurement
frequency.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 or 1 S32K144-MB

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 microUSB cable

• 1 PEmicro Debugger

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

116 CONTENTS

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144-MB XS32K14WEVB-Q064
FTM0 Output Channel 0 (PTC0) J11.31 - J10.29 J4.06 - J2.06
FTM1 Input Channel 0 (PTB2) J10.29 - J11.31 J2.06 - J4.06
UART_TX J20.01 - J20.02 Wired on the board
UART_RX J20.04 - J20.05 Wired on the board
USB_MICRO_AB J41 - microUSB cable J7 - microUSB cable

Notes

For this example it is necessary to open a terminal emulator and configure it with:

• 9600 baud

• One stop bit

• No parity

• No flow control

• '\n' line ending

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ic_pal_s32k144w. Then
click on Finish.
The project should now be copied into your current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go
to Project Explorer View in S32 DS and select the current project(ic_pal_s32k144w). Right click on the current
project ->" S32 Configuration Tool" menu then click on the desired configuration (Pins, Cocks, Peripherals etc...).
Clicking on any one of those will generate all the components. Make the desired changes(if any) then click on the
"ConfigTools->Update Code" button.

3. Building the project

Select the configuration FLASH (Debug_FLASH) to be built by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There is a debug configuration for this project:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 117

Configuration Name Description
ic_pal_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debugger

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

5. Output display on Terminal

Welcome message:

This example will show you how to use IC’s signal measurement feature.
To achieve that we will generate a modifiable frequency PWM and read
it with Input Capture
Press any key to initiate a new conversion...

Expected output:

PWM frequency: 1000 Measured frequency: 1000 [Hz]
PWM frequency: 1100 Measured frequency: 1100 [Hz]
PWM frequency: 1200 Measured frequency: 1200 [Hz]
PWM frequency: 1300 Measured frequency: 1300 [Hz]
PWM frequency: 1400 Measured frequency: 1400 [Hz]
PWM frequency: 1500 Measured frequency: 1500 [Hz]
PWM frequency: 1600 Measured frequency: 1600 [Hz]
PWM frequency: 1700 Measured frequency: 1700 [Hz]
PWM frequency: 1800 Measured frequency: 1800 [Hz]
PWM frequency: 1900 Measured frequency: 1900 [Hz]
PWM frequency: 2000 Measured frequency: 2000 [Hz]
PWM frequency: 2100 Measured frequency: 2100 [Hz]
PWM frequency: 2200 Measured frequency: 2200 [Hz]
PWM frequency: 2300 Measured frequency: 2300 [Hz]
PWM frequency: 2400 Measured frequency: 2400 [Hz]
PWM frequency: 2500 Measured frequency: 2500 [Hz]
PWM frequency: 2600 Measured frequency: 2600 [Hz]
PWM frequency: 2700 Measured frequency: 2700 [Hz]
PWM frequency: 2800 Measured frequency: 2800 [Hz]
PWM frequency: 2900 Measured frequency: 2900 [Hz]
PWM frequency: 3000 Measured frequency: 3000 [Hz]
Press any key to initiate a new conversion...

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.46 LPTMR Periodic Interrupt

Example application that shows the LPTMR's Timer feature

Application description

The purpose of this demo application is to show you how to use the LPTMR's Timer functionality from the S32←↩

K144W using the S32 SDK API.

• The LPTMR is configured to generate a periodic interrupt at 1 seconds which toggles a LED.

Prerequisites

To run the example you will need to have the following items:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

118 CONTENTS

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 1 Personal Computer

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K-MB XS32K14WEVB-Q064
LED0 (PTC0) JP49.1 - JP49.2 (PTE7) wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lptmr_periodic_←↩

interrupt_s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(lptmr_periodic_interrupt_s32k144w). Select the
"ConfigTools" menu then click on the desired configurator (Pins, Cocks, Peripherals etc...). Clicking on any one of
those will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update
Code" button.

3. Building the project

Select the configuration to be built RAM (Debug_RAM) by left clicking on the downward arrow corresponding to the
build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
lptmr_periodic_interrupt_s32k144w_debug_ram←↩

_pemicro
Debug the RAM configuration using PEMicro
debuggers

lptmr_periodic_interrupt_s32k144w_debug_←↩

flash_pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 119

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.47 LPTMR Periodic Interrupt

Example application that shows the LPTMR's Pulse Counting feature

Application description

The purpose of this demo application is to show you how to use the Low Power Timer's Pulse Counter functionality
from the S32K144W using the S32 SDK API.

• The example is configured to trigger an interrupt and toggle an LED after three pulses, sourced from one of
the board's buttons.

Prerequisites

To run the example you will need to have the following items:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 1 Personal Computer

• 1 PEmicro Debugger

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K-MB XS32K14WEVB-Q064
LED0 (PTC0) JP49.1 - JP49.2 (PTE7) wired on the board
BUTTON3 (PTE11) J36.1-2, J63.2-3, J64.1-2 SW2(J6.2) - J4.3

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lptmr_pulse_counter_←↩

s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

120 CONTENTS

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(lptmr_pulse_counter_s32k144w). Select the
"ConfigTools" menu then click on the desired configurator (Pins, Cocks, Peripherals etc...). Clicking on any one of
those will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update
Code" button.

3. Building the project

Select the configuration to be built RAM (Debug_RAM) by left clicking on the downward arrow corresponding to the
build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
lptmr_pulse_counter_s32k144w_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debuggers

lptmr_pulse_counter_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.48 PDB Periodic Interrupt

Driver example using PDB for demonstrating PDB timer functionality

Application description

The purpose of this demo application is to show the use of PDB driver for configuring PDB as timer. The PDB is
configured to generate a periodic interrupt which toggles an LED.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K14xCVD-Q064 with S32K-MB

• XS32K14WEVB-Q064

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 121

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K14xCVD-Q064 with
S32K-MB

XS32K14WEVB-Q064

LED0 (PTC0) JP49 must be connected (PTE7) wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select pdb_periodic_interrupt←↩

_s32k144w. Then click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
pdb_periodic_interrupt_s32k144w_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debuggers

pdb_periodic_interrupt_s32k144w_debug_flash←↩

_pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.49 RTC Alarm

Example application showing basic use cases for the RTC module

Application description

The purpose of this demo application is to show you how to use the Real Time Clock module from the S32K144W
MCU with the S32 SDK API.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

122 CONTENTS

The RTC is configured to generate an interrupt every 1 second toggling LED0. If the alarm button is pressed an
alarm interrupt toggles the alarm LED1 after 5 seconds.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 2 Dupont male to male cable

• 1 Personal Computer

• 1 PEmicro

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

• S32K14xCVD-Q064 with S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K14xCVD-Q064
LED0 RGB_GREEN - wired on the board LED0 - wired on the board
LED1 RGB_RED - wired on the board LED1 - wired on the board
BUTTON SW3 - wired on the board BUTTON 0 - wired on the board

Make sure the following jumpers are set:

Jumper Name S32K-MB
JP49 Set jumper on position 1-2
JP50 Set jumper on position 1-2
JP39 Set jumper on position 1-2
J69 Set jumper on position 1-2
J70 Set jumper on position 2-3

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From and select rtc_alarm_s32k144w. Then
click on Finish.
The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 123

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
rtc_alarm_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
rtc_alarm_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Notes

If the example doesn't work, please Flash the Debug_FLASH configuration and enforce a power on reset of the
board.
This is caused by the fact that the register which configures the RTC clock source can only be written once.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.50 TIMING PAL

Driver example using TIMING PAL

Application description

The purpose of this application is to show you how to use the TIMING PAL over LPIT, LPTMR and FTM timers on
the S32K144W using the S32 SDK API.

The application uses one board instance of LPIT, LPTMR and FTM to periodically toggle 3 leds every second.

Prerequisites

To run the example you will need to have the following items:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 1 Personal Computer

• 1 PEmicro Debugger

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

124 CONTENTS

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION XS32K14WEVB-Q064 S32K-MB
LED0 (PTC0) RGB_GREEN - wired on the board JP49.1 - JP49.2
LED1 (PTC1) RGB_RED - wired on the board JP50.1 - JP50.2
LED2 (PTC2) RGB_BLUE - wired on the board JP51.1 - JP51.2

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select timing_pal_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(timing_pal_s32k144w). Select the "ConfigTools"
menu then click on the desired configurator (Pins, Cocks, Peripherals etc...). Clicking on any one of those will
generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug Configurations for this project:

Configuration Name Description
timing_pal_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
timing_pal_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 125

13.4.51 PWM PAL

Example application using the PWM PAL

Application description

The purpose of this demo application is to show you how to use the PWM PAL from the S32K144W CPU using the
S32 SDK API. The example will dim the ORANGE LED on mother board or RGB_GREEN led on EVB board by
varying the duty cycle of the PWM signal.

Prerequisites

To run the example you will need to have the following items:

• 1 XS32K14WEVB-Q064 board

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• S32K144W-MB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144W-MB XS32K14WEVB-Q064
FTM0 Channel 0 (PTC0) LED_ORANGE - Connected

J49.1 to J49.2
LED_GREEN - Connected J4.6 to
J3.6

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select pwm_pal_s32k144w.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"."

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

126 CONTENTS

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description
pwm_pal_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
pwm_pal_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.52 OC PAL

Driver example using OC PAL

Application description

The purpose of this demo application is to show you how to use the OC PAL of the S32K144W MCU with this SDK.
The demo is configured to toggle a LED in an interrupt callback.

The examples use OC PAL over FTM0.

• Initialize the OC PAL module with interrupt function callback.

• This application will toggle green led with period 2 second after each OC PAL interrupt.

Prerequisites

To run the example you will need to have the following items:

• 1 S32K144W board

• 1 Power Adapter 12V (if the board can't be powered from the USB)

• 1 Personal Computer

• 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

13.4 Driver Examples 127

PIN FUNCTION XS32K14WEVB-Q064
FTM0 Channel 0 (PTE0) RGB_GREEN - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select oc_pal_s32k144w. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(oc_pal_s32k144w). Select the "ConfigTools" menu
then click on the desired configurator (Pins, Cocks, Peripherals etc...). Clicking on any one of those will generate all
the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code" button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be one debug configuration for this project:

Configuration Name Description
oc_pal_s32k144w_debug_flash_pemicro Debug the FLASH configuration using PEMicro

debuggers
oc_pal_s32k144w_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.53 LPIT Periodic Interrupt

Driver example that will show the LPIT functionality

Application description

The purpose of this demo application is to show you how to use the Low Power Interrupt Timer from the S32K144W
using the S32 SDK API.

• The example is configured to trigger an interrupt every second, which toggles a LED.

See also

For other LPIT usage scenario check: ADC_LOW_POWER_group

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

128 CONTENTS

Prerequisites

To run the example you will need to have the following items:

• 1 Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• 1 Mother Board S32K-MB PCB RevA SCH RevB

• 1 Power Adapter 12V (if the board cannot be powered from the USB port)

• 1 Personal Computer

• 1 PEmicro Debugger

• XS32K14WEVB-Q064

Boards supported

The following boards are supported by this application:

• Daughter Card S32K14xCVD-Q64 PCB RevX2 SCH RevA1 with S32K144W

• Mother Board S32K-MB PCB RevA SCH RevB

• XS32K14WEVB-Q064

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K-MB XS32K14WEVB-Q064
LED0 (PTC0) JP49.1 - JP49.2 (PTE0) wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lpit_periodic_interrupt←↩

_s32k144w. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(lpit_periodic_interrupt_s32k144w). Select the
"ConfigTools" menu then click on the desired configurator (Pins, Cocks, Peripherals etc...). Clicking on any one of
those will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update
Code" button.

3. Building the project

Select the configuration to be built RAM (Debug_RAM) by left clicking on the downward arrow corresponding to the
build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configuration for this project:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

14 Module Index 129

Configuration Name Description
lpit_periodic_interrupt_s32k144w_debug_ram_←↩

pemicro
Debug the RAM configuration using PEMicro
debuggers

lpit_periodic_interrupt_s32k144w_debug_flash_←↩

pemicro
Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

14 Module Index

14.1 Modules

Here is a list of all modules:

ADC Driver 132

Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL) 153

Automotive Math and Motor Control Library 166

Clock 194

Clock Manager 195

Clock Manager Driver 196

Comparator (CMP) 239

Comparator Driver 243

Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 259

Controller Area Network with Flexible Data Rate (FlexCAN) 276

FlexCAN Driver 357

Cryptographic Services Engine (CSEc) 280

CSEc Driver 173

Cyclic Redundancy Check (CRC) 281

CRC Driver 168

Enhanced Direct Memory Access (eDMA) 328

EDMA Driver 288

Error Injection Module (EIM) 329

EIM Driver 313

Error Reporting Module (ERM) 331

ERM Driver 318

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

130 CONTENTS

External Watchdog Monitor (EWM) 333

EWM Driver 323

Flash Memory (Flash) 354

Flash Memory (Flash) 334

FlexTimer (FTM) 432

FlexTimer Input Capture Driver (FTM_IC) 470

FlexTimer Module Counter Driver (FTM_MC) 478

FlexTimer Output Compare Driver (FTM_OC) 482

FlexTimer Pulse Width Modulation Driver (FTM_PWM) 488

FlexTimer Quadrature Decoder Driver (FTM_QD) 505

Flexible I/O (FlexIO) 511

FlexIO Common Driver 379

FlexIO I2C Driver 382

FlexIO I2S Driver 391

FlexIO SPI Driver 409

FlexIO UART Driver 423

FreeRTOS 512

I2S - Peripheral Abstraction Layer (I2S PAL) 513

Input Capture - Peripheral Abstraction Layer (IC PAL) 522

Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 531

Interrupt Manager (Interrupt) 548

Local Interconnect Network (LIN) 655

LIN Driver 559

LIN Stack 578

Diagnostic services 283

Node configuration 729

Node identification 734

LIN Core API 558

Common Core API. 233

Driver and cluster management 287

Interface management 546

Notification 735

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

14.1 Modules 131

Schedule management 827

Signal interaction 861

User provided call-outs 945

J2602 Specific API 554

LIN 2.1 Specific API 556

Low level API 663

Transport layer API 890

Common Transport Layer API 235

Cooked API 278

Initialization 521

Raw API 819

J2602 Transport Layer specific API 555

Node configuration 727

Low Power Inter-Integrated Circuit (LPI2C) 656

LPI2C Driver 581

Low Power Interrupt Timer (LPIT) 657

LPIT Driver 597

Low Power Serial Peripheral Interface (LPSPI) 658

LPSPI Driver 612

Low Power Timer (LPTMR) 661

LPTMR Driver 630

Low Power Universal Asynchronous Receiver-Transmitter (LPUART) 662

LPUART Driver 640

Memory Protection Unit (MPU) 720

MPU Driver 695

Memory Protection Unit Peripheral Abstraction Layer (MPU PAL) 722

MPU PAL 709

OS Interface (OSIF) 736

Output Compare - Peripheral Abstraction Layer (OC PAL) 745

Pins Driver (PINS) 774

PINS Driver 768

Power Manager 776

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

132 CONTENTS

Power Manager Driver 786

Power_s32k1xx 788

Programmable Delay Block (PDB) 794

PDB Driver 756

Pulse-width modulation - Peripheral Abstraction Layer (PWM PAL) 795

Real Time Clock Driver (RTC) 821

RTC Driver 804

Security Peripheral Abstraction Layer - SECURITY PAL 846

Security PAL 828

Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL) 849

SoC Header file (SoC Header) 862

S32K144 SoC Header file 825

Backward Compatibility Symbols for S32K144 167

Interrupt vector numbers for S32K144 553

Peripheral access layer for S32K144 773

SoC Support 863

S32K144 System Files 826

Structural Core Self Test 865

System Basis Chip Driver (SBC) - UJA116xA Family 867

UJA116xA SBC Driver 891

TRGMUX Driver 872

Timing - Peripheral Abstraction Layer (TIMING PAL) 879

Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL) 932

Watchdog Peripheral Abstraction Layer (WDG PAL) 962

WDG PAL 946

Watchdog timer (WDOG) 965

WDOG Driver 953

15 Data Structure Index

15.1 Data Structures

Here are the data structures with brief descriptions:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16 Module Documentation 133

adc_callback_info_t
Defines a structure used to pass information to the ADC PAL callback 966

adc_instance_t
Structure storing PAL instance information 966

can_instance_t
Structure storing PAL instance information 967

drv_config_t 967

i2c_instance_t
Structure storing PAL instance information 968

i2s_instance_t
Structure storing PAL instance information 969

ic_instance_t
Structure storing PAL instance information 969

lin_product_id_t
Product id structure Implements : lin_product_id_t_Class 970

mpu_instance_t
Structure storing PAL instance information 971

oc_instance_t
Structure storing PAL instance information 971

oc_pal_state_t
The internal context structure 972

pwm_instance_t
Structure storing PAL instance information 972

spi_instance_t
Structure storing PAL instance information 973

timer_chan_state_t
Runtime state of the Timer channel 973

timing_instance_t
Structure storing PAL instance information 974

uart_instance_t
Structure storing PAL instance information 974

wdg_instance_t
Structure storing PAL instance information 975

16 Module Documentation

16.1 ADC Driver

16.1.1 Detailed Description

Analog to Digital Converter Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

134 CONTENTS

The ADC is a configurable 12-bit (selectable to between 8-bit, 10-bit and 12-bit resolution) single-ended SA←↩

R converter.

Features of the ADC include:

• up to 32 control channels (depending on the device variant), with configurable triggers

• up to 32 selectable external input sources (depending on the device variant) and multiple internal input
sources

• hardware compare and average functions

• auto-calibration feature

Hardware background

The ADC included in the S32K14x series is a selectable resolution (8, 10, 12-bit), single-ended, SAR converter.
Depending on the device variant, each ADC instance has up to 40 selectable input channels (up to 32 external and
up to 8 internal) and up to 32 control channels (each with a result register, an input channel selection register and
interrupt enable).

Sample time is configurable through selection of A/D clock and a configurable sample time (in A/D clocks).

Also provided are the Hardware Average and Hardware Compare Features.

Hardware Average will sample a selectable number of measurements and average them before signaling a Con-
version Complete.

Hardware Compare can be used to signal if an input channel goes outside (or inside) of a predefined range.

The Calibration features can be used to automatically calibrate or fine-tune the ADC before use.

Driver consideration

The ADC Driver provides access to all features, but not all need to be configured to use the ADC. The user appli-
cation can use the default for most settings, changing only what is necessary. For example, if Compare or Average
features are not used, the user does not need to configure them.

The Driver uses structures for configuration. Each structure contains members that are specific to its respective
functionality. There is a converter structure, a hardware compare structure, a hardware average structure and a
calibration structure. Each struct has a corresponding InitStruct() method that can be used to initialize the
members to reset values, so the user can change only the values that are specific to the application.

The Driver also includes support for configuring the Trigger Latching and Arbitration Unit controlled from a separate
hardware module - System Integration Module (SIM).

Interrupt handling

The ADC Driver in S32 SDK does not use interrupts internally. These can be defined by the user application. There
are two ways to add an ADC interrupt:

1. Using the weak symbols defined by start-up code. If the methods ADCx_Handler(void) (x denotes
instance number) are not defined, the linker uses a default ISR. An error will be generated if methods with
the same name are defined multiple times. This method works regardless of the placement of the interrupt
vector table (Flash or RAM).

2. Using the Interrupt Manager's INT_SYS_InstallHandler() method. This can be used to dynamically
change the ISR at run-time. This method works only if the interrupt vector table is located in RAM (S32 SDK
behavior). To get the ADC instance's interrupt number, use ADC_DRV_GetInterruptNumber().

Clocking and pin configuration

The ADC Driver does not handle clock setup (from PCC) or any kind of pin configuration (done by PORT module).
This is handled by the Clock Manager and PORT module, respectively. The driver assumes that correct clock
configurations have been made, so it is the user's responsibility to set up clocking and pin configurations correctly.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.1 ADC Driver 135

Triggering a conversion

There are two separate ways for triggering an ADC conversion from a control channel:

1. Software triggering Only conversion from first control channel may be triggered from software - must enabled
at converter configuration Initiated by writing a valid input channel ID to the first control channel - use ADC←↩

_DRV_ConfigChan().

2. Hardware triggering Conversion from any control channel may be hardware triggered - however for first control
channel it must be enabled at converter configuration.

Integration guideline

Compilation units

The following files need to be compiled in the project:

* ${S32SDK_PATH}\platform\drivers\src\adc_driver.c

*

Include path

The following paths need to be added to the include path of the toolchain:

* ${S32SDK_PATH}\platform\drivers\inc\

*

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager

Data Structures

• struct adc_converter_config_t

Defines the converter configuration. More...

• struct adc_compare_config_t

Defines the hardware compare configuration. More...

• struct adc_average_config_t

Defines the hardware average configuration. More...

• struct adc_chan_config_t

Defines the control channel configuration. More...

• struct adc_calibration_t

Defines the user calibration configuration. More...

Enumerations

• enum adc_clk_divide_t { ADC_CLK_DIVIDE_1 = 0x00U, ADC_CLK_DIVIDE_2 = 0x01U, ADC_CLK_DIVI←↩

DE_4 = 0x02U, ADC_CLK_DIVIDE_8 = 0x03U }

Clock Divider selection.

• enum adc_resolution_t { ADC_RESOLUTION_8BIT = 0x00U, ADC_RESOLUTION_12BIT = 0x01U, ADC←↩

_RESOLUTION_10BIT = 0x02U }

Conversion resolution selection.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

136 CONTENTS

• enum adc_input_clock_t { ADC_CLK_ALT_1 = 0x00U, ADC_CLK_ALT_2 = 0x01U, ADC_CLK_ALT_3 =
0x02U, ADC_CLK_ALT_4 = 0x03U }

Input clock source selection.

• enum adc_trigger_t { ADC_TRIGGER_SOFTWARE = 0x00U, ADC_TRIGGER_HARDWARE = 0x01U }

Trigger type selection.

• enum adc_pretrigger_sel_t { ADC_PRETRIGGER_SEL_PDB = 0x00U, ADC_PRETRIGGER_SEL_TRGM←↩

UX = 0x01U, ADC_PRETRIGGER_SEL_SW = 0x02U }

Pretrigger types selectable from Trigger Latching and Arbitration Unit.

• enum adc_trigger_sel_t { ADC_TRIGGER_SEL_PDB = 0x00U, ADC_TRIGGER_SEL_TRGMUX = 0x01U }

Trigger source selectable from Trigger Latching and Arbitration Unit.

• enum adc_sw_pretrigger_t {
ADC_SW_PRETRIGGER_DISABLED = 0x00U, ADC_SW_PRETRIGGER_0 = 0x04U, ADC_SW_PRETR←↩

IGGER_1 = 0x05U, ADC_SW_PRETRIGGER_2 = 0x06U,
ADC_SW_PRETRIGGER_3 = 0x07U }

Software pretriggers which may be set from Trigger Latching and Arbitration Unit.

• enum adc_voltage_reference_t { ADC_VOLTAGEREF_VREF = 0x00U, ADC_VOLTAGEREF_VALT =
0x01U }

Voltage reference selection.

• enum adc_average_t { ADC_AVERAGE_4 = 0x00U, ADC_AVERAGE_8 = 0x01U, ADC_AVERAGE_16 =
0x02U, ADC_AVERAGE_32 = 0x03U }

Hardware average selection.

• enum adc_inputchannel_t {
ADC_INPUTCHAN_EXT0 = 0x00U, ADC_INPUTCHAN_EXT1 = 0x01U, ADC_INPUTCHAN_EXT3 = 0x03U,
ADC_INPUTCHAN_EXT4 = 0x04U,
ADC_INPUTCHAN_EXT5 = 0x05U, ADC_INPUTCHAN_EXT6 = 0x06U, ADC_INPUTCHAN_EXT7 = 0x07U,
ADC_INPUTCHAN_EXT9 = 0x09U,
ADC_INPUTCHAN_EXT10 = 0x0AU, ADC_INPUTCHAN_EXT11 = 0x0BU, ADC_INPUTCHAN_EXT12 =
0x0CU, ADC_INPUTCHAN_EXT13 = 0x0DU,
ADC_INPUTCHAN_EXT14 = 0x0EU, ADC_INPUTCHAN_DISABLED = ADC_SC1_ADCH_MASK, ADC_I←↩

NPUTCHAN_INT0 = 0x15, ADC_INPUTCHAN_INT1 = 0x16,
ADC_INPUTCHAN_INT2 = 0x17, ADC_INPUTCHAN_INT3 = 0x1C, ADC_INPUTCHAN_TEMP = 0x1A, A←↩

DC_INPUTCHAN_BANDGAP = 0x1B,
ADC_INPUTCHAN_VREFSH = 0x1D, ADC_INPUTCHAN_VREFSL = 0x1E, ADC_INPUTCHAN_SUPPLY←↩

_VDD = 0xF00U, ADC_INPUTCHAN_SUPPLY_VDDA = 0xF01U,
ADC_INPUTCHAN_SUPPLY_VREFH = 0xF02U, ADC_INPUTCHAN_SUPPLY_VDD_3V = 0xF03U, ADC←↩

_INPUTCHAN_SUPPLY_VDD_FLASH_3V = 0xF04U, ADC_INPUTCHAN_SUPPLY_VDD_LV = 0xF05U }

Enumeration of input channels assignable to a control channel.
Note 0: entries in this enum are affected by ::FEATURE_ADC_NUM_EXT_CHANS, which is device dependent and
controlled from "device_name"_features.h file.

• enum adc_latch_clear_t { ADC_LATCH_CLEAR_WAIT, ADC_LATCH_CLEAR_FORCE }

Defines the trigger latch clear method Implements : adc_latch_clear_t_Class.

Converter

Converter specific methods. These are used to configure and use the A/D Converter specific functionality,
including:

• clock input and divider

• sample time in A/D clocks

• resolution

• trigger source

• voltage reference

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.1 ADC Driver 137

• enable DMA

• enable continuous conversion on one channel

To start a conversion, a control channel (see Channel Configuration) and a trigger source must be configured. Once
a conversion is started, the user application can wait for it to be finished by calling the ADC_DRV_WaitConvDone()
function.

Only the first control channel can be triggered by software. To start a conversion in this case, an input channel
must be written in the channel selection register using the ADC_DRV_ConfigChan() method. Writing a value to the
control channel while a conversion is being performed on that channel will start a new conversion.

• void ADC_DRV_InitConverterStruct (adc_converter_config_t ∗const config)

Initializes the converter configuration structure.
• void ADC_DRV_ConfigConverter (const uint32_t instance, const adc_converter_config_t ∗const config)

Configures the converter with the given configuration structure.
• void ADC_DRV_GetConverterConfig (const uint32_t instance, adc_converter_config_t ∗const config)

Gets the current converter configuration.
• void ADC_DRV_Reset (const uint32_t instance)

Resets the converter (sets all configurations to reset values)
• void ADC_DRV_WaitConvDone (const uint32_t instance)

Waits for a conversion/calibration to finish.
• bool ADC_DRV_GetConvCompleteFlag (const uint32_t instance, const uint8_t chanIndex)

Gets the control channel Conversion Complete Flag state.

Hardware Compare

The Hardware Compare feature of the S32K144 ADC is a versatile mechanism that can be used to monitor that a
value is within certain values. Measurements can be monitored to be within certain ranges:

• less than/ greater than a fixed value

• inside or outside of a certain range

Two compare values can be configured (the second value is used only for range function mode). The compare
values must be written in 12-bit resolution mode regardless of the actual used resolution mode.

Once the hardware compare feature is enabled, a conversion is considered complete only when the measured value
is within the allowable range set by the configuration.

• void ADC_DRV_InitHwCompareStruct (adc_compare_config_t ∗const config)

Initializes the Hardware Compare configuration structure.
• void ADC_DRV_ConfigHwCompare (const uint32_t instance, const adc_compare_config_t ∗const config)

Configures the Hardware Compare feature with the given configuration structure.
• void ADC_DRV_GetHwCompareConfig (const uint32_t instance, adc_compare_config_t ∗const config)

Gets the current Hardware Compare configuration.

Hardware Average

The Hardware Average feature of the S32K144 allows for a set of measurements to be averaged together as a
single conversion. The number of samples to be averaged is selectable (4, 8, 16 or 32 samples).

• void ADC_DRV_InitHwAverageStruct (adc_average_config_t ∗const config)

Initializes the Hardware Average configuration structure.
• void ADC_DRV_ConfigHwAverage (const uint32_t instance, const adc_average_config_t ∗const config)

Configures the Hardware Average feature with the given configuration structure.
• void ADC_DRV_GetHwAverageConfig (const uint32_t instance, adc_average_config_t ∗const config)

Gets the current Hardware Average configuration.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

138 CONTENTS

Channel configuration

Control register specific functions. These functions control configurations for each control channel (input channel
selection and interrupt enable).

When software triggering is enabled, calling the ADC_DRV_ConfigChan() method for control channel 0 starts a new
conversion.

After a conversion is finished, the result can be retrieved using the ADC_DRV_GetChanResult() method.

• void ADC_DRV_InitChanStruct (adc_chan_config_t ∗const config)

Initializes the control channel configuration structure.

• void ADC_DRV_ConfigChan (const uint32_t instance, const uint8_t chanIndex, const adc_chan_config_←↩

t ∗const config)

Configures the selected control channel with the given configuration structure.

• void ADC_DRV_GetChanConfig (const uint32_t instance, const uint8_t chanIndex, adc_chan_config_←↩

t ∗const config)

Gets the current control channel configuration for the selected channel index.

• void ADC_DRV_SetSwPretrigger (const uint32_t instance, const adc_sw_pretrigger_t swPretrigger)

This function sets the software pretrigger - affects only first 4 control channels.

• void ADC_DRV_GetChanResult (const uint32_t instance, const uint8_t chanIndex, uint16_t ∗const result)

Gets the last result for the selected control channel.

Automatic Calibration

These methods control the Calibration feature of the ADC.

The ADC_DRV_AutoCalibration() method can be called to execute a calibration sequence, or a calibration can be
retrieved with the ADC_DRV_GetUserCalibration() and saved to non-volatile storage, to avoid calibration on every
power-on. The calibration structure can be written with the ADC_DRV_ConfigUserCalibration() method.

• void ADC_DRV_AutoCalibration (const uint32_t instance)

Executes an Auto-Calibration.

• void ADC_DRV_InitUserCalibrationStruct (adc_calibration_t ∗const config)

Initializes the User Calibration configuration structure.

• void ADC_DRV_ConfigUserCalibration (const uint32_t instance, const adc_calibration_t ∗const config)

Configures the User Calibration feature with the given configuration structure.

• void ADC_DRV_GetUserCalibration (const uint32_t instance, adc_calibration_t ∗const config)

Gets the current User Calibration configuration.

Interrupts

This method returns the interrupt number for an ADC instance, which can be used to configure the interrupt, like in
Interrupt Manager.

• IRQn_Type ADC_DRV_GetInterruptNumber (const uint32_t instance)

Returns the interrupt number for the ADC instance.

Latched triggers processing

These functions provide basic operations for using the trigger latch mechanism.

• void ADC_DRV_ClearLatchedTriggers (const uint32_t instance, const adc_latch_clear_t clearMode)

Clear latched triggers under processing.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.1 ADC Driver 139

• void ADC_DRV_ClearTriggerErrors (const uint32_t instance)

Clear all latch trigger error.

• uint32_t ADC_DRV_GetTriggerErrorFlags (const uint32_t instance)

Get the trigger error flags bits of the ADC instance.

16.1.2 Data Structure Documentation

16.1.2.1 struct adc_converter_config_t

Defines the converter configuration.

This structure is used to configure the ADC converter

Implements : adc_converter_config_t_Class

Definition at line 249 of file adc_driver.h.

Data Fields

• adc_clk_divide_t clockDivide
• uint8_t sampleTime
• adc_resolution_t resolution
• adc_input_clock_t inputClock
• adc_trigger_t trigger
• adc_pretrigger_sel_t pretriggerSel
• adc_trigger_sel_t triggerSel
• bool dmaEnable
• adc_voltage_reference_t voltageRef
• bool continuousConvEnable
• bool supplyMonitoringEnable

Field Documentation

16.1.2.1.1 adc_clk_divide_t clockDivide

Divider of the input clock for the ADC

Definition at line 251 of file adc_driver.h.

16.1.2.1.2 bool continuousConvEnable

Enable Continuous conversions

Definition at line 260 of file adc_driver.h.

16.1.2.1.3 bool dmaEnable

Enable DMA for the ADC

Definition at line 258 of file adc_driver.h.

16.1.2.1.4 adc_input_clock_t inputClock

Input clock source

Definition at line 254 of file adc_driver.h.

16.1.2.1.5 adc_pretrigger_sel_t pretriggerSel

Pretrigger source selected from Trigger Latching and Arbitration Unit - affects only the first 4 control channels

Definition at line 256 of file adc_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

140 CONTENTS

16.1.2.1.6 adc_resolution_t resolution

ADC resolution (8,10,12 bit)

Definition at line 253 of file adc_driver.h.

16.1.2.1.7 uint8_t sampleTime

Sample time in AD Clocks

Definition at line 252 of file adc_driver.h.

16.1.2.1.8 bool supplyMonitoringEnable

Only available for ADC 0. Enable internal supply monitoring - enables measurement of ADC_INPUTCHAN_SUP←↩

PLY_ sources.

Definition at line 261 of file adc_driver.h.

16.1.2.1.9 adc_trigger_t trigger

ADC trigger type (software, hardware) - affects only the first control channel

Definition at line 255 of file adc_driver.h.

16.1.2.1.10 adc_trigger_sel_t triggerSel

Trigger source selected from Trigger Latching and Arbitration Unit

Definition at line 257 of file adc_driver.h.

16.1.2.1.11 adc_voltage_reference_t voltageRef

Voltage reference used

Definition at line 259 of file adc_driver.h.

16.1.2.2 struct adc_compare_config_t

Defines the hardware compare configuration.

This structure is used to configure the hardware compare feature for the ADC

Implements : adc_compare_config_t_Class

Definition at line 272 of file adc_driver.h.

Data Fields

• bool compareEnable
• bool compareGreaterThanEnable
• bool compareRangeFuncEnable
• uint16_t compVal1
• uint16_t compVal2

Field Documentation

16.1.2.2.1 bool compareEnable

Enable the compare feature

Definition at line 274 of file adc_driver.h.

16.1.2.2.2 bool compareGreaterThanEnable

Enable Greater-Than functionality

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.1 ADC Driver 141

Definition at line 275 of file adc_driver.h.

16.1.2.2.3 bool compareRangeFuncEnable

Enable Range functionality

Definition at line 276 of file adc_driver.h.

16.1.2.2.4 uint16_t compVal1

First Compare Value

Definition at line 277 of file adc_driver.h.

16.1.2.2.5 uint16_t compVal2

Second Compare Value

Definition at line 278 of file adc_driver.h.

16.1.2.3 struct adc_average_config_t

Defines the hardware average configuration.

This structure is used to configure the hardware average feature for the ADC

Implements : adc_average_config_t_Class

Definition at line 289 of file adc_driver.h.

Data Fields

• bool hwAvgEnable

• adc_average_t hwAverage

Field Documentation

16.1.2.3.1 adc_average_t hwAverage

Selection for number of samples used for averaging

Definition at line 292 of file adc_driver.h.

16.1.2.3.2 bool hwAvgEnable

Enable averaging functionality

Definition at line 291 of file adc_driver.h.

16.1.2.4 struct adc_chan_config_t

Defines the control channel configuration.

This structure is used to configure a control channel of the ADC

Implements : adc_chan_config_t_Class

Definition at line 303 of file adc_driver.h.

Data Fields

• bool interruptEnable

• adc_inputchannel_t channel

Field Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

142 CONTENTS

16.1.2.4.1 adc_inputchannel_t channel

Selection of input channel for measurement

Definition at line 306 of file adc_driver.h.

16.1.2.4.2 bool interruptEnable

Enable interrupts for this channel

Definition at line 305 of file adc_driver.h.

16.1.2.5 struct adc_calibration_t

Defines the user calibration configuration.

This structure is used to configure the user calibration parameters of the ADC.

Implements : adc_calibration_t_Class

Definition at line 317 of file adc_driver.h.

Data Fields

• uint16_t userGain
• uint16_t userOffset

Field Documentation

16.1.2.5.1 uint16_t userGain

User-configurable gain

Definition at line 319 of file adc_driver.h.

16.1.2.5.2 uint16_t userOffset

User-configurable Offset (2's complement, subtracted from result)

Definition at line 320 of file adc_driver.h.

16.1.3 Enumeration Type Documentation

16.1.3.1 enum adc_average_t

Hardware average selection.

Implements : adc_average_t_Class

Enumerator

ADC_AVERAGE_4 Hardware average of 4 samples.

ADC_AVERAGE_8 Hardware average of 8 samples.

ADC_AVERAGE_16 Hardware average of 16 samples.

ADC_AVERAGE_32 Hardware average of 32 samples.

Definition at line 154 of file adc_driver.h.

16.1.3.2 enum adc_clk_divide_t

Clock Divider selection.

Implements : adc_clk_divide_t_Class

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.1 ADC Driver 143

Enumerator

ADC_CLK_DIVIDE_1 Input clock divided by 1.

ADC_CLK_DIVIDE_2 Input clock divided by 2.

ADC_CLK_DIVIDE_4 Input clock divided by 4.

ADC_CLK_DIVIDE_8 Input clock divided by 8.

Definition at line 57 of file adc_driver.h.

16.1.3.3 enum adc_input_clock_t

Input clock source selection.

Implements : adc_input_clock_t_Class

Enumerator

ADC_CLK_ALT_1 Input clock alternative 1.

ADC_CLK_ALT_2 Input clock alternative 2.

ADC_CLK_ALT_3 Input clock alternative 3.

ADC_CLK_ALT_4 Input clock alternative 4.

Definition at line 82 of file adc_driver.h.

16.1.3.4 enum adc_inputchannel_t

Enumeration of input channels assignable to a control channel.
Note 0: entries in this enum are affected by ::FEATURE_ADC_NUM_EXT_CHANS, which is device dependent and
controlled from "device_name"_features.h file.

Note 1: the actual number of external channels may differ between device packages and ADC instances. Reading
a channel that is not connected externally, will return a random value within the range. Please refer to the Reference
Manual for the maximum number of external channels for each device variant and ADC instance.

Note 2: ADC_INPUTCHAN_SUPPLY_ select which internal supply channel to be measured. They are only avail-
able for ADC0 and measured internally via internal input channel 0. Please note that supply monitoring needs to be
enabled separately via dedicated flag in adc_converter_config_t.

Implements : adc_inputchannel_t_Class

Enumerator

ADC_INPUTCHAN_EXT0 External input channel 0

ADC_INPUTCHAN_EXT1 External input channel 1

ADC_INPUTCHAN_EXT3 External input channel 3

ADC_INPUTCHAN_EXT4 External input channel 4

ADC_INPUTCHAN_EXT5 External input channel 5

ADC_INPUTCHAN_EXT6 External input channel 6

ADC_INPUTCHAN_EXT7 External input channel 7

ADC_INPUTCHAN_EXT9 External input channel 9

ADC_INPUTCHAN_EXT10 External input channel 10

ADC_INPUTCHAN_EXT11 External input channel 11

ADC_INPUTCHAN_EXT12 External input channel 12

ADC_INPUTCHAN_EXT13 External input channel 13

ADC_INPUTCHAN_EXT14 External input channel 14

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

144 CONTENTS

ADC_INPUTCHAN_DISABLED Channel disabled

ADC_INPUTCHAN_INT0 Internal input channel 0

ADC_INPUTCHAN_INT1 Internal input channel 1

ADC_INPUTCHAN_INT2 Internal input channel 2

ADC_INPUTCHAN_INT3 Internal input channel 3

ADC_INPUTCHAN_TEMP Temperature Sensor

ADC_INPUTCHAN_BANDGAP Band Gap

ADC_INPUTCHAN_VREFSH Voltage Reference Select High

ADC_INPUTCHAN_VREFSL Voltage Reference Select Low

ADC_INPUTCHAN_SUPPLY_VDD Monitor internal supply 5 V input VDD supply.

ADC_INPUTCHAN_SUPPLY_VDDA Monitor internal supply 5 V input analog supply.

ADC_INPUTCHAN_SUPPLY_VREFH Monitor internal supply ADC reference supply.

ADC_INPUTCHAN_SUPPLY_VDD_3V Monitor internal supply 3.3 V oscillator regulator output.

ADC_INPUTCHAN_SUPPLY_VDD_FLASH_3V Monitor internal supply 3.3 V flash regulator output.

ADC_INPUTCHAN_SUPPLY_VDD_LV Monitor internal supply 1.2 V core regulator output.

Definition at line 177 of file adc_driver.h.

16.1.3.5 enum adc_latch_clear_t

Defines the trigger latch clear method Implements : adc_latch_clear_t_Class.

Enumerator

ADC_LATCH_CLEAR_WAIT Clear by waiting all latched triggers to be processed

ADC_LATCH_CLEAR_FORCE Process current trigger and clear all latched

Definition at line 327 of file adc_driver.h.

16.1.3.6 enum adc_pretrigger_sel_t

Pretrigger types selectable from Trigger Latching and Arbitration Unit.

Implements : adc_pretrigger_sel_t_Class

Enumerator

ADC_PRETRIGGER_SEL_PDB PDB pretrigger selected.

ADC_PRETRIGGER_SEL_TRGMUX TRGMUX pretrigger selected.

ADC_PRETRIGGER_SEL_SW Software pretrigger selected.

Definition at line 106 of file adc_driver.h.

16.1.3.7 enum adc_resolution_t

Conversion resolution selection.

Implements : adc_resolution_t_Class

Enumerator

ADC_RESOLUTION_8BIT 8-bit resolution mode

ADC_RESOLUTION_12BIT 12-bit resolution mode

ADC_RESOLUTION_10BIT 10-bit resolution mode

Definition at line 70 of file adc_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.1 ADC Driver 145

16.1.3.8 enum adc_sw_pretrigger_t

Software pretriggers which may be set from Trigger Latching and Arbitration Unit.

Implements : adc_sw_pretrigger_t_Class

Enumerator

ADC_SW_PRETRIGGER_DISABLED SW pretrigger disabled.

ADC_SW_PRETRIGGER_0 SW pretrigger 0.

ADC_SW_PRETRIGGER_1 SW pretrigger 1.

ADC_SW_PRETRIGGER_2 SW pretrigger 2.

ADC_SW_PRETRIGGER_3 SW pretrigger 3.

Definition at line 129 of file adc_driver.h.

16.1.3.9 enum adc_trigger_sel_t

Trigger source selectable from Trigger Latching and Arbitration Unit.

Implements : adc_trigger_sel_t_Class

Enumerator

ADC_TRIGGER_SEL_PDB PDB trigger selected.

ADC_TRIGGER_SEL_TRGMUX TRGMUX trigger selected.

Definition at line 118 of file adc_driver.h.

16.1.3.10 enum adc_trigger_t

Trigger type selection.

Implements : adc_trigger_t_Class

Enumerator

ADC_TRIGGER_SOFTWARE Software trigger.

ADC_TRIGGER_HARDWARE Hardware trigger.

Definition at line 95 of file adc_driver.h.

16.1.3.11 enum adc_voltage_reference_t

Voltage reference selection.

Implements : adc_voltage_reference_t_Class

Enumerator

ADC_VOLTAGEREF_VREF VrefH and VrefL as Voltage reference.

ADC_VOLTAGEREF_VALT ValtH and ValtL as Voltage reference.

Definition at line 143 of file adc_driver.h.

16.1.4 Function Documentation

16.1.4.1 void ADC_DRV_AutoCalibration (const uint32_t instance)

Executes an Auto-Calibration.

This functions executes an Auto-Calibration sequence. It is recommended to run this sequence before using the
ADC converter.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

146 CONTENTS

Parameters

in instance instance number

Definition at line 555 of file adc_driver.c.

16.1.4.2 void ADC_DRV_ClearLatchedTriggers (const uint32_t instance, const adc_latch_clear_t clearMode)

Clear latched triggers under processing.

This function clears all trigger latched flags of the ADC instance. This function must be called after the hardware
trigger source for the ADC has been deactivated.

Parameters

in instance instance number of the ADC
in clearMode The clearing method for the latched triggers

• ADC_LATCH_CLEAR_WAIT : Wait for all latched triggers to be pro-
cessed.

• ADC_LATCH_CLEAR_FORCE : Clear latched triggers and wait for trig-
ger being process to finish.

Definition at line 712 of file adc_driver.c.

16.1.4.3 void ADC_DRV_ClearTriggerErrors (const uint32_t instance)

Clear all latch trigger error.

This function clears all trigger error flags of the ADC instance.

Parameters

in instance instance number of the ADC

Definition at line 737 of file adc_driver.c.

16.1.4.4 void ADC_DRV_ConfigChan (const uint32_t instance, const uint8_t chanIndex, const adc_chan_config_t ∗const
config)

Configures the selected control channel with the given configuration structure.

When Software Trigger mode is enabled, configuring control channel index 0, implicitly triggers a new conversion
on the selected ADC input channel. Therefore, ADC_DRV_ConfigChan can be used for sw-triggering conversions.

Configuring any control channel while it is actively controlling a conversion (sw or hw triggered) will implicitly abort
the on-going conversion.

Parameters

in instance instance number
in chanIndex the control channel index
in config the configuration structure

Definition at line 381 of file adc_driver.c.

16.1.4.5 void ADC_DRV_ConfigConverter (const uint32_t instance, const adc_converter_config_t ∗const config)

Configures the converter with the given configuration structure.

This function configures the ADC converter with the options provided in the provided structure.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.1 ADC Driver 147

Parameters

in instance instance number
in config the configuration structure

Definition at line 94 of file adc_driver.c.

16.1.4.6 void ADC_DRV_ConfigHwAverage (const uint32_t instance, const adc_average_config_t ∗const config)

Configures the Hardware Average feature with the given configuration structure.

This function sets the configuration for the Hardware Average feature.

Parameters

in instance instance number
in config the configuration structure

Definition at line 318 of file adc_driver.c.

16.1.4.7 void ADC_DRV_ConfigHwCompare (const uint32_t instance, const adc_compare_config_t ∗const config)

Configures the Hardware Compare feature with the given configuration structure.

This functions sets the configuration for the Hardware Compare feature using the configuration structure.

Parameters

in instance instance number
in config the configuration structure

Definition at line 255 of file adc_driver.c.

16.1.4.8 void ADC_DRV_ConfigUserCalibration (const uint32_t instance, const adc_calibration_t ∗const config)

Configures the User Calibration feature with the given configuration structure.

This function sets the configuration for the user calibration registers.

Parameters

in instance instance number
in config the configuration structure

Definition at line 658 of file adc_driver.c.

16.1.4.9 void ADC_DRV_GetChanConfig (const uint32_t instance, const uint8_t chanIndex, adc_chan_config_t ∗const
config)

Gets the current control channel configuration for the selected channel index.

This function returns the configuration for a control channel

Parameters

in instance instance number
in chanIndex the control channel index
out config the configuration structure

Definition at line 406 of file adc_driver.c.

16.1.4.10 void ADC_DRV_GetChanResult (const uint32_t instance, const uint8_t chanIndex, uint16_t ∗const result)

Gets the last result for the selected control channel.

This function returns the conversion result from a control channel.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

148 CONTENTS

Parameters

in instance instance number
in chanIndex the converter control channel index
out result the result raw value

Definition at line 517 of file adc_driver.c.

16.1.4.11 bool ADC_DRV_GetConvCompleteFlag (const uint32_t instance, const uint8_t chanIndex)

Gets the control channel Conversion Complete Flag state.

This function returns the state of the Conversion Complete flag for a control channel. This flag is set when a
conversion is complete or the condition generated by the Hardware Compare feature is evaluated to true.

Parameters

in instance instance number
in chanIndex the adc control channel index

Returns

the Conversion Complete Flag state

Definition at line 490 of file adc_driver.c.

16.1.4.12 void ADC_DRV_GetConverterConfig (const uint32_t instance, adc_converter_config_t ∗const config)

Gets the current converter configuration.

This functions returns the configuration for converter in the form of a configuration structure.

Parameters

in instance instance number
out config the configuration structure

Definition at line 140 of file adc_driver.c.

16.1.4.13 void ADC_DRV_GetHwAverageConfig (const uint32_t instance, adc_average_config_t ∗const config)

Gets the current Hardware Average configuration.

This function returns the configuration for the Hardware Average feature.

Parameters

in instance instance number
out config the configuration structure

Definition at line 337 of file adc_driver.c.

16.1.4.14 void ADC_DRV_GetHwCompareConfig (const uint32_t instance, adc_compare_config_t ∗const config)

Gets the current Hardware Compare configuration.

This function returns the configuration for the Hardware Compare feature.

Parameters

in instance instance number
out config the configuration structure

Definition at line 277 of file adc_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.1 ADC Driver 149

16.1.4.15 IRQn_Type ADC_DRV_GetInterruptNumber (const uint32_t instance)

Returns the interrupt number for the ADC instance.

This function returns the interrupt number for the specified ADC instance.

Parameters

in instance instance number of the ADC

Returns

irq_number: the interrupt number (index) of the ADC instance, used to configure the interrupt

Definition at line 695 of file adc_driver.c.

16.1.4.16 uint32_t ADC_DRV_GetTriggerErrorFlags (const uint32_t instance)

Get the trigger error flags bits of the ADC instance.

This function returns the trigger error flags bits of the ADC instance.

Parameters

in instance instance number of the ADC

Returns

trigErrorFlags The Trigger Error Flags bit-mask

Definition at line 753 of file adc_driver.c.

16.1.4.17 void ADC_DRV_GetUserCalibration (const uint32_t instance, adc_calibration_t ∗const config)

Gets the current User Calibration configuration.

This function returns the current user calibration register values.

Parameters

in instance instance number
out config the configuration structure

Definition at line 677 of file adc_driver.c.

16.1.4.18 void ADC_DRV_InitChanStruct (adc_chan_config_t ∗const config)

Initializes the control channel configuration structure.

This function initializes the control channel configuration structure to default values (Reference Manual resets). This
function should be called on a structure before using it to configure a channel (ADC_DRV_ConfigChan), otherwise
all members must be written by the caller. This function insures that all members are written with safe values, so
the user can modify only the desired members.

Parameters

out config the configuration structure

Definition at line 359 of file adc_driver.c.

16.1.4.19 void ADC_DRV_InitConverterStruct (adc_converter_config_t ∗const config)

Initializes the converter configuration structure.

This function initializes the members of the adc_converter_config_t structure to default values (Reference Manual
resets). This function should be called on a structure before using it to configure the converter with ADC_DRV←↩

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

150 CONTENTS

_ConfigConverter(), otherwise all members must be written (initialized) by the user. This function insures that all
members are written with safe values, so the user can modify only the desired members.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.1 ADC Driver 151

Parameters

out config the configuration structure

Definition at line 69 of file adc_driver.c.

16.1.4.20 void ADC_DRV_InitHwAverageStruct (adc_average_config_t ∗const config)

Initializes the Hardware Average configuration structure.

This function initializes the Hardware Average configuration structure to default values (Reference Manual resets).
This function should be called before configuring the Hardware Average feature (ADC_DRV_ConfigHwAverage),
otherwise all members must be written by the caller. This function insures that all members are written with safe
values, so the user can modify the desired members.

Parameters

out config the configuration structure

Definition at line 302 of file adc_driver.c.

16.1.4.21 void ADC_DRV_InitHwCompareStruct (adc_compare_config_t ∗const config)

Initializes the Hardware Compare configuration structure.

This function initializes the Hardware Compare configuration structure to default values (Reference Manual resets).
This function should be called before configuring the Hardware Compare feature (ADC_DRV_ConfigHwCompare),
otherwise all members must be written by the caller. This function insures that all members are written with safe
values, so the user can modify the desired members.

Parameters

out config the configuration structure

Definition at line 236 of file adc_driver.c.

16.1.4.22 void ADC_DRV_InitUserCalibrationStruct (adc_calibration_t ∗const config)

Initializes the User Calibration configuration structure.

This function initializes the User Calibration configuration structure to default values (Reference Manual resets).
This function should be called on a structure before using it to configure the User Calibration feature (ADC_DRV_←↩

ConfigUserCalibration), otherwise all members must be written by the caller. This function insures that all members
are written with safe values, so the user can modify only the desired members. this function will check and reset
clock divide based the adc frequency. an error will be displayed if frequency is greater than required clock for
calibration.

Parameters

out config the configuration structure

Definition at line 642 of file adc_driver.c.

16.1.4.23 void ADC_DRV_Reset (const uint32_t instance)

Resets the converter (sets all configurations to reset values)

This function resets all the internal ADC registers to reset values.

Parameters

in instance instance number

Definition at line 178 of file adc_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

152 CONTENTS

16.1.4.24 void ADC_DRV_SetSwPretrigger (const uint32_t instance, const adc_sw_pretrigger_t swPretrigger)

This function sets the software pretrigger - affects only first 4 control channels.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.1 ADC Driver 153

Parameters

in instance instance number
in swPretrigger the swPretrigger to be enabled

Definition at line 426 of file adc_driver.c.

16.1.4.25 void ADC_DRV_WaitConvDone (const uint32_t instance)

Waits for a conversion/calibration to finish.

This functions waits for a conversion to complete by continuously polling the Conversion Active Flag.

Parameters

in instance instance number

Definition at line 470 of file adc_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

154 CONTENTS

16.2 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL)

16.2.1 Detailed Description

Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL).

ADC PAL general consideration

The ADC PAL is an interface abstraction layer for multiple Analog to Digital Converter peripherals.
The ADC PAL allows configuration of groups of successive conversions started by a single trigger event.
Each conversion in a group is mapped to an ADC input channel - the conversion group is actually defined by an
array of input channels, which is a member of the adc_group_config_t structure. The order of the input channels
will also give the order of execution of the conversions within the group.
Note: all conversion groups need to be configured at PAL initialization time.

The trigger event for a group can be SW or HW, and needs to be selected at configuration time.

1. Execution of SW triggered groups may be started/stopped by calling a dedicated function ADC_Start←↩

GroupConversion(), ADC_StopGroupConversion().

2. HW triggered groups need to be enabled for execution by calling a dedicated function - the actual execution
will be started by the occurrence of the selected hardware trigger event ADC_EnableHardwareTrigger(), A←↩

DC_DisableHardwareTrigger().
Note: for HW triggered groups the ADC PAL does not configure the peripherals which provide the triggering
events (timers, counters, etc.) - they will need to be configured separately by the ADC PAL user.

Each group needs to have associated a result buffer which needs to be allocated by the PAL user. The length of
the result buffer is defined by two configuration parameters:
∗ numChannels - defines also the size of the inputChannelArray
∗ numSetsResultBuffer - defines the number of sets of results which can be stored in the result buffer.
The length of the result buffer = numChannels ∗ numSetsResultBuffer. Each time a group of conversions finishes
execution, a set of results for all conversions in the group will be copied by the PAL into the corresponding result
buffer. The PAL considers the result buffer as circular, with the length configured via previously described.

On some platforms, HW triggered groups may support delay(s) between the occurrence of the HW trigger event
and the actual start of conversions. This feature can be controlled for each HW triggered group via delayType and
delayArray parameters in adc_group_config_t. For SW triggered groups, these parameters are ignored. For details
please refer to ADC PAL platform specific information.

Each group can also have associated a notification callback which will be executed when all conversions
finish execution. The callback shall receive as parameter a pointer to adc_callback_info_t containing the group
index for which the notification is called, and result buffer tail - offset of the most recent conversion result in the result
buffer. Notifications can be enabled and disabled using ADC_EnableNotification() and ADC_DisableNotification().
By default the notification is set to active when enabling a HW triggered group or starting a SW triggered group.
Note: The notification callback may be set to NULL and thus it will not be called.

For SW triggered groups, continuous mode can be enabled at configuration time.
E.g.: a group with 3 conversions InputCh0, InputCh1, InputCh2 -> with continuous mode enabled will continuously
repeat the series of conversions until it is stopped: InputCh0, InputCh1, InputCh2, InputCh0, InputCh1, InputCh2,...
The user needs to dimension accordingly the result buffer, such that it has sufficient time to read the results before
they are overwritten.
For HW triggered groups, continuous mode parameter is not available.

The ADC PAL implicitly configures and uses other peripherals besides ADC - these resources should not be
used simultaneously from other parts of the application. For details please refer to the platform specific details.

The ADC PAL module needs to include a configuration file named adc_pal_cfg.h, which defines which IPs
are used.

The ADC PAL allows configuration of platform specific parameters via a pointer to a platform specific structure,
following the naming convention: extension_adc_<platform>_t. E.g.: extension_adc_s32k1xx_t

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.2 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL) 155

Important note

The ADC PAL configuration structure passed via reference to ADC_Init(), including all arrays referenced by structure
members, must be persistent throughout the usage of the ADC PAL. Storing them to memory sections which get
freed or altered during ADC PAL usage, will lead to unpredictable behavior.

Platform specific details

S32K1xx device family

On these platforms, each instance of ADC PAL uses:

• one instance of PDB linked to the selected ADC (ADCn - PDBn) - used for both SW and HW triggered groups

• the TRGMUX_TARGET_MODULE_PDBn_TRG_IN targets from TRGMUX - used only for HW triggered
groups

These platforms are supported by the ADC PAL of type ADC_PAL_S32K1xx.

Important details:

1. The PAL supports configuring any number of conversion groups at PAL initialization time, but every time a
HW/SW triggered group is enabled/started, the underlying hardware peripherals are reconfigured.

2. The same input channel may appear multiple times in a group.

Group delay support:

• no delay between HW trigger event and conversions start:
delayType = ADC_DELAY_TYPE_NO_DELAY and delayArray = NULL

• group delay between HW trigger event and the start of the first conversion in the group - the rest of conversions
start right after the previous one
delayType = ADC_DELAY_TYPE_GROUP_DELAY and delayArray set to point to a single uint16_t variable
storing the delay value, expressed in PDB ticks (affected by PDB prescaler configurable via config extension)

• individual delays between HW trigger event and the start of each conversion in the group delayType = ADC←↩

_DELAY_TYPE_INDIVIDUAL_DELAY and delayArray set to point to an uin16_t array with length equal with
the number of conversions in the group
Delays are expressed in PDB ticks (affected by PDB prescaler configurable via config extension). Delay
values are measured relative to the trigger event. When a delay expires, a PDB pretrigger is issued.
Note: the pretriggers must not occur while another conversion in the group is running, otherwise the ADC
freezes. It is the user's responsibility to make sure they do not overlap, i.e. delayN_plus_1 > (delayN +
conversion_duration).

MPC5746C and MPC5748G device families

On these platforms, each instance of ADC PAL uses:

• one instance of BCTU - used only for HW triggered groups

• all ADC instances connected to the selected BCTU instance. Please note that the ADC instances may have
different resolutions

These platforms are supported by the ADC PAL of type ADC_PAL_MPC574xC_G_R.

Group delay support:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

156 CONTENTS

• groups do not support delays, so in adc_group_config_t structures delayType must be set to ADC_DELAY←↩

_TYPE_NO_DELAY and delayArray to NULL, in adc_group_config_t.

Important details:

1. The PAL supports any number of SW triggered conversion groups at PAL initialization time. SW triggered
groups will be configured directly in ADC, each time ADC_StartGroupConversion() is called.

2. The maximum supported number of HW triggered conversion groups is expressed in two steps:

• for groups which include a minimum of 2 conversions: the total number of conversions within all these
groups shall be less than or equal with the number of BCTU LIST HW registers. (E.g. 1 group of 8
conversions & 1 group of 24 conversions: 8 + 24 <= 32)

• for groups which include a single conversion: the total number of such groups shall be less than or
equal with the total number of BCTU Triggers minus the number of configured groups with at least 2
conversions

3. An input channel may only appear once in the group, otherwise the last conversion result will appear for each
occurrence of the channel index in the group. This is a platform limitation: BCTU has only a single result
register per ADC instance, and the ADC has a single result register per channel.

4. A conversion group (SW and HW triggered) can target only conversions on a single ADC instance.

5. The same trigger source cannot be assigned to multiple HW triggered groups.

6. Multiple HW triggered groups may be enabled simultaneously.
However, the user must make sure that the actual HW trigger events do not occur simultaneously and that
conversions from multiple groups do not overlap in time. Otherwise hardware errors may occur and results
may be overwritten.

MPC574xP and S32Rx7x device families

On these platforms, each instance of ADC PAL uses:

• one instance of CTU - used only for HW triggered groups and statically configured to CTU triggered mode

• all ADC instances connected to the selected CTU instance

These platforms are supported by the ADC PAL of type ADC_PAL_SAR_CTU.

Group delay support:

• no delay between HW trigger event and conversions start:
delayType = ADC_DELAY_TYPE_NO_DELAY and delayArray = NULL

• group delay between HW trigger event and the start of the first conversion in the group - the rest of conversions
start right after the previous one
delayType = ADC_DELAY_TYPE_GROUP_DELAY and delayArray set to point to a single uint16_t variable
storing the delay value, expressed in CTU ticks (affected by CTU prescaler)

Important details:

1. The PAL supports any number of SW triggered conversion groups at PAL initialization time. SW triggered
groups will be configured directly in ADC, each time ADC_StartGroupConversion() is called.

2. The maximum supported number of HW triggered conversion groups is equal with the number of CTU result
FIFOs - defined in platform header file as CTU_FR_COUNT. The total number of conversions in all HW
triggered groups must be <= the length of the CTU ADC command list - defined in platform header file as
CTU_CHANNEL_COUNT.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.2 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL) 157

3. A conversion group (SW and HW triggered) can target only conversions on a single ADC instance.

4. An input channel may only appear once in a SW triggered group, otherwise the last conversion result will
appear for each occurrence of the channel index in the group. This is a platform limitation: the ADC has a
single result register per channel. For HW triggered groups this restriction doesn't apply.

5. All HW triggered groups can be enabled simultaneously.
However, the user must make sure that the actual HW trigger events do not occur simultaneously and that
conversions from multiple groups do not overlap in time. Otherwise hardware errors may occur and results
may be overwritten.

6. Each HW triggered group has assigned a CTU result FIFO. The number of channels in each group must be
less than the CTU result FIFO length - note that not all FIFOs have the same length. FIFOs are assigned in
the same order in which the HW triggered groups are configured in the PAL init state: FIFO#0 assigned to
first group, FIFO#1 to second, etc.

7. The trigger sources enabled for a group can implicitly start also the rest of the enabled HW triggered groups.
E.g. SourceX configured for group0, sourceY configured for group1. If both groups are enabled, when event
from sourceX occurs, both group0 and group1 will execute; the same when event from sourceY occurs.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\adc\adc_pal.c
${S32SDK_PATH}\platform\pal\src\adc\adc_irq.c

Additionally, it is required to compile also the .c files from the dependencies listed for each ADC PAL type (please
see Dependencies subsection below).

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc\
${S32SDK_PATH}\platform\drivers\inc\

An additional file, named adc_pal_cfg.h, must be created by the user and added to one of the include paths. The
user has to add to the file the definitions of preprocessor symbols according to the ADC PAL type used. These
symbols are specified in the next subsection.
When using the S32 SDK configuration tool, the file is generated by the configurator.

The pal type ADC_PAL_S32K1xx also requires:

${S32SDK_PATH}\platform\drivers\src\adc\

Compile symbols

1. Define for selecting one of the ADC PAL type to be used:

ADC_PAL_S32K1xx
ADC_PAL_MPC574xC_G_R
ADC_PAL_SAR_CTU

2. Define the maximum number of HW triggered groups which may be enabled simultaneously. For ADC_PA←↩

L_S32K1xx the maximum value of the define is 1.

ADC_PAL_MAX_NUM_HW_GROUPS_EN

3. For ADC_PAL_MPC574xC_G_R and ADC_PAL_SAR_CTU types, define the total number of configured
groups.

ADC_PAL_TOTAL_NUM_GROUPS

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

158 CONTENTS

Dependencies

Interrupt Manager (Interrupt)
OS Interface (OSIF)

• The pal type ADC_PAL_S32K1xx also depends on:
ADC Driver
PDB Driver
TRGMUX Driver

• The pal type ADC_PAL_MPC574xC_G_R also depends on:
adc_c55_driver
bctu_driver

• The pal type ADC_PAL_SAR_CTU also depends on:
adc_c55_driver
ctu_driver

Data Structures

• struct adc_group_config_t

Defines the configuration structure for an ADC PAL conversion group. More...

• struct adc_config_t

Defines the configuration structure for ADC PAL. More...

• struct extension_adc_s32k1xx_t

Defines the extension structure for ADC S32K1xx. More...

Typedefs

• typedef adc_inputchannel_t adc_input_chan_t

Defines the enumeration with ADC PAL input channels.

• typedef trgmux_trigger_source_t adc_trigger_source_t

Defines the enumeration with ADC PAL hardware trigger sources.

Enumerations

• enum adc_delay_type_t { ADC_DELAY_TYPE_NO_DELAY = 0u, ADC_DELAY_TYPE_GROUP_DELAY =
1u, ADC_DELAY_TYPE_INDIVIDUAL_DELAY = 2u }

Defines an enumeration which contains the types of delay configurations for ADC conversions within a group.

Functions

• status_t ADC_Init (const adc_instance_t ∗const instance, const adc_config_t ∗const config)

Initializes the ADC PAL instance.

• status_t ADC_Deinit (const adc_instance_t ∗const instance)

Deinitializes the ADC PAL instance.

• status_t ADC_EnableHardwareTrigger (const adc_instance_t ∗const instance, const uint32_t groupIdx)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.2 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL) 159

Enables the selected HW trigger for a conversion group, if the conversion group has support for HW trigger.

• status_t ADC_DisableHardwareTrigger (const adc_instance_t ∗const instance, const uint32_t groupIdx, const
uint32_t timeout)

Disables the selected HW trigger for a conversion group, if the conversion group is HW triggered.

• status_t ADC_StartGroupConversion (const adc_instance_t ∗const instance, const uint32_t groupIdx)

Starts the execution of a selected SW triggered ADC conversion group.

• status_t ADC_StopGroupConversion (const adc_instance_t ∗const instance, const uint32_t groupIdx, const
uint32_t timeout)

Stops the selected SW triggered ADC conversion group execution.

• status_t ADC_EnableNotification (const adc_instance_t ∗const instance, const uint32_t groupIdx)

Enables the notification callback for a configured group.

• status_t ADC_DisableNotification (const adc_instance_t ∗const instance, const uint32_t groupIdx)

Disables the notification callback for a configured group.

16.2.2 Data Structure Documentation

16.2.2.1 struct adc_group_config_t

Defines the configuration structure for an ADC PAL conversion group.

Implements : adc_group_config_t_Class

Definition at line 129 of file adc_pal.h.

Data Fields

• const adc_input_chan_t ∗ inputChannelArray
• uint16_t ∗ resultBuffer
• uint8_t numChannels
• uint8_t numSetsResultBuffer
• bool hwTriggerSupport
• adc_trigger_source_t triggerSource
• adc_delay_type_t delayType
• uint16_t ∗ delayArray
• bool continuousConvEn
• adc_callback_t callback
• void ∗ callbackUserData

Field Documentation

16.2.2.1.1 adc_callback_t callback

Callback function associated with group conversion complete

Definition at line 145 of file adc_pal.h.

16.2.2.1.2 void∗ callbackUserData

Pointer to additional user data to be passed by the callback

Definition at line 146 of file adc_pal.h.

16.2.2.1.3 bool continuousConvEn

Flag for enabling continuous conversions of a group - used only for SW triggered groups i.e. hwTrigger←↩

Support==false.

Definition at line 143 of file adc_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

160 CONTENTS

16.2.2.1.4 uint16_t∗ delayArray

Pointer to array of delay values introduced from the occurrence of a HW trigger event until each ADC conversion in
the group can start execution. Expressed in clock ticks. Note: the delay might be bigger if there is an overlap with
another conversion already executing.

Definition at line 141 of file adc_pal.h.

16.2.2.1.5 adc_delay_type_t delayType

Type of delay configuration. Supported values are platform dependent.

Definition at line 140 of file adc_pal.h.

16.2.2.1.6 bool hwTriggerSupport

Conversion group is HW triggered (true) or SW triggered (false).

Definition at line 137 of file adc_pal.h.

16.2.2.1.7 const adc_input_chan_t∗ inputChannelArray

Pointer to the array of ADC input channels. Each entry in this array corresponds to an individual conversion in the
group. Only on some of the platforms the same input channel may appear multiple times - see device family specific
details in the ADC PAL documentation.

Definition at line 131 of file adc_pal.h.

16.2.2.1.8 uint8_t numChannels

Number of input channels in the array

Definition at line 134 of file adc_pal.h.

16.2.2.1.9 uint8_t numSetsResultBuffer

Number of sets of results which can be stored in result buffer: length of the result buffer = numChannels x num←↩

SetsResultBuffer

Definition at line 135 of file adc_pal.h.

16.2.2.1.10 uint16_t∗ resultBuffer

Pointer to the array for conversion results

Definition at line 133 of file adc_pal.h.

16.2.2.1.11 adc_trigger_source_t triggerSource

HW trigger source associated with the conversion group. Will be ignored if (hwTriggerSupport == false). Note for
ADC_SAR_CTU: this enables the HW trigger source for all other groups; the actual order of execution of groups
depends on the order of occurrence of triggers.

Definition at line 138 of file adc_pal.h.

16.2.2.2 struct adc_config_t

Defines the configuration structure for ADC PAL.

Implements : adc_config_t_Class

Definition at line 155 of file adc_pal.h.

Data Fields

• const adc_group_config_t ∗ groupConfigArray

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.2 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL) 161

• uint16_t numGroups
• uint8_t sampleTicks
• void ∗ extension

Field Documentation

16.2.2.2.1 void∗ extension

This field is used to add extra IP specific settings to the basic configuration.

Definition at line 161 of file adc_pal.h.

16.2.2.2.2 const adc_group_config_t∗ groupConfigArray

Array of group configurations

Definition at line 157 of file adc_pal.h.

16.2.2.2.3 uint16_t numGroups

Number of elements in groupConfigArray

Definition at line 158 of file adc_pal.h.

16.2.2.2.4 uint8_t sampleTicks

Duration of sample time expressed in ADC clock ticks

Definition at line 160 of file adc_pal.h.

16.2.2.3 struct extension_adc_s32k1xx_t

Defines the extension structure for ADC S32K1xx.

Implements : extension_adc_s32k1xx_t_Class

Definition at line 171 of file adc_pal.h.

Data Fields

• adc_clk_divide_t clockDivide
• adc_resolution_t resolution
• adc_input_clock_t inputClock
• adc_voltage_reference_t voltageRef
• bool supplyMonitoringEnable
• pdb_clk_prescaler_div_t pdbPrescaler

Field Documentation

16.2.2.3.1 adc_clk_divide_t clockDivide

Divider of the input clock for the ADC

Definition at line 173 of file adc_pal.h.

16.2.2.3.2 adc_input_clock_t inputClock

Input clock source

Definition at line 175 of file adc_pal.h.

16.2.2.3.3 pdb_clk_prescaler_div_t pdbPrescaler

PDB clock prescaler. Delays are measured based on PDB clock divided by prescaler. Only relevant if delays are
used.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

162 CONTENTS

Definition at line 178 of file adc_pal.h.

16.2.2.3.4 adc_resolution_t resolution

ADC resolution (8,10,12 bit)

Definition at line 174 of file adc_pal.h.

16.2.2.3.5 bool supplyMonitoringEnable

Enable internal supply monitoring

Definition at line 177 of file adc_pal.h.

16.2.2.3.6 adc_voltage_reference_t voltageRef

Voltage reference used

Definition at line 176 of file adc_pal.h.

16.2.3 Typedef Documentation

16.2.3.1 typedef adc_inputchannel_t adc_input_chan_t

Defines the enumeration with ADC PAL input channels.

Implements : adc_input_chan_t_Class

Definition at line 54 of file adc_pal.h.

16.2.3.2 typedef trgmux_trigger_source_t adc_trigger_source_t

Defines the enumeration with ADC PAL hardware trigger sources.

Implements : adc_trigger_source_t_Class

Definition at line 61 of file adc_pal.h.

16.2.4 Enumeration Type Documentation

16.2.4.1 enum adc_delay_type_t

Defines an enumeration which contains the types of delay configurations for ADC conversions within a group.

Implements : adc_delay_type_t_Class

Enumerator

ADC_DELAY_TYPE_NO_DELAY First conversion can start right after the trigger occurrence, and the rest of
conversions execute one after another

ADC_DELAY_TYPE_GROUP_DELAY Delay only first conversion, and the rest execute one after another

ADC_DELAY_TYPE_INDIVIDUAL_DELAY Individual delay for each conversion in the group (each measured
from the occurrence of the trigger)

Definition at line 117 of file adc_pal.h.

16.2.5 Function Documentation

16.2.5.1 status_t ADC_Deinit (const adc_instance_t ∗const instance)

Deinitializes the ADC PAL instance.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.2 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL) 163

This function resets the ADC PAL instance, including the other platform specific HW units used together with ADC,
if there are no active conversions.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

164 CONTENTS

Parameters

in instance Pointer to ADC PAL instance number structure

Returns

status:
- STATUS_BUSY: there is already a HW triggered group enabled or executing, or a SW triggered group
executing
- STATUS_BUSY: on MPC574x platforms, if the BCTU module could not be reset
- STATUS_SUCCESS: ADC PAL initialized successfully

Definition at line 338 of file adc_pal.c.

16.2.5.2 status_t ADC_DisableHardwareTrigger (const adc_instance_t ∗const instance, const uint32_t groupIdx, const
uint32_t timeout)

Disables the selected HW trigger for a conversion group, if the conversion group is HW triggered.

This function disables the HW trigger for a configured conversion group and also may stop its execution (depending
on platform), if called when a conversion group is executing. If stopping is supported, the execution shall be stopped
according to device specific procedures. The function shall wait for the procedures to complete within the given
timeout interval and return error code if they do not succeed. : the function prevents new conversions from the
group from starting, then waits until the current active conversion finishes execution (if the function call occurred
while an ADC conversion from the group is executing) or timeout occurs. : the execution of a HW triggered group of
conversions cannot be stopped, so the function shall wait until it is complete or timeout occurs. : the function always
returns STATUS_SUCCESS (even if a conversion is still executing) and doesn't use 'timeout' parameter. If it is
called during a control cycle, between MRS and actual group conversion start, there will be an additional execution
of the group, without callback.

Parameters

in instance Pointer to ADC PAL instance number structure
in groupIdx Index of the selected group configured via groupConfigArray in adc_config_t
in timeout Timeout interval in milliseconds

Returns

status:
- STATUS_TIMEOUT: the operation did not complete successfully within the provided timeout interval
- STATUS_SUCCESS: the operation completed successfully within the provided timeout interval

Definition at line 529 of file adc_pal.c.

16.2.5.3 status_t ADC_DisableNotification (const adc_instance_t ∗const instance, const uint32_t groupIdx)

Disables the notification callback for a configured group.

This function disables the notification callback for a selected group of ADC conversions.

Parameters

in instance Pointer to ADC PAL instance number structure
in groupIdx Index of the selected group configured via groupConfigArray in adc_config_t

Returns

status:
- STATUS_ERROR: the selected group is not active (SW triggered running or HW triggered running or en-
abled)
- STATUS_SUCCESS: the notification has been disabled successfully

Definition at line 870 of file adc_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.2 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL) 165

16.2.5.4 status_t ADC_EnableHardwareTrigger (const adc_instance_t ∗const instance, const uint32_t groupIdx)

Enables the selected HW trigger for a conversion group, if the conversion group has support for HW trigger.

Enables the selected HW trigger for a conversion group, if the conversion group has support for HW trigger. The
function will return an error code if there is a conversion group already active. If the function succeeds, the conver-
sion group will be triggered for execution when the selected HW trigger occurs.

Parameters

in instance Pointer to ADC PAL instance number structure
in groupIdx Index of the selected group configured via groupConfigArray in adc_config_t

Returns

status:
- STATUS_BUSY: there is already a HW triggered group enabled or executing, or a SW triggered group
executing
- STATUS_SUCCESS: HW trigger enabled successfully for the selected conversion group

Definition at line 437 of file adc_pal.c.

16.2.5.5 status_t ADC_EnableNotification (const adc_instance_t ∗const instance, const uint32_t groupIdx)

Enables the notification callback for a configured group.

This function enables the notification callback for a selected group of ADC conversions.

Parameters

in instance Pointer to ADC PAL instance number structure
in groupIdx Index of the selected group configured via groupConfigArray in adc_config_t

Returns

status:
- STATUS_ERROR: the selected group is not active (SW triggered running or HW triggered running or en-
abled)
- STATUS_SUCCESS: the notification has been enabled successfully

Definition at line 820 of file adc_pal.c.

16.2.5.6 status_t ADC_Init (const adc_instance_t ∗const instance, const adc_config_t ∗const config)

Initializes the ADC PAL instance.

This function initializes the ADC PAL instance, including the other platform specific HW units used together with
ADC. Notifications are default enabled after init.

Parameters

in instance Pointer to ADC PAL instance number structure
in config The ADC PAL configuration structure

Returns

status:
- STATUS_ERROR: platform specific error encountered while initializing one of the HW modules used by
ADC PAL. On MPC574x returned if ADC calibration did not succeed for all the selected ADCs. On S32K1xx
returned if it cannot reconfigure successfully the TRGMUX trigger source of the used PDB instance.
- STATUS_BUSY: on MPC574x platforms, if the BCTU module could not be reset
- STATUS_SUCCESS: ADC PAL initialized successfully

Definition at line 255 of file adc_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

166 CONTENTS

16.2.5.7 status_t ADC_StartGroupConversion (const adc_instance_t ∗const instance, const uint32_t groupIdx)

Starts the execution of a selected SW triggered ADC conversion group.

This function starts execution of a selected ADC conversion group, if there is no other conversion group active.
Conversion groups started by ADC_StartGroupConversion shall not be preempted by HW triggered conversion
groups.

Parameters

in instance Pointer to ADC PAL instance number structure
in groupIdx Index of the selected group configured via groupConfigArray in adc_config_t

Returns

status:
- STATUS_BUSY: there is already a HW triggered group enabled or executing, or a SW triggered group
executing
- STATUS_SUCCESS: group conversion successfully triggered

Definition at line 640 of file adc_pal.c.

16.2.5.8 status_t ADC_StopGroupConversion (const adc_instance_t ∗const instance, const uint32_t groupIdx, const
uint32_t timeout)

Stops the selected SW triggered ADC conversion group execution.

This function stops the execution of a SW triggered conversion group. The execution shall be stopped according to
device specific procedures. The function shall wait for the procedures to complete within the given timeout interval
and return error code if they do not succeed. For ADC_SAR_CTU type and MPC574xC_G_R a conversion already
started for execution cannot be stopped, so the function shall wait until it finishes or timeout occurs.

Parameters

in instance Pointer to ADC PAL instance number structure
in groupIdx Index of the selected group configured via groupConfigArray in adc_config_t
in timeout Timeout interval in milliseconds

Returns

status:
- STATUS_TIMEOUT: the operation did not complete successfully within the provided timeout interval
- STATUS_SUCCESS: the operation completed successfully within the provided timeout interval

Definition at line 720 of file adc_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.3 Automotive Math and Motor Control Library 167

16.3 Automotive Math and Motor Control Library

Automotive Math and Motor Control Library integration with S32 SDK
.

General Information

The Automotive Math and Motor Control Library Set is a precompiled off-the-shelf software library containing the
building blocks for a wide range of motor control and general mathematical applications. The Automotive Math
and Motor Control Library Set is delivered as a precompiled or source code library, and a provides production-
ready, highly speed-optimized, intensively tested and easy to use solution for the rapid development of user motor
control and general mathematical applications. An integral part of the Automotive Math and Motor Control Library
Set are the Matlab/Simulink® models of all supported functions to allow modelling of the user application using
the Matlab/Simulink® environment, and extensive user documentation. The Automotive Math and Motor Control
Library Set support three major arithmetic: 32-bit fixed-point, 16-bit fixed-point and single precision floating-point.
For more information, application notes and demos please visit AMMCLib page from NXP website. AMMCLIB
package contains the following:

• bam : contains Bit Accurate Models of all the functions for Matlab/Simulink

• doc : contains the User Manual

• include : contains all the header files, including the master header files of each library to be included in the
user application

• lib : contains the compiled library file to be included in the user application

Note

For an overview of what is included in the Automotive Math and Motor Control Library and it's capabilities you
can check the document found in <SDK_Location>/doc/AMMCLIB_OnePager_S32SDK.pdf
This is just a brief description of the Automotive Math and Motor Control Library, for more information please
check the full library documentation found in <SDK_Location>/lib/<CPU_Family>/AMMCLI←↩

B/doc/S32K14XMCLUG.pdf
The library is provided in binary format, compiled using GCC, GHS, IAR and for evaluation purposes
only. Please consult license.txt file for more information found in <SDK_Location>/lib/<CPU_←↩

Family>/AMMCLIB/license.txt

How to use

To add AMMCLib in your application you need to follow four steps:

• 1) Add AMMCLib S32CT component into your project. The component will automatically add the required
include paths.

• 2) Add ":S32K14x_AMMCLIB.a" in Libraries (-l) and add "${workspace_loc:/${ProjName}/SDK/lib/AMMCL←↩

IB/lib/<compiler>}" in Library search path (-L)

• 3) Select the implementations from the AMMCLib component(Fixed 16, Fixed 32 or Float). If you are using
the float implementation you need to enable FPU in the toolchain settings.

• 4) Use the library API to execute the required tests.

You can use the AMMCLib examples as a practical implementation of the steps described above.

Note

IAR compiler:

• The compiler is not able to distinguish the sequence of read and write operations inside an inline assembly
block in GFLIB_VMin.h and it make the Warning[Pe549] messages. In that case, C option "--diag_suppress
Pe549" should be added to suppress those warnings or "--warnings_are_errors" should be removed to not
treat those warnings as errors.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

http://www.nxp.com/products/software-and-tools/run-time-software/automotive-software-and-tools/motor-control-development-solutions/automotive-math-and-motor-control-library-set:AUTOMATH_MCL
../../lib/S32K14x/AMMCLIB/license.txt
../../lib/S32K14x/AMMCLIB/license.txt

168 CONTENTS

16.4 Backward Compatibility Symbols for S32K144

This module covers backward compatibility symbols.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.5 CRC Driver 169

16.5 CRC Driver

16.5.1 Detailed Description

Cyclic Redundancy Check Peripheral Driver.

This section describes the programming interface of the CRC driver.

Data Structures

• struct crc_user_config_t

CRC configuration structure. Implements : crc_user_config_t_Class. More...

Enumerations

• enum crc_transpose_t { CRC_TRANSPOSE_NONE = 0x00U, CRC_TRANSPOSE_BITS = 0x01U, CRC_←↩

TRANSPOSE_BITS_AND_BYTES = 0x02U, CRC_TRANSPOSE_BYTES = 0x03U }

CRC type of transpose of read write data Implements : crc_transpose_t_Class.

CRC DRIVER API

• status_t CRC_DRV_Init (uint32_t instance, const crc_user_config_t ∗userConfigPtr)

Initializes the CRC module.
• status_t CRC_DRV_Deinit (uint32_t instance)

Sets the default configuration.
• uint32_t CRC_DRV_GetCrc32 (uint32_t instance, uint32_t data, bool newSeed, uint32_t seed)

Appends 32-bit data to the current CRC calculation and returns new result.
• uint32_t CRC_DRV_GetCrc16 (uint32_t instance, uint16_t data, bool newSeed, uint32_t seed)

Appends 16-bit data to the current CRC calculation and returns new result.
• uint32_t CRC_DRV_GetCrc8 (uint32_t instance, uint8_t data, bool newSeed, uint32_t seed)

Appends 8-bit data to the current CRC calculation and returns new result.
• void CRC_DRV_WriteData (uint32_t instance, const uint8_t ∗data, uint32_t dataSize)

Appends a block of bytes to the current CRC calculation.
• uint32_t CRC_DRV_GetCrcResult (uint32_t instance)

Returns the current result of the CRC calculation.
• status_t CRC_DRV_Configure (uint32_t instance, const crc_user_config_t ∗userConfigPtr)

Configures the CRC module from a user configuration structure.
• status_t CRC_DRV_GetConfig (uint32_t instance, crc_user_config_t ∗const userConfigPtr)

Get configures of the CRC module currently.
• status_t CRC_DRV_GetDefaultConfig (crc_user_config_t ∗const userConfigPtr)

Get default configures the CRC module for configuration structure.

16.5.2 Data Structure Documentation

16.5.2.1 struct crc_user_config_t

CRC configuration structure. Implements : crc_user_config_t_Class.

Definition at line 83 of file crc_driver.h.

Data Fields

• crc_transpose_t writeTranspose
• bool complementChecksum
• uint32_t seed

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

170 CONTENTS

Field Documentation

16.5.2.1.1 bool complementChecksum

True if the result shall be complement of the actual checksum.

Definition at line 95 of file crc_driver.h.

16.5.2.1.2 uint32_t seed

Starting checksum value.

Definition at line 96 of file crc_driver.h.

16.5.2.1.3 crc_transpose_t writeTranspose

Type of transpose when writing CRC input data.

Definition at line 94 of file crc_driver.h.

16.5.3 Enumeration Type Documentation

16.5.3.1 enum crc_transpose_t

CRC type of transpose of read write data Implements : crc_transpose_t_Class.

Enumerator

CRC_TRANSPOSE_NONE No transpose

CRC_TRANSPOSE_BITS Transpose bits in bytes

CRC_TRANSPOSE_BITS_AND_BYTES Transpose bytes and bits in bytes

CRC_TRANSPOSE_BYTES Transpose bytes

Definition at line 44 of file crc_driver.h.

16.5.4 Function Documentation

16.5.4.1 status_t CRC_DRV_Configure (uint32_t instance, const crc_user_config_t ∗ userConfigPtr)

Configures the CRC module from a user configuration structure.

This function configures the CRC module from a user configuration structure

Parameters

in instance The CRC instance number
in userConfigPtr Pointer to structure of initialization

Returns

Execution status (success)

Definition at line 236 of file crc_driver.c.

16.5.4.2 status_t CRC_DRV_Deinit (uint32_t instance)

Sets the default configuration.

This function sets the default configuration

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.5 CRC Driver 171

Parameters

in instance The CRC instance number

Returns

Execution status (success)

Definition at line 88 of file crc_driver.c.

16.5.4.3 status_t CRC_DRV_GetConfig (uint32_t instance, crc_user_config_t ∗const userConfigPtr)

Get configures of the CRC module currently.

This function Get configures of the CRC module currently

Parameters

in instance The CRC instance number
out userConfigPtr Pointer to structure of initialization

Returns

Execution status (success)

Definition at line 268 of file crc_driver.c.

16.5.4.4 uint32_t CRC_DRV_GetCrc16 (uint32_t instance, uint16_t data, bool newSeed, uint32_t seed)

Appends 16-bit data to the current CRC calculation and returns new result.

This function appends 16-bit data to the current CRC calculation and returns new result. If the newSeed is true,
seed set and result are calculated from the seed new value (new CRC calculation)

Parameters

in instance The CRC instance number
in data Input data for CRC calculation
in newSeed Sets new CRC calculation

• true: New seed set and used for new calculation.

• false: Seed argument ignored, continues old calculation.

in seed New seed if newSeed is true, else ignored

Returns

New CRC result

Definition at line 139 of file crc_driver.c.

16.5.4.5 uint32_t CRC_DRV_GetCrc32 (uint32_t instance, uint32_t data, bool newSeed, uint32_t seed)

Appends 32-bit data to the current CRC calculation and returns new result.

This function appends 32-bit data to the current CRC calculation and returns new result. If the newSeed is true,
seed set and result are calculated from the seed new value (new CRC calculation)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

172 CONTENTS

Parameters

in instance The CRC instance number
in data Input data for CRC calculation
in newSeed Sets new CRC calculation

• true: New seed set and used for new calculation.

• false: Seed argument ignored, continues old calculation.

in seed New seed if newSeed is true, else ignored

Returns

New CRC result

Definition at line 108 of file crc_driver.c.

16.5.4.6 uint32_t CRC_DRV_GetCrc8 (uint32_t instance, uint8_t data, bool newSeed, uint32_t seed)

Appends 8-bit data to the current CRC calculation and returns new result.

This function appends 8-bit data to the current CRC calculation and returns new result. If the newSeed is true, seed
set and result are calculated from the seed new value (new CRC calculation)

Parameters

in instance The CRC instance number
in data Input data for CRC calculation
in newSeed Sets new CRC calculation

• true: New seed set and used for new calculation.

• false: Seed argument ignored, continues old calculation.

in seed New seed if newSeed is true, else ignored

Returns

New CRC result

Definition at line 169 of file crc_driver.c.

16.5.4.7 uint32_t CRC_DRV_GetCrcResult (uint32_t instance)

Returns the current result of the CRC calculation.

This function returns the current result of the CRC calculation

Parameters

in instance The CRC instance number

Returns

Result of CRC calculation

Definition at line 220 of file crc_driver.c.

16.5.4.8 status_t CRC_DRV_GetDefaultConfig (crc_user_config_t ∗const userConfigPtr)

Get default configures the CRC module for configuration structure.

This function Get default configures the CRC module for user configuration structure

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.5 CRC Driver 173

Parameters

out userConfigPtr Pointer to structure of initialization

Returns

Execution status (success)

Definition at line 300 of file crc_driver.c.

16.5.4.9 status_t CRC_DRV_Init (uint32_t instance, const crc_user_config_t ∗ userConfigPtr)

Initializes the CRC module.

This function initializes CRC driver based on user configuration input. The user must make sure that the clock is
enabled

Parameters

in instance The CRC instance number
in userConfigPtr Pointer to structure of initialization

Returns

Execution status (success)

Definition at line 65 of file crc_driver.c.

16.5.4.10 void CRC_DRV_WriteData (uint32_t instance, const uint8_t ∗ data, uint32_t dataSize)

Appends a block of bytes to the current CRC calculation.

This function appends a block of bytes to the current CRC calculation

Parameters

in instance The CRC instance number
in data Data for current CRC calculation
in dataSize Length of data to be calculated

Definition at line 197 of file crc_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

174 CONTENTS

16.6 CSEc Driver

16.6.1 Detailed Description

Cryptographic Services Engine Peripheral Driver.

How to use the CSEc driver in your application

To access the command feature set, the part must be configured for EEE operation, using the PGMPART command.
This can be implemented by using the Flash driver. By enabling security features and configuring a number of user
keys, the total size of the 4 KByte EEERAM will be reduced by the space required to store the user keys. The user
key space will then effectively be unaddressable space in the EEERAM.

At the bottom of this page is an example of making this configuration using the Flash driver. For more details related
to the FLASH_DRV_DEFlashPartition function, please refer to the Flash driver documentation. Please note that
this configuration is required only once and should not be lanched from Flash memory.

In order to use the CSEc driver in your application, the CSEC_DRV_Init function should be called prior to using
the rest of the API. The parameter of this function is used for holding the internal state of the driver throughout the
lifetime of the application.

Key/seed/random number generation

This is the high level flow in which to initialize and generate random numbers.

1. Run CSEC_DRV_InitRNG to initialize a random seed from the internal TRNG

• CSEC_DRV_InitRNG must be run after every POR, and before the first execution of CSEC_DRV_←↩

GenerateRND

• Note that if the next step (run CSEC_DRV_GenerateRND) is run without initializing the seed, CSEC←↩

_RNG_SEED will be returned.

2. Run CSEC_DRV_GenerateRND to generate a random numer The PRNG uses the PRNG_STATE/KEY and
Seed per SHE spec and the AIS20 standard.

3. For additional random numbers the user may continue executing CSEC_DRV_GenerateRND unless a POR
event occurred.

Memory update protocol

In order to update a key, the user must have knowledge of a valid authentication secret, i.e. another key (AuthID). If
the key AuthID is empty, the key update will only work if AuthID = ID (the key that will be updated will represent the
AuthID from now on), otherwise CSEC_KEY_EMPTY is returned.

The M1-M3 values need to be computed according to the SHE Specification in order to update a key slot. The
CSEC_DRV_LoadKey function will require those values. After successfully updating the key slot, two verification
values will be returned: M4 and M5. The user can compute the two values and compare them with the ones returned
by the CSEC_DRV_LoadKey function in order to ensure the slot was updated as desired. Please refer to the CSEc
driver example for a reference implementation of the memory update protocol.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\csec\csec_driver.c
${S32SDK_PATH}\platform\drivers\src\csec\csec_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.6 CSEc Driver 175

Preprocessor symbols

No special symbols are required for this component

Important Note

While executing CSEC_DRV_GenerateMACAddrMode and CSEC_DRV_VerifyMACAddrMode functions, it is not
possible to execute code from the FLASH block targeted by the current operation. This includes interrupt handlers
for any interrupt that might occur during this time. It is the responsibility of the application to ensure that any
such code is placed in a different FLASH block or in RAM. Functions can be placed in RAM section by using the
START/END_FUNCTION_DEFINITION/DECLARATION_RAMSECTION macros.

Dependencies

Interrupt Manager (Interrupt) OS Interface (OSIF)

Examples:

Using the Flash driver to partition Flash for CSEc operation, the below code section applies for S32K14x:

flash_ssd_config_t flashSSDConfig;

FLASH_DRV_Init(&flash1_InitConfig0, &flashSSDConfig);

/* Configure the part for EEE operation, with 20 keys for CSEc */
FLASH_DRV_DEFlashPartition(&flashSSDConfig, 0x2, 0x4, 0x3, false, true);

The example partition code for S32K11x:

flash_ssd_config_t flashSSDConfig;

FLASH_DRV_Init(&flash1_InitConfig0, &flashSSDConfig);

/* Configure the part for EEE operation, with 20 keys for CSEc */
FLASH_DRV_DEFlashPartition(&flashSSDConfig, 0x3, 0x3, 0x3, false, true);

Encryption using AES EBC mode

uint8_t plainText[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF};

uint8_t plainKey[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};

csec_error_code_t stat;
uint8_t cipherText[16];

csec_state_t csecState;

CSEC_DRV_Init(&csecState);

stat = CSEC_DRV_LoadPlainKey(plainKey);
if (stat != CSEC_NO_ERROR)
{

/* Loading the key failed, encryption will not have the expected result */
return false;

}

stat = CSEC_DRV_EncryptECB(CSEC_RAM_KEY, plainText, 16U, cipherText, 1U);
if (stat != CSEC_NO_ERROR)
{

/* Encryption was successful */
return true;

}

Generating and verifying CMAC for a message

uint8_t plainKey[16] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab,
0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c};

uint8_t msg[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};

uint8_t cmac[16];
bool verifStatus;
csec_error_code_t stat;

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

176 CONTENTS

csec_state_t csecState;

CSEC_DRV_Init(&csecState);

stat = CSEC_DRV_LoadPlainKey(plainKey);
if (stat != CSEC_NO_ERROR)

return false;

stat = CSEC_DRV_GenerateMAC(CSEC_RAM_KEY, msg, 128U, cmac, 1U);
if (stat != CSEC_NO_ERROR)

return false;

stat = CSEC_DRV_VerifyMAC(CSEC_RAM_KEY, msg, 128U, cmac, 128U, &verifStatus,
1U);

if (stat != CSEC_NO_ERROR)
return false;

if (!verifStatus)
{

/* The given CMAC did not matched with the one computed internally */
return false;

}

Generating random bits

csec_error_code_t stat;
csec_status_t status;
uint8_t rnd[16];

csec_state_t csecState;

CSEC_DRV_Init(&csecState);

stat = CSEC_DRV_InitRNG();
if (stat != CSEC_NO_ERROR)

return false;

/* Check RNG is initialized */
status = CSEC_DRV_GetStatus();
if (!(status & CSEC_STATUS_RND_INIT))

return false;

stat = CSEC_DRV_GenerateRND(rnd);
if (stat != CSEC_NO_ERROR)

return false;

Data Structures

• struct csec_state_t

Internal driver state information. More...

Macros

• #define CSEC_STATUS_BUSY (0x1U)

The bit is set whenever SHE is processing a command.

• #define CSEC_STATUS_SECURE_BOOT (0x2U)

The bit is set if the secure booting is activated.

• #define CSEC_STATUS_BOOT_INIT (0x4U)

The bit is set if the secure booting has been personalized during the boot sequence.

• #define CSEC_STATUS_BOOT_FINISHED (0x8U)

The bit is set when the secure booting has been finished by calling either CMD_BOOT_FAILURE or CMD_BOOT←↩

_OK or if CMD_SECURE_BOOT failed in verifying BOOT_MAC.

• #define CSEC_STATUS_BOOT_OK (0x10U)

The bit is set if the secure booting (CMD_SECURE_BOOT) succeeded. If CMD_BOOT_FAILURE is called the bit is
erased.

• #define CSEC_STATUS_RND_INIT (0x20U)

The bit is set if the random number generator has been initialized.

• #define CSEC_STATUS_EXT_DEBUGGER (0x40U)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.6 CSEc Driver 177

The bit is set if an external debugger is connected to the chip.

• #define CSEC_STATUS_INT_DEBUGGER (0x80U)

The bit is set if the internal debugging mechanisms of SHE are activated.

Typedefs

• typedef uint8_t csec_status_t

Represents the status of the CSEc module. Provides one bit for each status code as per SHE specification. CSE←↩

C_STATUS_∗ masks can be used for verifying the status.

Enumerations

• enum csec_key_id_t {
CSEC_SECRET_KEY = 0x0U, CSEC_MASTER_ECU, CSEC_BOOT_MAC_KEY, CSEC_BOOT_MAC,
CSEC_KEY_1, CSEC_KEY_2, CSEC_KEY_3, CSEC_KEY_4,
CSEC_KEY_5, CSEC_KEY_6, CSEC_KEY_7, CSEC_KEY_8,
CSEC_KEY_9, CSEC_KEY_10, CSEC_RAM_KEY = 0xFU, CSEC_KEY_11 = 0x14U,
CSEC_KEY_12, CSEC_KEY_13, CSEC_KEY_14, CSEC_KEY_15,
CSEC_KEY_16, CSEC_KEY_17 }

Specify the KeyID to be used to implement the requested cryptographic operation.

• enum csec_cmd_t {
CSEC_CMD_ENC_ECB = 0x1U, CSEC_CMD_ENC_CBC, CSEC_CMD_DEC_ECB, CSEC_CMD_DEC_←↩

CBC,
CSEC_CMD_GENERATE_MAC, CSEC_CMD_VERIFY_MAC, CSEC_CMD_LOAD_KEY, CSEC_CMD_L←↩

OAD_PLAIN_KEY,
CSEC_CMD_EXPORT_RAM_KEY, CSEC_CMD_INIT_RNG, CSEC_CMD_EXTEND_SEED, CSEC_CM←↩

D_RND,
CSEC_CMD_RESERVED_1, CSEC_CMD_BOOT_FAILURE, CSEC_CMD_BOOT_OK, CSEC_CMD_GE←↩

T_ID,
CSEC_CMD_BOOT_DEFINE, CSEC_CMD_DBG_CHAL, CSEC_CMD_DBG_AUTH, CSEC_CMD_RESE←↩

RVED_2,
CSEC_CMD_RESERVED_3, CSEC_CMD_MP_COMPRESS }

CSEc commands which follow the same values as the SHE command definition.

• enum csec_call_sequence_t { CSEC_CALL_SEQ_FIRST, CSEC_CALL_SEQ_SUBSEQUENT }

Specifies if the information is the first or a following function call.

• enum csec_boot_flavor_t { CSEC_BOOT_STRICT, CSEC_BOOT_SERIAL, CSEC_BOOT_PARALLEL, C←↩

SEC_BOOT_NOT_DEFINED }

Specifies the boot type for the BOOT_DEFINE command.

Functions

• void CSEC_DRV_Init (csec_state_t ∗state)

Initializes the internal state of the driver and enables the FTFC interrupt.

• void CSEC_DRV_Deinit (void)

Clears the internal state of the driver and disables the FTFC interrupt.

• status_t CSEC_DRV_EncryptECB (csec_key_id_t keyId, const uint8_t ∗plainText, uint32_t length, uint8_t
∗cipherText, uint32_t timeout)

Performs the AES-128 encryption in ECB mode.

• status_t CSEC_DRV_DecryptECB (csec_key_id_t keyId, const uint8_t ∗cipherText, uint32_t length, uint8_t
∗plainText, uint32_t timeout)

Performs the AES-128 decryption in ECB mode.

• status_t CSEC_DRV_EncryptCBC (csec_key_id_t keyId, const uint8_t ∗plainText, uint32_t length, const
uint8_t ∗iv, uint8_t ∗cipherText, uint32_t timeout)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

178 CONTENTS

Performs the AES-128 encryption in CBC mode.

• status_t CSEC_DRV_DecryptCBC (csec_key_id_t keyId, const uint8_t ∗cipherText, uint32_t length, const
uint8_t ∗iv, uint8_t ∗plainText, uint32_t timeout)

Performs the AES-128 decryption in CBC mode.

• status_t CSEC_DRV_GenerateMAC (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen, uint8_←↩

t ∗cmac, uint32_t timeout)

Calculates the MAC of a given message using CMAC with AES-128.

• status_t CSEC_DRV_GenerateMACAddrMode (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen,
uint8_t ∗cmac)

Calculates the MAC of a given message (located in Flash) using CMAC with AES-128.

• status_t CSEC_DRV_VerifyMAC (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen, const uint8_t
∗mac, uint16_t macLen, bool ∗verifStatus, uint32_t timeout)

Verifies the MAC of a given message using CMAC with AES-128.

• status_t CSEC_DRV_VerifyMACAddrMode (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen, con-
st uint8_t ∗mac, uint16_t macLen, bool ∗verifStatus)

Verifies the MAC of a given message (located in Flash) using CMAC with AES-128.

• status_t CSEC_DRV_LoadKey (csec_key_id_t keyId, const uint8_t ∗m1, const uint8_t ∗m2, const uint8_t
∗m3, uint8_t ∗m4, uint8_t ∗m5)

Updates an internal key per the SHE specification.

• status_t CSEC_DRV_LoadPlainKey (const uint8_t ∗plainKey)

Updates the RAM key memory slot with a 128-bit plaintext.

• status_t CSEC_DRV_ExportRAMKey (uint8_t ∗m1, uint8_t ∗m2, uint8_t ∗m3, uint8_t ∗m4, uint8_t ∗m5)

Exports the RAM_KEY into a format protected by SECRET_KEY.

• status_t CSEC_DRV_InitRNG (void)

Initializes the seed and derives a key for the PRNG.

• status_t CSEC_DRV_ExtendSeed (const uint8_t ∗entropy)

Extends the seed of the PRNG.

• status_t CSEC_DRV_GenerateRND (uint8_t ∗rnd)

Generates a vector of 128 random bits.

• status_t CSEC_DRV_BootFailure (void)

Signals a failure detected during later stages of the boot process.

• status_t CSEC_DRV_BootOK (void)

Marks a successful boot verification during later stages of the boot process.

• status_t CSEC_DRV_BootDefine (uint32_t bootSize, csec_boot_flavor_t bootFlavor)

Implements an extension of the SHE standard to define both the user boot size and boot method.

• static csec_status_t CSEC_DRV_GetStatus (void)

Returns the content of the status register.

• status_t CSEC_DRV_GetID (const uint8_t ∗challenge, uint8_t ∗uid, uint8_t ∗sreg, uint8_t ∗mac)

Returns the identity (UID) and the value of the status register protected by a MAC over a challenge and the data.

• status_t CSEC_DRV_DbgChal (uint8_t ∗challenge)

Obtains a random number which the user shall use along with the MASTER_ECU_KEY and UID to return an autho-
rization request.

• status_t CSEC_DRV_DbgAuth (const uint8_t ∗authorization)

Erases all keys (actual and outdated) stored in NVM Memory if the authorization is confirmed by CSEc.

• status_t CSEC_DRV_MPCompress (const uint8_t ∗msg, uint16_t msgLen, uint8_t ∗mpCompress, uint32_t
timeout)

Compresses the given messages by accessing the Miyaguchi-Prenell compression feature with in the CSEc feature
set.

• status_t CSEC_DRV_EncryptECBAsync (csec_key_id_t keyId, const uint8_t ∗plainText, uint32_t length,
uint8_t ∗cipherText)

Asynchronously performs the AES-128 encryption in ECB mode.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.6 CSEc Driver 179

• status_t CSEC_DRV_DecryptECBAsync (csec_key_id_t keyId, const uint8_t ∗cipherText, uint32_t length,
uint8_t ∗plainText)

Asynchronously performs the AES-128 decryption in ECB mode.
• status_t CSEC_DRV_EncryptCBCAsync (csec_key_id_t keyId, const uint8_t ∗plainText, uint32_t length, con-

st uint8_t ∗iv, uint8_t ∗cipherText)

Asynchronously performs the AES-128 encryption in CBC mode.
• status_t CSEC_DRV_DecryptCBCAsync (csec_key_id_t keyId, const uint8_t ∗cipherText, uint32_t length,

const uint8_t ∗iv, uint8_t ∗plainText)

Asynchronously performs the AES-128 decryption in CBC mode.
• status_t CSEC_DRV_GenerateMACAsync (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen,

uint8_t ∗cmac)

Asynchronously calculates the MAC of a given message using CMAC with AES-128.
• status_t CSEC_DRV_VerifyMACAsync (csec_key_id_t keyId, const uint8_t ∗msg, uint32_t msgLen, const

uint8_t ∗mac, uint16_t macLen, bool ∗verifStatus)

Asynchronously verifies the MAC of a given message using CMAC with AES-128.
• status_t CSEC_DRV_GetAsyncCmdStatus (void)

Checks the status of the execution of an asynchronous command.
• void CSEC_DRV_InstallCallback (security_callback_t callbackFunc, void ∗callbackParam)

Installs a callback function which will be invoked when an asynchronous command finishes its execution.
• void CSEC_DRV_CancelCommand (void)

Cancels a previously launched asynchronous command.

16.6.2 Data Structure Documentation

16.6.2.1 struct csec_state_t

Internal driver state information.

Note

The contents of this structure are internal to the driver and should not be modified by users. Also, contents of
the structure are subject to change in future releases.

Implements : csec_state_t_Class

Definition at line 183 of file csec_driver.h.

Data Fields

• bool cmdInProgress
• csec_cmd_t cmd
• const uint8_t ∗ inputBuff
• uint8_t ∗ outputBuff
• uint32_t index
• uint32_t fullSize
• uint32_t partSize
• csec_key_id_t keyId
• status_t errCode
• const uint8_t ∗ iv
• csec_call_sequence_t seq
• uint32_t msgLen
• bool ∗ verifStatus
• bool macWritten
• const uint8_t ∗ mac
• uint32_t macLen
• security_callback_t callback
• void ∗ callbackParam

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

180 CONTENTS

Field Documentation

16.6.2.1.1 security_callback_t callback

The callback invoked when an asynchronous command is completed

Definition at line 200 of file csec_driver.h.

16.6.2.1.2 void∗ callbackParam

User parameter for the command completion callback

Definition at line 201 of file csec_driver.h.

16.6.2.1.3 csec_cmd_t cmd

Specifies the type of the command in execution

Definition at line 185 of file csec_driver.h.

16.6.2.1.4 bool cmdInProgress

Specifies if a command is in progress

Definition at line 184 of file csec_driver.h.

16.6.2.1.5 status_t errCode

Specifies the error code of the last executed command

Definition at line 192 of file csec_driver.h.

16.6.2.1.6 uint32_t fullSize

Specifies the size of the input of the command in execution

Definition at line 189 of file csec_driver.h.

16.6.2.1.7 uint32_t index

Specifies the index in the input buffer of the command in execution

Definition at line 188 of file csec_driver.h.

16.6.2.1.8 const uint8_t∗ inputBuff

Specifies the input of the command in execution

Definition at line 186 of file csec_driver.h.

16.6.2.1.9 const uint8_t∗ iv

Specifies the IV of the command in execution (for encryption/decryption using CBC mode)

Definition at line 193 of file csec_driver.h.

16.6.2.1.10 csec_key_id_t keyId

Specifies the key used for the command in execution

Definition at line 191 of file csec_driver.h.

16.6.2.1.11 const uint8_t∗ mac

Specifies the MAC to be verified for a MAC verification command

Definition at line 198 of file csec_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.6 CSEc Driver 181

16.6.2.1.12 uint32_t macLen

Specifies the number of bits of the MAC to be verified for a MAC verification command

Definition at line 199 of file csec_driver.h.

16.6.2.1.13 bool macWritten

Specifies if the MAC to be verified was written in CSE_PRAM for a MAC verification command

Definition at line 197 of file csec_driver.h.

16.6.2.1.14 uint32_t msgLen

Specifies the message size (in bits) for the command in execution (for MAC generation/verification)

Definition at line 195 of file csec_driver.h.

16.6.2.1.15 uint8_t∗ outputBuff

Specifies the output of the command in execution

Definition at line 187 of file csec_driver.h.

16.6.2.1.16 uint32_t partSize

Specifies the size of the chunck of the input currently processed

Definition at line 190 of file csec_driver.h.

16.6.2.1.17 csec_call_sequence_t seq

Specifies if the information is the first or a following function call.

Definition at line 194 of file csec_driver.h.

16.6.2.1.18 bool∗ verifStatus

Specifies the result of the last executed MAC verification command

Definition at line 196 of file csec_driver.h.

16.6.3 Macro Definition Documentation

16.6.3.1 #define CSEC_STATUS_BOOT_FINISHED (0x8U)

The bit is set when the secure booting has been finished by calling either CMD_BOOT_FAILURE or CMD_BOO←↩

T_OK or if CMD_SECURE_BOOT failed in verifying BOOT_MAC.

Definition at line 70 of file csec_driver.h.

16.6.3.2 #define CSEC_STATUS_BOOT_INIT (0x4U)

The bit is set if the secure booting has been personalized during the boot sequence.

Definition at line 66 of file csec_driver.h.

16.6.3.3 #define CSEC_STATUS_BOOT_OK (0x10U)

The bit is set if the secure booting (CMD_SECURE_BOOT) succeeded. If CMD_BOOT_FAILURE is called the bit
is erased.

Definition at line 73 of file csec_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

182 CONTENTS

16.6.3.4 #define CSEC_STATUS_BUSY (0x1U)

The bit is set whenever SHE is processing a command.

Definition at line 61 of file csec_driver.h.

16.6.3.5 #define CSEC_STATUS_EXT_DEBUGGER (0x40U)

The bit is set if an external debugger is connected to the chip.

Definition at line 77 of file csec_driver.h.

16.6.3.6 #define CSEC_STATUS_INT_DEBUGGER (0x80U)

The bit is set if the internal debugging mechanisms of SHE are activated.

Definition at line 80 of file csec_driver.h.

16.6.3.7 #define CSEC_STATUS_RND_INIT (0x20U)

The bit is set if the random number generator has been initialized.

Definition at line 75 of file csec_driver.h.

16.6.3.8 #define CSEC_STATUS_SECURE_BOOT (0x2U)

The bit is set if the secure booting is activated.

Definition at line 63 of file csec_driver.h.

16.6.4 Typedef Documentation

16.6.4.1 typedef uint8_t csec_status_t

Represents the status of the CSEc module. Provides one bit for each status code as per SHE specification. CSE←↩

C_STATUS_∗ masks can be used for verifying the status.

Implements : csec_status_t_Class

Definition at line 89 of file csec_driver.h.

16.6.5 Enumeration Type Documentation

16.6.5.1 enum csec_boot_flavor_t

Specifies the boot type for the BOOT_DEFINE command.

Implements : csec_boot_flavor_t_Class

Enumerator

CSEC_BOOT_STRICT

CSEC_BOOT_SERIAL

CSEC_BOOT_PARALLEL

CSEC_BOOT_NOT_DEFINED

Definition at line 167 of file csec_driver.h.

16.6.5.2 enum csec_call_sequence_t

Specifies if the information is the first or a following function call.

Implements : csec_call_sequence_t_Class

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.6 CSEc Driver 183

Enumerator

CSEC_CALL_SEQ_FIRST

CSEC_CALL_SEQ_SUBSEQUENT

Definition at line 157 of file csec_driver.h.

16.6.5.3 enum csec_cmd_t

CSEc commands which follow the same values as the SHE command definition.

Implements : csec_cmd_t_Class

Enumerator

CSEC_CMD_ENC_ECB

CSEC_CMD_ENC_CBC

CSEC_CMD_DEC_ECB

CSEC_CMD_DEC_CBC

CSEC_CMD_GENERATE_MAC

CSEC_CMD_VERIFY_MAC

CSEC_CMD_LOAD_KEY

CSEC_CMD_LOAD_PLAIN_KEY

CSEC_CMD_EXPORT_RAM_KEY

CSEC_CMD_INIT_RNG

CSEC_CMD_EXTEND_SEED

CSEC_CMD_RND

CSEC_CMD_RESERVED_1

CSEC_CMD_BOOT_FAILURE

CSEC_CMD_BOOT_OK

CSEC_CMD_GET_ID

CSEC_CMD_BOOT_DEFINE

CSEC_CMD_DBG_CHAL

CSEC_CMD_DBG_AUTH

CSEC_CMD_RESERVED_2

CSEC_CMD_RESERVED_3

CSEC_CMD_MP_COMPRESS

Definition at line 127 of file csec_driver.h.

16.6.5.4 enum csec_key_id_t

Specify the KeyID to be used to implement the requested cryptographic operation.

Implements : csec_key_id_t_Class

Enumerator

CSEC_SECRET_KEY

CSEC_MASTER_ECU

CSEC_BOOT_MAC_KEY

CSEC_BOOT_MAC

CSEC_KEY_1

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

184 CONTENTS

CSEC_KEY_2

CSEC_KEY_3

CSEC_KEY_4

CSEC_KEY_5

CSEC_KEY_6

CSEC_KEY_7

CSEC_KEY_8

CSEC_KEY_9

CSEC_KEY_10

CSEC_RAM_KEY

CSEC_KEY_11

CSEC_KEY_12

CSEC_KEY_13

CSEC_KEY_14

CSEC_KEY_15

CSEC_KEY_16

CSEC_KEY_17

Definition at line 97 of file csec_driver.h.

16.6.6 Function Documentation

16.6.6.1 status_t CSEC_DRV_BootDefine (uint32_t bootSize, csec_boot_flavor_t bootFlavor)

Implements an extension of the SHE standard to define both the user boot size and boot method.

The function implements an extension of the SHE standard to define both the user boot size and boot method.

Parameters

in bootSize Number of blocks of 128-bit data to check on boot. Maximum size is 512k←↩

Bytes.
in bootFlavor The boot method.

Returns

Error Code after command execution.

Definition at line 928 of file csec_driver.c.

16.6.6.2 status_t CSEC_DRV_BootFailure (void)

Signals a failure detected during later stages of the boot process.

The function is called during later stages of the boot process to detect a failure.

Returns

Error Code after command execution.

Definition at line 860 of file csec_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.6 CSEc Driver 185

16.6.6.3 status_t CSEC_DRV_BootOK (void)

Marks a successful boot verification during later stages of the boot process.

The function is called during later stages of the boot process to mark successful boot verification.

Returns

Error Code after command execution.

Definition at line 894 of file csec_driver.c.

16.6.6.4 void CSEC_DRV_CancelCommand (void)

Cancels a previously launched asynchronous command.

Definition at line 1784 of file csec_driver.c.

16.6.6.5 status_t CSEC_DRV_DbgAuth (const uint8_t ∗ authorization)

Erases all keys (actual and outdated) stored in NVM Memory if the authorization is confirmed by CSEc.

This function erases all keys (actual and outdated) stored in NVM Memory if the authorization is confirmed by CSEc.

Parameters

in authorization Pointer to the 128-bit buffer containing the authorization value.

Returns

Error Code after command execution.

Definition at line 1059 of file csec_driver.c.

16.6.6.6 status_t CSEC_DRV_DbgChal (uint8_t ∗ challenge)

Obtains a random number which the user shall use along with the MASTER_ECU_KEY and UID to return an
authorization request.

This function obtains a random number which the user shall use along with the MASTER_ECU_KEY and UID to
return an authorization request.

Parameters

out challenge Pointer to the 128-bit buffer where the challenge data will be stored.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 1019 of file csec_driver.c.

16.6.6.7 status_t CSEC_DRV_DecryptCBC (csec_key_id_t keyId, const uint8_t ∗ cipherText, uint32_t length, const uint8_t
∗ iv, uint8_t ∗ plainText, uint32_t timeout)

Performs the AES-128 decryption in CBC mode.

This function performs the AES-128 decryption in CBC mode of the input cipher text buffer.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

186 CONTENTS

in keyId KeyID used to perform the cryptographic operation.
in cipherText Pointer to the cipher text buffer.
in length Number of bytes of cipher text message to be decrypted. It should be multiple

of 16 bytes.
in iv Pointer to the initialization vector buffer.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.
in timeout Timeout in milliseconds.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 327 of file csec_driver.c.

16.6.6.8 status_t CSEC_DRV_DecryptCBCAsync (csec_key_id_t keyId, const uint8_t ∗ cipherText, uint32_t length, const
uint8_t ∗ iv, uint8_t ∗ plainText)

Asynchronously performs the AES-128 decryption in CBC mode.

This function performs the AES-128 decryption in CBC mode of the input cipher text buffer, in an asynchronous
manner.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in cipherText Pointer to the cipher text buffer.
in length Number of bytes of cipher text message to be decrypted. It should be multiple

of 16 bytes.
in iv Pointer to the initialization vector buffer.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1282 of file csec_driver.c.

16.6.6.9 status_t CSEC_DRV_DecryptECB (csec_key_id_t keyId, const uint8_t ∗ cipherText, uint32_t length, uint8_t ∗
plainText, uint32_t timeout)

Performs the AES-128 decryption in ECB mode.

This function performs the AES-128 decryption in ECB mode of the input cipher text buffer.

Parameters

in keyId KeyID used to perform the cryptographic operation
in cipherText Pointer to the cipher text buffer.
in length Number of bytes of cipher text message to be decrypted. It should be multiple

of 16 bytes.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.6 CSEc Driver 187

in timeout Timeout in milliseconds.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 219 of file csec_driver.c.

16.6.6.10 status_t CSEC_DRV_DecryptECBAsync (csec_key_id_t keyId, const uint8_t ∗ cipherText, uint32_t length,
uint8_t ∗ plainText)

Asynchronously performs the AES-128 decryption in ECB mode.

This function performs the AES-128 decryption in ECB mode of the input cipher text buffer, in an asynchronous
manner.

Parameters

in keyId KeyID used to perform the cryptographic operation
in cipherText Pointer to the cipher text buffer.
in length Number of bytes of cipher text message to be decrypted. It should be multiple

of 16 bytes.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1215 of file csec_driver.c.

16.6.6.11 void CSEC_DRV_Deinit (void)

Clears the internal state of the driver and disables the FTFC interrupt.

Definition at line 151 of file csec_driver.c.

16.6.6.12 status_t CSEC_DRV_EncryptCBC (csec_key_id_t keyId, const uint8_t ∗ plainText, uint32_t length, const uint8_t
∗ iv, uint8_t ∗ cipherText, uint32_t timeout)

Performs the AES-128 encryption in CBC mode.

This function performs the AES-128 encryption in CBC mode of the input plaintext buffer.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in plainText Pointer to the plain text buffer.
in length Number of bytes of plain text message to be encrypted. It should be multiple

of 16 bytes.
in iv Pointer to the initialization vector buffer.
in timeout Timeout in milliseconds.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.
in timeout Timeout in milliseconds.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 271 of file csec_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

188 CONTENTS

16.6.6.13 status_t CSEC_DRV_EncryptCBCAsync (csec_key_id_t keyId, const uint8_t ∗ plainText, uint32_t length, const
uint8_t ∗ iv, uint8_t ∗ cipherText)

Asynchronously performs the AES-128 encryption in CBC mode.

This function performs the AES-128 encryption in CBC mode of the input plaintext buffer, in an asynchronous
manner.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in plainText Pointer to the plain text buffer.
in length Number of bytes of plain text message to be encrypted. It should be multiple

of 16 bytes.
in iv Pointer to the initialization vector buffer.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1247 of file csec_driver.c.

16.6.6.14 status_t CSEC_DRV_EncryptECB (csec_key_id_t keyId, const uint8_t ∗ plainText, uint32_t length, uint8_t ∗
cipherText, uint32_t timeout)

Performs the AES-128 encryption in ECB mode.

This function performs the AES-128 encryption in ECB mode of the input plain text buffer

Parameters

in keyId KeyID used to perform the cryptographic operation.
in plainText Pointer to the plain text buffer.
in length Number of bytes of plain text message to be encrypted. It should be multiple

of 16 bytes.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.
in timeout Timeout in milliseconds.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 166 of file csec_driver.c.

16.6.6.15 status_t CSEC_DRV_EncryptECBAsync (csec_key_id_t keyId, const uint8_t ∗ plainText, uint32_t length, uint8_t
∗ cipherText)

Asynchronously performs the AES-128 encryption in ECB mode.

This function performs the AES-128 encryption in ECB mode of the input plain text buffer, in an asynchronous
manner.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.6 CSEc Driver 189

in keyId KeyID used to perform the cryptographic operation.
in plainText Pointer to the plain text buffer.
in length Number of bytes of plain text message to be encrypted. It should be multiple

of 16 bytes.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1183 of file csec_driver.c.

16.6.6.16 status_t CSEC_DRV_ExportRAMKey (uint8_t ∗ m1, uint8_t ∗ m2, uint8_t ∗ m3, uint8_t ∗ m4, uint8_t ∗ m5)

Exports the RAM_KEY into a format protected by SECRET_KEY.

This function exports the RAM_KEY into a format protected by SECRET_KEY.

Parameters

out m1 Pointer to a buffer where the M1 parameter will be exported.
out m2 Pointer to a buffer where the M2 parameter will be exported.
out m3 Pointer to a buffer where the M3 parameter will be exported.
out m4 Pointer to a buffer where the M4 parameter will be exported.
out m5 Pointer to a buffer where the M5 parameter will be exported.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 693 of file csec_driver.c.

16.6.6.17 status_t CSEC_DRV_ExtendSeed (const uint8_t ∗ entropy)

Extends the seed of the PRNG.

Extends the seed of the PRNG by compressing the former seed value and the supplied entropy into a new seed.
This new seed is then to be used to generate a random number by invoking the CMD_RND command. The random
number generator must be initialized by CMD_INIT_RNG before the seed may be extended.

Parameters

in entropy Pointer to a 128-bit buffer containing the entropy.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 782 of file csec_driver.c.

16.6.6.18 status_t CSEC_DRV_GenerateMAC (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen, uint8_t ∗ cmac,
uint32_t timeout)

Calculates the MAC of a given message using CMAC with AES-128.

This function calculates the MAC of a given message using CMAC with AES-128.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

190 CONTENTS

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
out cmac Pointer to the buffer containing the result of the CMAC computation.
in timeout Timeout in milliseconds.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 383 of file csec_driver.c.

16.6.6.19 status_t CSEC_DRV_GenerateMACAddrMode (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen,
uint8_t ∗ cmac)

Calculates the MAC of a given message (located in Flash) using CMAC with AES-128.

This function calculates the MAC of a given message using CMAC with AES-128. It is different from the CSEC_←↩

DRV_GenerateMAC function in the sense that it does not involve an extra copy of the data on which the CMAC is
computed and the message pointer should be a pointer to Flash memory.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer (pointing to Flash memory).
in msgLen Number of bits of message on which CMAC will be computed.
out cmac Pointer to the buffer containing the result of the CMAC computation.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 439 of file csec_driver.c.

16.6.6.20 status_t CSEC_DRV_GenerateMACAsync (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen, uint8_t ∗
cmac)

Asynchronously calculates the MAC of a given message using CMAC with AES-128.

This function calculates the MAC of a given message using CMAC with AES-128, in an asynchronous manner.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
out cmac Pointer to the buffer containing the result of the CMAC computation.

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1317 of file csec_driver.c.

16.6.6.21 status_t CSEC_DRV_GenerateRND (uint8_t ∗ rnd)

Generates a vector of 128 random bits.

The function returns a vector of 128 random bits. The random number generator has to be initialized by calling
CSEC_DRV_InitRNG before random numbers can be supplied.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.6 CSEc Driver 191

Parameters

out rnd Pointer to a 128-bit buffer where the generated random number has to be
stored.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 820 of file csec_driver.c.

16.6.6.22 status_t CSEC_DRV_GetAsyncCmdStatus (void)

Checks the status of the execution of an asynchronous command.

This function checks the status of the execution of an asynchronous command. If the command is still in progress,
returns STATUS_BUSY.

Returns

Error Code after command execution.

Definition at line 1390 of file csec_driver.c.

16.6.6.23 status_t CSEC_DRV_GetID (const uint8_t ∗ challenge, uint8_t ∗ uid, uint8_t ∗ sreg, uint8_t ∗ mac)

Returns the identity (UID) and the value of the status register protected by a MAC over a challenge and the data.

This function returns the identity (UID) and the value of the status register protected by a MAC over a challenge and
the data.

Parameters

in challenge Pointer to the 128-bit buffer containing Challenge data.
out uid Pointer to 120 bit buffer where the UID will be stored.
out sreg Value of the status register.
out mac Pointer to the 128 bit buffer where the MAC generated over challenge and UID

and status will be stored.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 967 of file csec_driver.c.

16.6.6.24 static csec_status_t CSEC_DRV_GetStatus (void) [inline], [static]

Returns the content of the status register.

The function shall return the content of the status register.

Returns

Value of the status register.

Implements : CSEC_DRV_GetStatus_Activity

Definition at line 526 of file csec_driver.h.

16.6.6.25 void CSEC_DRV_Init (csec_state_t ∗ state)

Initializes the internal state of the driver and enables the FTFC interrupt.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

192 CONTENTS

Parameters

in state Pointer to the state structure which will be used for holding the internal state of
the driver.

Definition at line 131 of file csec_driver.c.

16.6.6.26 status_t CSEC_DRV_InitRNG (void)

Initializes the seed and derives a key for the PRNG.

The function initializes the seed and derives a key for the PRNG. The function must be called before CMD_RND
after every power cycle/reset.

Returns

Error Code after command execution.

Definition at line 745 of file csec_driver.c.

16.6.6.27 void CSEC_DRV_InstallCallback (security_callback_t callbackFunc, void ∗ callbackParam)

Installs a callback function which will be invoked when an asynchronous command finishes its execution.

Parameters

in callbackFunc The function to be invoked.
in callbackParam The parameter to be passed to the callback function.

Definition at line 1769 of file csec_driver.c.

16.6.6.28 status_t CSEC_DRV_LoadKey (csec_key_id_t keyId, const uint8_t ∗ m1, const uint8_t ∗ m2, const uint8_t ∗ m3,
uint8_t ∗ m4, uint8_t ∗ m5)

Updates an internal key per the SHE specification.

This function updates an internal key per the SHE specification.

Parameters

in keyId KeyID of the key to be updated.
in m1 Pointer to the 128-bit M1 message containing the UID, Key ID and Authentica-

tion Key ID.
in m2 Pointer to the 256-bit M2 message contains the new security flags, counter

and the key value all encrypted using a derived key generated from the Au-
thentication Key.

in m3 Pointer to the 128-bit M3 message is a MAC generated over messages M1
and M2.

out m4 Pointer to a 256 bits buffer where the computed M4 parameter is stored.
out m5 Pointer to a 128 bits buffer where the computed M5 parameters is stored.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 602 of file csec_driver.c.

16.6.6.29 status_t CSEC_DRV_LoadPlainKey (const uint8_t ∗ plainKey)

Updates the RAM key memory slot with a 128-bit plaintext.

The function updates the RAM key memory slot with a 128-bit plaintext. The key is loaded without encryption and
verification of the key, i.e. the key is handed over in plaintext. A plain key can only be loaded into the RAM_KEY
slot.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.6 CSEc Driver 193

Parameters

in plainKey Pointer to the 128-bit buffer containing the key that needs to be copied in R←↩

AM_KEY slot.

Returns

Error Code after command execution.

Definition at line 656 of file csec_driver.c.

16.6.6.30 status_t CSEC_DRV_MPCompress (const uint8_t ∗ msg, uint16_t msgLen, uint8_t ∗ mpCompress, uint32_t timeout
)

Compresses the given messages by accessing the Miyaguchi-Prenell compression feature with in the CSEc feature
set.

This function accesses a Miyaguchi-Prenell compression feature within the CSEc feature set to compress the given
messages.

Parameters

in msg Pointer to the messages to be compressed. Messages must be pre-processed
per SHE specification if they do not already meet the full 128-bit block size
requirement.

in msgLen The number of 128 bit messages to be compressed.
out mpCompress Pointer to the 128 bit buffer storing the compressed data.
in timeout Timeout in milliseconds.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 1096 of file csec_driver.c.

16.6.6.31 status_t CSEC_DRV_VerifyMAC (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen, const uint8_t ∗
mac, uint16_t macLen, bool ∗ verifStatus, uint32_t timeout)

Verifies the MAC of a given message using CMAC with AES-128.

This function verifies the MAC of a given message using CMAC with AES-128.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
in mac Pointer to the buffer containing the CMAC to be verified.
in macLen Number of bits of the CMAC to be compared. A macLength value of zero

indicates that all 128-bits are compared.
out verifStatus Status of MAC verification command (true: verification operation passed,

false: verification operation failed).
in timeout Timeout in milliseconds.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 484 of file csec_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

194 CONTENTS

16.6.6.32 status_t CSEC_DRV_VerifyMACAddrMode (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen, const
uint8_t ∗ mac, uint16_t macLen, bool ∗ verifStatus)

Verifies the MAC of a given message (located in Flash) using CMAC with AES-128.

This function verifies the MAC of a given message using CMAC with AES-128. It is different from the CSEC_DRV←↩

_VerifyMAC function in the sense that it does not involve an extra copy of the data on which the CMAC is computed
and the message pointer should be a pointer to Flash memory.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer (pointing to Flash memory).
in msgLen Number of bits of message on which CMAC will be computed.
in mac Pointer to the buffer containing the CMAC to be verified.
in macLen Number of bits of the CMAC to be compared. A macLength value of zero

indicates that all 128-bits are compared.
out verifStatus Status of MAC verification command (true: verification operation passed,

false: verification operation failed).

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 547 of file csec_driver.c.

16.6.6.33 status_t CSEC_DRV_VerifyMACAsync (csec_key_id_t keyId, const uint8_t ∗ msg, uint32_t msgLen, const
uint8_t ∗ mac, uint16_t macLen, bool ∗ verifStatus)

Asynchronously verifies the MAC of a given message using CMAC with AES-128.

This function verifies the MAC of a given message using CMAC with AES-128, in an asynchronous manner.

Parameters

in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
in mac Pointer to the buffer containing the CMAC to be verified.
in macLen Number of bits of the CMAC to be compared. A macLength value of zero

indicates that all 128-bits are compared.
out verifStatus Status of MAC verification command (true: verification operation passed,

false: verification operation failed).

Returns

STATUS_SUCCESS if the command was successfully launched, STATUS_BUSY if another command was
already launched. CSEC_DRV_GetAsyncCmdStatus can be used in order to check the execution status.

Definition at line 1350 of file csec_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.7 Clock 195

16.7 Clock

16.7.1 Detailed Description

Dynamic clock setting

• status_t CLOCK_DRV_GetFreq (clock_names_t clockName, uint32_t ∗frequency)

Gets the clock frequency for a specific clock name.

• status_t CLOCK_DRV_Init (clock_user_config_t const ∗config)

Set clock configuration according to pre-defined structure.

16.7.2 Function Documentation

16.7.2.1 status_t CLOCK_DRV_GetFreq (clock_names_t clockName, uint32_t ∗ frequency)

Gets the clock frequency for a specific clock name.

This function checks the current clock configurations and then calculates the clock frequency for a specific clock
name defined in clock_names_t. Clock modules must be properly configured before using this function. See
features.h for supported clock names for different chip families. The returned value is in Hertz. If it cannot find
the clock name or the name is not supported for a specific chip family, it returns an STATUS_UNSUPPORTED. If
frequency is required for a peripheral and the module is not clocked, then STATUS_MCU_GATED_OFF status is
returned. Frequency is returned if a valid address is provided. If frequency is required for a peripheral that doesn't
support protocol clock, the zero value is provided.

Parameters

in clockName Clock names defined in clock_names_t
out frequency Returned clock frequency value in Hertz

Returns

status Error code defined in status_t

Definition at line 1902 of file clock_S32K1xx.c.

16.7.2.2 status_t CLOCK_DRV_Init (clock_user_config_t const ∗ config)

Set clock configuration according to pre-defined structure.

This function sets system to target clock configuration; It sets the clock modules registers for clock mode change.

Parameters

in config Pointer to configuration structure.

Returns

Error code.

Note

If external clock is used in the target mode, please make sure it is enabled, for example, if the external oscillator
is used, please setup correctly.
If the configuration structure is NULL, the function will set a default configuration for clock.

Definition at line 603 of file clock_S32K1xx.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

196 CONTENTS

16.8 Clock Manager

16.8.1 Detailed Description

This module covers the clock management API and clock related functionality.

This section describes the programming interface of the clock_manager driver. Clock_manager achieves its func-
tionality by configuring the hardware modules involved in clock distribution and management.

Driver consideration

The Clock Manager driver is developed on top of an appropriate hardware access layer. The Clock Manager
provides API to handle the clock configuration. The Driver uses structures for configuration. The actual format of
the structure is defined by the underlying device specific header file. These structures may be generated using
S32DS configuration. The user application can use the default for most settings, changing only what is necessary.

This driver provides functions for initializing system clock and peripheral clock.

All methods that access the hardware layer will return an error code to signal if the operation succeeded or failed.
The values are defined by the status_t enumeration, and the possible values include: success, error.

Modules

• Clock Manager Driver

This module covers the device-specific clock_manager functionality implemented for S32K1xx SOC.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 197

16.9 Clock Manager Driver

16.9.1 Detailed Description

This module covers the device-specific clock_manager functionality implemented for S32K1xx SOC.

The support for S32K1xx consist in the following items:

1. Clock names enumeration clock_names_t is an enumeration which contains all clock names which are rele-
vant for S32K1xx.

2. Submodule configuration structures

• scg_config_t

• pcc_config_t

• sim_clock_config_t

• pmc_config_t

3. Submodule configuration functions The following functions were implemented for S32K1xx:

• CLOCK_SYS_SetScgConfiguration

• CLOCK_SYS_SetPccConfiguration

• CLOCK_SYS_SetSimConfiguration

• CLOCK_SYS_SetPmcConfiguration

Hardware background

Features of clock_manager module include the following clock sources:

• 4 - 40 MHz fast external oscillator (SOSC)

• 48 MHz Fast Internal RC oscillator (FIRC)

• 8 MHz Slow Internal RC oscillator (SIRC)

• 128 kHz Low Power Oscillator (LPO)

• Up to 112 MHz (HSRUN) System Phased Lock Loop (SPLL)

How to use the CLOCK_MANAGER driver in your application

In order to be able to use the clock_manager in your application, CLOCK_DRV_Init function has to be called. The
same function is called when another configuration is loaded and clock configuration is updated.

Code Example

This is an example for switching between two configurations:

CLOCK_SYS_Init(g_clockManConfigsArr,
CLOCK_MANAGER_CONFIG_CNT,
g_clockManCallbacksArr,
CLOCK_MANAGER_CALLBACK_CNT);

CLOCK_SYS_UpdateConfiguration(0,
CLOCK_MANAGER_POLICY_FORCIBLE);

CLOCK_SYS_UpdateConfiguration(1,
CLOCK_MANAGER_POLICY_FORCIBLE);

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

198 CONTENTS

Notes

Current implementation assumes that the clock configurations are valid and are applied in a valid sequence. Mainly
this means that the configuration doesn't reinitialize the clock used as the system clock.

According to Errata e10777, when the power mode is being switched, the core clock frequency is incorrectly read.
As a result, when switching from VLPR mode to HSRUN, the frequency has to be read twice or after some time has
passed.

The S32DS do not support generate Callbacks configuration. It's alway empty.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\clock\S32K1xx\clock_S32K1xx.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\
${S32SDK_PATH}\platform\drivers\src\clock\
${S32SDK_PATH}\platform\drivers\src\clock\S32K1xx\

Compile symbols

No special symbols are required for this component

Dependencies

Interrupt Manager (Interrupt)

Data Structures

• struct sim_clock_out_config_t

SIM ClockOut configuration. Implements sim_clock_out_config_t_Class. More...

• struct sim_lpo_clock_config_t

SIM LPO Clocks configuration. Implements sim_lpo_clock_config_t_Class. More...

• struct sim_tclk_config_t

SIM Platform Gate Clock configuration. Implements sim_tclk_config_t_Class. More...

• struct sim_plat_gate_config_t

SIM Platform Gate Clock configuration. Implements sim_plat_gate_config_t_Class. More...

• struct sim_qspi_ref_clk_gating_t

SIM QSPI reference clock gating. Implements sim_qspi_ref_clk_gating_t_Class. More...

• struct sim_trace_clock_config_t

SIM Debug Trace clock configuration. Implements sim_trace_clock_config_t_Class. More...

• struct sim_clock_config_t

SIM configure structure. Implements sim_clock_config_t_Class. More...

• struct scg_system_clock_config_t

SCG system clock configuration. Implements scg_system_clock_config_t_Class. More...

• struct scg_sosc_config_t

SCG system OSC configuration. Implements scg_sosc_config_t_Class. More...

• struct scg_sirc_config_t

SCG slow IRC clock configuration. Implements scg_sirc_config_t_Class. More...

• struct scg_firc_config_t

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 199

SCG fast IRC clock configuration. Implements scg_firc_config_t_Class. More...

• struct scg_spll_config_t

SCG system PLL configuration. Implements scg_spll_config_t_Class. More...

• struct scg_rtc_config_t

SCG RTC configuration. Implements scg_rtc_config_t_Class. More...

• struct scg_clock_mode_config_t

SCG Clock Mode Configuration structure. Implements scg_clock_mode_config_t_Class. More...

• struct scg_clockout_config_t

SCG ClockOut Configuration structure. Implements scg_clockout_config_t_Class. More...

• struct scg_config_t

SCG configure structure. Implements scg_config_t_Class. More...

• struct peripheral_clock_config_t

PCC peripheral instance clock configuration. Implements peripheral_clock_config_t_Class. More...

• struct pcc_config_t

PCC configuration. Implements pcc_config_t_Class. More...

• struct pmc_lpo_clock_config_t

PMC LPO configuration. Implements pmc_lpo_clock_config_t_Class. More...

• struct pmc_config_t

PMC configure structure. Implements pmc_config_t_Class. More...

• struct clock_manager_user_config_t

Clock configuration structure. Implements clock_manager_user_config_t_Class. More...

• struct module_clk_config_t

module clock configuration. Implements module_clk_config_t_Class More...

• struct sys_clk_config_t

System clock configuration. Implements sys_clk_config_t_Class. More...

• struct clock_source_config_t

Clock source configuration. Implements clock_source_config_t_Class. More...

• struct clock_notify_struct_t

Clock notification structure passed to clock callback function. Implements clock_notify_struct_t_Class. More...

• struct clock_manager_callback_user_config_t

Structure for callback function and its parameter. Implements clock_manager_callback_user_config_t_Class. More...

• struct clock_manager_state_t

Clock manager state structure. Implements clock_manager_state_t_Class. More...

Macros

• #define NUMBER_OF_TCLK_INPUTS 3U

TClk clock frequency.

• #define SYS_CLK_MAX_NO 3U

The maximum number of system clock dividers and system clock divider indexes.

• #define CORE_CLK_INDEX 0U
• #define BUS_CLK_INDEX 1U
• #define SLOW_CLK_INDEX 2U
• #define CLK_SRC_OFF 0x00U
• #define CLK_SRC_SOSC 0x01U
• #define CLK_SRC_SIRC 0x02U
• #define CLK_SRC_FIRC 0x03U
• #define CLK_SRC_SPLL 0x06U
• #define CLK_SRC_SOSC_DIV1 0x01U
• #define CLK_SRC_SIRC_DIV1 0x02U
• #define CLK_SRC_FIRC_DIV1 0x03U

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

200 CONTENTS

• #define CLK_SRC_SPLL_DIV1 0x06U
• #define CLK_SRC_SOSC_DIV2 0x01U
• #define CLK_SRC_SIRC_DIV2 0x02U
• #define CLK_SRC_FIRC_DIV2 0x03U
• #define CLK_SRC_SPLL_DIV2 0x06U

Typedefs

• typedef uint8_t peripheral_clock_source_t

PCC clock source select Implements peripheral_clock_source_t_Class.

• typedef clock_manager_user_config_t clock_user_config_t
• typedef status_t(∗ clock_manager_callback_t) (clock_notify_struct_t ∗notify, void ∗callbackData)

Type of clock callback functions.

Enumerations

• enum sim_rtc_clk_sel_src_t { SIM_RTCCLK_SEL_SOSCDIV1_CLK = 0x0U, SIM_RTCCLK_SEL_LPO_32K
= 0x1U, SIM_RTCCLK_SEL_RTC_CLKIN = 0x2U, SIM_RTCCLK_SEL_FIRCDIV1_CLK = 0x3U }

SIM CLK32KSEL clock source select Implements sim_rtc_clk_sel_src_t_Class.

• enum sim_lpoclk_sel_src_t { SIM_LPO_CLK_SEL_LPO_128K = 0x0, SIM_LPO_CLK_SEL_NO_CLOCK =
0x1, SIM_LPO_CLK_SEL_LPO_32K = 0x2, SIM_LPO_CLK_SEL_LPO_1K = 0x3 }

SIM LPOCLKSEL clock source select Implements sim_lpoclk_sel_src_t_Class.

• enum sim_clkout_src_t {
SIM_CLKOUT_SEL_SYSTEM_SCG_CLKOUT = 0U, SIM_CLKOUT_SEL_SYSTEM_SOSC_DIV2_CLK =
2U, SIM_CLKOUT_SEL_SYSTEM_SIRC_DIV2_CLK = 4U, SIM_CLKOUT_SEL_SYSTEM_FIRC_DIV2_←↩

CLK = 6U,
SIM_CLKOUT_SEL_SYSTEM_HCLK = 7U, SIM_CLKOUT_SEL_SYSTEM_SPLL_DIV2_CLK = 8U, SIM_←↩

CLKOUT_SEL_SYSTEM_BUS_CLK = 9U, SIM_CLKOUT_SEL_SYSTEM_LPO_128K_CLK = 10U,
SIM_CLKOUT_SEL_SYSTEM_LPO_CLK = 12U, SIM_CLKOUT_SEL_SYSTEM_RTC_CLK = 14U }

SIM CLKOUT select Implements sim_clkout_src_t_Class.

• enum sim_clkout_div_t {
SIM_CLKOUT_DIV_BY_1 = 0x0U, SIM_CLKOUT_DIV_BY_2 = 0x1U, SIM_CLKOUT_DIV_BY_3 = 0x2U,
SIM_CLKOUT_DIV_BY_4 = 0x3U,
SIM_CLKOUT_DIV_BY_5 = 0x4U, SIM_CLKOUT_DIV_BY_6 = 0x5U, SIM_CLKOUT_DIV_BY_7 = 0x6U,
SIM_CLKOUT_DIV_BY_8 = 0x7U }

SIM CLKOUT divider Implements sim_clkout_div_t_Class.

• enum clock_trace_src_t { CLOCK_TRACE_SRC_CORE_CLK = 0x0 }

Debug trace clock source select Implements clock_trace_src_t_Class.

• enum scg_system_clock_src_t { SCG_SYSTEM_CLOCK_SRC_SYS_OSC = 1U, SCG_SYSTEM_CLO←↩

CK_SRC_SIRC = 2U, SCG_SYSTEM_CLOCK_SRC_FIRC = 3U, SCG_SYSTEM_CLOCK_SRC_NONE =
255U }

SCG system clock source. Implements scg_system_clock_src_t_Class.

• enum scg_system_clock_div_t {
SCG_SYSTEM_CLOCK_DIV_BY_1 = 0U, SCG_SYSTEM_CLOCK_DIV_BY_2 = 1U, SCG_SYSTEM_CL←↩

OCK_DIV_BY_3 = 2U, SCG_SYSTEM_CLOCK_DIV_BY_4 = 3U,
SCG_SYSTEM_CLOCK_DIV_BY_5 = 4U, SCG_SYSTEM_CLOCK_DIV_BY_6 = 5U, SCG_SYSTEM_CL←↩

OCK_DIV_BY_7 = 6U, SCG_SYSTEM_CLOCK_DIV_BY_8 = 7U,
SCG_SYSTEM_CLOCK_DIV_BY_9 = 8U, SCG_SYSTEM_CLOCK_DIV_BY_10 = 9U, SCG_SYSTEM_C←↩

LOCK_DIV_BY_11 = 10U, SCG_SYSTEM_CLOCK_DIV_BY_12 = 11U,
SCG_SYSTEM_CLOCK_DIV_BY_13 = 12U, SCG_SYSTEM_CLOCK_DIV_BY_14 = 13U, SCG_SYSTE←↩

M_CLOCK_DIV_BY_15 = 14U, SCG_SYSTEM_CLOCK_DIV_BY_16 = 15U }

SCG system clock divider value. Implements scg_system_clock_div_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 201

• enum scg_async_clock_div_t {
SCG_ASYNC_CLOCK_DISABLE = 0U, SCG_ASYNC_CLOCK_DIV_BY_1 = 1U, SCG_ASYNC_CLOCK_←↩

DIV_BY_2 = 2U, SCG_ASYNC_CLOCK_DIV_BY_4 = 3U,
SCG_ASYNC_CLOCK_DIV_BY_8 = 4U, SCG_ASYNC_CLOCK_DIV_BY_16 = 5U, SCG_ASYNC_CLOC←↩

K_DIV_BY_32 = 6U, SCG_ASYNC_CLOCK_DIV_BY_64 = 7U }

SCG asynchronous clock divider value. Implements scg_async_clock_div_t_Class.

• enum scg_sosc_monitor_mode_t { SCG_SOSC_MONITOR_DISABLE = 0U, SCG_SOSC_MONITOR_INT =
1U, SCG_SOSC_MONITOR_RESET = 2U }

SCG system OSC monitor mode. Implements scg_sosc_monitor_mode_t_Class.

• enum scg_sosc_range_t { SCG_SOSC_RANGE_MID = 2U, SCG_SOSC_RANGE_HIGH = 3U }

SCG OSC frequency range select Implements scg_sosc_range_t_Class.

• enum scg_sosc_gain_t { SCG_SOSC_GAIN_LOW = 0x0, SCG_SOSC_GAIN_HIGH = 0x1 }

SCG OSC high gain oscillator select. Implements scg_sosc_gain_t_Class.

• enum scg_sosc_ext_ref_t { SCG_SOSC_REF_EXT = 0x0, SCG_SOSC_REF_OSC = 0x1 }

SCG OSC external reference clock select. Implements scg_sosc_ext_ref_t_Class.

• enum scg_sirc_range_t { SCG_SIRC_RANGE_HIGH = 1U }

SCG slow IRC clock frequency range. Implements scg_sirc_range_t_Class.

• enum scg_firc_range_t { SCG_FIRC_RANGE_48M }

SCG fast IRC clock frequency range. Implements scg_firc_range_t_Class.

• enum scg_spll_monitor_mode_t { SCG_SPLL_MONITOR_DISABLE = 0U, SCG_SPLL_MONITOR_INT =
1U, SCG_SPLL_MONITOR_RESET = 2U }

SCG system PLL monitor mode. Implements scg_spll_monitor_mode_t_Class.

• enum scg_spll_clock_prediv_t {
SCG_SPLL_CLOCK_PREDIV_BY_1 = 0U, SCG_SPLL_CLOCK_PREDIV_BY_2 = 1U, SCG_SPLL_CLO←↩

CK_PREDIV_BY_3 = 2U, SCG_SPLL_CLOCK_PREDIV_BY_4 = 3U,
SCG_SPLL_CLOCK_PREDIV_BY_5 = 4U, SCG_SPLL_CLOCK_PREDIV_BY_6 = 5U, SCG_SPLL_CLO←↩

CK_PREDIV_BY_7 = 6U, SCG_SPLL_CLOCK_PREDIV_BY_8 = 7U }

SCG system PLL predivider.

• enum scg_spll_clock_multiply_t {
SCG_SPLL_CLOCK_MULTIPLY_BY_16 = 0U, SCG_SPLL_CLOCK_MULTIPLY_BY_17 = 1U, SCG_SPL←↩

L_CLOCK_MULTIPLY_BY_18 = 2U, SCG_SPLL_CLOCK_MULTIPLY_BY_19 = 3U,
SCG_SPLL_CLOCK_MULTIPLY_BY_20 = 4U, SCG_SPLL_CLOCK_MULTIPLY_BY_21 = 5U, SCG_SPL←↩

L_CLOCK_MULTIPLY_BY_22 = 6U, SCG_SPLL_CLOCK_MULTIPLY_BY_23 = 7U,
SCG_SPLL_CLOCK_MULTIPLY_BY_24 = 8U, SCG_SPLL_CLOCK_MULTIPLY_BY_25 = 9U, SCG_SPL←↩

L_CLOCK_MULTIPLY_BY_26 = 10U, SCG_SPLL_CLOCK_MULTIPLY_BY_27 = 11U,
SCG_SPLL_CLOCK_MULTIPLY_BY_28 = 12U, SCG_SPLL_CLOCK_MULTIPLY_BY_29 = 13U, SCG_S←↩

PLL_CLOCK_MULTIPLY_BY_30 = 14U, SCG_SPLL_CLOCK_MULTIPLY_BY_31 = 15U,
SCG_SPLL_CLOCK_MULTIPLY_BY_32 = 16U, SCG_SPLL_CLOCK_MULTIPLY_BY_33 = 17U, SCG_S←↩

PLL_CLOCK_MULTIPLY_BY_34 = 18U, SCG_SPLL_CLOCK_MULTIPLY_BY_35 = 19U,
SCG_SPLL_CLOCK_MULTIPLY_BY_36 = 20U, SCG_SPLL_CLOCK_MULTIPLY_BY_37 = 21U, SCG_S←↩

PLL_CLOCK_MULTIPLY_BY_38 = 22U, SCG_SPLL_CLOCK_MULTIPLY_BY_39 = 23U,
SCG_SPLL_CLOCK_MULTIPLY_BY_40 = 24U, SCG_SPLL_CLOCK_MULTIPLY_BY_41 = 25U, SCG_S←↩

PLL_CLOCK_MULTIPLY_BY_42 = 26U, SCG_SPLL_CLOCK_MULTIPLY_BY_43 = 27U,
SCG_SPLL_CLOCK_MULTIPLY_BY_44 = 28U, SCG_SPLL_CLOCK_MULTIPLY_BY_45 = 29U, SCG_S←↩

PLL_CLOCK_MULTIPLY_BY_46 = 30U, SCG_SPLL_CLOCK_MULTIPLY_BY_47 = 31U }

SCG system PLL multiplier.

• enum peripheral_clock_frac_t { MULTIPLY_BY_ONE = 0x00U, MULTIPLY_BY_TWO = 0x01U }

PCC fractional value select Implements peripheral_clock_frac_t_Class.

• enum peripheral_clock_divider_t {
DIVIDE_BY_ONE = 0x00U, DIVIDE_BY_TWO = 0x01U, DIVIDE_BY_THREE = 0x02U, DIVIDE_BY_FOUR
= 0x03U,
DIVIDE_BY_FIVE = 0x04U, DIVIDE_BY_SIX = 0x05U, DIVIDE_BY_SEVEN = 0x06U, DIVIDE_BY_EIGTH =
0x07U }

PCC divider value select Implements peripheral_clock_divider_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

202 CONTENTS

• enum pwr_modes_t {
NO_MODE = 0U, RUN_MODE = (1U<<0U), VLPR_MODE = (1U<<1U), HSRUN_MODE = (1U<<2U),
STOP_MODE = (1U<<3U), VLPS_MODE = (1U<<4U), ALL_MODES = 0x7FFFFFFF }

Power mode. Implements pwr_modes_t_Class.

• enum xosc_ref_t { XOSC_EXT_REF = 0U, XOSC_INT_OSC = 1U }

XOSC reference clock select (internal oscillator is bypassed or not) Implements xosc_ref_t_Class.

• enum clock_manager_notify_t { CLOCK_MANAGER_NOTIFY_RECOVER = 0x00U, CLOCK_MANAGER←↩

_NOTIFY_BEFORE = 0x01U, CLOCK_MANAGER_NOTIFY_AFTER = 0x02U }

The clock notification type. Implements clock_manager_notify_t_Class.

• enum clock_manager_callback_type_t { CLOCK_MANAGER_CALLBACK_BEFORE = 0x01U, CLOCK_M←↩

ANAGER_CALLBACK_AFTER = 0x02U, CLOCK_MANAGER_CALLBACK_BEFORE_AFTER = 0x03U }

The callback type, indicates what kinds of notification this callback handles. Implements clock_manager_callback←↩

_type_t_Class.

• enum clock_manager_policy_t { CLOCK_MANAGER_POLICY_AGREEMENT, CLOCK_MANAGER_POL←↩

ICY_FORCIBLE }

Clock transition policy. Implements clock_manager_policy_t_Class.

Functions

• void CLOCK_DRV_SetModuleClock (clock_names_t peripheralClock, const module_clk_config_t ∗module←↩

ClkConfig)

Configures module clock.

• status_t CLOCK_DRV_SetSystemClock (const pwr_modes_t ∗mode, const sys_clk_config_t ∗sysClkConfig)

Configures the system clocks.

• void CLOCK_DRV_GetSystemClockSource (sys_clk_config_t ∗sysClkConfig)

Gets the system clock source.

• status_t CLOCK_DRV_SetClockSource (clock_names_t clockSource, const clock_source_config_t ∗clk←↩

SrcConfig)

This function configures a clock source.

• status_t CLOCK_SYS_Init (clock_manager_user_config_t const ∗∗clockConfigsPtr, uint8_t configsNumber,
clock_manager_callback_user_config_t ∗∗callbacksPtr, uint8_t callbacksNumber)

Install pre-defined clock configurations.

• status_t CLOCK_SYS_UpdateConfiguration (uint8_t targetConfigIndex, clock_manager_policy_t policy)

Set system clock configuration according to pre-defined structure.

• status_t CLOCK_SYS_SetConfiguration (clock_manager_user_config_t const ∗config)

Set system clock configuration.

• uint8_t CLOCK_SYS_GetCurrentConfiguration (void)

Get current system clock configuration.

• clock_manager_callback_user_config_t ∗ CLOCK_SYS_GetErrorCallback (void)

Get the callback which returns error in last clock switch.

• status_t CLOCK_SYS_GetFreq (clock_names_t clockName, uint32_t ∗frequency)

Wrapper over CLOCK_DRV_GetFreq function. It's part of the old API.

Variables

• const uint8_t peripheralFeaturesList [CLOCK_NAME_COUNT]

Peripheral features list Constant array storing the mappings between clock names of the peripherals and feature lists.

• uint32_t g_TClkFreq [NUMBER_OF_TCLK_INPUTS]
• uint32_t g_xtal0ClkFreq

EXTAL0 clock frequency.

• uint32_t g_RtcClkInFreq

RTC_CLKIN clock frequency.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 203

SCG Clockout.

• enum scg_clockout_src_t {
SCG_CLOCKOUT_SRC_SCG_SLOW = 0U, SCG_CLOCKOUT_SRC_SOSC = 1U, SCG_CLOCKOUT_S←↩

RC_SIRC = 2U, SCG_CLOCKOUT_SRC_FIRC = 3U,
SCG_CLOCKOUT_SRC_SPLL = 6U }

SCG ClockOut type. Implements scg_clockout_src_t_Class.

16.9.2 Data Structure Documentation

16.9.2.1 struct sim_clock_out_config_t

SIM ClockOut configuration. Implements sim_clock_out_config_t_Class.

Definition at line 142 of file clock_S32K1xx.h.

Data Fields

• bool initialize
• bool enable
• sim_clkout_src_t source
• sim_clkout_div_t divider

Field Documentation

16.9.2.1.1 sim_clkout_div_t divider

SIM ClockOut divide ratio.

Definition at line 147 of file clock_S32K1xx.h.

16.9.2.1.2 bool enable

SIM ClockOut enable.

Definition at line 145 of file clock_S32K1xx.h.

16.9.2.1.3 bool initialize

Initialize or not the ClockOut clock.

Definition at line 144 of file clock_S32K1xx.h.

16.9.2.1.4 sim_clkout_src_t source

SIM ClockOut source select.

Definition at line 146 of file clock_S32K1xx.h.

16.9.2.2 struct sim_lpo_clock_config_t

SIM LPO Clocks configuration. Implements sim_lpo_clock_config_t_Class.

Definition at line 155 of file clock_S32K1xx.h.

Data Fields

• bool initialize
• sim_rtc_clk_sel_src_t sourceRtcClk
• sim_lpoclk_sel_src_t sourceLpoClk
• bool enableLpo32k
• bool enableLpo1k

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

204 CONTENTS

Field Documentation

16.9.2.2.1 bool enableLpo1k

MSCM Clock Gating Control enable.

Definition at line 161 of file clock_S32K1xx.h.

16.9.2.2.2 bool enableLpo32k

MSCM Clock Gating Control enable.

Definition at line 160 of file clock_S32K1xx.h.

16.9.2.2.3 bool initialize

Initialize or not the LPO clock.

Definition at line 157 of file clock_S32K1xx.h.

16.9.2.2.4 sim_lpoclk_sel_src_t sourceLpoClk

LPO clock source select.

Definition at line 159 of file clock_S32K1xx.h.

16.9.2.2.5 sim_rtc_clk_sel_src_t sourceRtcClk

RTC_CLK source select.

Definition at line 158 of file clock_S32K1xx.h.

16.9.2.3 struct sim_tclk_config_t

SIM Platform Gate Clock configuration. Implements sim_tclk_config_t_Class.

Definition at line 168 of file clock_S32K1xx.h.

Data Fields

• bool initialize

• uint32_t tclkFreq [NUMBER_OF_TCLK_INPUTS]

• uint32_t extPinSrc [FTM_INSTANCE_COUNT]

Field Documentation

16.9.2.3.1 uint32_t extPinSrc[FTM_INSTANCE_COUNT]

FTMx frequency.

Definition at line 172 of file clock_S32K1xx.h.

16.9.2.3.2 bool initialize

Initialize or not the TCLK clock.

Definition at line 170 of file clock_S32K1xx.h.

16.9.2.3.3 uint32_t tclkFreq[NUMBER_OF_TCLK_INPUTS]

TCLKx frequency.

Definition at line 171 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 205

16.9.2.4 struct sim_plat_gate_config_t

SIM Platform Gate Clock configuration. Implements sim_plat_gate_config_t_Class.

Definition at line 179 of file clock_S32K1xx.h.

Data Fields

• bool initialize
• bool enableMscm
• bool enableMpu
• bool enableDma
• bool enableErm
• bool enableEim

Field Documentation

16.9.2.4.1 bool enableDma

DMA Clock Gating Control enable.

Definition at line 184 of file clock_S32K1xx.h.

16.9.2.4.2 bool enableEim

EIM Clock Gating Control enable.

Definition at line 186 of file clock_S32K1xx.h.

16.9.2.4.3 bool enableErm

ERM Clock Gating Control enable.

Definition at line 185 of file clock_S32K1xx.h.

16.9.2.4.4 bool enableMpu

MPU Clock Gating Control enable.

Definition at line 183 of file clock_S32K1xx.h.

16.9.2.4.5 bool enableMscm

MSCM Clock Gating Control enable.

Definition at line 182 of file clock_S32K1xx.h.

16.9.2.4.6 bool initialize

Initialize or not the Trace clock.

Definition at line 181 of file clock_S32K1xx.h.

16.9.2.5 struct sim_qspi_ref_clk_gating_t

SIM QSPI reference clock gating. Implements sim_qspi_ref_clk_gating_t_Class.

Definition at line 193 of file clock_S32K1xx.h.

Data Fields

• bool enableQspiRefClk

Field Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

206 CONTENTS

16.9.2.5.1 bool enableQspiRefClk

qspi internal reference clock gating control enable.

Definition at line 195 of file clock_S32K1xx.h.

16.9.2.6 struct sim_trace_clock_config_t

SIM Debug Trace clock configuration. Implements sim_trace_clock_config_t_Class.

Definition at line 213 of file clock_S32K1xx.h.

Data Fields

• bool initialize
• bool divEnable
• clock_trace_src_t source
• uint8_t divider
• bool divFraction

Field Documentation

16.9.2.6.1 bool divEnable

Trace clock divider enable.

Definition at line 216 of file clock_S32K1xx.h.

16.9.2.6.2 bool divFraction

Trace clock divider fraction.

Definition at line 219 of file clock_S32K1xx.h.

16.9.2.6.3 uint8_t divider

Trace clock divider divisor.

Definition at line 218 of file clock_S32K1xx.h.

16.9.2.6.4 bool initialize

Initialize or not the Trace clock.

Definition at line 215 of file clock_S32K1xx.h.

16.9.2.6.5 clock_trace_src_t source

Trace clock select.

Definition at line 217 of file clock_S32K1xx.h.

16.9.2.7 struct sim_clock_config_t

SIM configure structure. Implements sim_clock_config_t_Class.

Definition at line 226 of file clock_S32K1xx.h.

Data Fields

• sim_clock_out_config_t clockOutConfig
• sim_lpo_clock_config_t lpoClockConfig
• sim_tclk_config_t tclkConfig
• sim_plat_gate_config_t platGateConfig
• sim_trace_clock_config_t traceClockConfig
• sim_qspi_ref_clk_gating_t qspiRefClkGating

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 207

Field Documentation

16.9.2.7.1 sim_clock_out_config_t clockOutConfig

Clock Out configuration.

Definition at line 228 of file clock_S32K1xx.h.

16.9.2.7.2 sim_lpo_clock_config_t lpoClockConfig

Low Power Clock configuration.

Definition at line 229 of file clock_S32K1xx.h.

16.9.2.7.3 sim_plat_gate_config_t platGateConfig

Platform Gate Clock configuration.

Definition at line 231 of file clock_S32K1xx.h.

16.9.2.7.4 sim_qspi_ref_clk_gating_t qspiRefClkGating

Qspi Reference Clock Gating.

Definition at line 233 of file clock_S32K1xx.h.

16.9.2.7.5 sim_tclk_config_t tclkConfig

TCLK, FTM option Clock configuration.

Definition at line 230 of file clock_S32K1xx.h.

16.9.2.7.6 sim_trace_clock_config_t traceClockConfig

Trace clock configuration.

Definition at line 232 of file clock_S32K1xx.h.

16.9.2.8 struct scg_system_clock_config_t

SCG system clock configuration. Implements scg_system_clock_config_t_Class.

Definition at line 280 of file clock_S32K1xx.h.

Data Fields

• scg_system_clock_div_t divSlow

• scg_system_clock_div_t divBus

• scg_system_clock_div_t divCore

• scg_system_clock_src_t src

Field Documentation

16.9.2.8.1 scg_system_clock_div_t divBus

BUS clock divider.

Definition at line 283 of file clock_S32K1xx.h.

16.9.2.8.2 scg_system_clock_div_t divCore

Core clock divider.

Definition at line 284 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

208 CONTENTS

16.9.2.8.3 scg_system_clock_div_t divSlow

Slow clock divider.

Definition at line 282 of file clock_S32K1xx.h.

16.9.2.8.4 scg_system_clock_src_t src

System clock source.

Definition at line 285 of file clock_S32K1xx.h.

16.9.2.9 struct scg_sosc_config_t

SCG system OSC configuration. Implements scg_sosc_config_t_Class.

Definition at line 370 of file clock_S32K1xx.h.

Data Fields

• uint32_t freq

• scg_sosc_monitor_mode_t monitorMode

• scg_sosc_ext_ref_t extRef

• scg_sosc_gain_t gain

• scg_sosc_range_t range

• scg_async_clock_div_t div1

• scg_async_clock_div_t div2

• bool enableInStop

• bool enableInLowPower

• bool locked

• bool initialize

Field Documentation

16.9.2.9.1 scg_async_clock_div_t div1

Asynchronous peripheral source.

Definition at line 381 of file clock_S32K1xx.h.

16.9.2.9.2 scg_async_clock_div_t div2

Asynchronous peripheral source.

Definition at line 382 of file clock_S32K1xx.h.

16.9.2.9.3 bool enableInLowPower

System OSC is enable or not in low power mode.

Definition at line 385 of file clock_S32K1xx.h.

16.9.2.9.4 bool enableInStop

System OSC is enable or not in stop mode.

Definition at line 384 of file clock_S32K1xx.h.

16.9.2.9.5 scg_sosc_ext_ref_t extRef

System OSC External Reference Select.

Definition at line 376 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 209

16.9.2.9.6 uint32_t freq

System OSC frequency.

Definition at line 372 of file clock_S32K1xx.h.

16.9.2.9.7 scg_sosc_gain_t gain

System OSC high-gain operation.

Definition at line 377 of file clock_S32K1xx.h.

16.9.2.9.8 bool initialize

Initialize or not the System OSC module.

Definition at line 389 of file clock_S32K1xx.h.

16.9.2.9.9 bool locked

System OSC Control Register can be written.

Definition at line 387 of file clock_S32K1xx.h.

16.9.2.9.10 scg_sosc_monitor_mode_t monitorMode

System OSC Clock monitor mode.

Definition at line 374 of file clock_S32K1xx.h.

16.9.2.9.11 scg_sosc_range_t range

System OSC frequency range.

Definition at line 379 of file clock_S32K1xx.h.

16.9.2.10 struct scg_sirc_config_t

SCG slow IRC clock configuration. Implements scg_sirc_config_t_Class.

Definition at line 405 of file clock_S32K1xx.h.

Data Fields

• scg_sirc_range_t range
• scg_async_clock_div_t div1
• scg_async_clock_div_t div2
• bool initialize
• bool enableInStop
• bool enableInLowPower
• bool locked

Field Documentation

16.9.2.10.1 scg_async_clock_div_t div1

Asynchronous peripheral source.

Definition at line 409 of file clock_S32K1xx.h.

16.9.2.10.2 scg_async_clock_div_t div2

Asynchronous peripheral source.

Definition at line 410 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

210 CONTENTS

16.9.2.10.3 bool enableInLowPower

SIRC is enable or not in low power mode.

Definition at line 414 of file clock_S32K1xx.h.

16.9.2.10.4 bool enableInStop

SIRC is enable or not in stop mode.

Definition at line 413 of file clock_S32K1xx.h.

16.9.2.10.5 bool initialize

Initialize or not the SIRC module.

Definition at line 412 of file clock_S32K1xx.h.

16.9.2.10.6 bool locked

SIRC Control Register can be written.

Definition at line 416 of file clock_S32K1xx.h.

16.9.2.10.7 scg_sirc_range_t range

Slow IRC frequency range.

Definition at line 407 of file clock_S32K1xx.h.

16.9.2.11 struct scg_firc_config_t

SCG fast IRC clock configuration. Implements scg_firc_config_t_Class.

Definition at line 432 of file clock_S32K1xx.h.

Data Fields

• scg_firc_range_t range
• scg_async_clock_div_t div1
• scg_async_clock_div_t div2
• bool enableInStop
• bool enableInLowPower
• bool regulator
• bool locked
• bool initialize

Field Documentation

16.9.2.11.1 scg_async_clock_div_t div1

Asynchronous peripheral source.

Definition at line 436 of file clock_S32K1xx.h.

16.9.2.11.2 scg_async_clock_div_t div2

Asynchronous peripheral source.

Definition at line 437 of file clock_S32K1xx.h.

16.9.2.11.3 bool enableInLowPower

FIRC is enable or not in lowpower mode.

Definition at line 440 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 211

16.9.2.11.4 bool enableInStop

FIRC is enable or not in stop mode.

Definition at line 439 of file clock_S32K1xx.h.

16.9.2.11.5 bool initialize

Initialize or not the FIRC module.

Definition at line 444 of file clock_S32K1xx.h.

16.9.2.11.6 bool locked

FIRC Control Register can be written.

Definition at line 442 of file clock_S32K1xx.h.

16.9.2.11.7 scg_firc_range_t range

Fast IRC frequency range.

Definition at line 434 of file clock_S32K1xx.h.

16.9.2.11.8 bool regulator

FIRC regulator is enable or not.

Definition at line 441 of file clock_S32K1xx.h.

16.9.2.12 struct scg_spll_config_t

SCG system PLL configuration. Implements scg_spll_config_t_Class.

Definition at line 518 of file clock_S32K1xx.h.

Data Fields

• scg_spll_monitor_mode_t monitorMode
• uint8_t prediv
• uint8_t mult
• uint8_t src
• scg_async_clock_div_t div1
• scg_async_clock_div_t div2
• bool enableInStop
• bool locked
• bool initialize

Field Documentation

16.9.2.12.1 scg_async_clock_div_t div1

Asynchronous peripheral source.

Definition at line 526 of file clock_S32K1xx.h.

16.9.2.12.2 scg_async_clock_div_t div2

Asynchronous peripheral source.

Definition at line 527 of file clock_S32K1xx.h.

16.9.2.12.3 bool enableInStop

System PLL clock is enable or not in stop mode.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

212 CONTENTS

Definition at line 529 of file clock_S32K1xx.h.

16.9.2.12.4 bool initialize

Initialize or not the System PLL module.

Definition at line 532 of file clock_S32K1xx.h.

16.9.2.12.5 bool locked

System PLL Control Register can be written.

Definition at line 531 of file clock_S32K1xx.h.

16.9.2.12.6 scg_spll_monitor_mode_t monitorMode

Clock monitor mode selected.

Definition at line 520 of file clock_S32K1xx.h.

16.9.2.12.7 uint8_t mult

System PLL multiplier.

Definition at line 523 of file clock_S32K1xx.h.

16.9.2.12.8 uint8_t prediv

PLL reference clock divider.

Definition at line 522 of file clock_S32K1xx.h.

16.9.2.12.9 uint8_t src

System PLL source.

Definition at line 524 of file clock_S32K1xx.h.

16.9.2.13 struct scg_rtc_config_t

SCG RTC configuration. Implements scg_rtc_config_t_Class.

Definition at line 539 of file clock_S32K1xx.h.

Data Fields

• uint32_t rtcClkInFreq
• bool initialize

Field Documentation

16.9.2.13.1 bool initialize

Initialize or not the RTC.

Definition at line 542 of file clock_S32K1xx.h.

16.9.2.13.2 uint32_t rtcClkInFreq

RTC_CLKIN frequency.

Definition at line 541 of file clock_S32K1xx.h.

16.9.2.14 struct scg_clock_mode_config_t

SCG Clock Mode Configuration structure. Implements scg_clock_mode_config_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 213

Definition at line 549 of file clock_S32K1xx.h.

Data Fields

• scg_system_clock_config_t rccrConfig
• scg_system_clock_config_t vccrConfig
• scg_system_clock_config_t hccrConfig
• scg_system_clock_src_t alternateClock
• bool initialize

Field Documentation

16.9.2.14.1 scg_system_clock_src_t alternateClock

Alternate clock used during initialization

Definition at line 554 of file clock_S32K1xx.h.

16.9.2.14.2 scg_system_clock_config_t hccrConfig

HSRUN Clock Control configuration.

Definition at line 553 of file clock_S32K1xx.h.

16.9.2.14.3 bool initialize

Initialize or not the Clock Mode Configuration.

Definition at line 555 of file clock_S32K1xx.h.

16.9.2.14.4 scg_system_clock_config_t rccrConfig

Run Clock Control configuration.

Definition at line 551 of file clock_S32K1xx.h.

16.9.2.14.5 scg_system_clock_config_t vccrConfig

VLPR Clock Control configuration.

Definition at line 552 of file clock_S32K1xx.h.

16.9.2.15 struct scg_clockout_config_t

SCG ClockOut Configuration structure. Implements scg_clockout_config_t_Class.

Definition at line 562 of file clock_S32K1xx.h.

Data Fields

• scg_clockout_src_t source
• bool initialize

Field Documentation

16.9.2.15.1 bool initialize

Initialize or not the ClockOut.

Definition at line 565 of file clock_S32K1xx.h.

16.9.2.15.2 scg_clockout_src_t source

ClockOut source select.

Definition at line 564 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

214 CONTENTS

16.9.2.16 struct scg_config_t

SCG configure structure. Implements scg_config_t_Class.

Definition at line 572 of file clock_S32K1xx.h.

Data Fields

• scg_sirc_config_t sircConfig
• scg_firc_config_t fircConfig
• scg_sosc_config_t soscConfig
• scg_spll_config_t spllConfig
• scg_rtc_config_t rtcConfig
• scg_clockout_config_t clockOutConfig
• scg_clock_mode_config_t clockModeConfig

Field Documentation

16.9.2.16.1 scg_clock_mode_config_t clockModeConfig

SCG Clock Mode Configuration.

Definition at line 580 of file clock_S32K1xx.h.

16.9.2.16.2 scg_clockout_config_t clockOutConfig

SCG ClockOut Configuration.

Definition at line 579 of file clock_S32K1xx.h.

16.9.2.16.3 scg_firc_config_t fircConfig

Fast internal reference clock configuration.

Definition at line 575 of file clock_S32K1xx.h.

16.9.2.16.4 scg_rtc_config_t rtcConfig

Real Time Clock configuration.

Definition at line 578 of file clock_S32K1xx.h.

16.9.2.16.5 scg_sirc_config_t sircConfig

Slow internal reference clock configuration.

Definition at line 574 of file clock_S32K1xx.h.

16.9.2.16.6 scg_sosc_config_t soscConfig

System oscillator configuration.

Definition at line 576 of file clock_S32K1xx.h.

16.9.2.16.7 scg_spll_config_t spllConfig

System Phase locked loop configuration.

Definition at line 577 of file clock_S32K1xx.h.

16.9.2.17 struct peripheral_clock_config_t

PCC peripheral instance clock configuration. Implements peripheral_clock_config_t_Class.

Definition at line 632 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 215

Data Fields

• clock_names_t clockName

• bool clkGate

• peripheral_clock_source_t clkSrc

• peripheral_clock_frac_t frac

• peripheral_clock_divider_t divider

Field Documentation

16.9.2.17.1 bool clkGate

Peripheral clock gate.

Definition at line 642 of file clock_S32K1xx.h.

16.9.2.17.2 peripheral_clock_source_t clkSrc

Peripheral clock source.

Definition at line 643 of file clock_S32K1xx.h.

16.9.2.17.3 clock_names_t clockName

Definition at line 641 of file clock_S32K1xx.h.

16.9.2.17.4 peripheral_clock_divider_t divider

Peripheral clock divider value.

Definition at line 645 of file clock_S32K1xx.h.

16.9.2.17.5 peripheral_clock_frac_t frac

Peripheral clock fractional value.

Definition at line 644 of file clock_S32K1xx.h.

16.9.2.18 struct pcc_config_t

PCC configuration. Implements pcc_config_t_Class.

Definition at line 651 of file clock_S32K1xx.h.

Data Fields

• uint32_t count

• peripheral_clock_config_t ∗ peripheralClocks

Field Documentation

16.9.2.18.1 uint32_t count

Number of peripherals to be configured.

Definition at line 653 of file clock_S32K1xx.h.

16.9.2.18.2 peripheral_clock_config_t∗ peripheralClocks

Pointer to the peripheral clock configurations array.

Definition at line 654 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

216 CONTENTS

16.9.2.19 struct pmc_lpo_clock_config_t

PMC LPO configuration. Implements pmc_lpo_clock_config_t_Class.

Definition at line 660 of file clock_S32K1xx.h.

Data Fields

• bool initialize

• bool enable

• int8_t trimValue

Field Documentation

16.9.2.19.1 bool enable

Enable/disable LPO

Definition at line 663 of file clock_S32K1xx.h.

16.9.2.19.2 bool initialize

Initialize or not the PMC LPO settings.

Definition at line 662 of file clock_S32K1xx.h.

16.9.2.19.3 int8_t trimValue

LPO trimming value

Definition at line 664 of file clock_S32K1xx.h.

16.9.2.20 struct pmc_config_t

PMC configure structure. Implements pmc_config_t_Class.

Definition at line 671 of file clock_S32K1xx.h.

Data Fields

• pmc_lpo_clock_config_t lpoClockConfig

Field Documentation

16.9.2.20.1 pmc_lpo_clock_config_t lpoClockConfig

Low Power Clock configuration.

Definition at line 673 of file clock_S32K1xx.h.

16.9.2.21 struct clock_manager_user_config_t

Clock configuration structure. Implements clock_manager_user_config_t_Class.

Definition at line 680 of file clock_S32K1xx.h.

Data Fields

• scg_config_t scgConfig

• sim_clock_config_t simConfig

• pcc_config_t pccConfig

• pmc_config_t pmcConfig

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 217

Field Documentation

16.9.2.21.1 pcc_config_t pccConfig

PCC Clock configuration.

Definition at line 684 of file clock_S32K1xx.h.

16.9.2.21.2 pmc_config_t pmcConfig

PMC Clock configuration.

Definition at line 685 of file clock_S32K1xx.h.

16.9.2.21.3 scg_config_t scgConfig

SCG Clock configuration.

Definition at line 682 of file clock_S32K1xx.h.

16.9.2.21.4 sim_clock_config_t simConfig

SIM Clock configuration.

Definition at line 683 of file clock_S32K1xx.h.

16.9.2.22 struct module_clk_config_t

module clock configuration. Implements module_clk_config_t_Class

Definition at line 720 of file clock_S32K1xx.h.

Data Fields

• bool gating

• clock_names_t source

• uint16_t mul

• uint16_t div

Field Documentation

16.9.2.22.1 uint16_t div

Divider (some modules don't have divider)

Definition at line 725 of file clock_S32K1xx.h.

16.9.2.22.2 bool gating

Clock gating.

Definition at line 722 of file clock_S32K1xx.h.

16.9.2.22.3 uint16_t mul

Multiplier (some modules don't have fractional)

Definition at line 724 of file clock_S32K1xx.h.

16.9.2.22.4 clock_names_t source

Clock source input (some modules don't have protocol clock)

Definition at line 723 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

218 CONTENTS

16.9.2.23 struct sys_clk_config_t

System clock configuration. Implements sys_clk_config_t_Class.

Definition at line 733 of file clock_S32K1xx.h.

Data Fields

• clock_names_t src
• uint16_t dividers [SYS_CLK_MAX_NO]

Field Documentation

16.9.2.23.1 uint16_t dividers[SYS_CLK_MAX_NO]

System clock dividers. Value by which system clock is divided. 0 means that system clock is not divided.

Definition at line 736 of file clock_S32K1xx.h.

16.9.2.23.2 clock_names_t src

System clock source.

Definition at line 735 of file clock_S32K1xx.h.

16.9.2.24 struct clock_source_config_t

Clock source configuration. Implements clock_source_config_t_Class.

Definition at line 743 of file clock_S32K1xx.h.

Data Fields

• bool enable
• xosc_ref_t refClk
• uint32_t refFreq
• uint16_t mul
• uint16_t div
• uint16_t outputDiv1
• uint16_t outputDiv2

Field Documentation

16.9.2.24.1 uint16_t div

Divider. It applies to PLL clock sources. Valid range is 1-8.

Definition at line 749 of file clock_S32K1xx.h.

16.9.2.24.2 bool enable

Enable/disable clock source.

Definition at line 745 of file clock_S32K1xx.h.

16.9.2.24.3 uint16_t mul

Multiplier. It applies to PLL clock sources. Valid range is 16 - 47.

Definition at line 748 of file clock_S32K1xx.h.

16.9.2.24.4 uint16_t outputDiv1

First output divider. It's used as protocol clock by modules. Zero means that divider is disabled. / Possible values
0(disabled), 1, 2, 4, 8, 16, 32, 64; all the other values are not valid. /

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 219

Definition at line 751 of file clock_S32K1xx.h.

16.9.2.24.5 uint16_t outputDiv2

Second output divider. It's used as protocol clock by modules. Zero means that divider is disabled. / Possible values
0(disabled), 1, 2, 4, 8, 16, 32, 64; all the other values are not valid. /

Definition at line 754 of file clock_S32K1xx.h.

16.9.2.24.6 xosc_ref_t refClk

Bypass option. It applies to external oscillator clock sources

Definition at line 746 of file clock_S32K1xx.h.

16.9.2.24.7 uint32_t refFreq

Frequency of the input reference clock. It applies to external oscillator clock sources

Definition at line 747 of file clock_S32K1xx.h.

16.9.2.25 struct clock_notify_struct_t

Clock notification structure passed to clock callback function. Implements clock_notify_struct_t_Class.

Definition at line 797 of file clock_S32K1xx.h.

Data Fields

• uint8_t targetClockConfigIndex

• clock_manager_policy_t policy

• clock_manager_notify_t notifyType

Field Documentation

16.9.2.25.1 clock_manager_notify_t notifyType

Clock notification type.

Definition at line 801 of file clock_S32K1xx.h.

16.9.2.25.2 clock_manager_policy_t policy

Clock transition policy.

Definition at line 800 of file clock_S32K1xx.h.

16.9.2.25.3 uint8_t targetClockConfigIndex

Target clock configuration index.

Definition at line 799 of file clock_S32K1xx.h.

16.9.2.26 struct clock_manager_callback_user_config_t

Structure for callback function and its parameter. Implements clock_manager_callback_user_config_t_Class.

Definition at line 814 of file clock_S32K1xx.h.

Data Fields

• clock_manager_callback_t callback

• clock_manager_callback_type_t callbackType

• void ∗ callbackData

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

220 CONTENTS

Field Documentation

16.9.2.26.1 clock_manager_callback_t callback

Entry of callback function.

Definition at line 816 of file clock_S32K1xx.h.

16.9.2.26.2 void∗ callbackData

Parameter of callback function.

Definition at line 818 of file clock_S32K1xx.h.

16.9.2.26.3 clock_manager_callback_type_t callbackType

Callback type.

Definition at line 817 of file clock_S32K1xx.h.

16.9.2.27 struct clock_manager_state_t

Clock manager state structure. Implements clock_manager_state_t_Class.

Definition at line 825 of file clock_S32K1xx.h.

Data Fields

• clock_manager_user_config_t const ∗∗ configTable
• uint8_t clockConfigNum
• uint8_t curConfigIndex
• clock_manager_callback_user_config_t ∗∗ callbackConfig
• uint8_t callbackNum
• uint8_t errorCallbackIndex

Field Documentation

16.9.2.27.1 clock_manager_callback_user_config_t∗∗ callbackConfig

Pointer to callback table.

Definition at line 830 of file clock_S32K1xx.h.

16.9.2.27.2 uint8_t callbackNum

Number of clock callbacks.

Definition at line 831 of file clock_S32K1xx.h.

16.9.2.27.3 uint8_t clockConfigNum

Number of clock configurations.

Definition at line 828 of file clock_S32K1xx.h.

16.9.2.27.4 clock_manager_user_config_t const∗∗ configTable

Pointer to clock configure table.

Definition at line 827 of file clock_S32K1xx.h.

16.9.2.27.5 uint8_t curConfigIndex

Index of current configuration.

Definition at line 829 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 221

16.9.2.27.6 uint8_t errorCallbackIndex

Index of callback returns error.

Definition at line 832 of file clock_S32K1xx.h.

16.9.3 Macro Definition Documentation

16.9.3.1 #define BUS_CLK_INDEX 1U

Definition at line 69 of file clock_S32K1xx.h.

16.9.3.2 #define CLK_SRC_FIRC 0x03U

SCGFIRCLK - Fast IRC Clock

Definition at line 591 of file clock_S32K1xx.h.

16.9.3.3 #define CLK_SRC_FIRC_DIV1 0x03U

SCGFIRCLK - Fast IRC Clock

Definition at line 595 of file clock_S32K1xx.h.

16.9.3.4 #define CLK_SRC_FIRC_DIV2 0x03U

SCGFIRCLK - Fast IRC Clock

Definition at line 599 of file clock_S32K1xx.h.

16.9.3.5 #define CLK_SRC_OFF 0x00U

Clock is off

Definition at line 588 of file clock_S32K1xx.h.

16.9.3.6 #define CLK_SRC_SIRC 0x02U

SCGIRCLK - Slow IRC Clock

Definition at line 590 of file clock_S32K1xx.h.

16.9.3.7 #define CLK_SRC_SIRC_DIV1 0x02U

SCGIRCLK - Slow IRC Clock

Definition at line 594 of file clock_S32K1xx.h.

16.9.3.8 #define CLK_SRC_SIRC_DIV2 0x02U

SCGIRCLK - Slow IRC Clock

Definition at line 598 of file clock_S32K1xx.h.

16.9.3.9 #define CLK_SRC_SOSC 0x01U

OSCCLK - System Oscillator Bus Clock

Definition at line 589 of file clock_S32K1xx.h.

16.9.3.10 #define CLK_SRC_SOSC_DIV1 0x01U

OSCCLK - System Oscillator Bus Clock

Definition at line 593 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

222 CONTENTS

16.9.3.11 #define CLK_SRC_SOSC_DIV2 0x01U

OSCCLK - System Oscillator Bus Clock

Definition at line 597 of file clock_S32K1xx.h.

16.9.3.12 #define CLK_SRC_SPLL 0x06U

SCGPCLK System PLL clock

Definition at line 592 of file clock_S32K1xx.h.

16.9.3.13 #define CLK_SRC_SPLL_DIV1 0x06U

SCGPCLK System PLL clock

Definition at line 596 of file clock_S32K1xx.h.

16.9.3.14 #define CLK_SRC_SPLL_DIV2 0x06U

SCGPCLK System PLL clock

Definition at line 600 of file clock_S32K1xx.h.

16.9.3.15 #define CORE_CLK_INDEX 0U

Definition at line 68 of file clock_S32K1xx.h.

16.9.3.16 #define NUMBER_OF_TCLK_INPUTS 3U

TClk clock frequency.

Definition at line 57 of file clock_S32K1xx.h.

16.9.3.17 #define SLOW_CLK_INDEX 2U

Definition at line 70 of file clock_S32K1xx.h.

16.9.3.18 #define SYS_CLK_MAX_NO 3U

The maximum number of system clock dividers and system clock divider indexes.

Definition at line 67 of file clock_S32K1xx.h.

16.9.4 Typedef Documentation

16.9.4.1 typedef status_t(∗ clock_manager_callback_t) (clock_notify_struct_t ∗notify, void ∗callbackData)

Type of clock callback functions.

Definition at line 807 of file clock_S32K1xx.h.

16.9.4.2 typedef clock_manager_user_config_t clock_user_config_t

Definition at line 688 of file clock_S32K1xx.h.

16.9.4.3 typedef uint8_t peripheral_clock_source_t

PCC clock source select Implements peripheral_clock_source_t_Class.

Definition at line 586 of file clock_S32K1xx.h.

16.9.5 Enumeration Type Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 223

16.9.5.1 enum clock_manager_callback_type_t

The callback type, indicates what kinds of notification this callback handles. Implements clock_manager_callback←↩

_type_t_Class.

Enumerator

CLOCK_MANAGER_CALLBACK_BEFORE Callback handles BEFORE notification.

CLOCK_MANAGER_CALLBACK_AFTER Callback handles AFTER notification.

CLOCK_MANAGER_CALLBACK_BEFORE_AFTER Callback handles BEFORE and AFTER notification

Definition at line 776 of file clock_S32K1xx.h.

16.9.5.2 enum clock_manager_notify_t

The clock notification type. Implements clock_manager_notify_t_Class.

Enumerator

CLOCK_MANAGER_NOTIFY_RECOVER Notify IP to recover to previous work state.

CLOCK_MANAGER_NOTIFY_BEFORE Notify IP that system will change clock setting.

CLOCK_MANAGER_NOTIFY_AFTER Notify IP that have changed to new clock setting.

Definition at line 765 of file clock_S32K1xx.h.

16.9.5.3 enum clock_manager_policy_t

Clock transition policy. Implements clock_manager_policy_t_Class.

Enumerator

CLOCK_MANAGER_POLICY_AGREEMENT Clock transfers gracefully.

CLOCK_MANAGER_POLICY_FORCIBLE Clock transfers forcefully.

Definition at line 787 of file clock_S32K1xx.h.

16.9.5.4 enum clock_trace_src_t

Debug trace clock source select Implements clock_trace_src_t_Class.

Enumerator

CLOCK_TRACE_SRC_CORE_CLK core clock

Definition at line 203 of file clock_S32K1xx.h.

16.9.5.5 enum peripheral_clock_divider_t

PCC divider value select Implements peripheral_clock_divider_t_Class.

Enumerator

DIVIDE_BY_ONE Divide by 1 (pass-through, no clock divide)

DIVIDE_BY_TWO Divide by 2

DIVIDE_BY_THREE Divide by 3

DIVIDE_BY_FOUR Divide by 4

DIVIDE_BY_FIVE Divide by 5

DIVIDE_BY_SIX Divide by 6

DIVIDE_BY_SEVEN Divide by 7

DIVIDE_BY_EIGTH Divide by 8

Definition at line 617 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

224 CONTENTS

16.9.5.6 enum peripheral_clock_frac_t

PCC fractional value select Implements peripheral_clock_frac_t_Class.

Enumerator

MULTIPLY_BY_ONE Fractional value is zero

MULTIPLY_BY_TWO Fractional value is one

Definition at line 608 of file clock_S32K1xx.h.

16.9.5.7 enum pwr_modes_t

Power mode. Implements pwr_modes_t_Class.

Enumerator

NO_MODE

RUN_MODE

VLPR_MODE

HSRUN_MODE

STOP_MODE

VLPS_MODE

ALL_MODES

Definition at line 694 of file clock_S32K1xx.h.

16.9.5.8 enum scg_async_clock_div_t

SCG asynchronous clock divider value. Implements scg_async_clock_div_t_Class.

Enumerator

SCG_ASYNC_CLOCK_DISABLE Clock output is disabled.

SCG_ASYNC_CLOCK_DIV_BY_1 Divided by 1.

SCG_ASYNC_CLOCK_DIV_BY_2 Divided by 2.

SCG_ASYNC_CLOCK_DIV_BY_4 Divided by 4.

SCG_ASYNC_CLOCK_DIV_BY_8 Divided by 8.

SCG_ASYNC_CLOCK_DIV_BY_16 Divided by 16.

SCG_ASYNC_CLOCK_DIV_BY_32 Divided by 32.

SCG_ASYNC_CLOCK_DIV_BY_64 Divided by 64.

Definition at line 312 of file clock_S32K1xx.h.

16.9.5.9 enum scg_clockout_src_t

SCG ClockOut type. Implements scg_clockout_src_t_Class.

Enumerator

SCG_CLOCKOUT_SRC_SCG_SLOW SCG SLOW.

SCG_CLOCKOUT_SRC_SOSC System OSC.

SCG_CLOCKOUT_SRC_SIRC Slow IRC.

SCG_CLOCKOUT_SRC_FIRC Fast IRC.

SCG_CLOCKOUT_SRC_SPLL System PLL.

Definition at line 297 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 225

16.9.5.10 enum scg_firc_range_t

SCG fast IRC clock frequency range. Implements scg_firc_range_t_Class.

Enumerator

SCG_FIRC_RANGE_48M Fast IRC is trimmed to 48MHz.

Definition at line 423 of file clock_S32K1xx.h.

16.9.5.11 enum scg_sirc_range_t

SCG slow IRC clock frequency range. Implements scg_sirc_range_t_Class.

Enumerator

SCG_SIRC_RANGE_HIGH Slow IRC high range clock (8 MHz).

Definition at line 396 of file clock_S32K1xx.h.

16.9.5.12 enum scg_sosc_ext_ref_t

SCG OSC external reference clock select. Implements scg_sosc_ext_ref_t_Class.

Enumerator

SCG_SOSC_REF_EXT External reference clock requested

SCG_SOSC_REF_OSC Internal oscillator of OSC requested.

Definition at line 360 of file clock_S32K1xx.h.

16.9.5.13 enum scg_sosc_gain_t

SCG OSC high gain oscillator select. Implements scg_sosc_gain_t_Class.

Enumerator

SCG_SOSC_GAIN_LOW Configure crystal oscillator for low-power operation

SCG_SOSC_GAIN_HIGH Configure crystal oscillator for high-gain operation

Definition at line 350 of file clock_S32K1xx.h.

16.9.5.14 enum scg_sosc_monitor_mode_t

SCG system OSC monitor mode. Implements scg_sosc_monitor_mode_t_Class.

Enumerator

SCG_SOSC_MONITOR_DISABLE Monitor disable.

SCG_SOSC_MONITOR_INT Interrupt when system OSC error detected.

SCG_SOSC_MONITOR_RESET Reset when system OSC error detected.

Definition at line 329 of file clock_S32K1xx.h.

16.9.5.15 enum scg_sosc_range_t

SCG OSC frequency range select Implements scg_sosc_range_t_Class.

Enumerator

SCG_SOSC_RANGE_MID Medium frequency range selected for the crystal OSC (4 Mhz to 8 Mhz).

SCG_SOSC_RANGE_HIGH High frequency range selected for the crystal OSC (8 Mhz to 40 Mhz).

Definition at line 340 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

226 CONTENTS

16.9.5.16 enum scg_spll_clock_multiply_t

SCG system PLL multiplier.

Enumerator

SCG_SPLL_CLOCK_MULTIPLY_BY_16

SCG_SPLL_CLOCK_MULTIPLY_BY_17

SCG_SPLL_CLOCK_MULTIPLY_BY_18

SCG_SPLL_CLOCK_MULTIPLY_BY_19

SCG_SPLL_CLOCK_MULTIPLY_BY_20

SCG_SPLL_CLOCK_MULTIPLY_BY_21

SCG_SPLL_CLOCK_MULTIPLY_BY_22

SCG_SPLL_CLOCK_MULTIPLY_BY_23

SCG_SPLL_CLOCK_MULTIPLY_BY_24

SCG_SPLL_CLOCK_MULTIPLY_BY_25

SCG_SPLL_CLOCK_MULTIPLY_BY_26

SCG_SPLL_CLOCK_MULTIPLY_BY_27

SCG_SPLL_CLOCK_MULTIPLY_BY_28

SCG_SPLL_CLOCK_MULTIPLY_BY_29

SCG_SPLL_CLOCK_MULTIPLY_BY_30

SCG_SPLL_CLOCK_MULTIPLY_BY_31

SCG_SPLL_CLOCK_MULTIPLY_BY_32

SCG_SPLL_CLOCK_MULTIPLY_BY_33

SCG_SPLL_CLOCK_MULTIPLY_BY_34

SCG_SPLL_CLOCK_MULTIPLY_BY_35

SCG_SPLL_CLOCK_MULTIPLY_BY_36

SCG_SPLL_CLOCK_MULTIPLY_BY_37

SCG_SPLL_CLOCK_MULTIPLY_BY_38

SCG_SPLL_CLOCK_MULTIPLY_BY_39

SCG_SPLL_CLOCK_MULTIPLY_BY_40

SCG_SPLL_CLOCK_MULTIPLY_BY_41

SCG_SPLL_CLOCK_MULTIPLY_BY_42

SCG_SPLL_CLOCK_MULTIPLY_BY_43

SCG_SPLL_CLOCK_MULTIPLY_BY_44

SCG_SPLL_CLOCK_MULTIPLY_BY_45

SCG_SPLL_CLOCK_MULTIPLY_BY_46

SCG_SPLL_CLOCK_MULTIPLY_BY_47

Definition at line 478 of file clock_S32K1xx.h.

16.9.5.17 enum scg_spll_clock_prediv_t

SCG system PLL predivider.

Enumerator

SCG_SPLL_CLOCK_PREDIV_BY_1

SCG_SPLL_CLOCK_PREDIV_BY_2

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 227

SCG_SPLL_CLOCK_PREDIV_BY_3
SCG_SPLL_CLOCK_PREDIV_BY_4
SCG_SPLL_CLOCK_PREDIV_BY_5
SCG_SPLL_CLOCK_PREDIV_BY_6
SCG_SPLL_CLOCK_PREDIV_BY_7
SCG_SPLL_CLOCK_PREDIV_BY_8

Definition at line 462 of file clock_S32K1xx.h.

16.9.5.18 enum scg_spll_monitor_mode_t

SCG system PLL monitor mode. Implements scg_spll_monitor_mode_t_Class.

Enumerator

SCG_SPLL_MONITOR_DISABLE Monitor disable.

SCG_SPLL_MONITOR_INT Interrupt when system PLL error detected.

SCG_SPLL_MONITOR_RESET Reset when system PLL error detected.

Definition at line 451 of file clock_S32K1xx.h.

16.9.5.19 enum scg_system_clock_div_t

SCG system clock divider value. Implements scg_system_clock_div_t_Class.

Enumerator

SCG_SYSTEM_CLOCK_DIV_BY_1 Divided by 1.

SCG_SYSTEM_CLOCK_DIV_BY_2 Divided by 2.

SCG_SYSTEM_CLOCK_DIV_BY_3 Divided by 3.

SCG_SYSTEM_CLOCK_DIV_BY_4 Divided by 4.

SCG_SYSTEM_CLOCK_DIV_BY_5 Divided by 5.

SCG_SYSTEM_CLOCK_DIV_BY_6 Divided by 6.

SCG_SYSTEM_CLOCK_DIV_BY_7 Divided by 7.

SCG_SYSTEM_CLOCK_DIV_BY_8 Divided by 8.

SCG_SYSTEM_CLOCK_DIV_BY_9 Divided by 9.

SCG_SYSTEM_CLOCK_DIV_BY_10 Divided by 10.

SCG_SYSTEM_CLOCK_DIV_BY_11 Divided by 11.

SCG_SYSTEM_CLOCK_DIV_BY_12 Divided by 12.

SCG_SYSTEM_CLOCK_DIV_BY_13 Divided by 13.

SCG_SYSTEM_CLOCK_DIV_BY_14 Divided by 14.

SCG_SYSTEM_CLOCK_DIV_BY_15 Divided by 15.

SCG_SYSTEM_CLOCK_DIV_BY_16 Divided by 16.

Definition at line 256 of file clock_S32K1xx.h.

16.9.5.20 enum scg_system_clock_src_t

SCG system clock source. Implements scg_system_clock_src_t_Class.

Enumerator

SCG_SYSTEM_CLOCK_SRC_SYS_OSC System OSC.

SCG_SYSTEM_CLOCK_SRC_SIRC Slow IRC.

SCG_SYSTEM_CLOCK_SRC_FIRC Fast IRC.

SCG_SYSTEM_CLOCK_SRC_NONE MAX value.

Definition at line 241 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

228 CONTENTS

16.9.5.21 enum sim_clkout_div_t

SIM CLKOUT divider Implements sim_clkout_div_t_Class.

Enumerator

SIM_CLKOUT_DIV_BY_1 Divided by 1

SIM_CLKOUT_DIV_BY_2 Divided by 2

SIM_CLKOUT_DIV_BY_3 Divided by 3

SIM_CLKOUT_DIV_BY_4 Divided by 4

SIM_CLKOUT_DIV_BY_5 Divided by 5

SIM_CLKOUT_DIV_BY_6 Divided by 6

SIM_CLKOUT_DIV_BY_7 Divided by 7

SIM_CLKOUT_DIV_BY_8 Divided by 8

Definition at line 125 of file clock_S32K1xx.h.

16.9.5.22 enum sim_clkout_src_t

SIM CLKOUT select Implements sim_clkout_src_t_Class.

Enumerator

SIM_CLKOUT_SEL_SYSTEM_SCG_CLKOUT SCG CLKOUT

SIM_CLKOUT_SEL_SYSTEM_SOSC_DIV2_CLK SOSC DIV2 CLK

SIM_CLKOUT_SEL_SYSTEM_SIRC_DIV2_CLK SIRC DIV2 CLK

SIM_CLKOUT_SEL_SYSTEM_FIRC_DIV2_CLK FIRC DIV2 CLK

SIM_CLKOUT_SEL_SYSTEM_HCLK HCLK

SIM_CLKOUT_SEL_SYSTEM_SPLL_DIV2_CLK SPLL DIV2 CLK

SIM_CLKOUT_SEL_SYSTEM_BUS_CLK BUS_CLK

SIM_CLKOUT_SEL_SYSTEM_LPO_128K_CLK LPO_CLK 128 Khz

SIM_CLKOUT_SEL_SYSTEM_LPO_CLK LPO_CLK as selected by SIM LPO CLK Select

SIM_CLKOUT_SEL_SYSTEM_RTC_CLK RTC CLK as selected by SIM CLK 32 KHz Select

Definition at line 100 of file clock_S32K1xx.h.

16.9.5.23 enum sim_lpoclk_sel_src_t

SIM LPOCLKSEL clock source select Implements sim_lpoclk_sel_src_t_Class.

Enumerator

SIM_LPO_CLK_SEL_LPO_128K 128 kHz LPO clock

SIM_LPO_CLK_SEL_NO_CLOCK No clock

SIM_LPO_CLK_SEL_LPO_32K 32 kHz LPO clock which is divided by the 128 kHz LPO clock

SIM_LPO_CLK_SEL_LPO_1K 1 kHz LPO clock which is divided by the 128 kHz LPO clock

Definition at line 88 of file clock_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 229

16.9.5.24 enum sim_rtc_clk_sel_src_t

SIM CLK32KSEL clock source select Implements sim_rtc_clk_sel_src_t_Class.

Enumerator

SIM_RTCCLK_SEL_SOSCDIV1_CLK SOSCDIV1 clock

SIM_RTCCLK_SEL_LPO_32K 32 kHz LPO clock

SIM_RTCCLK_SEL_RTC_CLKIN RTC_CLKIN clock

SIM_RTCCLK_SEL_FIRCDIV1_CLK FIRCDIV1 clock

Definition at line 76 of file clock_S32K1xx.h.

16.9.5.25 enum xosc_ref_t

XOSC reference clock select (internal oscillator is bypassed or not) Implements xosc_ref_t_Class.

Enumerator

XOSC_EXT_REF Internal oscillator is bypassed, external reference clock requested.

XOSC_INT_OSC Internal oscillator of XOSC requested.

Definition at line 711 of file clock_S32K1xx.h.

16.9.6 Function Documentation

16.9.6.1 void CLOCK_DRV_GetSystemClockSource (sys_clk_config_t ∗ sysClkConfig)

Gets the system clock source.

This function gets the current system clock source.

Returns

Value of the current system clock source.

Definition at line 3713 of file clock_S32K1xx.c.

16.9.6.2 status_t CLOCK_DRV_SetClockSource (clock_names_t clockSource, const clock_source_config_t ∗
clkSrcConfig)

This function configures a clock source.

The clock source is configured based on the provided configuration. All values from the previous configuration of
clock source are overwritten. If no configuration is provided, then a default one is used.

Parameters

in clockSource Clock name of the configured clock source
in clkSrcConfig Pointer to the configuration structure

Returns

Status of clock source initialization

Definition at line 4065 of file clock_S32K1xx.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

230 CONTENTS

16.9.6.3 void CLOCK_DRV_SetModuleClock (clock_names_t peripheralClock, const module_clk_config_t ∗
moduleClkConfig)

Configures module clock.

This function configures a module clock according to the configuration. If no configuration is provided (moduleClk←↩

Config is null), then a default one is used moduleClkConfig must be passed as null when module doesn't support
protocol clock.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 231

Parameters

in peripheralClock Clock name of the configured module clock
in moduleClk←↩

Config
Pointer to the configuration structure.

Definition at line 3490 of file clock_S32K1xx.c.

16.9.6.4 status_t CLOCK_DRV_SetSystemClock (const pwr_modes_t ∗ mode, const sys_clk_config_t ∗ sysClkConfig)

Configures the system clocks.

This function configures the system clocks (core, bus and flash clocks) in the specified power mode. If no power
mode is specified (null parameter) then it is the current power mode.

Parameters

in mode Pointer to power mode for which the configured system clocks apply
in sysClkConfig Pointer to the system clocks configuration structure.

Definition at line 3644 of file clock_S32K1xx.c.

16.9.6.5 uint8_t CLOCK_SYS_GetCurrentConfiguration (void)

Get current system clock configuration.

Returns

Current clock configuration index.

Definition at line 4292 of file clock_S32K1xx.c.

16.9.6.6 clock_manager_callback_user_config_t∗ CLOCK_SYS_GetErrorCallback (void)

Get the callback which returns error in last clock switch.

When graceful policy is used, if some IP is not ready to change clock setting, the callback will return error and
system stay in current configuration. Applications can use this function to check which IP callback returns error.

Returns

Pointer to the callback which returns error.

Definition at line 4304 of file clock_S32K1xx.c.

16.9.6.7 status_t CLOCK_SYS_GetFreq (clock_names_t clockName, uint32_t ∗ frequency)

Wrapper over CLOCK_DRV_GetFreq function. It's part of the old API.

Parameters

in clockName Clock names defined in clock_names_t
out frequency Returned clock frequency value in Hertz

Returns

status Error code defined in status_t

Definition at line 4327 of file clock_S32K1xx.c.

16.9.6.8 status_t CLOCK_SYS_Init (clock_manager_user_config_t const ∗∗ clockConfigsPtr, uint8_t configsNumber,
clock_manager_callback_user_config_t ∗∗ callbacksPtr, uint8_t callbacksNumber)

Install pre-defined clock configurations.

This function installs the pre-defined clock configuration table to clock manager.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

232 CONTENTS

Parameters

in clockConfigsPtr Pointer to the clock configuration table.
in configsNumber Number of clock configurations in table.
in callbacksPtr Pointer to the callback configuration table.
in callbacks←↩

Number
Number of callback configurations in table.

Returns

Error code.

Definition at line 4140 of file clock_S32K1xx.c.

16.9.6.9 status_t CLOCK_SYS_SetConfiguration (clock_manager_user_config_t const ∗ config)

Set system clock configuration.

This function sets the system to target configuration, it only sets the clock modules registers for clock mode change,
but not send notifications to drivers. This function is different by different SoCs.

Parameters

in config Target configuration.

Returns

Error code.

Note

If external clock is used in the target mode, please make sure it is enabled, for example, if the external oscillator
is used, please setup EREFS/HGO correctly and make sure OSCINIT is set. This function should be called
only on run mode.

Definition at line 4339 of file clock_S32K1xx.c.

16.9.6.10 status_t CLOCK_SYS_UpdateConfiguration (uint8_t targetConfigIndex, clock_manager_policy_t policy)

Set system clock configuration according to pre-defined structure.

This function sets system to target clock configuration; before transition, clock manager will send notifications to all
drivers registered to the callback table. When graceful policy is used, if some drivers are not ready to change, clock
transition will not occur, all drivers still work in previous configuration and error is returned. When forceful policy is
used, all drivers should stop work and system changes to new clock configuration. The function should be called
only on run mode.

Parameters

in targetConfig←↩

Index
Index of the clock configuration.

in policy Transaction policy, graceful or forceful.

Returns

Error code.

Note

If external clock is used in the target mode, please make sure it is enabled, for example, if the external oscillator
is used, please setup EREFS/HGO correctly and make sure OSCINIT is set.

Definition at line 4173 of file clock_S32K1xx.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.9 Clock Manager Driver 233

16.9.7 Variable Documentation

16.9.7.1 uint32_t g_RtcClkInFreq

RTC_CLKIN clock frequency.

Definition at line 81 of file clock_S32K1xx.c.

16.9.7.2 uint32_t g_TClkFreq[NUMBER_OF_TCLK_INPUTS]

TCLKx clocks

Definition at line 78 of file clock_S32K1xx.c.

16.9.7.3 uint32_t g_xtal0ClkFreq

EXTAL0 clock frequency.

Definition at line 84 of file clock_S32K1xx.c.

16.9.7.4 const uint8_t peripheralFeaturesList[CLOCK_NAME_COUNT]

Peripheral features list Constant array storing the mappings between clock names of the peripherals and feature
lists.

Definition at line 432 of file clock_S32K1xx.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

234 CONTENTS

16.10 Common Core API.

16.10.1 Detailed Description

This group contains general core APIs that used for both protocol LIN 2.1 and J2602.

Modules

• Driver and cluster management

API perform the initialization of the LIN core.

• Interface management

This group contains APIs that help users manage interface(s) in LIN node.

• Notification

This group contains APIs that let users know when a signal's value changed.

• Schedule management

This group contains APIs that help users manage schedule tables in master node only.

• Signal interaction

This group contains APIs that help users interract with signals of LIN node.

• User provided call-outs

This group contains APIs which may be called from within the LIN module in order to enable/disable LIN communica-
tion interrupts.

Macros

• #define SAVE_CONFIG_SET 0x0040U
• #define EVENT_TRIGGER_COLLISION_SET 0x0020U
• #define BUS_ACTIVITY_SET 0x0010U
• #define GO_TO_SLEEP_SET 0x0008U
• #define OVERRUN 0x0004U
• #define SUCCESSFULL_TRANSFER 0x0002U
• #define ERROR_IN_RESPONSE 0x0001U

16.10.2 Macro Definition Documentation

16.10.2.1 #define BUS_ACTIVITY_SET 0x0010U

Bus activity

Definition at line 32 of file lin_common_api.h.

16.10.2.2 #define ERROR_IN_RESPONSE 0x0001U

Error in response

Definition at line 36 of file lin_common_api.h.

16.10.2.3 #define EVENT_TRIGGER_COLLISION_SET 0x0020U

Event triggered frame collision

Definition at line 31 of file lin_common_api.h.

16.10.2.4 #define GO_TO_SLEEP_SET 0x0008U

Go to sleep

Definition at line 33 of file lin_common_api.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.10 Common Core API. 235

16.10.2.5 #define OVERRUN 0x0004U

Overrun

Definition at line 34 of file lin_common_api.h.

16.10.2.6 #define SAVE_CONFIG_SET 0x0040U

Save configuration

Definition at line 30 of file lin_common_api.h.

16.10.2.7 #define SUCCESSFULL_TRANSFER 0x0002U

Successful transfer

Definition at line 35 of file lin_common_api.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

236 CONTENTS

16.11 Common Transport Layer API

16.11.1 Detailed Description

Contains Transport Layer APIs that used for both protocols LIN 2.1 and J2602.

Modules

• Cooked API

Cooked processing of diagnostic messages manages one complete message at a time.

• Initialization

Initialize transport layer (queues, status, ...).

• Raw API

The raw API is operating on PDU level and it is typically used to gateway PDUs between CAN and LIN.

Macros

• #define LD_READ_OK 0x33U
• #define LD_LENGTH_TOO_SHORT 0x34U
• #define LD_DATA_ERROR 0x43U
• #define LD_LENGTH_NOT_CORRECT 0x44U
• #define LD_SET_OK 0x45U
• #define SERVICE_TARGET_RESET 0xB5U
• #define RES_POSITIVE 0x40U
• #define LIN_PRODUCT_ID 0x00U
• #define LIN_SERIAL_NUMBER 0x01U
• #define LD_BROADCAST 0x7FU
• #define LD_FUNCTIONAL_NAD 0x7EU
• #define LD_ANY_SUPPLIER 0x7FFFU
• #define LD_ANY_FUNCTION 0xFFFFU
• #define LD_ANY_MESSAGE 0xFFFFU
• #define RES_NEGATIVE 0x7FU
• #define GENERAL_REJECT 0x10U
• #define SERVICE_NOT_SUPPORTED 0x11U
• #define SUBFUNCTION_NOT_SUPPORTED 0x12U
• #define NEGATIVE 0U
• #define POSITIVE 1U
• #define TRANSMITTING 0U
• #define RECEIVING 1U
• #define DIAG_SERVICE_CALLBACK_HANDLER(iii, sid) lin_diag_service_callback((iii), (sid))

Functions

• void lin_diag_service_callback (l_ifc_handle iii, l_u8 sid)

16.11.2 Macro Definition Documentation

16.11.2.1 #define DIAG_SERVICE_CALLBACK_HANDLER(iii, sid) lin_diag_service_callback((iii), (sid))

Definition at line 86 of file lin_commontl_api.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.11 Common Transport Layer API 237

16.11.2.2 #define GENERAL_REJECT 0x10U

Error code raised when request for service not supported comes

Definition at line 71 of file lin_commontl_api.h.

16.11.2.3 #define LD_ANY_FUNCTION 0xFFFFU

Function

Definition at line 66 of file lin_commontl_api.h.

16.11.2.4 #define LD_ANY_MESSAGE 0xFFFFU

Message

Definition at line 67 of file lin_commontl_api.h.

16.11.2.5 #define LD_ANY_SUPPLIER 0x7FFFU

Supplier

Definition at line 65 of file lin_commontl_api.h.

16.11.2.6 #define LD_BROADCAST 0x7FU

Broadcast NAD

Definition at line 63 of file lin_commontl_api.h.

16.11.2.7 #define LD_DATA_ERROR 0x43U

Data error

Definition at line 50 of file lin_commontl_api.h.

16.11.2.8 #define LD_FUNCTIONAL_NAD 0x7EU

Functional NAD

Definition at line 64 of file lin_commontl_api.h.

16.11.2.9 #define LD_LENGTH_NOT_CORRECT 0x44U

Length not correct

Definition at line 51 of file lin_commontl_api.h.

16.11.2.10 #define LD_LENGTH_TOO_SHORT 0x34U

Length too short

Definition at line 48 of file lin_commontl_api.h.

16.11.2.11 #define LD_READ_OK 0x33U

Read OK

Definition at line 47 of file lin_commontl_api.h.

16.11.2.12 #define LD_SET_OK 0x45U

Set OK

Definition at line 52 of file lin_commontl_api.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

238 CONTENTS

16.11.2.13 #define LIN_PRODUCT_ID 0x00U

Node product identifier

Definition at line 59 of file lin_commontl_api.h.

16.11.2.14 #define LIN_SERIAL_NUMBER 0x01U

Serial number

Definition at line 60 of file lin_commontl_api.h.

16.11.2.15 #define NEGATIVE 0U

Negative response

Definition at line 76 of file lin_commontl_api.h.

16.11.2.16 #define POSITIVE 1U

Positive response

Definition at line 77 of file lin_commontl_api.h.

16.11.2.17 #define RECEIVING 1U

Receiving

Definition at line 80 of file lin_commontl_api.h.

16.11.2.18 #define RES_NEGATIVE 0x7FU

Negative response

Definition at line 70 of file lin_commontl_api.h.

16.11.2.19 #define RES_POSITIVE 0x40U

Positive response

Definition at line 56 of file lin_commontl_api.h.

16.11.2.20 #define SERVICE_NOT_SUPPORTED 0x11U

Error code in negative response for not supported service

Definition at line 72 of file lin_commontl_api.h.

16.11.2.21 #define SERVICE_TARGET_RESET 0xB5U

Target reset service

Definition at line 55 of file lin_commontl_api.h.

16.11.2.22 #define SUBFUNCTION_NOT_SUPPORTED 0x12U

Error code in negative response for not supported sub function

Definition at line 73 of file lin_commontl_api.h.

16.11.2.23 #define TRANSMITTING 0U

Transmitting

Definition at line 79 of file lin_commontl_api.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.11 Common Transport Layer API 239

16.11.3 Function Documentation

16.11.3.1 void lin_diag_service_callback (l_ifc_handle iii, l_u8 sid)

Definition at line 1041 of file lin_diagnostic_service.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

240 CONTENTS

16.12 Comparator (CMP)

16.12.1 Detailed Description

Hardware background

The comparator (CMP) module is an analog comparator integrated in MCU.

Features of the CMP module include:

• 8 bit DAC with 2 voltage reference source

• 8 analog inputs from external pins

• Round robin check. In summary, this allow the CMP to operate independently in STOP and VLPS mode,
whilst being triggered periodically to sample up to 8 inputs. Only if an input changes state is a full wakeup
generated.

• Operational over the entire supply range

• Inputs may range from rail to rail

• Programmable hysteresis control

• Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of the comparator output

• Selectable inversion on comparator output

• Capability to produce a wide range of outputs such as: sampled, windowed, which is ideal for certain PWM
zero-crossing-detection applications and digitally filtered

• A comparison event can be selected to trigger a DMA transfer

• The window and filter functions are not available in STOP modes.

How to use the CMP driver in your application

The user can configure the CMP in many ways: -CMP_DRV_Init - configures all CMP features -CMP_DRV_←↩

ConfigDAC - configures only DAC features -CMP_DRV_ConfigTriggerMode - configures only trigger mode features
-CMP_DRV_ConfigComparator - configures only analog comparator features -CMP_DRV_ConfigMUX - configures
only MUX features

Also the current configuration can be read using: -CMP_DRV_GetConfigAll - gets all CMP configuration -CM←↩

P_DRV_GetDACConfig - gets only DAC configuration -CMP_DRV_GetMUXConfig - gets only MUX configuration
-CMP_DRV_GetInitTriggerMode - gets only trigger mode configuration -CMP_DRV_GetComparatorConfig - gets
only analog comparator features

A default configuration can be read using: -CMP_DRV_GetDefaultConfig - gets a default configuration for the
comparator

When the MCU exits from STOP mode CMP_DRV_GetInputFlags can be used to get the channel which triggered
the wakeup. Please use this function only in this use case. CMP_DRV_ClearInputFlags will be used to clear this
input change flags.

CMP_DRV_GetOutputFlags can be used to get output flag state and CMP_DRV_ClearOutputFlags to clear them.

The main structure used to configure your application is cmp_module_t. This structure includes configuration
structures for trigger mode, MUX, DAC and comparator: cmp_comparator_t, cmp_anmux_t, cmp_dac_t and
cmp_trigger_mode_t

If application use CMP as wakeup source from Standby mode on MPC574x devices is mandatory to enable channel 3 from WKPU.

Integration guideline

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.12 Comparator (CMP) 241

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\cmp\cmp_driver.c
${S32SDK_PATH}\platform\drivers\src\cmp\cmp_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\
${S32SDK_PATH}\platform\drivers\src\cmp\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt) PinSettings

Example for S32K14x:

The next example will compare 2 external signals (CMP input 0 an CMP input 1). The output can be measured on
port E, pin 4.

const cmp_module_t cmp_general_config =
{

{
.dmaTriggerState = false,
.outputInterruptTrigger = CMP_NO_EVENT,
.mode = CMP_CONTINUOUS,
.filterSamplePeriod = 0,
.filterSampleCount = 0,
.powerMode = CMP_LOW_SPEED,
.inverterState = CMP_NORMAL,
.outputSelect = CMP_COUT,
.pinState = CMP_AVAILABLE,
.offsetLevel = CMP_LEVEL_OFFSET_0,
.hysteresisLevel = CMP_LEVEL_HYS_0

},

{
.positivePortMux = CMP_MUX,
.negativePortMux = CMP_MUX,
.positiveInputMux = 0,
.negativeInputMux = 1

},

{
.voltageReferenceSource = CMP_VIN1,
.voltage = 120,
.state = false

},

{
.roundRobinState = false,
.roundRobinInterruptState = false,
.fixedPort = CMP_PLUS_FIXED,
.fixedChannel = 0,
.samples = 0,
.initializationDelay = 0,
/* Channel 0 is enabled for round robin check */
/* Channel 1 is enabled for round robin check */
/* Channel 2 is enabled for round robin check */
/* Channel 3 is enabled for round robin check */
/* Channel 4 is enabled for round robin check */
/* Channel 5 is enabled for round robin check */
/* Channel 6 is enabled for round robin check */
/* Channel 7 is enabled for round robin check */
.roundRobinChannelsState = 255,
/* Initial comparison result for channel 0 is 1 */
/* Initial comparison result for channel 1 is 1 */
/* Initial comparison result for channel 2 is 1 */
/* Initial comparison result for channel 3 is 1 */
/* Initial comparison result for channel 4 is 1 */

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

242 CONTENTS

/* Initial comparison result for channel 5 is 1 */
/* Initial comparison result for channel 6 is 1 */
/* Initial comparison result for channel 7 is 1 */
.programedState = 255

}
};

#define COMPARATOR_PORT PORTA
#define COMPARATOR_INPUT1_PIN 0UL
#define COMPARATOR_INPUT2_PIN 1UL
#define COMPARATOR_OUTPUT 4UL
#define COMPARATOR_INSTANCE 0UL

int main(void)
{

/* Initialize and configure clocks

* - Setup system clocks

* - Enable clock feed for Ports and Comparator

* - See Clock Manager component for more info

*/
CLOCK_SYS_Init(g_clockManConfigsArr, CLOCK_MANAGER_CONFIG_CNT,

g_clockManCallbacksArr, CLOCK_MANAGER_CALLBACK_CNT);
CLOCK_SYS_UpdateConfiguration(0U,
CLOCK_MANAGER_POLICY_AGREEMENT);

/* Set pins used by CMP */
/* The negative port is connected to PTA0 and positive port is connected to PTA1. The
comparator output can be visualized on PTA4 */
/* Initialize pins

* - Setup input pins for Comparator

* - Setup output pins for LEDs

* - See PinSettings component for more info

*/
PINS_DRV_Init(NUM_OF_CONFIGURED_PINS, g_pin_mux_InitConfigArr);

/* Init CMP module */
CMP_DRV_Init(COMPARATOR_INSTANCE, &cmp_general_config);
for (;;)

{}
return(0);

}

Example for MPC574XG:

The next example will compare 2 external signals (CMP input 0 an CMP input 1). The output can be measured on
port E, pin 4.

const cmp_module_t cmp_general_config =
{

{
.dmaTriggerState = false,
.outputInterruptTrigger = CMP_NO_EVENT,
.mode = CMP_CONTINUOUS,
.filterSamplePeriod = 0,
.filterSampleCount = 0,
.powerMode = CMP_LOW_SPEED,
.inverterState = CMP_NORMAL,
.outputSelect = CMP_COUT,
.pinState = CMP_AVAILABLE,
.hysteresisLevel = CMP_LEVEL_HYS_0

},

{
.positivePortMux = CMP_MUX,
.negativePortMux = CMP_MUX,
.positiveInputMux = 0,
.negativeInputMux = 1

},

{
.voltageReferenceSource = CMP_VIN1,
.voltage = 120,
.state = false,
.fixRefInputMux = false

},

{
.roundRobinState = false,
.roundRobinInterruptState = false,
.fixedPort = CMP_PLUS_FIXED,
.fixedChannel = 0,
.samples = 0,
/* Channel 0 is enabled for round robin check */
/* Channel 1 is enabled for round robin check */

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.12 Comparator (CMP) 243

/* Channel 2 is enabled for round robin check */
/* Channel 3 is enabled for round robin check */
/* Channel 4 is enabled for round robin check */
/* Channel 5 is enabled for round robin check */
/* Channel 6 is enabled for round robin check */
/* Channel 7 is enabled for round robin check */
.roundRobinChannelsState = 255,
/* Initial comparison result for channel 0 is 1 */
/* Initial comparison result for channel 1 is 1 */
/* Initial comparison result for channel 2 is 1 */
/* Initial comparison result for channel 3 is 1 */
/* Initial comparison result for channel 4 is 1 */
/* Initial comparison result for channel 5 is 1 */
/* Initial comparison result for channel 6 is 1 */
/* Initial comparison result for channel 7 is 1 */
.programedState = 255

}
};

#define COMPARATOR_PORT PORTA
#define COMPARATOR_INPUT1_PIN 0UL
#define COMPARATOR_INPUT2_PIN 1UL
#define COMPARATOR_OUTPUT 4UL
#define COMPARATOR_INSTANCE 0UL

int main(void)
{

/* Write your local variable definition here */
/* Initialize and configure clocks

* - Setup system clocks

* - Enable clock feed for Ports and Comparator

* - See Clock Manager component for more info

*/
CLOCK_SYS_Init(g_clockManConfigsArr, CLOCK_MANAGER_CONFIG_CNT,

g_clockManCallbacksArr, CLOCK_MANAGER_CALLBACK_CNT);
CLOCK_SYS_UpdateConfiguration(0U,
CLOCK_MANAGER_POLICY_AGREEMENT);

/* Set pins used by CMP */
/* The negative port is connected to PTA0 and positive port is connected to PTA1. The
comparator output can be visualized on PTA4 */
/* Initialize pins

* - Setup input pins for Comparator

* - Setup output pins for LEDs

* - See PinSettings component for more info

*/
PINS_DRV_Init(NUM_OF_CONFIGURED_PINS, g_pin_mux_InitConfigArr);

/* Init CMP module */
CMP_DRV_Init(COMPARATOR_INSTANCE, &cmp_general_config);
for (;;)

{}
return(0);

}

Modules

• Comparator Driver

Comparator Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

244 CONTENTS

16.13 Comparator Driver

16.13.1 Detailed Description

Comparator Peripheral Driver.

Definitions

Data Structures

• struct cmp_comparator_t

Defines the block configuration. More...

• struct cmp_anmux_t

Defines the analog mux. More...

• struct cmp_dac_t

Defines the DAC block. More...

• struct cmp_trigger_mode_t

Defines the trigger mode. More...

• struct cmp_module_t

Defines the comparator module configuration. More...

Macros

• #define CMP_INPUT_FLAGS_MASK 0xFF0000
• #define CMP_INPUT_FLAGS_SHIFT 16U
• #define CMP_ROUND_ROBIN_CHANNELS_MASK 0xFF0000
• #define CMP_ROUND_ROBIN_CHANNELS_SHIFT 16U

Typedefs

• typedef uint8_t cmp_ch_list_t

Comparator channels list (1bit/channel) |------—|------—|--—|------—|------—| |CH7_state|CH6_state|.....|CH1_←↩

state|CH0_state| |------—|------—|--—|------—|------—| Implements : cmp_ch_list_t_Class.

• typedef uint8_t cmp_ch_number_t

Number of channel Implements : cmp_ch_number_t_Class.

Enumerations

• enum cmp_power_mode_t { CMP_LOW_SPEED = 0U, CMP_HIGH_SPEED = 1U }

Power Modes selection Implements : cmp_power_mode_t_Class.

• enum cmp_voltage_reference_t { CMP_VIN1 = 0U, CMP_VIN2 = 1U }

Voltage Reference selection Implements : cmp_voltage_reference_t_Class.

• enum cmp_port_mux_t { CMP_DAC = CMP_DAC_SOURCE, CMP_MUX = CMP_MUX_SOURCE }

Port Mux Source selection Implements : cmp_port_mux_t_Class.

• enum cmp_inverter_t { CMP_NORMAL = 0U, CMP_INVERT = 1U }

Comparator output invert selection Implements : cmp_inverter_t_Class.

• enum cmp_output_select_t { CMP_COUT = 0U, CMP_COUTA = 1U }

Comparator output select selection Implements : cmp_output_select_t_Class.

• enum cmp_output_enable_t { CMP_UNAVAILABLE = 0U, CMP_AVAILABLE = 1U }

Comparator output pin enable selection Implements : cmp_output_enable_t_Class.

• enum cmp_hysteresis_t { CMP_LEVEL_HYS_0 = 0U, CMP_LEVEL_HYS_1 = 1U, CMP_LEVEL_HYS_2 =
2U, CMP_LEVEL_HYS_3 = 3U }

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.13 Comparator Driver 245

Comparator hysteresis control Implements : cmp_hysteresis_t_Class.

• enum cmp_fixed_port_t { CMP_PLUS_FIXED = 0U, CMP_MINUS_FIXED = 1U }

Comparator Round-Robin fixed port Implements : cmp_fixed_port_t_Class.

• enum cmp_output_trigger_t { CMP_NO_EVENT = 0U, CMP_FALLING_EDGE = 1U, CMP_RISING_EDGE =
2U, CMP_BOTH_EDGES = 3U }

Comparator output interrupt configuration Implements : cmp_output_trigger_t_Class.

• enum cmp_mode_t {
CMP_DISABLED = 0U, CMP_CONTINUOUS = 1U, CMP_SAMPLED_NONFILTRED_INT_CLK = 2U, CM←↩

P_SAMPLED_NONFILTRED_EXT_CLK = 3U,
CMP_SAMPLED_FILTRED_INT_CLK = 4U, CMP_SAMPLED_FILTRED_EXT_CLK = 5U, CMP_WINDO←↩

WED = 6U, CMP_WINDOWED_RESAMPLED = 7U,
CMP_WINDOWED_FILTRED = 8U }

Comparator functional modes Implements : cmp_mode_t_Class.

cMP DRV.

• status_t CMP_DRV_Reset (const uint32_t instance)

Reset all registers.

• status_t CMP_DRV_GetInitConfigAll (cmp_module_t ∗config)

Get reset configuration for all registers.

• status_t CMP_DRV_GetDefaultConfig (cmp_module_t ∗const config)

Gets a default comparator configuration.

• status_t CMP_DRV_Init (const uint32_t instance, const cmp_module_t ∗const config)

Configure all comparator features with the given configuration structure.

• status_t CMP_DRV_GetConfigAll (const uint32_t instance, cmp_module_t ∗const config)

Gets the current comparator configuration.

• status_t CMP_DRV_GetInitConfigDAC (cmp_dac_t ∗config)

Get reset configuration for registers related with DAC.

• status_t CMP_DRV_ConfigDAC (const uint32_t instance, const cmp_dac_t ∗config)

Configure only the DAC component.

• status_t CMP_DRV_GetDACConfig (const uint32_t instance, cmp_dac_t ∗const config)

Return current configuration for DAC.

• status_t CMP_DRV_GetInitConfigMUX (cmp_anmux_t ∗config)

Get reset configuration for registers related with MUX.

• status_t CMP_DRV_ConfigMUX (const uint32_t instance, const cmp_anmux_t ∗config)

Configure only the MUX component.

• status_t CMP_DRV_GetMUXConfig (const uint32_t instance, cmp_anmux_t ∗const config)

Return configuration only for the MUX component.

• status_t CMP_DRV_GetInitTriggerMode (cmp_trigger_mode_t ∗config)

Get reset configuration for registers related with Trigger Mode.

• status_t CMP_DRV_ConfigTriggerMode (const uint32_t instance, const cmp_trigger_mode_t ∗config)

Configure trigger mode.

• status_t CMP_DRV_GetTriggerModeConfig (const uint32_t instance, cmp_trigger_mode_t ∗const config)

Get current trigger mode configuration.

• status_t CMP_DRV_GetOutputFlags (const uint32_t instance, cmp_output_trigger_t ∗flags)

Get comparator output flags.

• status_t CMP_DRV_ClearOutputFlags (const uint32_t instance)

Clear comparator output flags.

• status_t CMP_DRV_GetInputFlags (const uint32_t instance, cmp_ch_list_t ∗flags)

Gets input channels change flags.

• status_t CMP_DRV_ClearInputFlags (const uint32_t instance)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

246 CONTENTS

Clear comparator input channels flags.

• status_t CMP_DRV_GetInitConfigComparator (cmp_comparator_t ∗config)

Get reset configuration for registers related with comparator features.

• status_t CMP_DRV_ConfigComparator (const uint32_t instance, const cmp_comparator_t ∗config)

Configure only comparator features.

• status_t CMP_DRV_GetComparatorConfig (const uint32_t instance, cmp_comparator_t ∗config)

Return configuration for comparator from CMP module.

16.13.2 Data Structure Documentation

16.13.2.1 struct cmp_comparator_t

Defines the block configuration.

This structure is used to configure only comparator block module(filtering, sampling, power_mode etc.) Implements
: cmp_comparator_t_Class

Definition at line 178 of file cmp_driver.h.

Data Fields

• bool dmaTriggerState

• cmp_output_trigger_t outputInterruptTrigger

• cmp_mode_t mode

• uint8_t filterSamplePeriod

• uint8_t filterSampleCount

• cmp_power_mode_t powerMode

• cmp_inverter_t inverterState

• cmp_output_enable_t pinState

• cmp_output_select_t outputSelect

• cmp_hysteresis_t hysteresisLevel

Field Documentation

16.13.2.1.1 bool dmaTriggerState

True if DMA transfer trigger from comparator is enable.

Definition at line 180 of file cmp_driver.h.

16.13.2.1.2 uint8_t filterSampleCount

Number of sample count for filtering.

Definition at line 187 of file cmp_driver.h.

16.13.2.1.3 uint8_t filterSamplePeriod

Filter sample period.

Definition at line 186 of file cmp_driver.h.

16.13.2.1.4 cmp_hysteresis_t hysteresisLevel

CMP_LEVEL_HYS_0 if hard block output has level 0 hysteresis. CMP_LEVEL_HYS_1 if hard block output has level
1 hysteresis. CMP_LEVEL_HYS_2 if hard block output has level 2 hysteresis. CMP_LEVEL_HYS_3 if hard block
output has level 3 hysteresis.

Definition at line 200 of file cmp_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.13 Comparator Driver 247

16.13.2.1.5 cmp_inverter_t inverterState

CMP_NORMAL if does not invert the comparator output. CMP_INVERT if inverts the comparator output.

Definition at line 190 of file cmp_driver.h.

16.13.2.1.6 cmp_mode_t mode

Configuration structure which define: the comparator functional mode, sample period and sample count.

Definition at line 185 of file cmp_driver.h.

16.13.2.1.7 cmp_output_trigger_t outputInterruptTrigger

CMP_NO_INTERRUPT comparator output would not trigger any interrupt. CMP_FALLING_EDGE comparator out-
put would trigger an interrupt on falling edge. CMP_RISING_EDGE comparator output would trigger an interrupt on
rising edge. CMP_BOTH_EDGES comparator output would trigger an interrupt on rising and falling edges.

Definition at line 181 of file cmp_driver.h.

16.13.2.1.8 cmp_output_select_t outputSelect

CMP_COUT if output signal is equal to COUT(filtered). CMP_COUTA if output signal is equal to COUTA(unfiltered).

Definition at line 194 of file cmp_driver.h.

16.13.2.1.9 cmp_output_enable_t pinState

CMP_UNAVAILABLE if comparator output is not available to package pin. CMP_AVAILABLE if comparator output
is available to package pin.

Definition at line 192 of file cmp_driver.h.

16.13.2.1.10 cmp_power_mode_t powerMode

CMP_LOW_SPEED if low speed mode is selected. CMP_HIGH_SPEED if high speed mode is selected

Definition at line 188 of file cmp_driver.h.

16.13.2.2 struct cmp_anmux_t

Defines the analog mux.

This structure is used to configure the analog multiplexor to select compared signals Implements : cmp_anmux_←↩

t_Class

Definition at line 212 of file cmp_driver.h.

Data Fields

• cmp_port_mux_t positivePortMux
• cmp_port_mux_t negativePortMux
• cmp_ch_number_t positiveInputMux
• cmp_ch_number_t negativeInputMux

Field Documentation

16.13.2.2.1 cmp_ch_number_t negativeInputMux

Select which channel is selected for the minus mux.

Definition at line 222 of file cmp_driver.h.

16.13.2.2.2 cmp_port_mux_t negativePortMux

Select negative port signal. CMP_DAC if source is digital to analog converter. CMP_MUX if source is 8 ch MUX

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

248 CONTENTS

Definition at line 217 of file cmp_driver.h.

16.13.2.2.3 cmp_ch_number_t positiveInputMux

Select which channel is selected for the plus mux.

Definition at line 221 of file cmp_driver.h.

16.13.2.2.4 cmp_port_mux_t positivePortMux

Select positive port signal. CMP_DAC if source is digital to analog converter. CMP_MUX if source is 8 ch MUX

Definition at line 214 of file cmp_driver.h.

16.13.2.3 struct cmp_dac_t

Defines the DAC block.

This structure is used to configure the DAC block integrated in comparator module Implements : cmp_dac_t_Class

Definition at line 231 of file cmp_driver.h.

Data Fields

• cmp_voltage_reference_t voltageReferenceSource
• uint8_t voltage
• bool state

Field Documentation

16.13.2.3.1 bool state

True if DAC is enabled.

Definition at line 236 of file cmp_driver.h.

16.13.2.3.2 uint8_t voltage

The digital value which is converted to analog signal.

Definition at line 235 of file cmp_driver.h.

16.13.2.3.3 cmp_voltage_reference_t voltageReferenceSource

CMP_VIN1 if selected voltage reference is VIN1. CMP_VIN2 if selected voltage reference is VIN2.

Definition at line 233 of file cmp_driver.h.

16.13.2.4 struct cmp_trigger_mode_t

Defines the trigger mode.

This structure is used to configure the trigger mode operation when MCU enters STOP modes Implements : cmp←↩

_trigger_mode_t_Class

Definition at line 251 of file cmp_driver.h.

Data Fields

• bool roundRobinState
• bool roundRobinInterruptState
• cmp_fixed_port_t fixedPort
• cmp_ch_number_t fixedChannel
• uint8_t samples
• cmp_ch_list_t roundRobinChannelsState
• cmp_ch_list_t programedState

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.13 Comparator Driver 249

Field Documentation

16.13.2.4.1 cmp_ch_number_t fixedChannel

Select which channel would be assigned to the fixed port.

Definition at line 257 of file cmp_driver.h.

16.13.2.4.2 cmp_fixed_port_t fixedPort

CMP_PLUS_FIXED if plus port is fixed. CMP_MINUS_FIXED if minus port is fixed.

Definition at line 255 of file cmp_driver.h.

16.13.2.4.3 cmp_ch_list_t programedState

Pre-programmed state for comparison result.

Definition at line 266 of file cmp_driver.h.

16.13.2.4.4 cmp_ch_list_t roundRobinChannelsState

One bite for each channel state. |———|———|—–|———|———| |CH7_state|CH6_state|.....|CH1_state|CH0←↩

_state| |------—|------—|--—|------—|------—|

Definition at line 262 of file cmp_driver.h.

16.13.2.4.5 bool roundRobinInterruptState

True if Round-Robin interrupt is enabled.

Definition at line 254 of file cmp_driver.h.

16.13.2.4.6 bool roundRobinState

True if Round-Robin is enabled.

Definition at line 253 of file cmp_driver.h.

16.13.2.4.7 uint8_t samples

Select number of round-robin clock cycles for a given channel.

Definition at line 258 of file cmp_driver.h.

16.13.2.5 struct cmp_module_t

Defines the comparator module configuration.

This structure is used to configure all components of comparator module Implements : cmp_module_t_Class

Definition at line 275 of file cmp_driver.h.

Data Fields

• cmp_comparator_t comparator

• cmp_anmux_t mux

• cmp_dac_t dac

• cmp_trigger_mode_t triggerMode

Field Documentation

16.13.2.5.1 cmp_comparator_t comparator

Definition at line 277 of file cmp_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

250 CONTENTS

16.13.2.5.2 cmp_dac_t dac

Definition at line 279 of file cmp_driver.h.

16.13.2.5.3 cmp_anmux_t mux

Definition at line 278 of file cmp_driver.h.

16.13.2.5.4 cmp_trigger_mode_t triggerMode

Definition at line 280 of file cmp_driver.h.

16.13.3 Macro Definition Documentation

16.13.3.1 #define CMP_INPUT_FLAGS_MASK 0xFF0000

Definition at line 39 of file cmp_driver.h.

16.13.3.2 #define CMP_INPUT_FLAGS_SHIFT 16U

Definition at line 40 of file cmp_driver.h.

16.13.3.3 #define CMP_ROUND_ROBIN_CHANNELS_MASK 0xFF0000

Definition at line 41 of file cmp_driver.h.

16.13.3.4 #define CMP_ROUND_ROBIN_CHANNELS_SHIFT 16U

Definition at line 42 of file cmp_driver.h.

16.13.4 Typedef Documentation

16.13.4.1 typedef uint8_t cmp_ch_list_t

Comparator channels list (1bit/channel) |------—|------—|--—|------—|------—| |CH7_state|CH6_state|.....|CH1_←↩

state|CH0_state| |------—|------—|--—|------—|------—| Implements : cmp_ch_list_t_Class.

Definition at line 165 of file cmp_driver.h.

16.13.4.2 typedef uint8_t cmp_ch_number_t

Number of channel Implements : cmp_ch_number_t_Class.

Definition at line 170 of file cmp_driver.h.

16.13.5 Enumeration Type Documentation

16.13.5.1 enum cmp_fixed_port_t

Comparator Round-Robin fixed port Implements : cmp_fixed_port_t_Class.

Enumerator

CMP_PLUS_FIXED The Plus port is fixed. Only the inputs to the Minus port are swept in each round.

CMP_MINUS_FIXED The Minus port is fixed. Only the inputs to the Plus port are swept in each round.

Definition at line 126 of file cmp_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.13 Comparator Driver 251

16.13.5.2 enum cmp_hysteresis_t

Comparator hysteresis control Implements : cmp_hysteresis_t_Class.

Enumerator

CMP_LEVEL_HYS_0

CMP_LEVEL_HYS_1

CMP_LEVEL_HYS_2

CMP_LEVEL_HYS_3

Definition at line 115 of file cmp_driver.h.

16.13.5.3 enum cmp_inverter_t

Comparator output invert selection Implements : cmp_inverter_t_Class.

Enumerator

CMP_NORMAL Output signal isn't inverted.

CMP_INVERT Output signal is inverted.

Definition at line 77 of file cmp_driver.h.

16.13.5.4 enum cmp_mode_t

Comparator functional modes Implements : cmp_mode_t_Class.

Enumerator

CMP_DISABLED

CMP_CONTINUOUS

CMP_SAMPLED_NONFILTRED_INT_CLK

CMP_SAMPLED_NONFILTRED_EXT_CLK

CMP_SAMPLED_FILTRED_INT_CLK

CMP_SAMPLED_FILTRED_EXT_CLK

CMP_WINDOWED

CMP_WINDOWED_RESAMPLED

CMP_WINDOWED_FILTRED

Definition at line 146 of file cmp_driver.h.

16.13.5.5 enum cmp_output_enable_t

Comparator output pin enable selection Implements : cmp_output_enable_t_Class.

Enumerator

CMP_UNAVAILABLE Comparator output isn't available to a specific pin

CMP_AVAILABLE Comparator output is available to a specific pin

Definition at line 95 of file cmp_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

252 CONTENTS

16.13.5.6 enum cmp_output_select_t

Comparator output select selection Implements : cmp_output_select_t_Class.

Enumerator

CMP_COUT Select COUT as comparator output signal.

CMP_COUTA Select COUTA as comparator output signal.

Definition at line 86 of file cmp_driver.h.

16.13.5.7 enum cmp_output_trigger_t

Comparator output interrupt configuration Implements : cmp_output_trigger_t_Class.

Enumerator

CMP_NO_EVENT Comparator output interrupts are disabled OR no event occurred.

CMP_FALLING_EDGE Comparator output interrupts will be generated only on falling edge OR only falling
edge event occurred.

CMP_RISING_EDGE Comparator output interrupts will be generated only on rising edge OR only rising edge
event occurred.

CMP_BOTH_EDGES Comparator output interrupts will be generated on both edges OR both edges event
occurred.

Definition at line 135 of file cmp_driver.h.

16.13.5.8 enum cmp_port_mux_t

Port Mux Source selection Implements : cmp_port_mux_t_Class.

Enumerator

CMP_DAC Select DAC as source for the comparator port.

CMP_MUX Select MUX8 as source for the comparator port.

Definition at line 68 of file cmp_driver.h.

16.13.5.9 enum cmp_power_mode_t

Power Modes selection Implements : cmp_power_mode_t_Class.

Enumerator

CMP_LOW_SPEED Module in low speed mode.

CMP_HIGH_SPEED Module in high speed mode.

Definition at line 50 of file cmp_driver.h.

16.13.5.10 enum cmp_voltage_reference_t

Voltage Reference selection Implements : cmp_voltage_reference_t_Class.

Enumerator

CMP_VIN1 Use Vin1 as supply reference source for DAC.

CMP_VIN2 Use Vin2 as supply reference source for DAC.

Definition at line 59 of file cmp_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.13 Comparator Driver 253

16.13.6 Function Documentation

16.13.6.1 status_t CMP_DRV_ClearInputFlags (const uint32_t instance)

Clear comparator input channels flags.

This function clear comparator input channels flags.

Parameters

instance - instance number

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 562 of file cmp_driver.c.

16.13.6.2 status_t CMP_DRV_ClearOutputFlags (const uint32_t instance)

Clear comparator output flags.

This function clear comparator output flags(rising and falling edge).

Parameters

instance - instance number

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 517 of file cmp_driver.c.

16.13.6.3 status_t CMP_DRV_ConfigComparator (const uint32_t instance, const cmp_comparator_t ∗ config)

Configure only comparator features.

This function configure only features related with comparator: DMA request, power mode, output select, interrupts
enable, invert, offset, hysteresis.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 611 of file cmp_driver.c.

16.13.6.4 status_t CMP_DRV_ConfigDAC (const uint32_t instance, const cmp_dac_t ∗ config)

Configure only the DAC component.

This function configures the DAC with the options provided in the config structure.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

254 CONTENTS

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 316 of file cmp_driver.c.

16.13.6.5 status_t CMP_DRV_ConfigMUX (const uint32_t instance, const cmp_anmux_t ∗ config)

Configure only the MUX component.

This function configures the MUX with the options provided in the config structure.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 381 of file cmp_driver.c.

16.13.6.6 status_t CMP_DRV_ConfigTriggerMode (const uint32_t instance, const cmp_trigger_mode_t ∗ config)

Configure trigger mode.

This function configures the trigger mode with the options provided in the config structure.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 445 of file cmp_driver.c.

16.13.6.7 status_t CMP_DRV_GetComparatorConfig (const uint32_t instance, cmp_comparator_t ∗ config)

Return configuration for comparator from CMP module.

This function return configuration for features related with comparator: DMA request, power mode, output select,
interrupts enable, invert, offset, hysteresis.

Parameters

instance - instance number

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.13 Comparator Driver 255

config - the configuration structure returned

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 641 of file cmp_driver.c.

16.13.6.8 status_t CMP_DRV_GetConfigAll (const uint32_t instance, cmp_module_t ∗const config)

Gets the current comparator configuration.

This function returns the current configuration for comparator as a configuration structure.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 242 of file cmp_driver.c.

16.13.6.9 status_t CMP_DRV_GetDACConfig (const uint32_t instance, cmp_dac_t ∗const config)

Return current configuration for DAC.

This function returns current configuration only for DAC.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 340 of file cmp_driver.c.

16.13.6.10 status_t CMP_DRV_GetDefaultConfig (cmp_module_t ∗const config)

Gets a default comparator configuration.

This function returns a default configuration for the comparator as a configuration structure.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 137 of file cmp_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

256 CONTENTS

16.13.6.11 status_t CMP_DRV_GetInitConfigAll (cmp_module_t ∗ config)

Get reset configuration for all registers.

This function returns a configuration structure with reset values for all registers from comparator module.

Parameters

config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 85 of file cmp_driver.c.

16.13.6.12 status_t CMP_DRV_GetInitConfigComparator (cmp_comparator_t ∗ config)

Get reset configuration for registers related with comparator features.

This function return a configuration structure with reset values for features associated with comparator (DMA re-
quest, power mode, output select, interrupts enable, invert, offset, hysteresis).

Parameters

config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 584 of file cmp_driver.c.

16.13.6.13 status_t CMP_DRV_GetInitConfigDAC (cmp_dac_t ∗ config)

Get reset configuration for registers related with DAC.

This function returns a configuration structure with reset values for features associated with DAC.

Parameters

config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 295 of file cmp_driver.c.

16.13.6.14 status_t CMP_DRV_GetInitConfigMUX (cmp_anmux_t ∗ config)

Get reset configuration for registers related with MUX.

This function returns a configuration structure with reset values for features associated with MUX.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.13 Comparator Driver 257

Parameters

config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 362 of file cmp_driver.c.

16.13.6.15 status_t CMP_DRV_GetInitTriggerMode (cmp_trigger_mode_t ∗ config)

Get reset configuration for registers related with Trigger Mode.

This function returns a configuration structure with reset values for features associated with Trigger Mode.

Parameters

config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 422 of file cmp_driver.c.

16.13.6.16 status_t CMP_DRV_GetInputFlags (const uint32_t instance, cmp_ch_list_t ∗ flags)

Gets input channels change flags.

This function return in <flags> all input channels flags as uint8_t(1 bite for each channel flag).

Parameters

instance - instance number
flags - pointer to input flags

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 544 of file cmp_driver.c.

16.13.6.17 status_t CMP_DRV_GetMUXConfig (const uint32_t instance, cmp_anmux_t ∗const config)

Return configuration only for the MUX component.

This function returns current configuration to determine which signals go to comparator ports.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 402 of file cmp_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

258 CONTENTS

16.13.6.18 status_t CMP_DRV_GetOutputFlags (const uint32_t instance, cmp_output_trigger_t ∗ flags)

Get comparator output flags.

This function returns in <flags> comparator output flags(rising and falling edge).

Parameters

instance - instance number
- flags - pointer to output flags NO_EVENT RISING_EDGE FALLING_EDGE BOTH_EDGE

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 499 of file cmp_driver.c.

16.13.6.19 status_t CMP_DRV_GetTriggerModeConfig (const uint32_t instance, cmp_trigger_mode_t ∗const config)

Get current trigger mode configuration.

This function returns the current trigger mode configuration for trigger mode.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 472 of file cmp_driver.c.

16.13.6.20 status_t CMP_DRV_Init (const uint32_t instance, const cmp_module_t ∗const config)

Configure all comparator features with the given configuration structure.

This function configures the comparator module with the options provided in the config structure.

Parameters

instance - instance number
config - the configuration structure

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 188 of file cmp_driver.c.

16.13.6.21 status_t CMP_DRV_Reset (const uint32_t instance)

Reset all registers.

This function set all CMP registers to reset values.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.13 Comparator Driver 259

Parameters

instance - instance number

Returns

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 66 of file cmp_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

260 CONTENTS

16.14 Controller Area Network - Peripheral Abstraction Layer (CAN PAL)

16.14.1 Detailed Description

The S32 SDK provides a Peripheral Abstraction Layer for Controller Area Network (CAN) modules of S32 SDK
devices.

The CAN PAL driver allows communication over a CAN bus. It was designed to be portable across all platforms
and IPs which support CAN communication.

How to integrate CAN PAL in your application

Unlike the other drivers, CAN PAL modules need to include a configuration file named can_pal_cfg.h, which allows
the user to specify which IPSs are used and how many resources are allocated for each of them (state structures).
The following code example shows how to configure one instance for each available CAN IP.

#ifndef can_pal_cfg_H
#define can_pal_cfg_H

/* Define which IP instance will be used in current project */
#define CAN_OVER_FLEXCAN

/* Define the resources necessary for current project */
#define NO_OF_FLEXCAN_INSTS_FOR_CAN 1U

#endif /* can_pal_cfg_H */

The following table contains the matching between platforms and available IPs

IP/←↩

M←↩

CU
S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K146
S32←↩

K148
S32←↩

V234

MP←↩

C5748←↩

G

MP←↩

C5746←↩

C

MP←↩

C5744←↩

P
S32←↩

R274
S32←↩

R372

Flex←↩

CAN

YES YES YES YES YES YES YES YES YES YES YES YES

Features

• Standard data frames

• Extended data frames

• Flexible data rate (FD)

• Bitrate switch inside FD format frames (BRS)

• Zero to sixty four bytes data length

• Programmable bit rate

• Flexible buffers configurable to store 0 to 8, 16, 32 or 64 bytes data length depending of platform support

• Each buffer configurable as receive or transmit, all supporting standard and extended messages

• Individual Rx Masking per buffer

• Loop-Back mode

• Remote request frames

The following table contains the matching between platforms and available features

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.14 Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 261

FE←↩

A←↩

T←↩

U←↩

R←↩

E/←↩

M←↩

CU

S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K146
S32←↩

K148
S32←↩

V234

M←↩

P←↩

C5748←↩

G

M←↩

P←↩

C5746←↩

C

M←↩

P←↩

C5744←↩

P

S32←↩

R274
S32←↩

R372

F←↩

D/←↩

B←↩

RS

Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO Y←↩

ES
Y←↩

ES

data
length

>
8B

Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO Y←↩

ES
Y←↩

ES

Functionality

Initialization

In order to use the CAN PAL driver it must be first initialized, using CAN_Init() function. Once initialized, it cannot
be initialized again for the same CAN module instance until it is de-initialized, using CAN_Deinit(). Different CAN
modules instances can function independently of each other.

The can_user_config_t structure allows you to configure the following:

• the number of buffers needed;

• the operation mode, which can be one of the following:

– normal mode;

– loopback mode;

– disable mode;

• the Protocol Engine clock source:

– oscillator clock;

– peripheral clock;

• the payload size of the buffers:

– 8 bytes;

– 16 bytes (only available with the FD feature enabled);

– 32 bytes (only available with the FD feature enabled);

– 64 bytes (only available with the FD feature enabled);

• enable/disable the Flexible Data-rate feature;

• the bitrate used for standard frames or for the arbitration phase of FD frames;

• the bitrate used for the data phase of FD frames;

The bitrate is represented by a can_time_segment_t structure, with the following fields:

• propagation segment;

• phase segment 1;

• phase segment 2;

• clock prescaler division factor;

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

262 CONTENTS

• resync jump width.

In order to use a buffer for transmission/reception, it has to be initialized using either CAN_ConfigRxBuff or CA←↩

N_ConfigTxBuff.

After having the buffer configured, you can start sending/receiving data by calling one of the following functions:

• CAN_Send;

• CAN_SendBlocking;

• CAN_Receive;

• CAN_ReceiveBlocking.

FlexCAN Rx FIFO extension

When used over FlexCAN, the PAL allows extending the basic configuration with an Rx FIFO feature. The Rx FIFO
is receive-only and 6-message deep. The application can read the received messages sequentially, in the order
they were received, by repeatedly reading the data from buffer 0 (zero). A powerful filtering scheme is provided to
accept only frames intended for the target application. The FIFO and filtering criteria are configured by passing a
structure of extension_flexcan_rx_fifo_t type, through the extension field of the user configuration structure.

/* ID Filter table */
flexcan_id_table_t filterTable[] = {

{
.isExtendedFrame = false,
.isRemoteFrame = false,
.id = 1U
},
...

};

/* Rx FIFO extension */
extension_flexcan_rx_fifo_t can_pal1_rx_fifo_ext0 = {

.numIdFilters = FLEXCAN_RX_FIFO_ID_FILTERS_8,

.idFormat = FLEXCAN_RX_FIFO_ID_FORMAT_A,
/* User must pass reference to the ID filter table. */
.idFilterTable = NULL

};

can_pal1_rx_fifo_ext0.idFilterTable = filterTable;

The number of elements in the ID filter table is defined by the following formula:

• for format A: the number of Rx FIFO ID filters

• for format B: twice the number of Rx FIFO ID filters

• for format C: four times the number of Rx FIFO ID filters The user must provide the exact number of elements
in order to avoid any misconfiguration.

Each element in the ID filter table specifies an ID to be used as acceptance criteria for the FIFO as follows:

• for format A: In the standard frame format, bits 10 to 0 of the ID are used for frame identification. In the
extended frame format, bits 28 to 0 are used.

• for format B: In the standard frame format, bits 10 to 0 of the ID are used for frame identification. In the
extended frame format, only the 14 most significant bits (28 to 15) of the ID are compared to the 14 most
significant bits (28 to 15) of the received ID.

• for format C: In both standard and extended frame formats, only the 8 most significant bits (7 to 0 for standard,
28 to 21 for extended) of the ID are compared to the 8 most significant bits (7 to 0 for standard, 28 to 21 for
extended) of the received ID.

When Rx FIFO feature is enabled, buffer 0 (zero) cannot be used for transmission or reconfigured for reception
using CAN_ConfigRxBuff() and CAN_SetRxFilter() functions.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.14 Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 263

Important Notes

• Before using the CAN PAL driver the module clock must be configured. Refer to Clock Manager component
for clock configuration.

• The driver enables the interrupts for the corresponding CAN module, but any interrupt priority must be done
by the application.

• The board specific configurations must be done prior to driver calls; the driver has no influence on the func-
tionality of the RX/TX pins - they must be configured by application. Refer to PinSettings component for pin
configuration.

• Some features are not available for all platforms (see the table above for the matching between platforms and
available features).

• When used CAN_ReceiveBlocking() and CAN_SendBlocking() with timeout parameter 0 and the message
is already in mailbox configured will report timeout and successful transmit or receive the message.

Example code

#define TX_BUFF_IDX 0U
#define RX_BUFF_IDX 1U

uint32_t msgID = 0xAB;

/* CAN PAL instance information */
const can_instance_t can_pal1_instance = {CAN_INST_TYPE_FLEXCAN, 0U};

/* User configuration structure */
can_user_config_t config = {

.maxBuffNum = 2U,

.mode = CAN_LOOPBACK_MODE,

.peClkSrc = CAN_CLK_SOURCE_OSC,

.enableFD = false,

.payloadSize = CAN_PAYLOAD_SIZE_8,

.nominalBitrate = {
.propSeg = 7,
.phaseSeg1 = 4,
.phaseSeg2 = 1,
.preDivider = 0,
.rJumpwidth = 1

},
.dataBitrate = {

.propSeg = 7,

.phaseSeg1 = 4,

.phaseSeg2 = 1,

.preDivider = 0,

.rJumpwidth = 1
},
.extension = NULL

};

/* Initialize CAN */
CAN_Init(&can_pal1_instance, &config);

/* Buffer configuration */
can_buff_config_t buffConfig = {

.enableFD = false,

.enableBRS = false,

.fdPadding = 0xCC,

.idType = CAN_MSG_ID_STD,

.isRemote = false
};

CAN_ConfigTxBuff(&can_pal1_instance, TX_BUFF_IDX, &buffConfig);
CAN_ConfigRxBuff(&can_pal1_instance, RX_BUFF_IDX, &buffConfig, msgID);

can_message_t recvMsg, sendMsg = {
.id = msgID,
.length = 5U,
.data = {"Hello"}

};

/* Send data using buffer configured for transmission */
CAN_Send(&can_pal1_instance, TX_BUFF_IDX, &sendMsg);
while(CAN_GetTransferStatus(&can_pal1_instance, TX_BUFF_IDX) == STATUS_BUSY);

/* Receive data using buffer configured for reception */
CAN_Receive(&can_pal1_instance, RX_BUFF_IDX, &recvMsg);
while(CAN_GetTransferStatus(&can_pal1_instance, RX_BUFF_IDX) == STATUS_BUSY);

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

264 CONTENTS

/* De-initialize CAN */
CAN_Deinit(&can_pal1_instance);

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\can\can_pal.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc\

Preprocessor symbols

No special symbols are required for this component

Dependencies

Controller Area Network with Flexible Data Rate (FlexCAN) Clock Manager Interrupt Manager (Interrupt) Enhanced
Direct Memory Access (eDMA)

Data Structures

• struct can_time_segment_t

CAN bit timing variables Implements : can_time_segment_t_Class. More...

• struct can_buff_config_t

CAN buffer configuration Implements : can_buff_config_t_Class. More...

• struct can_message_t

CAN message format Implements : can_message_t_Class. More...

• struct can_user_config_t

CAN controller configuration Implements : can_user_config_t_Class. More...

• struct extension_flexcan_rx_fifo_t

FlexCAN Rx FIFO configuration Implements : extension_flexcan_rx_fifo_t_Class. More...

Enumerations

• enum can_operation_modes_t { CAN_NORMAL_MODE = 0U, CAN_LOOPBACK_MODE = 2U, CAN_DIS←↩

ABLE_MODE = 4U }

CAN controller operation modes Implements : can_operation_modes_t_Class.

• enum can_fd_payload_size_t { CAN_PAYLOAD_SIZE_8 = 0, CAN_PAYLOAD_SIZE_16, CAN_PAYLOA←↩

D_SIZE_32, CAN_PAYLOAD_SIZE_64 }

CAN buffer payload sizes Implements : can_fd_payload_size_t_Class.

• enum can_bitrate_phase_t { CAN_NOMINAL_BITRATE, CAN_FD_DATA_BITRATE }

CAN bitrate phase (nominal/data) Implements : can_bitrate_phase_t_Class.

• enum can_msg_id_type_t { CAN_MSG_ID_STD, CAN_MSG_ID_EXT }

CAN Message Buffer ID type Implements : can_msg_id_type_t_Class.

• enum can_clk_source_t { CAN_CLK_SOURCE_OSC = 0U, CAN_CLK_SOURCE_PERIPH = 1U }

CAN PE clock sources Implements : can_clk_source_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.14 Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 265

Functions

• status_t CAN_Init (const can_instance_t ∗const instance, const can_user_config_t ∗config)

Initializes the CAN module.

• status_t CAN_Deinit (const can_instance_t ∗const instance)

De-initializes the CAN module.

• status_t CAN_SetBitrate (const can_instance_t ∗const instance, can_bitrate_phase_t phase, const can_←↩

time_segment_t ∗bitTiming)

Configures the CAN bitrate.

• status_t CAN_GetBitrate (const can_instance_t ∗const instance, can_bitrate_phase_t phase, can_time_←↩

segment_t ∗bitTiming)

Returns the CAN bitrate.

• status_t CAN_ConfigTxBuff (const can_instance_t ∗const instance, uint32_t buffIdx, const can_buff_config←↩

_t ∗config)

Configures a buffer for transmission.

• status_t CAN_ConfigRemoteResponseBuff (const can_instance_t ∗const instance, uint32_t buffIdx, const
can_buff_config_t ∗config, const can_message_t ∗message)

Configures a transmit buffer for remote frame response.

• status_t CAN_ConfigRxBuff (const can_instance_t ∗const instance, uint32_t buffIdx, const can_buff_config←↩

_t ∗config, uint32_t acceptedId)

Configures a buffer for reception.

• status_t CAN_Send (const can_instance_t ∗const instance, uint32_t buffIdx, const can_message_←↩

t ∗message)

Sends a CAN frame using the specified buffer.

• status_t CAN_SendBlocking (const can_instance_t ∗const instance, uint32_t buffIdx, const can_message_t
∗message, uint32_t timeoutMs)

Sends a CAN frame using the specified buffer, in a blocking manner.

• status_t CAN_Receive (const can_instance_t ∗const instance, uint32_t buffIdx, can_message_t ∗message)

Receives a CAN frame using the specified message buffer.

• status_t CAN_ReceiveBlocking (const can_instance_t ∗const instance, uint32_t buffIdx, can_message_←↩

t ∗message, uint32_t timeoutMs)

Receives a CAN frame using the specified buffer, in a blocking manner.

• status_t CAN_AbortTransfer (const can_instance_t ∗const instance, uint32_t buffIdx)

Ends a non-blocking CAN transfer early.

• status_t CAN_SetRxFilter (const can_instance_t ∗const instance, can_msg_id_type_t idType, uint32_t buff←↩

Idx, uint32_t mask)

Configures an ID filter for a specific reception buffer.

• status_t CAN_GetTransferStatus (const can_instance_t ∗const instance, uint32_t buffIdx)

Returns the state of the previous CAN transfer.

• status_t CAN_InstallEventCallback (const can_instance_t ∗const instance, can_callback_t callback, void
∗callbackParam)

Installs a callback function for the IRQ handler.

• void CAN_GetDefaultConfig (can_instance_t ∗instance, can_user_config_t ∗config)

Returns the Default configuration for CAN_PAL instance 0 over FlexCan with a 500K Baud in normal mode, without
flexible datarate with oscillator clock source for PE and 8 Bytes payload size.

16.14.2 Data Structure Documentation

16.14.2.1 struct can_time_segment_t

CAN bit timing variables Implements : can_time_segment_t_Class.

Definition at line 59 of file can_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

266 CONTENTS

Data Fields

• uint32_t propSeg

• uint32_t phaseSeg1

• uint32_t phaseSeg2

• uint32_t preDivider

• uint32_t rJumpwidth

Field Documentation

16.14.2.1.1 uint32_t phaseSeg1

Phase segment 1

Definition at line 61 of file can_pal.h.

16.14.2.1.2 uint32_t phaseSeg2

Phase segment 2

Definition at line 62 of file can_pal.h.

16.14.2.1.3 uint32_t preDivider

Clock prescaler division factor

Definition at line 63 of file can_pal.h.

16.14.2.1.4 uint32_t propSeg

Propagation segment

Definition at line 60 of file can_pal.h.

16.14.2.1.5 uint32_t rJumpwidth

Resync jump width

Definition at line 64 of file can_pal.h.

16.14.2.2 struct can_buff_config_t

CAN buffer configuration Implements : can_buff_config_t_Class.

Definition at line 94 of file can_pal.h.

Data Fields

• bool enableFD

• bool enableBRS

• uint8_t fdPadding

• can_msg_id_type_t idType

• bool isRemote

Field Documentation

16.14.2.2.1 bool enableBRS

Enable bit rate switch inside a CAN FD frame

Definition at line 96 of file can_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.14 Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 267

16.14.2.2.2 bool enableFD

Enable flexible data rate

Definition at line 95 of file can_pal.h.

16.14.2.2.3 uint8_t fdPadding

Value used for padding when the data length code (DLC) specifies a bigger payload size than the actual data length

Definition at line 97 of file can_pal.h.

16.14.2.2.4 can_msg_id_type_t idType

Specifies whether the frame format is standard or extended

Definition at line 99 of file can_pal.h.

16.14.2.2.5 bool isRemote

Specifies if the frame is standard or remote

Definition at line 100 of file can_pal.h.

16.14.2.3 struct can_message_t

CAN message format Implements : can_message_t_Class.

Definition at line 106 of file can_pal.h.

Data Fields

• uint32_t cs
• uint32_t id
• uint8_t data [64]
• uint8_t length

Field Documentation

16.14.2.3.1 uint32_t cs

Code and Status

Definition at line 107 of file can_pal.h.

16.14.2.3.2 uint8_t data[64]

Data bytes of the CAN message

Definition at line 109 of file can_pal.h.

16.14.2.3.3 uint32_t id

ID of the message

Definition at line 108 of file can_pal.h.

16.14.2.3.4 uint8_t length

Length of payload in bytes

Definition at line 110 of file can_pal.h.

16.14.2.4 struct can_user_config_t

CAN controller configuration Implements : can_user_config_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

268 CONTENTS

Definition at line 116 of file can_pal.h.

Data Fields

• uint32_t maxBuffNum

• can_operation_modes_t mode

• can_clk_source_t peClkSrc

• bool enableFD

• can_fd_payload_size_t payloadSize

• can_time_segment_t nominalBitrate

• can_time_segment_t dataBitrate

• void ∗ extension

Field Documentation

16.14.2.4.1 can_time_segment_t dataBitrate

Bit timing segments for data bitrate

Definition at line 124 of file can_pal.h.

16.14.2.4.2 bool enableFD

Enable flexible data rate

Definition at line 121 of file can_pal.h.

16.14.2.4.3 void∗ extension

This field will be used to add extra settings to the basic configuration like FlexCAN Rx FIFO settings

Definition at line 125 of file can_pal.h.

16.14.2.4.4 uint32_t maxBuffNum

Set maximum number of buffers

Definition at line 118 of file can_pal.h.

16.14.2.4.5 can_operation_modes_t mode

Set operation mode

Definition at line 119 of file can_pal.h.

16.14.2.4.6 can_time_segment_t nominalBitrate

Bit timing segments for nominal bitrate

Definition at line 123 of file can_pal.h.

16.14.2.4.7 can_fd_payload_size_t payloadSize

Set size of buffer payload

Definition at line 122 of file can_pal.h.

16.14.2.4.8 can_clk_source_t peClkSrc

The clock source of the CAN Protocol Engine (PE).

Definition at line 120 of file can_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.14 Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 269

16.14.2.5 struct extension_flexcan_rx_fifo_t

FlexCAN Rx FIFO configuration Implements : extension_flexcan_rx_fifo_t_Class.

Definition at line 133 of file can_pal.h.

Data Fields

• flexcan_rx_fifo_id_filter_num_t numIdFilters
• flexcan_rx_fifo_id_element_format_t idFormat
• flexcan_id_table_t ∗ idFilterTable

Field Documentation

16.14.2.5.1 flexcan_id_table_t∗ idFilterTable

Rx FIFO ID table

Definition at line 137 of file can_pal.h.

16.14.2.5.2 flexcan_rx_fifo_id_element_format_t idFormat

RX FIFO ID format

Definition at line 136 of file can_pal.h.

16.14.2.5.3 flexcan_rx_fifo_id_filter_num_t numIdFilters

The number of Rx FIFO ID filters needed

Definition at line 135 of file can_pal.h.

16.14.3 Enumeration Type Documentation

16.14.3.1 enum can_bitrate_phase_t

CAN bitrate phase (nominal/data) Implements : can_bitrate_phase_t_Class.

Enumerator

CAN_NOMINAL_BITRATE Nominal (FD arbitration) bitrate

CAN_FD_DATA_BITRATE FD data bitrate

Definition at line 70 of file can_pal.h.

16.14.3.2 enum can_clk_source_t

CAN PE clock sources Implements : can_clk_source_t_Class.

Enumerator

CAN_CLK_SOURCE_OSC The CAN engine clock source is the oscillator clock.

CAN_CLK_SOURCE_PERIPH The CAN engine clock source is the peripheral clock.

Definition at line 86 of file can_pal.h.

16.14.3.3 enum can_fd_payload_size_t

CAN buffer payload sizes Implements : can_fd_payload_size_t_Class.

Enumerator

CAN_PAYLOAD_SIZE_8 CAN message buffer payload size in bytes

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

270 CONTENTS

CAN_PAYLOAD_SIZE_16 CAN message buffer payload size in bytes

CAN_PAYLOAD_SIZE_32 CAN message buffer payload size in bytes

CAN_PAYLOAD_SIZE_64 CAN message buffer payload size in bytes

Definition at line 49 of file can_pal.h.

16.14.3.4 enum can_msg_id_type_t

CAN Message Buffer ID type Implements : can_msg_id_type_t_Class.

Enumerator

CAN_MSG_ID_STD Standard ID

CAN_MSG_ID_EXT Extended ID

Definition at line 78 of file can_pal.h.

16.14.3.5 enum can_operation_modes_t

CAN controller operation modes Implements : can_operation_modes_t_Class.

Enumerator

CAN_NORMAL_MODE Normal mode or user mode

CAN_LOOPBACK_MODE Loop-back mode

CAN_DISABLE_MODE Module disable mode

Definition at line 40 of file can_pal.h.

16.14.4 Function Documentation

16.14.4.1 status_t CAN_AbortTransfer (const can_instance_t ∗const instance, uint32_t buffIdx)

Ends a non-blocking CAN transfer early.

Note

When the Rx FIFO extension is used, buffer 0 (zero) is used to read the contents of the FIFO and is configured
at the initialization of the driver.

Parameters

in instance Instance information structure.
in buffIdx buffer index.

Returns

STATUS_SUCCESS if successful; STATUS_CAN_NO_TRANSFER_IN_PROGRESS if no transfer was run-
ning

Definition at line 903 of file can_pal.c.

16.14.4.2 status_t CAN_ConfigRemoteResponseBuff (const can_instance_t ∗const instance, uint32_t buffIdx, const
can_buff_config_t ∗ config, const can_message_t ∗ message)

Configures a transmit buffer for remote frame response.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.14 Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 271

Parameters

in instance Instance information structure.
in buffIdx buffer index.
in config buffer configuration.
in message frame to be sent as remote response.

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the buffer index is out of
range; STATUS_ERROR if invalid instance number is used;

Definition at line 553 of file can_pal.c.

16.14.4.3 status_t CAN_ConfigRxBuff (const can_instance_t ∗const instance, uint32_t buffIdx, const
can_buff_config_t ∗ config, uint32_t acceptedId)

Configures a buffer for reception.

This function configures a buffer for reception.

Note

When the Rx FIFO extension is used, buffer 0 (zero) is used to read the contents of the FIFO and is configured
at the initialization of the driver. The user should not reconfigure this buffer for classical buffer reception.

Parameters

in instance Instance information structure.
in buffIdx buffer index.
in config buffer configuration.
in acceptedId ID used for accepting frames.

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the buffer index is out of
range; STATUS_ERROR if invalid instance number is used;

Definition at line 616 of file can_pal.c.

16.14.4.4 status_t CAN_ConfigTxBuff (const can_instance_t ∗const instance, uint32_t buffIdx, const
can_buff_config_t ∗ config)

Configures a buffer for transmission.

This function configures a buffer for transmission.

Note

When the Rx FIFO extension is used, buffer 0 (zero) is used to read the contents of the FIFO and is configured
at the initialization of the driver. The user should not reconfigure this buffer for transmission.

Parameters

in instance Instance information structure.
in buffIdx buffer index.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

272 CONTENTS

in config buffer configuration.

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the buffer index is out of
range; STATUS_ERROR if invalid instance number is used;

Definition at line 489 of file can_pal.c.

16.14.4.5 status_t CAN_Deinit (const can_instance_t ∗const instance)

De-initializes the CAN module.

This function de-initializes the CAN module.

Parameters

in instance Instance information structure

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if unsuccessful or invalid instance number;

Definition at line 369 of file can_pal.c.

16.14.4.6 status_t CAN_GetBitrate (const can_instance_t ∗const instance, can_bitrate_phase_t phase,
can_time_segment_t ∗ bitTiming)

Returns the CAN bitrate.

This function returns the CAN configured bitrate.

Parameters

in instance Instance information structure.
in phase selects between nominal/data phase bitrate.
out bitTiming configured bit timing variables.

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if invalid instance number is used;

Definition at line 449 of file can_pal.c.

16.14.4.7 void CAN_GetDefaultConfig (can_instance_t ∗ instance, can_user_config_t ∗ config)

Returns the Default configuration for CAN_PAL instance 0 over FlexCan with a 500K Baud in normal mode, without
flexible datarate with oscillator clock source for PE and 8 Bytes payload size.

Parameters

out instance Pointer for can_instance structure.
out config Pointer for can_user_config structure.

Definition at line 1072 of file can_pal.c.

16.14.4.8 status_t CAN_GetTransferStatus (const can_instance_t ∗const instance, uint32_t buffIdx)

Returns the state of the previous CAN transfer.

When performing an async transfer, call this function to ascertain the state of the current transfer: in progress or
complete.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.14 Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 273

Note

When the Rx FIFO extension is used, buffer 0 (zero) is used to read the contents of the FIFO and is configured
at the initialization of the driver.

Parameters

in instance Instance information structure.
in buffIdx buffer index.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if a resource is busy; STATUS_ERROR if invalid instance
number is used;

Definition at line 985 of file can_pal.c.

16.14.4.9 status_t CAN_Init (const can_instance_t ∗const instance, const can_user_config_t ∗ config)

Initializes the CAN module.

This function initializes and enables the requested CAN module.

Note

When the Rx FIFO extension is used, buffer 0 (zero) is used to read the contents of the FIFO and is configured
at the initialization of the driver.

Parameters

in instance Instance information structure
in config The configuration structure

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if unsuccessful or invalid instance number;

Definition at line 263 of file can_pal.c.

16.14.4.10 status_t CAN_InstallEventCallback (const can_instance_t ∗const instance, can_callback_t callback, void ∗
callbackParam)

Installs a callback function for the IRQ handler.

Parameters

in instance Instance information structure.
in callback The callback function.
in callbackParam User parameter passed to the callback function through the state parameter.

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if invalid instance number is used;

Definition at line 1024 of file can_pal.c.

16.14.4.11 status_t CAN_Receive (const can_instance_t ∗const instance, uint32_t buffIdx, can_message_t ∗message)

Receives a CAN frame using the specified message buffer.

This function receives a CAN frame using a configured buffer. The function returns immediately. If a callback is
installed, it will be invoked after the frame was received and read into the specified buffer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

274 CONTENTS

Note

When the Rx FIFO extension is used, buffer 0 (zero) is used to read the contents of the FIFO and is configured
at the initialization of the driver. The user should use this buffer to receive frames in the FIFO.

Parameters

in instance Instance information structure.
in buffIdx buffer index.
out message received message.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if the current buffer is involved in another transfer; ST←↩

ATUS_CAN_BUFF_OUT_OF_RANGE if the buffer index is out of range; STATUS_ERROR if invalid instance
number is used;

Definition at line 797 of file can_pal.c.

16.14.4.12 status_t CAN_ReceiveBlocking (const can_instance_t ∗const instance, uint32_t buffIdx, can_message_t ∗
message, uint32_t timeoutMs)

Receives a CAN frame using the specified buffer, in a blocking manner.

This function receives a CAN frame using a configured buffer. The function blocks until either a frame was received,
or the specified timeout expired.

Note

When the Rx FIFO extension is used, buffer 0 (zero) is used to read the contents of the FIFO and is configured
at the initialization of the driver. The user should use this buffer to receive frames in the FIFO.

Parameters

in instance Instance information structure.
in buffIdx buffer index.
out message received message.
in timeoutMs A timeout for the transfer in milliseconds.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if the current buffer is involved in another transfer; ST←↩

ATUS_TIMEOUT if the timeout is reached; STATUS_CAN_BUFF_OUT_OF_RANGE if the buffer index is out
of range; STATUS_ERROR if invalid instance number is used;

Definition at line 849 of file can_pal.c.

16.14.4.13 status_t CAN_Send (const can_instance_t ∗const instance, uint32_t buffIdx, const can_message_t ∗
message)

Sends a CAN frame using the specified buffer.

This function sends a CAN frame using a configured buffer. The function returns immediately. If a callback is
installed, it will be invoked after the frame was sent.

Note

When the Rx FIFO extension is used, buffer 0 (zero) is used to read the contents of the FIFO and is configured
at the initialization of the driver. The user should not use this buffer for transmission.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.14 Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 275

Parameters

in instance Instance information structure.
in buffIdx buffer index.
in message message to be sent.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if the current buffer is involved in another transfer; ST←↩

ATUS_CAN_BUFF_OUT_OF_RANGE if the buffer index is out of range; STATUS_ERROR if invalid instance
number is used;

Definition at line 678 of file can_pal.c.

16.14.4.14 status_t CAN_SendBlocking (const can_instance_t ∗const instance, uint32_t buffIdx, const can_message_t
∗ message, uint32_t timeoutMs)

Sends a CAN frame using the specified buffer, in a blocking manner.

This function sends a CAN frame using a configured buffer. The function blocks until either the frame was sent, or
the specified timeoutMs expired.

Note

When the Rx FIFO extension is used, buffer 0 (zero) is used to read the contents of the FIFO and is configured
at the initialization of the driver. The user should not use this buffer for transmission.

Parameters

in instance Instance information structure.
in buffIdx buffer index.
in message message to be sent.
in timeoutMs A timeout for the transfer in milliseconds.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if the current buffer is involved in another transfer; ST←↩

ATUS_TIMEOUT if the timeout is reached; STATUS_CAN_BUFF_OUT_OF_RANGE if the buffer index is out
of range; STATUS_ERROR if invalid instance number is used;

Definition at line 737 of file can_pal.c.

16.14.4.15 status_t CAN_SetBitrate (const can_instance_t ∗const instance, can_bitrate_phase_t phase, const
can_time_segment_t ∗ bitTiming)

Configures the CAN bitrate.

This function configures the CAN bit timing variables.

Parameters

in instance Instance information structure.
in phase selects between nominal/data phase bitrate.
in bitTiming bit timing variables.

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if invalid instance number is used;

Definition at line 402 of file can_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

276 CONTENTS

16.14.4.16 status_t CAN_SetRxFilter (const can_instance_t ∗const instance, can_msg_id_type_t idType, uint32_t
buffIdx, uint32_t mask)

Configures an ID filter for a specific reception buffer.

This function configures an ID filter for each reception buffer.

Note

When the Rx FIFO extension is used, buffer 0 (zero) is used to read the contents of the FIFO and is configured
at the initialization of the driver. The user should not reconfigure the Rx filter for this buffer.

Parameters

in instance Instance information structure.
in idType selects between standard and extended ID.
in buffIdx buffer index.
in mask mask value for ID filtering.

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the buffer index is out of
range; STATUS_ERROR if invalid instance number is used;

Definition at line 942 of file can_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.15 Controller Area Network with Flexible Data Rate (FlexCAN) 277

16.15 Controller Area Network with Flexible Data Rate (FlexCAN)

16.15.1 Detailed Description

The S32 SDK provides a Peripheral Driver for the FlexCAN module of S32 SDK devices.

Hardware background

The FlexCAN module is a communication controller implementing the CAN protocol according to the ISO 11898-1
standard and CAN 2.0 B protocol specifications. The FlexCAN module is a full implementation of the CAN protocol
specification, the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0 version B protocol, which supports
both standard and extended message frames and long payloads up to 64 bytes transferred at faster rates up to 8
Mbps. The message buffers are stored in an embedded RAM dedicated to the FlexCAN module.

The FlexCAN module includes these distinctive features:

• Full implementation of the CAN with Flexible Data Rate (CAN FD) protocol specification and CAN protocol
specification, Version 2.0 B (see the FEATURE_CAN_HAS_FD define for the availability of this feature on
each platform)

– Standard data frames

– Extended data frames

– Zero to sixty four bytes data length

– Programmable bit rate (see the chip-specific FlexCAN information for the specific maximum bit rate
configuration)

– Content-related addressing

• Compliant with the ISO 11898-1 standard

• Flexible mailboxes configurable to store 0 to 8, 16, 32 or 64 bytes data length (payloads longer than 8 bytes
are available only for some platforms, see the FEATURE_CAN_HAS_FD define)

• Each mailbox configurable as receive or transmit, all supporting standard and extended messages

• Individual Rx Mask registers per mailbox

• Full-featured Rx FIFO with storage capacity for up to six frames and automatic internal pointer handling with
DMA support (DMA support is available only for some platforms, see the FEATURE_CAN_HAS_DMA_EN←↩

ABLE define)

• Transmission abort capability

• Flexible message buffers (MBs) configurable as Rx or Tx (see the FEATURE_CAN_MAX_MB_NUM define
for the specific maximum number of message buffers configurable on each platform)

• Programmable clock source to the CAN Protocol Interface, either peripheral clock or oscillator clock (this
feature might differ depending on the platform, see FEATURE_CAN_HAS_PE_CLKSRC_SELECT define for
the availability of this feature on each platform)

• RAM not used by reception or transmission structures can be used as general purpose RAM space

• Listen-Only mode capability

• Programmable Loop-Back mode supporting self-test operation

• Maskable interrupts

• Short latency time due to an arbitration scheme for high-priority messages

• Low power modes or matching with received frames - Pretended Networking (see FEATURE_CAN_HAS_←↩

PRETENDED_NETWORKING define for the availability of this feature on each platform)

• Transceiver Delay Compensation feature when transmitting CAN FD messages at faster data rates (see the
FEATURE_CAN_HAS_FD define for the availability of this feature on each platform)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

278 CONTENTS

• Remote request frames may be handled automatically or by software

• CAN bit time settings and configuration bits can only be written in Freeze mode

• SYNCH bit available in Error in Status 1 register to inform that the module is synchronous with CAN bus

• CRC status for transmitted message

• Rx FIFO Global Mask register

• Selectable priority between mailboxes and Rx FIFO during matching process

• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either 128 extended, 256 standard,
or 512 partial (8 bit) IDs, with up to 32 individual masking capability

• 100% backward compatibility with previous FlexCAN version

• Supports Pretended Networking functionality in low power: Stop mode (see FEATURE_CAN_HAS_PRET←↩

ENDED_NETWORKING define for the availability of this feature on each platform)

• Supports detection and correction of errors in memory read accesses. Errors in one bit can be corrected and
errors in 2 bits can be detected but not corrected (this feature might not be available on some platforms, see
chip-specific FlexCAN information for details)

• Supports Self Wake Up feature when FlexCAN is in a low power mode: Stop mode (see FEATURE_CAN_←↩

HAS_SELF_WAKE_UP define for the availability of this feature on each platform)

• Disable Detection and Correction of Memory Errors Feature for devices that supports it. This feature can
cause Freeze Mode of CAN interface. (see FEATURE_CAN_HAS_MEM_ERR_DET define availability of the
feature in module)

Modules

• FlexCAN Driver

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.16 Cooked API 279

16.16 Cooked API

16.16.1 Detailed Description

Cooked processing of diagnostic messages manages one complete message at a time.

Functions

• void ld_send_message (l_ifc_handle iii, l_u16 length, l_u8 NAD, const l_u8 ∗const data)

Pack the information specified by data and length into one or multiple diagnostic frames.

• void ld_receive_message (l_ifc_handle iii, l_u16 ∗const length, l_u8 ∗const NAD, l_u8 ∗const data)

Prepare the LIN diagnostic module to receive one message and store it in the buffer pointed to by data.

• l_u8 ld_tx_status (l_ifc_handle iii)

Get the status of the last made call to ld_send_message.

• l_u8 ld_rx_status (l_ifc_handle iii)

Get the status of the last made call to ld_send_message.

16.16.2 Function Documentation

16.16.2.1 void ld_receive_message (l_ifc_handle iii, l_u16 ∗const length, l_u8 ∗const NAD, l_u8 ∗const data)

Prepare the LIN diagnostic module to receive one message and store it in the buffer pointed to by data.

Parameters

in iii Lin interface handle
in length Length of data to receive
in NAD Node address of slave node
in data Data to be sent

Returns

void

Prepare the LIN diagnostic module to receive one message and store it in the buffer pointed to by data. At the
call, length shall specify the maximum length allowed. When the reception has completed, length is changed to the
actual length and NAD to the NAD in the message.

Definition at line 261 of file lin_commontl_api.c.

16.16.2.2 l_u8 ld_rx_status (l_ifc_handle iii)

Get the status of the last made call to ld_send_message.

Parameters

in iii Lin interface handle

Returns

l_u8

The call returns the status of the last made call to ld_receive_message. < br / > The following values can be
returned: < br / > LD_IN_PROGRESS: The reception is not yet completed. < br / > LD_COMPLETED: The
reception has completed successfully and all < br / > information (length, NAD, data) is available. (You can < br
/ > also issue a new ld_receive_message call). This < br / > value is also returned after initialization of the < br
/ > transport layer. < br / > LD_FAILED: The reception ended in an error. The data was only < br / > partially
received and should not be trusted. Initialize < br / > before processing further transport layer messages. < br /

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

280 CONTENTS

> For LIN2.0 and J2602 Users can make a new call to ld_receive_message. For LIN2.1 and above, the transport
layer shall be reinitialized before processing further messages. To find out why a transmission has failed, check
the status management function l_ifc_read_status. ∗ LD_N_CR_TIMEOUT The reception failed because of a N_Cr
timeout (For LIN2.1 and above only)< br / > LD_WRONG_SN The reception failed because of an unexpected
sequence number. (For LIN2.1 and above only)

Definition at line 307 of file lin_commontl_api.c.

16.16.2.3 void ld_send_message (l_ifc_handle iii, l_u16 length, l_u8 NAD, const l_u8 ∗const data)

Pack the information specified by data and length into one or multiple diagnostic frames.

Parameters

in iii Lin interface handle
in length Length of data to send
in NAD Node address of slave node
in data Data to be sent

Returns

void

Pack the information specified by data and length into one or multiple diagnostic frames. If the call is made in a
master node application the frames are transmitted to the slave node with the address NAD. If the call is made in a
slave node application the frames are transmitted to the master node with the address NAD. The parameter NAD is
not used in slave nodes.

Definition at line 207 of file lin_commontl_api.c.

16.16.2.4 l_u8 ld_tx_status (l_ifc_handle iii)

Get the status of the last made call to ld_send_message.

Parameters

in iii Lin interface handle

Returns

l_u8

Get the status of the last made call to ld_send_message. The following values can be returned: LD_IN_PRO←↩

GRESS: The transmission is not yet completed. LD_COMPLETED: The transmission has completed successfully
(and you can issue a new ld_send_message call). This value is also returned after initialization of the transport
layer. LD_FAILED: The transmission ended in an error. The data was only partially sent. The transport layer shall
be reinitialized before processing further messages. To find out why a transmission has failed, check the status
management function l_read_status. For LIN2.0 and J2602 Users can make a new call to ld_send_message. For
LIN2.1 and above, the transport layer shall be reinitialized before processing further messages. LD_N_AS_TIME←↩

OUT: The transmission failed because of a N_As timeout. This applies for LIN2.1 and above only.

Definition at line 291 of file lin_commontl_api.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.17 Cryptographic Services Engine (CSEc) 281

16.17 Cryptographic Services Engine (CSEc)

16.17.1 Detailed Description

The S32 SDK provides a Peripheral Driver for the Cryptographic Services Engine (CSEc) module of S32 SDK
devices.

The FTFC module has added features to comply with the SHE specification. By using an embedded processor,
firmware and hardware assisted AES-128 sub-block, the FTFC macro enables encryption, decryption and message
generation and authentication algorithms for secure messaging applications. Additionally a TRNG and Miyaguchi-
Prenell compression sub-blocks enables true random number generation (entropy generator for PRNG in AES
sub-block).

Hardware background

Features of the CSEc module include:

• Secure cryptographic key storage (ranging from 3 to 21 user keys)

• AES-128 encryption and decryption

• AES-128 CMAC (Cipher-based Message Authentication Code) calculation and authentication

• ECB (Electronic Cypher Book) Mode - encryption and decryption

• CBC (Cipher Block Chaining) Mode - encryption and decryption

• True and Pseudo random number generation

• Miyaguchi-Prenell compression function

• Secure Boot Mode (user configurable)

– Sequential Boot Mode

– Parallel Boot Mode

– Strict Sequential Boot Mode (unchangeable once set)

Modules

• CSEc Driver

Cryptographic Services Engine Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

282 CONTENTS

16.18 Cyclic Redundancy Check (CRC)

16.18.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the Cyclic Redundancy Check (CRC) module.

1. CRC with S32K1xx and S32K1xxW:

• Generate 16/32-bit CRC code for error detection.

• Provides a programmable polynomial, seed, and other parameters required to implement 16/32-bit CRC
standard.

• Calculate 16/32-bit code for 32 bits of data at a time.

2. CRC with MPC574x and S32Rx7x:

• Generate 8/16/32-bit CRC code for error detection.

• Provides a programmable polynomial, seed, and other parameters required to implement 8/16/32-bit
CRC standard.

• Calculate 8/16/32-bit code for 32 bits of data at a time.

Important note when use CRC module with MPC574x and S32Rx7x devices:

• When generating CRC-32 for the ITU-T V.42 standard the user needs to set SWAP_BYTEWISE together with
INV and SWAP.

• When generating CRC-16-CCITT(0x1021) standard the user needs to set SWAP_BITWISE bit.

Basic Operations of CRC

1. To initialize the CRC module, call CRC_DRV_Init() function and pass the user configuration data structure to
it. This is example code to configure the CRC driver using CRC_DRV_GetDefaultConfig() function:

#define INST_CRC1 (0U)

/* Configuration structure crc1_InitConfig0 */
crc_user_config_t crc1_InitConfig0;

/* Get default configuration for CRC module: CRC-16-CCITT (0x1021) standard */
CRC_DRV_GetDefaultConfig(&crc1_InitConfig0);

/* Initializes the CRC */
CRC_DRV_Init(INST_CRC1, &crc1_InitConfig0);

2. To configure and operate the CRC module: Function CRC_DRV_Configure() shall be used to write user
configuration to CRC hardware module before starting operation by calling CRC_DRV_WriteData(). Finally,
using CRC_DRV_GetCrcResult() function to get the result of CRC calculation. This is example code to
configure and get CRC block for S32K1xx:

#define INST_CRC1 (0U)

uint8_t buffer[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x30 };
uint32_t result;

/* Set the CRC configuration: CRC-16-CCITT (0x1021) standard */
CRC_DRV_Configure(INST_CRC1, &crc1_InitConfig0);
/* Write data to the current CRC calculation */
CRC_DRV_WriteData(INST_CRC1, buffer, 10U);
/* Get result of CRC calculation (0x3218U) */
result = CRC_DRV_GetCrcResult(INST_CRC1);

/* De-init */
CRC_DRV_Deinit(INST_CRC1);

3. To get result of 32-bit data call CRC_DRV_GetCrc32() function.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.18 Cyclic Redundancy Check (CRC) 283

#define INST_CRC1 (0U)

uint32_t seed = 0xFFFFU;
uint32_t data = 0x12345678U;
uint32_t result;

/* Get result of 32-bit data (0x30EC) at CRC-16-CCITT (0x1021) standard configuration mode */
result = CRC_DRV_GetCrc32(INST_CRC1, data, true, seed);

4. To get result of 16-bit data call CRC_DRV_GetCrc16() function.

#define INST_CRC1 (0U)

uint32_t seed = 0xFFFFU;
uint16_t data = 0x1234U;
uint32_t result;

/* Get result of 16-bit data (0x0EC9) at CRC-16-CCITT (0x1021) standard configuration mode */
result = CRC_DRV_GetCrc16(INST_CRC1, data, true, seed);

5. To get current configuration of the CRC module, just call CRC_DRV_GetConfig() function.

#define INST_CRC1 (0U)
crc_user_config_t crc1_InitConfig0;

/* Get current configuration of the CRC module */
CRC_DRV_GetConfig(INST_CRC1, &crc1_InitConfig0);

6. To Get default configuration of the CRC module, just call CRC_DRV_GetDefaultConfig() function.

#define INST_CRC1 (0U)
crc_user_config_t crc1_InitConfig0;

/* Get default configuration of the CRC module */
CRC_DRV_GetDefaultConfig(&crc1_InitConfig0);

Integration guideline

Compilation units

The following files need to be compiled in the project: For S32K1xx and S32K1xxW:

${S32SDK_PATH}\platform\drivers\src\crc\crc_driver.c
${S32SDK_PATH}\platform\drivers\src\crc\crc_hw_access.c

For MPC574x and S32Rx7x:

${S32SDK_PATH}\platform\drivers\src\crc\crc_driver.c
${S32SDK_PATH}\platform\drivers\src\crc\crc_c55_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager

Modules

• CRC Driver

Cyclic Redundancy Check Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

284 CONTENTS

16.19 Diagnostic services

16.19.1 Detailed Description

Diagnostic services defines methods to implement diagnostic data transfer between a master node connected with
a diagnostic tester and the slave nodes.

Three different classes of diagnostic nodes are supported.

The master node and the diagnostic tester are connected via a back-bone bus (e.g. CAN). The master node
shall receive all diagnostic requests addressed to the slave nodes from the back-bone bus, and gateway them to
the correct LIN cluster(s). Responses from the slave nodes shall be gatewayed back to the back-bone bus through
the master node.

All diagnostic requests and responses (services) addressed to the slave nodes can be routed in the network
layer (i.e. no application layer routing). In this case, the master node must implement the LIN transport protocol,
see Transport Layer Specification, as well as the transport protocols used on the back- bone busses (e.g. IS←↩

O15765-2 on CAN).

Currently, LinStack support some service. With other service which LinStack doesn't support or user want to
add action when any service is received, user can choose or create service in supported services of PEX GUI and
use API of transport layer to implement it. in application.

Example in slave node:

for(;;)
{

/* length shall specify the maximum length allowed */
length = 106;
ld_receive_message(LI0,&length, &nad, req_data);
/* if receive READ_DATA_BY_IDENTIFIER master request successfully */
if(diag_get_flag(LI0, LI0_DIAGSRV_READ_DATA_BY_IDENTIFIER_ORDER))
{

diag_clear_flag(LI0, LI0_DIAGSRV_READ_DATA_BY_IDENTIFIER_ORDER);
/* implement what you want to do when receive this message

length will return real length of this message
req_data will contain SID and data of this message */

/* send back response data */
ld_send_message(LI0,17,nad, res_data);

}
}

Modules

• Node configuration

This group contains APIs that used for node configuration purpose.

• Node identification

This group contains API that used for node identification purpose.

Functions

• void diag_read_data_by_identifier (l_ifc_handle iii, const l_u8 NAD, const l_u8 number_of_id, const l_u16
∗const list_of_id)

This function reads data by identifier, Diagnostic Class II service (0x22).

• void diag_write_data_by_identifier (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const
data)

Write Data by Identifier for a specified node - Diagnostic Class II service (0x2E)

• void diag_session_control (l_ifc_handle iii, const l_u8 NAD, const l_u8 session_type)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x10:
Session control.

• void diag_fault_memory_read (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.19 Diagnostic services 285

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x19:
Fault memory read.

• void diag_fault_memory_clear (l_ifc_handle iii, const l_u8 NAD, const l_u8 ∗const groupOfDTC)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x14:
Fault memory clear.

• void diag_IO_control (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x2F:
Input/Output control service.

• l_u8 diag_get_flag (l_ifc_handle iii, l_u8 flag_order)

This function will return flag of diagnostic service, if LIN slave node receive master request of the diagnostic service.

• void diag_clear_flag (l_ifc_handle iii, l_u8 flag_order)

This function will clear flag of diagnostic service,.

16.19.2 Function Documentation

16.19.2.1 void diag_clear_flag (l_ifc_handle iii, l_u8 flag_order)

This function will clear flag of diagnostic service,.

Parameters

in iii LIN interface handle
in flag_order Order of service flag

Returns

void

Definition at line 1013 of file lin_diagnostic_service.c.

16.19.2.2 void diag_fault_memory_clear (l_ifc_handle iii, const l_u8 NAD, const l_u8 ∗const groupOfDTC)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x14:
Fault memory clear.

Parameters

in iii LIN interface handle
in NAD Node address value of the destination node for the transmission
in groupOfDTC contain 3 byte will be transmit follow (byte 0: HighByte, byte 1: Middle Byte,

byte 2: Low Byte) to be transmitted

Returns

void

Definition at line 759 of file lin_diagnostic_service.c.

16.19.2.3 void diag_fault_memory_read (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x19:
Fault memory read.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

286 CONTENTS

in iii LIN interface handle
in NAD Node address value of the destination node for the transmission
in data_length Data length of frame
in data Buffer for the data to be transmitted

Returns

void

Definition at line 713 of file lin_diagnostic_service.c.

16.19.2.4 l_u8 diag_get_flag (l_ifc_handle iii, l_u8 flag_order)

This function will return flag of diagnostic service, if LIN slave node receive master request of the diagnostic service.

Parameters

in iii LIN interface handle
in flag_order Order of service flag

Returns

1 if LIN Slave node receives master request of the diagnostic service, and the flag has not been cleared by
diag_clear_flag
0 default value
0xFF if service is not supported

Definition at line 982 of file lin_diagnostic_service.c.

16.19.2.5 void diag_IO_control (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x2F:
Input/Output control service.

Parameters

in iii LIN interface handle
in NAD Node address value of the destination node for the transmission
in data_length Data length of frame
in data Buffer for the data to be transmitted

Returns

void

Definition at line 796 of file lin_diagnostic_service.c.

16.19.2.6 void diag_read_data_by_identifier (l_ifc_handle iii, const l_u8 NAD, const l_u8 number_of_id, const l_u16 ∗const
list_of_id)

This function reads data by identifier, Diagnostic Class II service (0x22).

Parameters

in iii LIN interface handle
in NAD Node address value of the destination node for the transmission

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.19 Diagnostic services 287

in number_of_id number id that send in this request
in list_of_id list of id that send in this request

Returns

void

This function is for Master node only.

Definition at line 580 of file lin_diagnostic_service.c.

16.19.2.7 void diag_session_control (l_ifc_handle iii, const l_u8 NAD, const l_u8 session_type)

This function is used for master node only. It will pack data and send request to slave node with service ID = 0x10:
Session control.

Parameters

in iii LIN interface handle
in NAD Node address value of the destination node for the transmission
in session_type is sub function of diagnostic session master request

Returns

void

Definition at line 679 of file lin_diagnostic_service.c.

16.19.2.8 void diag_write_data_by_identifier (l_ifc_handle iii, const l_u8 NAD, l_u16 data_length, const l_u8 ∗const data)

Write Data by Identifier for a specified node - Diagnostic Class II service (0x2E)

Parameters

in iii Lin interface handle
in NAD Node address value of the destination node for the transmission
in data_length Data length of frame
in data Buffer for the data to be transmitted

Returns

void

This function is for Master node only.

Definition at line 629 of file lin_diagnostic_service.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

288 CONTENTS

16.20 Driver and cluster management

16.20.1 Detailed Description

API perform the initialization of the LIN core.

Functions

• l_bool l_sys_init (void)

This function performs the initialization of the LIN core; is the first call a user must use in the LIN core before using
any other API functions. The implementation of this function can be replaced by user if needed.

16.20.2 Function Documentation

16.20.2.1 l_bool l_sys_init (void)

This function performs the initialization of the LIN core; is the first call a user must use in the LIN core before using
any other API functions. The implementation of this function can be replaced by user if needed.

Returns

Operation status = Zero, which is equivalent to 'Initialization was successful'.

Definition at line 57 of file lin_common_api.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 289

16.21 EDMA Driver

16.21.1 Detailed Description

This module covers the functionality of the Enhanced Direct Memory Access (eDMA) peripheral driver.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32KSDK_PATH}\platform\drivers\src\edma\edma_driver.c
${S32KSDK_PATH}\platform\drivers\src\edma\edma_hw_access.c
${S32KSDK_PATH}\platform\drivers\src\edma\edma_irq.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32KSDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt)

The eDMA driver implements direct memory access functionality with multiple features: (single block/multi
block/loop/scatter-gather transfers); the main usage of this module is to offload the bus read/write accesses from
the core to the eDMA engine.

Features

• Memory-to-memory, peripheral-to-memory, memory-to-peripheral transfers

• Simple single-block transfers with minimum configuration

• Multi-block transfers with minimum configuration (based on subsequent requests)

• Loop transfers for complex use-cases (e.g. double buffering)

• Scatter/gather

• Dynamic channel allocation

Functionality

Initialization

In order to use the eDMA driver, the module must be first initialized, using EDMA_DRV_Init() function. Once
initialized, it cannot be initialized again until it is de-initialized, using EDMA_DRV_Deinit(). The initialization function
does the following operations:

• resets eDMA and DMAMUX modules

• clears the eDMA driver state structure

• sets the arbitration mode and halt settings

• enables error and channel interrupts

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

290 CONTENTS

Upon module initialization, the application must initialize the channel(s) to be used, using EDMA_DRV_Channel←↩

Init() function. This operation means enabling an eDMA channel number (or dynamically allocating one), selecting
a source trigger (eDMA request multiplexed via DMAMUX) and setting the channel priority. Additionally, a user
callback can be installed for each channel, which will be called when the corresponding interrupt is triggered.

Transfer Configuration

After initialization, the transfer control descriptor for the selected channel must be configured before use. Depending
on the application use-case, on of the three transfer configuration methods should be called.

Single-block transfer

For the simplest use-case where a contiguous chunk of data must be transferred, the most suitable function is
EDMA_DRV_ConfigSingleBlockTransfer(). This takes the source/destination addresses as parameters, as well as
transfer type/size and data buffer size, and configures the channel TCD to read/write the data in a single request.
The looping and scatter/gather features are not used in this scenario. The driver computes the appropriate offsets
for source/destination addresses and set the other TCD fields.

Multi-block transfer

This type of transfer can be seen as a sequence of single-block transfers, as described above, which are triggered
by subsequent requests. This configuration is suitable for contiguous chunks of data which need to be transferred
in multiple steps (e.g. writing one/several bytes from a memory buffer to a peripheral data register each time the
module is free - eDMA-based communication). In order to configure this kind of transfer, EDMA_DRV_Config←↩

MultiBlockTransfer function should be used; aside from the EDMA_DRV_ConfigSingleBlockTransfer parameters,
this function also takes two additional parameters: the number of transfer loops (expected number of requests to
finish the data) and a boolean variable configuring whether requests should be disabled for the current channel
upon transfer completion.

Loop transfer

The eDMA IP supports complex addressing modes. One of the methods to configure complex transfers in multiple
requests is using the minor/major loop support. The EDMA_DRV_ConfigLoopTransfer() function sets up the transfer
control descriptor for subsequent requests to trigger multiple transfers. The addresses are adjusted after each
minor/major loop, according to user setup. This method takes a transfer configuration structure as parameter, with
settings for all the fields that control addressing mode (source/destination offsets, minor loop offset, channel linking,
minor/major loop count, address last adjustments). It is the responsibility of the application to correctly initialize the
configuration structure passed to this function, according to the addressed use-case.

Scatter/gather

The eDMA driver also supports scatter/gather feature, which allows various transfer scenarios. When scatter/gather
is enabled, a new TCD structure is automatically loaded in the current channel's TCD registers when a transfer is
complete, allowing the application to define multiple different subsequent transfers. The EDMA_DRV_Config←↩

ScatterGatherTransfer() function sets up a list of TCD structures based on the parameters received and configures
the eDMA channel for the first transfer; upon completion, the second TCD from the list will be loaded and the chan-
nel will be ready to start the new transfer when a new request is received.
The application must allocate memory for the TCD list passed to this function (with an extra 32-bytes buffer, as the
TCD structures need to be 32 bytes aligned); nevertheless, the driver will take care of initializing the array of de-
scriptors, based on the other parameters passed. The function also received two lists of scatter/gather configuration
structures (for source and destination, respectively), which define the address, length and type for each transfer.
Besides these, the other parameters received are the transfer size, the number of bytes to be transferred on each
request and the number of TCD structures to be used. This method will initialize all the descriptors according to
user input and link them together; the linkage is done by writing the address of the next descriptor in the appropriate
field of each one, similar to a linked-list data structure. The first descriptor is also copied to the TCD registers of
the selected channel; if no errors are returned, after calling this function the channel is configured for the transfer
defined by the first descriptor.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 291

Virtual Channel Definition

The virtual channel is used to map multiple hardware channels across multiple eDMA instances. If only one eDMA
instance is available, then the virtual channels will map one-on-one with the hardware channels. If more than one
eDMA instance is available, then the virtual channels will map continuously and linearly over all of the harware
channels. Example: If the SOC has 4 eDMA modules, each with 32 channels, then the user will be able to address
a total of 128 virtual channels, that seamlessly map onto the hardware channels.

Virtual Channel Control

The eDMA driver provides functions that allow the user to start, stop, allocate and release an eDMA virtual channel.
The EDMA_DRV_StartChannel() enables the eDMA requests for a virtual channel; this function should be called
when the virtual channel is already initialized, as the first request received after the function call will trigger the
transfer based on the current values of the virtual channel's TCD registers.
The EDMA_DRV_StopChannel() function disables requests for the selected virtual channel; this function should be
called whenever the application needs to ignore eDMA requests for a virtual channel. It is automatically called when
the virtual channel is released.
The EDMA_DRV_SetChannelRequestAndTrigger() function configures the selected virtual channel request and
also configures the periodic trigger functionality of the eDMA channel.
Periodic triggering is used by an internal timer to control an eDMA channel.

The EDMA_DRV_ReleaseChannel() function frees the hardware and software resources allocated for that virtual
channel; it clears the virtual channel state structure, updates the driver state and disables requests for that virtual
channel.

Important Notes

• Before using the eDMA driver the clock for eDMA and DMAMUX modules must be configured

• The driver enables the interrupts for the eDMA module, but any interrupt priority must be done by the appli-
cation

• When using the modulo feature, application is responsible with ensuring that the source/destination address
is properly aligned on a modulo-size boudary.

• The source/destination address must be aligned with transfer size. Ex: With transfer size is 8 bytes, the
source/destination address is multiple of 8.

• When using Single-block transfer or Multi-block transfer, NBYTES (Number of bytes to be transferred in each
service request of the channel) shall be always configurable on 30 bits instead of 32 bits. This is a limitation
only on EDMA Hardware version 2 (S32K1xx platform).

• Limitation of IAR compiler: function alignment is not supported using ALIGNED() macro.

Data Structures

• struct edma_user_config_t

The user configuration structure for the eDMA driver. More...

• struct edma_chn_state_t

Data structure for the eDMA channel state. Implements : edma_chn_state_t_Class. More...

• struct edma_channel_config_t

The user configuration structure for the an eDMA driver channel. More...

• struct edma_scatter_gather_list_t

Data structure for configuring a discrete memory transfer. Implements : edma_scatter_gather_list_t_Class. More...

• struct edma_state_t

Runtime state structure for the eDMA driver. More...

• struct edma_loop_transfer_config_t

eDMA loop transfer configuration. More...

• struct edma_transfer_config_t

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

292 CONTENTS

eDMA transfer size configuration. More...
• struct edma_software_tcd_t

eDMA TCD Implements : edma_software_tcd_t_Class More...

Macros

• #define STCD_SIZE(number) (((number) ∗ 32U) - 1U)

Macro for the memory size needed for the software TCD.
• #define STCD_ADDR(address) (((uint32_t)address + 31UL) & ∼0x1FUL)
• #define EDMA_ERR_LSB_MASK 1U

Macro for accessing the least significant bit of the ERR register.

Typedefs

• typedef void(∗ edma_callback_t) (void ∗parameter, edma_chn_status_t status)

Definition for the eDMA channel callback function.

Enumerations

• enum edma_channel_interrupt_t { EDMA_CHN_ERR_INT = 0U, EDMA_CHN_HALF_MAJOR_LOOP_INT,
EDMA_CHN_MAJOR_LOOP_INT }

eDMA channel interrupts. Implements : edma_channel_interrupt_t_Class
• enum edma_arbitration_algorithm_t { EDMA_ARBITRATION_FIXED_PRIORITY = 0U, EDMA_ARBITRAT←↩

ION_ROUND_ROBIN }

eDMA channel arbitration algorithm used for selection among channels. Implements : edma_arbitration_algorithm←↩

_t_Class
• enum edma_channel_priority_t {

EDMA_CHN_PRIORITY_0 = 0U, EDMA_CHN_PRIORITY_1 = 1U, EDMA_CHN_PRIORITY_2 = 2U, EDM←↩

A_CHN_PRIORITY_3 = 3U,
EDMA_CHN_PRIORITY_4 = 4U, EDMA_CHN_PRIORITY_5 = 5U, EDMA_CHN_PRIORITY_6 = 6U, EDM←↩

A_CHN_PRIORITY_7 = 7U,
EDMA_CHN_PRIORITY_8 = 8U, EDMA_CHN_PRIORITY_9 = 9U, EDMA_CHN_PRIORITY_10 = 10U, E←↩

DMA_CHN_PRIORITY_11 = 11U,
EDMA_CHN_PRIORITY_12 = 12U, EDMA_CHN_PRIORITY_13 = 13U, EDMA_CHN_PRIORITY_14 = 14U,
EDMA_CHN_PRIORITY_15 = 15U,
EDMA_CHN_DEFAULT_PRIORITY = 255U }

eDMA channel priority setting Implements : edma_channel_priority_t_Class
• enum edma_modulo_t {

EDMA_MODULO_OFF = 0U, EDMA_MODULO_2B, EDMA_MODULO_4B, EDMA_MODULO_8B,
EDMA_MODULO_16B, EDMA_MODULO_32B, EDMA_MODULO_64B, EDMA_MODULO_128B,
EDMA_MODULO_256B, EDMA_MODULO_512B, EDMA_MODULO_1KB, EDMA_MODULO_2KB,
EDMA_MODULO_4KB, EDMA_MODULO_8KB, EDMA_MODULO_16KB, EDMA_MODULO_32KB,
EDMA_MODULO_64KB, EDMA_MODULO_128KB, EDMA_MODULO_256KB, EDMA_MODULO_512KB,
EDMA_MODULO_1MB, EDMA_MODULO_2MB, EDMA_MODULO_4MB, EDMA_MODULO_8MB,
EDMA_MODULO_16MB, EDMA_MODULO_32MB, EDMA_MODULO_64MB, EDMA_MODULO_128MB,
EDMA_MODULO_256MB, EDMA_MODULO_512MB, EDMA_MODULO_1GB, EDMA_MODULO_2GB }

eDMA modulo configuration Implements : edma_modulo_t_Class
• enum edma_transfer_size_t { EDMA_TRANSFER_SIZE_1B = 0x0U, EDMA_TRANSFER_SIZE_2B = 0x1U,

EDMA_TRANSFER_SIZE_4B = 0x2U }

eDMA transfer configuration Implements : edma_transfer_size_t_Class
• enum edma_chn_status_t { EDMA_CHN_NORMAL = 0U, EDMA_CHN_ERROR }

Channel status for eDMA channel.
• enum edma_transfer_type_t { EDMA_TRANSFER_PERIPH2MEM = 0U, EDMA_TRANSFER_MEM2PERI←↩

PH, EDMA_TRANSFER_MEM2MEM, EDMA_TRANSFER_PERIPH2PERIPH }

A type for the DMA transfer. Implements : edma_transfer_type_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 293

eDMA peripheral driver module level functions

• status_t EDMA_DRV_Init (edma_state_t ∗edmaState, const edma_user_config_t ∗userConfig, edma_chn←↩

_state_t ∗const chnStateArray[], const edma_channel_config_t ∗const chnConfigArray[], uint32_t chnCount)

Initializes the eDMA module.

• status_t EDMA_DRV_Deinit (void)

De-initializes the eDMA module.

eDMA peripheral driver channel management functions

• status_t EDMA_DRV_ChannelInit (edma_chn_state_t ∗edmaChannelState, const edma_channel_config_t
∗edmaChannelConfig)

Initializes an eDMA channel.

• status_t EDMA_DRV_ReleaseChannel (uint8_t virtualChannel)

Releases an eDMA channel.

eDMA peripheral driver transfer setup functions

• void EDMA_DRV_PushConfigToReg (uint8_t virtualChannel, const edma_transfer_config_t ∗tcd)

Copies the channel configuration to the TCD registers.

• void EDMA_DRV_PushConfigToSTCD (const edma_transfer_config_t ∗config, edma_software_tcd_t ∗stcd)

Copies the channel configuration to the software TCD structure.

• status_t EDMA_DRV_ConfigSingleBlockTransfer (uint8_t virtualChannel, edma_transfer_type_t type,
uint32_t srcAddr, uint32_t destAddr, edma_transfer_size_t transferSize, uint32_t dataBufferSize)

Configures a simple single block data transfer with DMA.

• status_t EDMA_DRV_ConfigMultiBlockTransfer (uint8_t virtualChannel, edma_transfer_type_t type, uint32←↩

_t srcAddr, uint32_t destAddr, edma_transfer_size_t transferSize, uint32_t blockSize, uint32_t blockCount,
bool disableReqOnCompletion)

Configures a multiple block data transfer with DMA.

• status_t EDMA_DRV_ConfigLoopTransfer (uint8_t virtualChannel, const edma_transfer_config_t ∗transfer←↩

Config)

Configures the DMA transfer in loop mode.

• status_t EDMA_DRV_ConfigScatterGatherTransfer (uint8_t virtualChannel, edma_software_tcd_t ∗stcd,
edma_transfer_size_t transferSize, uint32_t bytesOnEachRequest, const edma_scatter_gather_list_t ∗src←↩

List, const edma_scatter_gather_list_t ∗destList, uint8_t tcdCount)

Configures the DMA transfer in a scatter-gather mode.

• void EDMA_DRV_CancelTransfer (bool error)

Cancel the running transfer.

eDMA Peripheral driver channel operation functions

• status_t EDMA_DRV_StartChannel (uint8_t virtualChannel)

Starts an eDMA channel.

• status_t EDMA_DRV_StopChannel (uint8_t virtualChannel)

Stops the eDMA channel.

• status_t EDMA_DRV_SetChannelRequestAndTrigger (uint8_t virtualChannel, uint8_t request, bool enable←↩

Trigger)

Configures the DMA request for the eDMA channel.

• void EDMA_DRV_ClearTCD (uint8_t virtualChannel)

Clears all registers to 0 for the channel's TCD.

• void EDMA_DRV_SetSrcAddr (uint8_t virtualChannel, uint32_t address)

Configures the source address for the eDMA channel.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

294 CONTENTS

• void EDMA_DRV_SetSrcOffset (uint8_t virtualChannel, int16_t offset)

Configures the source address signed offset for the eDMA channel.

• void EDMA_DRV_SetSrcReadChunkSize (uint8_t virtualChannel, edma_transfer_size_t size)

Configures the source data chunk size (transferred in a read sequence).

• void EDMA_DRV_SetSrcLastAddrAdjustment (uint8_t virtualChannel, int32_t adjust)

Configures the source address last adjustment.

• void EDMA_DRV_SetDestAddr (uint8_t virtualChannel, uint32_t address)

Configures the destination address for the eDMA channel.

• void EDMA_DRV_SetDestOffset (uint8_t virtualChannel, int16_t offset)

Configures the destination address signed offset for the eDMA channel.

• void EDMA_DRV_SetDestWriteChunkSize (uint8_t virtualChannel, edma_transfer_size_t size)

Configures the destination data chunk size (transferred in a write sequence).

• void EDMA_DRV_SetDestLastAddrAdjustment (uint8_t virtualChannel, int32_t adjust)

Configures the destination address last adjustment.

• void EDMA_DRV_SetMinorLoopBlockSize (uint8_t virtualChannel, uint32_t nbytes)

Configures the number of bytes to be transferred in each service request of the channel.

• void EDMA_DRV_SetMajorLoopIterationCount (uint8_t virtualChannel, uint32_t majorLoopCount)

Configures the number of major loop iterations.

• uint32_t EDMA_DRV_GetRemainingMajorIterationsCount (uint8_t virtualChannel)

Returns the remaining major loop iteration count.

• void EDMA_DRV_SetScatterGatherLink (uint8_t virtualChannel, uint32_t nextTCDAddr)

Configures the memory address of the next TCD, in scatter/gather mode.

• void EDMA_DRV_DisableRequestsOnTransferComplete (uint8_t virtualChannel, bool disable)

Disables/Enables the DMA request after the major loop completes for the TCD.

• void EDMA_DRV_ConfigureInterrupt (uint8_t virtualChannel, edma_channel_interrupt_t intSrc, bool enable)

Disables/Enables the channel interrupt requests.

• void EDMA_DRV_TriggerSwRequest (uint8_t virtualChannel)

Triggers a sw request for the current channel.

eDMA Peripheral callback and interrupt functions

• status_t EDMA_DRV_InstallCallback (uint8_t virtualChannel, edma_callback_t callback, void ∗parameter)

Registers the callback function and the parameter for eDMA channel.

eDMA Peripheral driver miscellaneous functions

• edma_chn_status_t EDMA_DRV_GetChannelStatus (uint8_t virtualChannel)

Gets the eDMA channel status.

16.21.2 Data Structure Documentation

16.21.2.1 struct edma_user_config_t

The user configuration structure for the eDMA driver.

Use an instance of this structure with the EDMA_DRV_Init() function. This allows the user to configure settings of
the EDMA peripheral with a single function call. Implements : edma_user_config_t_Class

Definition at line 232 of file edma_driver.h.

Data Fields

• edma_arbitration_algorithm_t chnArbitration
• bool haltOnError

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 295

Field Documentation

16.21.2.1.1 edma_arbitration_algorithm_t chnArbitration

eDMA channel arbitration.

Definition at line 233 of file edma_driver.h.

16.21.2.1.2 bool haltOnError

Any error causes the HALT bit to set. Subsequently, all service requests are ignored until the HALT bit is cleared.

Definition at line 241 of file edma_driver.h.

16.21.2.2 struct edma_chn_state_t

Data structure for the eDMA channel state. Implements : edma_chn_state_t_Class.

Definition at line 268 of file edma_driver.h.

Data Fields

• uint8_t virtChn
• edma_callback_t callback
• void ∗ parameter
• volatile edma_chn_status_t status

Field Documentation

16.21.2.2.1 edma_callback_t callback

Callback function pointer for the eDMA channel. It will be called at the eDMA channel complete and eDMA channel
error.

Definition at line 270 of file edma_driver.h.

16.21.2.2.2 void∗ parameter

Parameter for the callback function pointer.

Definition at line 273 of file edma_driver.h.

16.21.2.2.3 volatile edma_chn_status_t status

eDMA channel status.

Definition at line 274 of file edma_driver.h.

16.21.2.2.4 uint8_t virtChn

Virtual channel number.

Definition at line 269 of file edma_driver.h.

16.21.2.3 struct edma_channel_config_t

The user configuration structure for the an eDMA driver channel.

Use an instance of this structure with the EDMA_DRV_ChannelInit() function. This allows the user to configure
settings of the EDMA channel with a single function call. Implements : edma_channel_config_t_Class

Definition at line 284 of file edma_driver.h.

Data Fields

• edma_channel_priority_t channelPriority

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

296 CONTENTS

• uint8_t virtChnConfig
• edma_callback_t callback
• void ∗ callbackParam
• bool enableTrigger

Field Documentation

16.21.2.3.1 edma_callback_t callback

Callback that will be registered for this channel

Definition at line 297 of file edma_driver.h.

16.21.2.3.2 void∗ callbackParam

Parameter passed to the channel callback

Definition at line 298 of file edma_driver.h.

16.21.2.3.3 edma_channel_priority_t channelPriority

eDMA channel priority - only used when channel arbitration mode is 'Fixed priority'.

Definition at line 291 of file edma_driver.h.

16.21.2.3.4 bool enableTrigger

Enables the periodic trigger capability for the DMA channel.

Definition at line 299 of file edma_driver.h.

16.21.2.3.5 uint8_t virtChnConfig

eDMA virtual channel number

Definition at line 293 of file edma_driver.h.

16.21.2.4 struct edma_scatter_gather_list_t

Data structure for configuring a discrete memory transfer. Implements : edma_scatter_gather_list_t_Class.

Definition at line 315 of file edma_driver.h.

Data Fields

• uint32_t address
• uint32_t length
• edma_transfer_type_t type

Field Documentation

16.21.2.4.1 uint32_t address

Address of buffer.

Definition at line 316 of file edma_driver.h.

16.21.2.4.2 uint32_t length

Length of buffer.

Definition at line 317 of file edma_driver.h.

16.21.2.4.3 edma_transfer_type_t type

Type of the DMA transfer

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 297

Definition at line 318 of file edma_driver.h.

16.21.2.5 struct edma_state_t

Runtime state structure for the eDMA driver.

This structure holds data that is used by the eDMA peripheral driver to manage multi eDMA channels. The user
passes the memory for this run-time state structure and the eDMA driver populates the members. Implements :
edma_state_t_Class

Definition at line 330 of file edma_driver.h.

Data Fields

• edma_chn_state_t ∗volatile virtChnState [(uint32_t) FEATURE_DMA_VIRTUAL_CHANNELS]

Field Documentation

16.21.2.5.1 edma_chn_state_t∗ volatile virtChnState[(uint32_t) FEATURE_DMA_VIRTUAL_CHANNELS]

Pointer array storing channel state.

Definition at line 331 of file edma_driver.h.

16.21.2.6 struct edma_loop_transfer_config_t

eDMA loop transfer configuration.

This structure configures the basic minor/major loop attributes. Implements : edma_loop_transfer_config_t_Class

Definition at line 340 of file edma_driver.h.

Data Fields

• uint32_t majorLoopIterationCount

• bool srcOffsetEnable

• bool dstOffsetEnable

• int32_t minorLoopOffset

• bool minorLoopChnLinkEnable

• uint8_t minorLoopChnLinkNumber

• bool majorLoopChnLinkEnable

• uint8_t majorLoopChnLinkNumber

Field Documentation

16.21.2.6.1 bool dstOffsetEnable

Selects whether the minor loop offset is applied to the destination address upon minor loop completion.

Definition at line 344 of file edma_driver.h.

16.21.2.6.2 bool majorLoopChnLinkEnable

Enables channel-to-channel linking on major loop complete.

Definition at line 351 of file edma_driver.h.

16.21.2.6.3 uint8_t majorLoopChnLinkNumber

The number of the next channel to be started by DMA engine when major loop completes.

Definition at line 352 of file edma_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

298 CONTENTS

16.21.2.6.4 uint32_t majorLoopIterationCount

Number of major loop iterations.

Definition at line 341 of file edma_driver.h.

16.21.2.6.5 bool minorLoopChnLinkEnable

Enables channel-to-channel linking on minor loop complete.

Definition at line 348 of file edma_driver.h.

16.21.2.6.6 uint8_t minorLoopChnLinkNumber

The number of the next channel to be started by DMA engine when minor loop completes.

Definition at line 349 of file edma_driver.h.

16.21.2.6.7 int32_t minorLoopOffset

Sign-extended offset applied to the source or destination address to form the next-state value after the minor loop
completes.

Definition at line 346 of file edma_driver.h.

16.21.2.6.8 bool srcOffsetEnable

Selects whether the minor loop offset is applied to the source address upon minor loop completion.

Definition at line 342 of file edma_driver.h.

16.21.2.7 struct edma_transfer_config_t

eDMA transfer size configuration.

This structure configures the basic source/destination transfer attribute. Implements : edma_transfer_config_t_←↩

Class

Definition at line 362 of file edma_driver.h.

Data Fields

• uint32_t srcAddr
• uint32_t destAddr
• edma_transfer_size_t srcTransferSize
• edma_transfer_size_t destTransferSize
• int16_t srcOffset
• int16_t destOffset
• int32_t srcLastAddrAdjust
• int32_t destLastAddrAdjust
• edma_modulo_t srcModulo
• edma_modulo_t destModulo
• uint32_t minorByteTransferCount
• bool scatterGatherEnable
• uint32_t scatterGatherNextDescAddr
• bool interruptEnable
• edma_loop_transfer_config_t ∗ loopTransferConfig

Field Documentation

16.21.2.7.1 uint32_t destAddr

Memory address pointing to the destination data.

Definition at line 364 of file edma_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 299

16.21.2.7.2 int32_t destLastAddrAdjust

Last destination address adjustment. Note here it is only valid when scatter/gather feature is not enabled.

Definition at line 374 of file edma_driver.h.

16.21.2.7.3 edma_modulo_t destModulo

Destination address modulo.

Definition at line 377 of file edma_driver.h.

16.21.2.7.4 int16_t destOffset

Sign-extended offset applied to the current destination address to form the next-state value as each source
read/write is completed.

Definition at line 370 of file edma_driver.h.

16.21.2.7.5 edma_transfer_size_t destTransferSize

Destination data transfer size.

Definition at line 366 of file edma_driver.h.

16.21.2.7.6 bool interruptEnable

Enable the interrupt request when the major loop count completes

Definition at line 385 of file edma_driver.h.

16.21.2.7.7 edma_loop_transfer_config_t∗ loopTransferConfig

Pointer to loop transfer configuration structure (defines minor/major loop attributes) Note: this field is only used
when minor loop mapping is enabled from DMA configuration.

Definition at line 387 of file edma_driver.h.

16.21.2.7.8 uint32_t minorByteTransferCount

Number of bytes to be transferred in each service request of the channel.

Definition at line 378 of file edma_driver.h.

16.21.2.7.9 bool scatterGatherEnable

Enable scatter gather feature.

Definition at line 380 of file edma_driver.h.

16.21.2.7.10 uint32_t scatterGatherNextDescAddr

The address of the next descriptor to be used, when scatter/gather feature is enabled. Note: this value is not used
when scatter/gather feature is disabled.

Definition at line 381 of file edma_driver.h.

16.21.2.7.11 uint32_t srcAddr

Memory address pointing to the source data.

Definition at line 363 of file edma_driver.h.

16.21.2.7.12 int32_t srcLastAddrAdjust

Last source address adjustment.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

300 CONTENTS

Definition at line 373 of file edma_driver.h.

16.21.2.7.13 edma_modulo_t srcModulo

Source address modulo.

Definition at line 376 of file edma_driver.h.

16.21.2.7.14 int16_t srcOffset

Sign-extended offset applied to the current source address to form the next-state value as each source read/write
is completed.

Definition at line 367 of file edma_driver.h.

16.21.2.7.15 edma_transfer_size_t srcTransferSize

Source data transfer size.

Definition at line 365 of file edma_driver.h.

16.21.2.8 struct edma_software_tcd_t

eDMA TCD Implements : edma_software_tcd_t_Class

Definition at line 397 of file edma_driver.h.

Data Fields

• uint32_t SADDR
• int16_t SOFF
• uint16_t ATTR
• uint32_t NBYTES
• int32_t SLAST
• uint32_t DADDR
• int16_t DOFF
• uint16_t CITER
• int32_t DLAST_SGA
• uint16_t CSR
• uint16_t BITER

Field Documentation

16.21.2.8.1 uint16_t ATTR

Definition at line 400 of file edma_driver.h.

16.21.2.8.2 uint16_t BITER

Definition at line 408 of file edma_driver.h.

16.21.2.8.3 uint16_t CITER

Definition at line 405 of file edma_driver.h.

16.21.2.8.4 uint16_t CSR

Definition at line 407 of file edma_driver.h.

16.21.2.8.5 uint32_t DADDR

Definition at line 403 of file edma_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 301

16.21.2.8.6 int32_t DLAST_SGA

Definition at line 406 of file edma_driver.h.

16.21.2.8.7 int16_t DOFF

Definition at line 404 of file edma_driver.h.

16.21.2.8.8 uint32_t NBYTES

Definition at line 401 of file edma_driver.h.

16.21.2.8.9 uint32_t SADDR

Definition at line 398 of file edma_driver.h.

16.21.2.8.10 int32_t SLAST

Definition at line 402 of file edma_driver.h.

16.21.2.8.11 int16_t SOFF

Definition at line 399 of file edma_driver.h.

16.21.3 Macro Definition Documentation

16.21.3.1 #define EDMA_ERR_LSB_MASK 1U

Macro for accessing the least significant bit of the ERR register.

The erroneous channels are retrieved from ERR register by subsequently right shifting all the ERR bits + "AND"-ing
the result with this mask.

Definition at line 65 of file edma_driver.h.

16.21.3.2 #define STCD_ADDR(address) (((uint32_t)address + 31UL) &∼0x1FUL)

Definition at line 57 of file edma_driver.h.

16.21.3.3 #define STCD_SIZE(number) (((number) ∗ 32U) - 1U)

Macro for the memory size needed for the software TCD.

Software TCD is aligned to 32 bytes. We don't need a software TCD structure for the first descriptor, since the con-
figuration is pushed directly to registers. To make sure the software TCD can meet the eDMA module requirement
regarding alignment, allocate memory for the remaining descriptors with extra 31 bytes.

Definition at line 56 of file edma_driver.h.

16.21.4 Typedef Documentation

16.21.4.1 typedef void(∗ edma_callback_t) (void ∗parameter, edma_chn_status_t status)

Definition for the eDMA channel callback function.

Prototype for the callback function registered in the eDMA driver. Implements : edma_callback_t_Class

Definition at line 263 of file edma_driver.h.

16.21.5 Enumeration Type Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

302 CONTENTS

16.21.5.1 enum edma_arbitration_algorithm_t

eDMA channel arbitration algorithm used for selection among channels. Implements : edma_arbitration_algorithm←↩

_t_Class

Enumerator

EDMA_ARBITRATION_FIXED_PRIORITY Fixed Priority

EDMA_ARBITRATION_ROUND_ROBIN Round-Robin arbitration

Definition at line 79 of file edma_driver.h.

16.21.5.2 enum edma_channel_interrupt_t

eDMA channel interrupts. Implements : edma_channel_interrupt_t_Class

Enumerator

EDMA_CHN_ERR_INT Error interrupt

EDMA_CHN_HALF_MAJOR_LOOP_INT Half major loop interrupt.

EDMA_CHN_MAJOR_LOOP_INT Complete major loop interrupt.

Definition at line 70 of file edma_driver.h.

16.21.5.3 enum edma_channel_priority_t

eDMA channel priority setting Implements : edma_channel_priority_t_Class

Enumerator

EDMA_CHN_PRIORITY_0

EDMA_CHN_PRIORITY_1

EDMA_CHN_PRIORITY_2

EDMA_CHN_PRIORITY_3

EDMA_CHN_PRIORITY_4

EDMA_CHN_PRIORITY_5

EDMA_CHN_PRIORITY_6

EDMA_CHN_PRIORITY_7

EDMA_CHN_PRIORITY_8

EDMA_CHN_PRIORITY_9

EDMA_CHN_PRIORITY_10

EDMA_CHN_PRIORITY_11

EDMA_CHN_PRIORITY_12

EDMA_CHN_PRIORITY_13

EDMA_CHN_PRIORITY_14

EDMA_CHN_PRIORITY_15

EDMA_CHN_DEFAULT_PRIORITY

Definition at line 87 of file edma_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 303

16.21.5.4 enum edma_chn_status_t

Channel status for eDMA channel.

A structure describing the eDMA channel status. The user can get the status by callback parameter or by calling
EDMA_DRV_getStatus() function. Implements : edma_chn_status_t_Class

Enumerator

EDMA_CHN_NORMAL eDMA channel normal state.

EDMA_CHN_ERROR An error occurred in the eDMA channel.

Definition at line 252 of file edma_driver.h.

16.21.5.5 enum edma_modulo_t

eDMA modulo configuration Implements : edma_modulo_t_Class

Enumerator

EDMA_MODULO_OFF

EDMA_MODULO_2B

EDMA_MODULO_4B

EDMA_MODULO_8B

EDMA_MODULO_16B

EDMA_MODULO_32B

EDMA_MODULO_64B

EDMA_MODULO_128B

EDMA_MODULO_256B

EDMA_MODULO_512B

EDMA_MODULO_1KB

EDMA_MODULO_2KB

EDMA_MODULO_4KB

EDMA_MODULO_8KB

EDMA_MODULO_16KB

EDMA_MODULO_32KB

EDMA_MODULO_64KB

EDMA_MODULO_128KB

EDMA_MODULO_256KB

EDMA_MODULO_512KB

EDMA_MODULO_1MB

EDMA_MODULO_2MB

EDMA_MODULO_4MB

EDMA_MODULO_8MB

EDMA_MODULO_16MB

EDMA_MODULO_32MB

EDMA_MODULO_64MB

EDMA_MODULO_128MB

EDMA_MODULO_256MB

EDMA_MODULO_512MB

EDMA_MODULO_1GB

EDMA_MODULO_2GB

Definition at line 159 of file edma_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

304 CONTENTS

16.21.5.6 enum edma_transfer_size_t

eDMA transfer configuration Implements : edma_transfer_size_t_Class

Enumerator

EDMA_TRANSFER_SIZE_1B

EDMA_TRANSFER_SIZE_2B

EDMA_TRANSFER_SIZE_4B

Definition at line 197 of file edma_driver.h.

16.21.5.7 enum edma_transfer_type_t

A type for the DMA transfer. Implements : edma_transfer_type_t_Class.

Enumerator

EDMA_TRANSFER_PERIPH2MEM Transfer from peripheral to memory

EDMA_TRANSFER_MEM2PERIPH Transfer from memory to peripheral

EDMA_TRANSFER_MEM2MEM Transfer from memory to memory

EDMA_TRANSFER_PERIPH2PERIPH Transfer from peripheral to peripheral

Definition at line 305 of file edma_driver.h.

16.21.6 Function Documentation

16.21.6.1 void EDMA_DRV_CancelTransfer (bool error)

Cancel the running transfer.

This function cancels the current transfer, optionally signalling an error.

Parameters

bool error If true, an error will be logged for the current transfer.

Definition at line 1487 of file edma_driver.c.

16.21.6.2 status_t EDMA_DRV_ChannelInit (edma_chn_state_t ∗ edmaChannelState, const edma_channel_config_t ∗
edmaChannelConfig)

Initializes an eDMA channel.

This function initializes the run-time state structure for a eDMA channel, based on user configuration. It will request
the channel, set up the channel priority and install the callback.

Parameters

edmaChannel←↩

State
Pointer to the eDMA channel state structure. The user passes the memory for this run-time
state structure and the eDMA peripheral driver populates the members. This run-time state
structure keeps track of the eDMA channel status. The memory must be kept valid before
calling the EDMA_DRV_ReleaseChannel.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 305

edmaChannel←↩

Config
User configuration structure for eDMA channel. The user populates the members of this
structure and passes the pointer of this structure into the function.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 287 of file edma_driver.c.

16.21.6.3 void EDMA_DRV_ClearTCD (uint8_t virtualChannel)

Clears all registers to 0 for the channel's TCD.

Parameters

virtualChannel eDMA virtual channel number.

Definition at line 1019 of file edma_driver.c.

16.21.6.4 status_t EDMA_DRV_ConfigLoopTransfer (uint8_t virtualChannel, const edma_transfer_config_t ∗
transferConfig)

Configures the DMA transfer in loop mode.

This function configures the DMA transfer in a loop chain. The user passes a block of memory into this function
that configures the loop transfer properties (minor/major loop count, address offsets, channel linking). The DMA
driver copies the configuration to TCD registers, only when the loop properties are set up correctly and minor loop
mapping is enabled for the eDMA module.

Parameters

virtualChannel eDMA virtual channel number.
transferConfig Pointer to the transfer configuration strucutre; this structure defines fields for setting up the

basic transfer and also a pointer to a memory strucure that defines the loop chain properties
(minor/major).

Returns

STATUS_ERROR or STATUS_SUCCESS

Definition at line 689 of file edma_driver.c.

16.21.6.5 status_t EDMA_DRV_ConfigMultiBlockTransfer (uint8_t virtualChannel, edma_transfer_type_t type, uint32_t
srcAddr, uint32_t destAddr, edma_transfer_size_t transferSize, uint32_t blockSize, uint32_t blockCount, bool
disableReqOnCompletion)

Configures a multiple block data transfer with DMA.

This function configures the descriptor for a multi-block transfer. The function considers contiguous memory block-
s, thus it configures the TCD source/destination offset fields to cover the data buffer without gaps, according to
"transferSize" parameter (the offset is equal to the number of bytes transferred in a source read/destination write).
The buffer is divided in multiple block, each block being transferred upon a single DMA request.

NOTE: For transfers to/from peripherals, make sure the transfer size is equal to the data buffer size of the peripheral
used, otherwise only truncated chunks of data may be transferred (e.g. for a communication IP with an 8-bit data
register the transfer size should be 1B, whereas for a 32-bit data register, the transfer size should be 4B). The
rationale of this constraint is that, on the peripheral side, the address offset is set to zero, allowing to read/write data
from/to the peripheral in a single source read/destination write operation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

306 CONTENTS

Parameters

virtualChannel eDMA virtual channel number.
type Transfer type (M->M, P->M, M->P, P->P).

srcAddr A source register address or a source memory address.
destAddr A destination register address or a destination memory address.

transferSize The number of bytes to be transferred on every DMA write/read. Source/Dest share the same
write/read size.

blockSize The total number of bytes inside a block.
blockCount The total number of data blocks (one block is transferred upon a DMA request).

disableReqOn←↩

Completion
This parameter specifies whether the DMA channel should be disabled when the transfer is
complete (further requests will remain untreated).

Returns

STATUS_ERROR or STATUS_SUCCESS

Definition at line 629 of file edma_driver.c.

16.21.6.6 status_t EDMA_DRV_ConfigScatterGatherTransfer (uint8_t virtualChannel, edma_software_tcd_t ∗ stcd,
edma_transfer_size_t transferSize, uint32_t bytesOnEachRequest, const edma_scatter_gather_list_t ∗
srcList, const edma_scatter_gather_list_t ∗ destList, uint8_t tcdCount)

Configures the DMA transfer in a scatter-gather mode.

This function configures the descriptors into a single-ended chain. The user passes blocks of memory into this
function. The interrupt is triggered only when the last memory block is completed. The memory block information
is passed with the edma_scatter_gather_list_t data structure, which can tell the memory address and length. The
DMA driver configures the descriptor for each memory block, transfers the descriptor from the first one to the last
one, and stops.

Parameters

virtualChannel eDMA virtual channel number.
stcd Array of empty software TCD structures. The user must prepare this memory block. We

don't need a software TCD structure for the first descriptor, since the configuration is pushed
directly to registers.The "stcd" buffer must align with 32 bytes; if not, an error occurs in the e←↩

DMA driver. Thus, the required memory size for "stcd" is equal to tcdCount ∗ size_of(edma←↩

_software_tcd_t) - 1; the driver will take care of the memory alignment if the provided memory
buffer is big enough. For proper allocation of the "stcd" buffer it is recommended to use ST←↩

CD_SIZE macro.
transferSize The number of bytes to be transferred on every DMA write/read.

bytesOnEach←↩

Request
Bytes to be transferred in each DMA request.

srcList Data structure storing the address, length and type of transfer (M->M, M->P, P->M, P->P)
for the bytes to be transferred for source memory blocks. If the source memory is peripheral,
the length is not used.

destList Data structure storing the address, length and type of transfer (M->M, M->P, P->M, P->P)
for the bytes to be transferred for destination memory blocks. In the memory-to-memory
transfer mode, the user must ensure that the length of the destination scatter gather list is
equal to the source scatter gather list. If the destination memory is a peripheral register, the
length is not used.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 307

tcdCount The number of TCD memory blocks contained in the scatter gather list.

Returns

STATUS_ERROR or STATUS_SUCCESS

Definition at line 759 of file edma_driver.c.

16.21.6.7 status_t EDMA_DRV_ConfigSingleBlockTransfer (uint8_t virtualChannel, edma_transfer_type_t type, uint32_t
srcAddr, uint32_t destAddr, edma_transfer_size_t transferSize, uint32_t dataBufferSize)

Configures a simple single block data transfer with DMA.

This function configures the descriptor for a single block transfer. The function considers contiguous memory block-
s, thus it configures the TCD source/destination offset fields to cover the data buffer without gaps, according to
"transferSize" parameter (the offset is equal to the number of bytes transferred in a source read/destination write).

NOTE: For memory-to-peripheral or peripheral-to-memory transfers, make sure the transfer size is equal to the
data buffer size of the peripheral used, otherwise only truncated chunks of data may be transferred (e.g. for a
communication IP with an 8-bit data register the transfer size should be 1B, whereas for a 32-bit data register, the
transfer size should be 4B). The rationale of this constraint is that, on the peripheral side, the address offset is set
to zero, allowing to read/write data from/to the peripheral in a single source read/destination write operation.

Parameters

virtualChannel eDMA virtual channel number.
type Transfer type (M->M, P->M, M->P, P->P).

srcAddr A source register address or a source memory address.
destAddr A destination register address or a destination memory address.

transferSize The number of bytes to be transferred on every DMA write/read. Source/Dest share the same
write/read size.

dataBufferSize The total number of bytes to be transferred.

Returns

STATUS_ERROR or STATUS_SUCCESS

Definition at line 509 of file edma_driver.c.

16.21.6.8 void EDMA_DRV_ConfigureInterrupt (uint8_t virtualChannel, edma_channel_interrupt_t intSrc, bool enable)

Disables/Enables the channel interrupt requests.

This function enables/disables error, half major loop and complete major loop interrupts for the current channel.

Parameters

virtualChannel eDMA virtual channel number.
interrupt Interrupt event (error/half major loop/complete major loop).

enable Enable (true)/Disable (false) interrupts for the current channel.

Definition at line 1439 of file edma_driver.c.

16.21.6.9 status_t EDMA_DRV_Deinit (void)

De-initializes the eDMA module.

This function resets the eDMA module to reset state and disables the interrupt to the core.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 239 of file edma_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

308 CONTENTS

16.21.6.10 void EDMA_DRV_DisableRequestsOnTransferComplete (uint8_t virtualChannel, bool disable)

Disables/Enables the DMA request after the major loop completes for the TCD.

If disabled, the eDMA hardware automatically clears the corresponding DMA request when the current major itera-
tion count reaches zero.

Parameters

virtualChannel eDMA virtual channel number.
disable Disable (true)/Enable (false) DMA request after TCD complete.

Definition at line 1409 of file edma_driver.c.

16.21.6.11 edma_chn_status_t EDMA_DRV_GetChannelStatus (uint8_t virtualChannel)

Gets the eDMA channel status.

Parameters

virtualChannel eDMA virtual channel number.

Returns

Channel status.

Definition at line 1711 of file edma_driver.c.

16.21.6.12 uint32_t EDMA_DRV_GetRemainingMajorIterationsCount (uint8_t virtualChannel)

Returns the remaining major loop iteration count.

Gets the number minor loops yet to be triggered (major loop iterations).

Parameters

virtualChannel eDMA virtual channel number.

Returns

number of major loop iterations yet to be triggered

Definition at line 1348 of file edma_driver.c.

16.21.6.13 status_t EDMA_DRV_Init (edma_state_t ∗ edmaState, const edma_user_config_t ∗ userConfig,
edma_chn_state_t ∗const chnStateArray[], const edma_channel_config_t ∗const chnConfigArray[],
uint32_t chnCount)

Initializes the eDMA module.

This function initializes the run-time state structure to provide the eDMA channel allocation release, protect, and
track the state for channels. This function also resets the eDMA modules, initializes the module to user-defined
settings and default settings.

Parameters

edmaState The pointer to the eDMA peripheral driver state structure. The user passes the memory for
this run-time state structure and the eDMA peripheral driver populates the members. This
run-time state structure keeps track of the eDMA channels status. The memory must be kept
valid before calling the EDMA_DRV_DeInit.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 309

userConfig User configuration structure for eDMA peripheral drivers. The user populates the members
of this structure and passes the pointer of this structure into the function.

chnStateArray Array of pointers to run-time state structures for eDMA channels; will populate the state struc-
tures inside the eDMA driver state structure.

chnConfigArray Array of pointers to channel initialization structures.
chnCount The number of eDMA channels to be initialized.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 123 of file edma_driver.c.

16.21.6.14 status_t EDMA_DRV_InstallCallback (uint8_t virtualChannel, edma_callback_t callback, void ∗ parameter)

Registers the callback function and the parameter for eDMA channel.

This function registers the callback function and the parameter into the eDMA channel state structure. The callback
function is called when the channel is complete or a channel error occurs. The eDMA driver passes the channel
status to this callback function to indicate whether it is caused by the channel complete event or the channel error
event.

To un-register the callback function, set the callback function to "NULL" and call this function.

Parameters

virtualChannel eDMA virtual channel number.
callback The pointer to the callback function.

parameter The pointer to the callback function's parameter.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 365 of file edma_driver.c.

16.21.6.15 void EDMA_DRV_PushConfigToReg (uint8_t virtualChannel, const edma_transfer_config_t ∗ tcd)

Copies the channel configuration to the TCD registers.

Parameters

virtualChannel eDMA virtual channel number.
tcd Pointer to the channel configuration structure.

Definition at line 1589 of file edma_driver.c.

16.21.6.16 void EDMA_DRV_PushConfigToSTCD (const edma_transfer_config_t ∗ config, edma_software_tcd_t ∗
stcd)

Copies the channel configuration to the software TCD structure.

This function copies the properties from the channel configuration to the software TCD structure; the address of the
software TCD can be used to enable scatter/gather operation (pointer to the next TCD).

Parameters

config Pointer to the channel configuration structure.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

310 CONTENTS

stcd Pointer to the software TCD structure.

Definition at line 1545 of file edma_driver.c.

16.21.6.17 status_t EDMA_DRV_ReleaseChannel (uint8_t virtualChannel)

Releases an eDMA channel.

This function stops the eDMA channel and disables the interrupt of this channel. The channel state structure can
be released after this function is called.

Parameters

virtualChannel eDMA virtual channel number.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 391 of file edma_driver.c.

16.21.6.18 status_t EDMA_DRV_SetChannelRequestAndTrigger (uint8_t virtualChannel, uint8_t request, bool enableTrigger)

Configures the DMA request for the eDMA channel.

Selects which DMA source is routed to a DMA channel. The DMA sources are defined in the file <MCU>_←↩

Features.h Configures the periodic trigger capability for the triggered DMA channel.

Parameters

virtualChannel eDMA virtual channel number.
request DMA request source.

enableTrigger DMA channel periodic trigger.

Returns

STATUS_SUCCESS or STATUS_UNSUPPORTED.

Definition at line 970 of file edma_driver.c.

16.21.6.19 void EDMA_DRV_SetDestAddr (uint8_t virtualChannel, uint32_t address)

Configures the destination address for the eDMA channel.

Parameters

virtualChannel eDMA virtual channel number.
address The pointer to the destination memory address.

Definition at line 1198 of file edma_driver.c.

16.21.6.20 void EDMA_DRV_SetDestLastAddrAdjustment (uint8_t virtualChannel, int32_t adjust)

Configures the destination address last adjustment.

Adjustment value added to the destination address at the completion of the major iteration count. This value can
be applied to restore the destination address to the initial value, or adjust the address to reference the next data
structure.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 311

virtualChannel eDMA virtual channel number.
adjust Adjustment value.

Definition at line 1168 of file edma_driver.c.

16.21.6.21 void EDMA_DRV_SetDestOffset (uint8_t virtualChannel, int16_t offset)

Configures the destination address signed offset for the eDMA channel.

Sign-extended offset applied to the current destination address to form the next-state value as each destination
write is complete.

Parameters

virtualChannel eDMA virtual channel number.
offset signed-offset

Definition at line 1228 of file edma_driver.c.

16.21.6.22 void EDMA_DRV_SetDestWriteChunkSize (uint8_t virtualChannel, edma_transfer_size_t size)

Configures the destination data chunk size (transferred in a write sequence).

Destination data write transfer size (1/2/4/16/32 bytes).

Parameters

virtualChannel eDMA virtual channel number.
size Destination transfer size.

Definition at line 1258 of file edma_driver.c.

16.21.6.23 void EDMA_DRV_SetMajorLoopIterationCount (uint8_t virtualChannel, uint32_t majorLoopCount)

Configures the number of major loop iterations.

Sets the number of major loop iterations; each major loop iteration will be served upon a request for the current
channel, transferring the data block configured for the minor loop (NBYTES).

Parameters

virtualChannel eDMA virtual channel number.
majorLoopCount Number of major loop iterations.

Definition at line 1318 of file edma_driver.c.

16.21.6.24 void EDMA_DRV_SetMinorLoopBlockSize (uint8_t virtualChannel, uint32_t nbytes)

Configures the number of bytes to be transferred in each service request of the channel.

Sets the number of bytes to be transferred each time a request is received (one major loop iteration). This number
needs to be a multiple of the source/destination transfer size, as the data block will be transferred within multiple
read/write sequences (minor loops).

Parameters

virtualChannel eDMA virtual channel number.
nbytes Number of bytes to be transferred in each service request of the channel

Definition at line 1288 of file edma_driver.c.

16.21.6.25 void EDMA_DRV_SetScatterGatherLink (uint8_t virtualChannel, uint32_t nextTCDAddr)

Configures the memory address of the next TCD, in scatter/gather mode.

This function configures the address of the next TCD to be loaded form memory, when scatter/gather feature is
enabled. This address points to the beginning of a 0-modulo-32 byte region containing the next transfer TCD to be

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

312 CONTENTS

loaded into this channel. The channel reload is performed as the major iteration count completes. The scatter/gather
address must be 0-modulo-32-byte. Otherwise, a configuration error is reported.

Parameters

virtualChannel eDMA virtual channel number.
nextTCDAddr The address of the next TCD to be linked to this TCD.

Definition at line 1379 of file edma_driver.c.

16.21.6.26 void EDMA_DRV_SetSrcAddr (uint8_t virtualChannel, uint32_t address)

Configures the source address for the eDMA channel.

Parameters

virtualChannel eDMA virtual channel number.
address The pointer to the source memory address.

Definition at line 1048 of file edma_driver.c.

16.21.6.27 void EDMA_DRV_SetSrcLastAddrAdjustment (uint8_t virtualChannel, int32_t adjust)

Configures the source address last adjustment.

Adjustment value added to the source address at the completion of the major iteration count. This value can be
applied to restore the source address to the initial value, or adjust the address to reference the next data structure.

Parameters

virtualChannel eDMA virtual channel number.
adjust Adjustment value.

Definition at line 1138 of file edma_driver.c.

16.21.6.28 void EDMA_DRV_SetSrcOffset (uint8_t virtualChannel, int16_t offset)

Configures the source address signed offset for the eDMA channel.

Sign-extended offset applied to the current source address to form the next-state value as each source read is
complete.

Parameters

virtualChannel eDMA virtual channel number.
offset Signed-offset for source address.

Definition at line 1078 of file edma_driver.c.

16.21.6.29 void EDMA_DRV_SetSrcReadChunkSize (uint8_t virtualChannel, edma_transfer_size_t size)

Configures the source data chunk size (transferred in a read sequence).

Source data read transfer size (1/2/4/16/32 bytes).

Parameters

virtualChannel eDMA virtual channel number.
size Source transfer size.

Definition at line 1108 of file edma_driver.c.

16.21.6.30 status_t EDMA_DRV_StartChannel (uint8_t virtualChannel)

Starts an eDMA channel.

This function enables the eDMA channel DMA request.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.21 EDMA Driver 313

Parameters

virtualChannel eDMA virtual channel number.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 907 of file edma_driver.c.

16.21.6.31 status_t EDMA_DRV_StopChannel (uint8_t virtualChannel)

Stops the eDMA channel.

This function disables the eDMA channel DMA request.

Parameters

virtualChannel eDMA virtual channel number.

Returns

STATUS_ERROR or STATUS_SUCCESS.

Definition at line 938 of file edma_driver.c.

16.21.6.32 void EDMA_DRV_TriggerSwRequest (uint8_t virtualChannel)

Triggers a sw request for the current channel.

This function starts a transfer using the current channel (sw request).

Parameters

virtualChannel eDMA virtual channel number.

Definition at line 1516 of file edma_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

314 CONTENTS

16.22 EIM Driver

16.22.1 Detailed Description

Error Injection Module Peripheral Driver.
EIM PD provides a set of high-level APIs/services to configure the Error Injection Module (EIM) module.

Important Note:

1. Make sure that STACK memory is located in RAM different than where EIM will inject a non-correctable error.

2. For single bit error generation, flip only one bit out of DATA_MASK or CHKBIT_MASK bit-fields in EIM control
registers.

3. For Double bit error generation, flip only two bits out of DATA_MASK or CHKBIT_MASK bit-fields in EIM
control registers.

4. If more than 2 bits are flipped that there is no guarantee in design that what type of error get generated.

5. When generating double bit error or more than 2 bits error:

• S32K11x: After injecting the error, the program jumps to HardFault_Handler(). User needs to cancel
the HardFault_Handler() by disabling the EIM module inside the HardFault_Handler() function. Example
shown below: HardFault_Handler() { EIM_DRV_Deinit(INST_EIM1); }

• S32Rx7x An uncorrectable ECC error occurs on an access generated by the DMA only. If a CPU access
to the TCD causes an uncorrectable ECC error, that access will receive a bus error response.

6. When using double bit error generation on S32K11x, user needs to define one region called ram_low then
move the stack and m_interrupts to that region, otherwise the module can't be enabled because the RAM
ECC mechanism can only correct one single error.

Basic Operations of EIM

1. To initialize EIM, call EIM_DRV_Init() with an user channel configuration array. In the following code, EIM is
initialized with default settings (after reset) for check-bit mask and data mask and both channels is enabled.

1.1 With instance S32K14x
#define INST_EIM1 (0U)

#define EIM_CHANNEL_COUNT0 (2U)
/* Configuration structure array */
eim_user_channel_config_t userChannelConfigArr[] =
{

/* Configuration channel 0 */
{

.channel = 0x0U,

.checkBitMask = 0x00U,

.dataMask = 0x00U,

.enable = true
},
/* Configuration channel 1 */
{

.channel = 0x1U,

.checkBitMask = 0x00U,

.dataMask = 0x00U,

.enable = true
}

};
1.2 With instance S32K11x

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.22 EIM Driver 315

#define INST_EIM1 (0U)

#define EIM_CHANNEL_COUNT0 (1U)
/* Configuration structure array */
eim_user_channel_config_t userChannelConfigArr[] =
{

/* Configuration channel 0 */
{

.channel = 0x0U,

.checkBitMask = 0x01U,

.dataMask = 0x00U,

.enable = true
},

};
1.3 With instance S32Rx7x

#define INST_EIM1 (0U)

#define EIM_CHANNEL_COUNT0 (1U)
/* Configuration structure array */
eim_user_channel_config_t userChannelConfigArr[] =
{

/* Configuration channel 0 */
{

.channel = 0x0U,

.checkBitMask = 0x01U,

.dataMask = 0x00U,

.dataMask1= 0x00U,

.enable = true
},

};
/* Initialize the EIM instance 0 with configured channel number of 2 and userChannelConfigArr */
EIM_DRV_Init(INST_EIM1, EIM_CHANNEL_COUNT0 , userChannelConfigArr);

2. To get the default configuration (data mask, check-bit mask and enable status) of a channel in EIM, just call
EIM_DRV_GetDefaultConfig(). Make sure that the operation is not execute in target RAM where EIM inject
the error

eim_user_channel_config_t channelConfig;

/* Get default configuration of EIM channel 1*/
EIM_DRV_GetDefaultConfig(1U, &channelConfig);

3. To de-initialize EIM, just call the EIM_DRV_Deinit() function. This function sets all registers to reset values
and disables EIM.

/* De-initializes the EIM module */
EIM_DRV_Deinit(INST_EIM1);

Data Structures

• struct eim_user_channel_config_t

EIM channel configuration structure. More...

Macros

• #define EIM_CHECKBITMASK_DEFAULT (0x01U)

The value default of EIM check-bit mask.

• #define EIM_DATAMASK_DEFAULT (0x00U)

The value default of EIM data mask.

EIM Driver API

• void EIM_DRV_Init (uint32_t instance, uint8_t channelCnt, const eim_user_channel_config_t ∗channel←↩

ConfigArr)

Initializes the EIM module.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

316 CONTENTS

• void EIM_DRV_Deinit (uint32_t instance)

De-initializes the EIM module.
• void EIM_DRV_ConfigChannel (uint32_t instance, const eim_user_channel_config_t ∗userChannelConfig)

Configures the EIM channel.
• void EIM_DRV_GetChannelConfig (uint32_t instance, uint8_t channel, eim_user_channel_config_←↩

t ∗channelConfig)

Gets the EIM channel configuration.
• void EIM_DRV_GetDefaultConfig (uint8_t channel, eim_user_channel_config_t ∗channelConfig)

Gets the EIM channel configuration default.

16.22.2 Data Structure Documentation

16.22.2.1 struct eim_user_channel_config_t

EIM channel configuration structure.

This structure holds the configuration settings for the EIM channel Implements : eim_user_channel_config_t_Class

Definition at line 55 of file eim_driver.h.

Data Fields

• uint8_t channel
• uint8_t checkBitMask
• uint32_t dataMask
• bool enable

Field Documentation

16.22.2.1.1 uint8_t channel

EIM channel number

Definition at line 57 of file eim_driver.h.

16.22.2.1.2 uint8_t checkBitMask

Specifies whether the corresponding bit of the check-bit bus from the target RAM should be inverted or remain
unmodified

Definition at line 58 of file eim_driver.h.

16.22.2.1.3 uint32_t dataMask

Specifies whether the corresponding bit of the read data bus from the target RAM should be inverted or remain
unmodified

Definition at line 60 of file eim_driver.h.

16.22.2.1.4 bool enable

true : EIM channel operation is enabled false : EIM channel operation is disabled

Definition at line 66 of file eim_driver.h.

16.22.3 Macro Definition Documentation

16.22.3.1 #define EIM_CHECKBITMASK_DEFAULT (0x01U)

The value default of EIM check-bit mask.

Definition at line 45 of file eim_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.22 EIM Driver 317

16.22.3.2 #define EIM_DATAMASK_DEFAULT (0x00U)

The value default of EIM data mask.

Definition at line 47 of file eim_driver.h.

16.22.4 Function Documentation

16.22.4.1 void EIM_DRV_ConfigChannel (uint32_t instance, const eim_user_channel_config_t ∗ userChannelConfig)

Configures the EIM channel.

This function configures check-bit mask, data mask and operation status(enable/disable) for EIM channel. The EIM
channel configuration structure shall be passed as arguments.

This is an example demonstrating how to define a EIM channel configuration structure:

1 eim_user_channel_config_t eimTestInit = {
2 .channel = 0x1U,
3 .checkBitMask = 0x25U,
4 .dataMask = 0x11101100U,
5 .enable = true
6 };

Parameters

in instance EIM module instance number
in userChannel←↩

Config
Pointer to EIM channel configuration structure

Definition at line 115 of file eim_driver.c.

16.22.4.2 void EIM_DRV_Deinit (uint32_t instance)

De-initializes the EIM module.

This function sets all registers to reset value and disables EIM module. In order to use the EIM module again,
EIM_DRV_Init must be called.

Parameters

in instance EIM module instance number

Definition at line 92 of file eim_driver.c.

16.22.4.3 void EIM_DRV_GetChannelConfig (uint32_t instance, uint8_t channel, eim_user_channel_config_t ∗
channelConfig)

Gets the EIM channel configuration.

This function gets check bit mask, data mask and operation status of EIM channel.

Parameters

in instance EIM module instance number
in channel EIM channel number
out channelConfig Pointer to EIM channel configuration structure

Definition at line 145 of file eim_driver.c.

16.22.4.4 void EIM_DRV_GetDefaultConfig (uint8_t channel, eim_user_channel_config_t ∗ channelConfig)

Gets the EIM channel configuration default.

This function gets check bit mask, data mask and operation status default of EIM channel.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

318 CONTENTS

Parameters

in channel EIM channel number
out channelConfig Pointer to EIM channel configuration structure default

Definition at line 176 of file eim_driver.c.

16.22.4.5 void EIM_DRV_Init (uint32_t instance, uint8_t channelCnt, const eim_user_channel_config_t ∗
channelConfigArr)

Initializes the EIM module.

This function configures for EIM channels. The EIM channel configuration structure array and number of configured
channels shall be passed as arguments. This function should be called before calling any other EIM driver function.

This is an example demonstrating how to define a EIM channel configuration structure array:

1 eim_user_channel_config_t channelConfigArr[] =
2 {
3 {
4 .channel = 0x0U,
5 .checkBitMask = 0x12U,
6 .dataMask = 0x01234567U,
7 .enable = true
8 },
9 {
10 .channel = 0x1U,
11 .checkBitMask = 0x22U,
12 .dataMask = 0x01234444U,
13 .enable = false
14 }
15 };

Parameters

in instance EIM module instance number.
in channelCnt Number of configured channels
in channelConfig←↩

Arr
EIM channel configuration structure array

Definition at line 62 of file eim_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.23 ERM Driver 319

16.23 ERM Driver

16.23.1 Detailed Description

Error Reporting Module Peripheral Driver.

This section describes the programming interface of the ERM driver.

16.23.2 ERM Driver Initialization

In order to be able to use the error reporting in your application, the first thing to do is initializing it with user
configuration input. This is done by calling the ERM_DRV_Init function. Note that: channelCnt takes values
between 1 and the maximum channel count supported by the hardware.

16.23.3 ERM Driver Operation

After ERM initialization, the ERM_DRV_SetInterruptConfig() shall be used to set interrupt notification based on
interrupt notification configuration.
The ERM_DRV_GetInterruptConfig() shall be used to get the current interrupt configuration of the available events
(which interrupts are enabled/disabled).

The ERM_DRV_GetErrorDetail() shall be used to get the address of the last ECC event in Memory n and ECC
event.

The ERM_DRV_ClearEvent() shall be used to clear both the record of an event and the corresponding interrupt
notification.

This is example code to configure the ERM driver:

/* Device instance number */
#define INST_ERM1 (0U)

/* 1.1 With instance for S32K14x: */
/* The number of configured channel(s) */
#define ERM_NUM_OF_CFG_CHANNEL (2U)

/* Interrupt configuration 0 */
const erm_interrupt_config_t erm1_Interrupt0 =
{

.enableSingleCorrection = false,

.enableNonCorrectable = true
};

/* Interrupt configuration 1 */
const erm_interrupt_config_t erm1_Interrupt1 =
{

.enableSingleCorrection = true,

.enableNonCorrectable = true
};

/* User configuration */
const erm_user_config_t erm1_InitConfig[] =
{

/* Channel 0U */
{

.channel = 0U,

.interruptCfg = &erm1_Interrupt0
},

/* Channel 1U */
{

.channel = 1U,

.interruptCfg = &erm1_Interrupt1
}

};

/* 1.2 With instance for S32K11x: */
/* The number of configured channel(s) */
#define ERM_NUM_OF_CFG_CHANNEL (1U)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

320 CONTENTS

/* Interrupt configuration 0 */
const erm_interrupt_config_t erm1_Interrupt0 =
{

.enableSingleCorrection = false,

.enableNonCorrectable = true
};

/* User configuration */
const erm_user_config_t erm1_InitConfig[] =
{

/* Channel 0U */
{

.channel = 0U,

.interruptCfg = &erm1_Interrupt0
}

};

int main()
{

/* Initializes the ERM module */
ERM_DRV_Init(INST_ERM1, ERM_NUM_OF_CFG_CHANNEL, erm1_InitConfig);
...
/* De-Initializes the ERM module */
ERM_DRV_Deinit(INST_ERM1);
...
return 0;

}

/* Interrupt handler */
/* Interrupt handler for single bit */
void ERM_single_fault_IRQHandler()
{

/* Clears the event for channel 1 */
ERM_DRV_ClearEvent(INST_ERM1, 1U, ERM_EVENT_SINGLE_BIT);
...

}

/* Interrupt handler for non correctable */
void ERM_double_fault_IRQHandler()
{

/* Clears the event for channel 0 */
ERM_DRV_ClearEvent(INST_ERM1, 0U,

ERM_EVENT_NON_CORRECTABLE);
/* Clears the event for channel 1 */
ERM_DRV_ClearEvent(INST_ERM1, 1U,

ERM_EVENT_NON_CORRECTABLE);
...

}

Data Structures

• struct erm_interrupt_config_t

ERM interrupt notification configuration structure Implements : erm_interrupt_config_t_Class. More...

• struct erm_user_config_t

ERM user configuration structure Implements : erm_user_config_t_Class. More...

Enumerations

• enum erm_ecc_event_t { ERM_EVENT_NONE = 0U, ERM_EVENT_SINGLE_BIT = 1U, ERM_EVENT_N←↩

ON_CORRECTABLE = 2U }

ERM types of ECC events Implements : erm_ecc_event_t_Class.

ERM DRIVER API

• void ERM_DRV_Init (uint32_t instance, uint8_t channelCnt, const erm_user_config_t ∗userConfigArr)

Initializes the ERM module.

• void ERM_DRV_Deinit (uint32_t instance)

Sets the default configuration.

• void ERM_DRV_SetInterruptConfig (uint32_t instance, uint8_t channel, erm_interrupt_config_t interruptCfg)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.23 ERM Driver 321

Sets interrupt notification.

• void ERM_DRV_GetInterruptConfig (uint32_t instance, uint8_t channel, erm_interrupt_config_t ∗const
interruptPtr)

Gets interrupt notification.

• void ERM_DRV_ClearEvent (uint32_t instance, uint8_t channel, erm_ecc_event_t eccEvent)

Clears error event and the corresponding interrupt notification.

• erm_ecc_event_t ERM_DRV_GetErrorDetail (uint32_t instance, uint8_t channel, uint32_t ∗addressPtr)

Gets the address of the last ECC event in Memory n and ECC event.

16.23.4 Data Structure Documentation

16.23.4.1 struct erm_interrupt_config_t

ERM interrupt notification configuration structure Implements : erm_interrupt_config_t_Class.

Definition at line 53 of file erm_driver.h.

Data Fields

• bool enableSingleCorrection

• bool enableNonCorrectable

Field Documentation

16.23.4.1.1 bool enableNonCorrectable

Enable Non-Correctable Interrupt Notification

Definition at line 56 of file erm_driver.h.

16.23.4.1.2 bool enableSingleCorrection

Enable Single Correction Interrupt Notification

Definition at line 55 of file erm_driver.h.

16.23.4.2 struct erm_user_config_t

ERM user configuration structure Implements : erm_user_config_t_Class.

Definition at line 63 of file erm_driver.h.

Data Fields

• uint8_t channel

• const erm_interrupt_config_t ∗ interruptCfg

Field Documentation

16.23.4.2.1 uint8_t channel

The channel assignments

Definition at line 65 of file erm_driver.h.

16.23.4.2.2 const erm_interrupt_config_t∗ interruptCfg

Interrupt configuration

Definition at line 66 of file erm_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

322 CONTENTS

16.23.5 Enumeration Type Documentation

16.23.5.1 enum erm_ecc_event_t

ERM types of ECC events Implements : erm_ecc_event_t_Class.

Enumerator

ERM_EVENT_NONE None events

ERM_EVENT_SINGLE_BIT Single-bit correction ECC events

ERM_EVENT_NON_CORRECTABLE Non-correctable ECC events

Definition at line 42 of file erm_driver.h.

16.23.6 Function Documentation

16.23.6.1 void ERM_DRV_ClearEvent (uint32_t instance, uint8_t channel, erm_ecc_event_t eccEvent)

Clears error event and the corresponding interrupt notification.

This function clears the record of an event. If the corresponding interrupt is enabled, the interrupt notification will be
cleared

Parameters

in instance The ERM instance number
in channel The configured memory channel
in eccEvent The types of ECC events

Definition at line 142 of file erm_driver.c.

16.23.6.2 void ERM_DRV_Deinit (uint32_t instance)

Sets the default configuration.

This function sets the default configuration

Parameters

in instance The ERM instance number

Definition at line 82 of file erm_driver.c.

16.23.6.3 erm_ecc_event_t ERM_DRV_GetErrorDetail (uint32_t instance, uint8_t channel, uint32_t ∗ addressPtr)

Gets the address of the last ECC event in Memory n and ECC event.

This function gets the address of the last ECC event in Memory n and the types of the event

Parameters

in instance The ERM instance number
in channel The examined memory channel
out addressPtr The pointer to address of the last ECC event in Memory n with ECC event

Returns

The last occurred ECC event

Definition at line 174 of file erm_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.23 ERM Driver 323

16.23.6.4 void ERM_DRV_GetInterruptConfig (uint32_t instance, uint8_t channel, erm_interrupt_config_t ∗const
interruptPtr)

Gets interrupt notification.

This function gets the current interrupt configuration of the available events (which interrupts are enabled/disabled)

Parameters

in instance The ERM instance number
in channel The examined memory channel
out interruptPtr The pointer to the ERM interrupt configuration structure

Definition at line 120 of file erm_driver.c.

16.23.6.5 void ERM_DRV_Init (uint32_t instance, uint8_t channelCnt, const erm_user_config_t ∗ userConfigArr)

Initializes the ERM module.

This function initializes ERM driver based on user configuration input, channelCnt takes values between 1 and the
maximum channel count supported by the hardware

Parameters

in instance The ERM instance number
in channelCnt The number of channels
in userConfigArr The pointer to the array of ERM user configure structure

Definition at line 54 of file erm_driver.c.

16.23.6.6 void ERM_DRV_SetInterruptConfig (uint32_t instance, uint8_t channel, erm_interrupt_config_t interruptCfg)

Sets interrupt notification.

This function sets interrupt notification based on interrupt notification configuration input

Parameters

in instance The ERM instance number
in channel The configured memory channel
in interruptCfg The ERM interrupt configuration structure

Definition at line 99 of file erm_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

324 CONTENTS

16.24 EWM Driver

16.24.1 Detailed Description

External Watchdog Monitor Peripheral Driver.

Hardware background

Features:

• Independent LPO clock source

• Programmable time-out period specified in terms of number of EWM LPO clock cycles.

• Windowed refresh option

– Provides robust check that program flow is faster than expected.

– Programmable window.

– Refresh outside window leads to assertion of EWM_out.

• Robust refresh mechanism

– Write values of 0xB4 and 0x2C to EWM Refresh Register within 15 (EWM_service_time) peripheral
bus clock cycles.

• One output port, EWM_out, when asserted is used to reset or place the external circuit into safe mode

• One Input port, EWM_in, allows an external circuit to control the EWM_out signal.

The EWM can be initialized only once as all the configuration registers are write once per reset

Integration guideline

Compilation units

The following files need to be compiled in the project:

* ${S32SDK_PATH}\platform\drivers\src\ewm\ewm_driver.c

*

Include path

The following paths need to be added to the include path of the toolchain:

* ${S32SDK_PATH}\platform\drivers\inc\

*

Compile symbols

No special symbols are required for this component

Dependencies

No special dependencies are required for this component

Clocking and pin configuration

The EWM Driver does not handle clock setup (from PCC) or any kind of pin configuration (done by PORT module).
This is handled by the Clock Manager and PORT module, respectively. The driver assumes that correct clock
configurations have been made, so it is the user's responsibility to set up clocking and pin configurations correctly.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.24 EWM Driver 325

Interrupts

The EWM module can generate interrupts, if enabled on EWM_DRV_Init() but they are not handled by the driver.
The EWM shares the interrupt vector with the Watchdog Timer. The following code snippet is an example of how
enable the interrupt and assign a handler:

/* EWM and watchdog interrupt service routine */
void EWM_Watchdog_ISR()
{

/* Do something(e.g perform a clean reset) */
...

}
int main()
{

/* Init clocks, pins, other modules */
...
/* Install interrupt handler for EWM and Watchdog */
INT_SYS_InstallHandler(WDOG_EWM_IRQn, &EWM_Watchdog_ISR, (
isr_t *)0);
/* Enable the interrupt */
INT_SYS_EnableIRQ(WDOG_EWM_IRQn);

/* Init EWM */
...
/* Infinite loop*/
while(1)
{

/* Do something until the counter needs to be refreshed */
...
/* Refresh the counter */
EWM_DRV_Refresh(EWM_INSTANCE);

}
}

Using the EWM driver in your application

/* Declare the EWM instance you want to use */
#define EWM_INSTANCE 0UL

int main()
{

/* Declare the EWM configuration structure */
ewm_init_config_t ewmConfig;
/* Variable where to store the init status */
status_t ewmStatus;
/* Init clocks, pins, other modules */
...

/* Get the default configuration values */
EWM_DRV_GetDefaultConfig(&ewmConfig);
/* Init the module instance */
ewmStatus = EWM_DRV_Init(EWM_INSTANCE, &ewmConfig);

/* Infinite loop*/
while(1)
{

/* Do something until the counter needs to be refreshed */
...
/* Refresh the counter */
EWM_DRV_Refresh(EWM_INSTANCE);

}
}

Data Structures

• struct ewm_init_config_t

EWM configuration structure This structure is used to configure the EWM prescaler, window, interrupt and input pin.
More...

Enumerations

• enum ewm_in_assert_logic_t { EWM_IN_ASSERT_DISABLED = 0x00U, EWM_IN_ASSERT_ON_LOGIC←↩

_ZERO = 0x01U, EWM_IN_ASSERT_ON_LOGIC_ONE = 0x02U }

EWM input pin configuration Configures if the input pin is enabled and when is asserted Implements : ewm_in_←↩

assert_logic_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

326 CONTENTS

EWM Driver API

• status_t EWM_DRV_Init (uint32_t instance, const ewm_init_config_t ∗config)

Init EWM. This method initializes EWM instance to the configuration from the passed structure. The user must make
sure that the clock is enabled. This is the only method needed to be called to start the module.

• void EWM_DRV_GetDefaultConfig (ewm_init_config_t ∗config)

Init configuration structure to default values.

• void EWM_DRV_Refresh (uint32_t instance)

Refresh EWM. This method needs to be called within the window period specified by the Compare Low and Compare
High registers.

• ewm_in_assert_logic_t EWM_DRV_GetInputPinAssertLogic (uint32_t instance)

Get the Input pin assert logic.

16.24.2 Data Structure Documentation

16.24.2.1 struct ewm_init_config_t

EWM configuration structure This structure is used to configure the EWM prescaler, window, interrupt and input pin.

Implements : ewm_init_config_t_Class

Definition at line 54 of file ewm_driver.h.

Data Fields

• ewm_in_assert_logic_t assertLogic
• bool interruptEnable
• uint8_t prescaler
• uint8_t compareLow
• uint8_t compareHigh

Field Documentation

16.24.2.1.1 ewm_in_assert_logic_t assertLogic

Assert logic for EWM input pin

Definition at line 56 of file ewm_driver.h.

16.24.2.1.2 uint8_t compareHigh

Compare high value

Definition at line 60 of file ewm_driver.h.

16.24.2.1.3 uint8_t compareLow

Compare low value

Definition at line 59 of file ewm_driver.h.

16.24.2.1.4 bool interruptEnable

Enable EWM interrupt

Definition at line 57 of file ewm_driver.h.

16.24.2.1.5 uint8_t prescaler

EWM clock prescaler

Definition at line 58 of file ewm_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.24 EWM Driver 327

16.24.3 Enumeration Type Documentation

16.24.3.1 enum ewm_in_assert_logic_t

EWM input pin configuration Configures if the input pin is enabled and when is asserted Implements : ewm_in_←↩

assert_logic_t_Class.

Enumerator

EWM_IN_ASSERT_DISABLED Input pin disabled

EWM_IN_ASSERT_ON_LOGIC_ZERO Input pin asserts EWM when on logic 0

EWM_IN_ASSERT_ON_LOGIC_ONE Input pin asserts EWM when on logic 1

Definition at line 40 of file ewm_driver.h.

16.24.4 Function Documentation

16.24.4.1 void EWM_DRV_GetDefaultConfig (ewm_init_config_t ∗ config)

Init configuration structure to default values.

Parameters

out config Pointer to the configuration structure to initialize

Returns

None

Definition at line 128 of file ewm_driver.c.

16.24.4.2 ewm_in_assert_logic_t EWM_DRV_GetInputPinAssertLogic (uint32_t instance)

Get the Input pin assert logic.

Parameters

in instance EWM instance number

Returns

The input pin assert logic:

• EWM_IN_ASSERT_DISABLED - EWM in disabled

• EWM_IN_ASSERT_ON_LOGIC_ZERO - EWM is asserted when EWM_in is logic 0

• EWM_IN_ASSERT_ON_LOGIC_ONE - EWM is asserted when EWM_in is logic 1

Definition at line 172 of file ewm_driver.c.

16.24.4.3 status_t EWM_DRV_Init (uint32_t instance, const ewm_init_config_t ∗ config)

Init EWM. This method initializes EWM instance to the configuration from the passed structure. The user must make
sure that the clock is enabled. This is the only method needed to be called to start the module.

Example configuration structure:

1 ewm_init_config_t ewmUserCfg = {
2 .assertLogic = EWM_IN_ASSERT_ON_LOGIC_ZERO,
3 .interruptEnable = true,
4 .prescaler = 128,
5 .compareLow = 0,
6 .compareHigh = 254
7 };

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

328 CONTENTS

This configuration will enable the peripheral, with input pin configured to assert on logic low, interrupt enabled,
prescaler 128 and maximum refresh window.

The EWM can be initialized only once per CPU reset as the registers are write once.

Parameters

in instance EWM instance number
in config Pointer to the module configuration structure.

Returns

status_t Will return the status of the operation:

• STATUS_SUCCESS if the operation is successful

• STATUS_ERROR if the windows values are not correct or if the instance is already enabled

Definition at line 60 of file ewm_driver.c.

16.24.4.4 void EWM_DRV_Refresh (uint32_t instance)

Refresh EWM. This method needs to be called within the window period specified by the Compare Low and Com-
pare High registers.

Parameters

in instance EWM instance number

Returns

None

Definition at line 150 of file ewm_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.25 Enhanced Direct Memory Access (eDMA) 329

16.25 Enhanced Direct Memory Access (eDMA)

16.25.1 Detailed Description

The S32 SDK provides Peripheral Driver for the Enhanced Direct Memory Access (eDMA) module.
The direct memory access engine features are used for performing complex data transfers with minimal interven-
tion from the host processor. These sections describe the S32 SDK software modules API that can be used for
initializing, configuring and triggering eDMA transfers.

Modules

• EDMA Driver

This module covers the functionality of the Enhanced Direct Memory Access (eDMA) peripheral driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

330 CONTENTS

16.26 Error Injection Module (EIM)

16.26.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the Error Injection Module (EIM) of S32 MCU.

The Error Injection Module (EIM) is mainly used for diagnostic purposes. It provides a method for diagnostic cover-
age of the peripheral memories and offers support for inducing single-bit and multi-bit inversions on read data when
accessing peripheral RAMs.

Injecting faults on memory accesses can be used to exercise the SEC-DED ECC function of the related system.
Each EIM channel n corresponds to a source of potential memory error events.

The following table shows the channel assignments of the module:

EIM
channel n

S32K14x S32←↩

K14xW
S32K11x S32Rx7x MP←↩

C5746R
MP←↩

C5777C
S32V23x

0 SRAM_L SRAM_L SRAM_U DMA TCD
RAM

DMA TCD
RAM

PRAMC←↩

_0
Cortex-M4

TCM
upper

(bits31-0)
1 SRAM_U SRAM_U Reserved Reserved Reserved PRAMC←↩

_1
Cortex-M4

TCM
upper

(bits63-32)
2 Reserved Reserved Reserved Reserved Reserved FEC MIB Cortex-M4

TCM lower
(bits31-0)

3 Reserved Reserved Reserved Reserved Reserved FEC RIF Cortex-M4
TCM lower
(bits63-32)

4 Reserved Reserved Reserved Reserved Reserved eDMA_0
TCD RAM

Cortex-M4
Code

Cache Tag
Way0

5 Reserved Reserved Reserved Reserved Reserved eDMA_1
TCD RAM

Cortex-M4
Code

Cache Tag
Way1

6 Reserved Reserved Reserved Reserved Reserved Reserved Cortex-M4
Code
Cache

Data Way0
7 Reserved Reserved Reserved Reserved Reserved Reserved Cortex-M4

Code
Cache

Data Way1
8 Reserved Reserved Reserved Reserved Reserved Reserved Cortex-M4

System
Cache Tag

Way0
9 Reserved Reserved Reserved Reserved Reserved Reserved Cortex-M4

System
Cache Tag

Way1

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.26 Error Injection Module (EIM) 331

10 Reserved Reserved Reserved Reserved Reserved Reserved Cortex-M4
System
Cache

Data Way0
11 Reserved Reserved Reserved Reserved Reserved Reserved Cortex-M4

System
Cache

Data Way1
12 Reserved Reserved Reserved Reserved Reserved Reserved DMA TCD

RAM

/∗!

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\eim\eim_driver.c
${S32SDK_PATH}\platform\drivers\src\eim\eim_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

No special dependencies are required for this component

Modules

• EIM Driver

Error Injection Module Peripheral Driver.
EIM PD provides a set of high-level APIs/services to configure the Error Injection Module (EIM) module.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

332 CONTENTS

16.27 Error Reporting Module (ERM)

16.27.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the Error Reporting Module (ERM) module of S32 SDK devices.

The Error Reporting Module (ERM) provides information and optional interrupt notification on memory errors events
associated with ECC (Error Correction Code).

The ERM includes the following features:

• Capture of address information on single-bit correction and non-correctable ECC events.

• Optional interrupt notification on captured ECC events.

• Support for ECC event capturing for memory sources, with individual reporting fields and interrupt configura-
tion per memory channel.

Each ERM channel n corresponds to a source of potential memory error events. The following table shows the
channel assignments:

ERM channel
n

S32K14x S32K14xW S32K11x MPC5777C S32V23x

0 SRAM_L SRAM_L SRAM_U PRAMC_0 Cortex-M4
TCM upper

1 SRAM_U SRAM_U Reserved PRAMC_1 Cortex-M4
TCM lower

2 Reserved Reserved Reserved eDMA_0 TCD
RAM

Cortex-M4
Code Cache

Tag
3 Reserved Reserved Reserved eDMA_1 TCD

RAM
Cortex-M4

Code Cache
Data

4 Reserved Reserved Reserved FEC MIB Cortex-M4
System Cache

Tag
5 Reserved Reserved Reserved FEC RIF Cortex-M4

System Cache
Data

6 Reserved Reserved Reserved PFLASH port 0 DMA TCD
RAM

7 Reserved Reserved Reserved PFLASH port 1 Reserved
8 Reserved Reserved Reserved AIPS_0 Reserved
9 Reserved Reserved Reserved AIPS_1 Reserved

10 Reserved Reserved Reserved FEC e2eECC Reserved
11 Reserved Reserved Reserved CSE Reserved
12 Reserved Reserved Reserved SIPI Reserved
13 Reserved Reserved Reserved Core0

instruction
Reserved

14 Reserved Reserved Reserved Core0 data Reserved
15 Reserved Reserved Reserved Core1

instruction
Reserved

16 Reserved Reserved Reserved Core1 data Reserved
17 Reserved Reserved Reserved eDMA_0

e2eECC
Reserved

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.27 Error Reporting Module (ERM) 333

18 Reserved Reserved Reserved eDMA_1
e2eECC

Reserved

19 Reserved Reserved Reserved EBI e2eECC Reserved

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\erm\erm_driver.c
${S32SDK_PATH}\platform\drivers\src\erm\erm_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

No special dependencies are required for this component

Modules

• ERM Driver

Error Reporting Module Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

334 CONTENTS

16.28 External Watchdog Monitor (EWM)

16.28.1 Detailed Description

The S32 SDK provides the Peripheral Drivers for the External Watchdog Monitor (EWM) module of S32K devices.

For safety, a redundant watchdog system, External Watchdog Monitor (EWM), is designed to monitor external
circuits, as well as the MCU software flow. This provides a back-up mechanism to the internal watchdog that resets
the MCU's CPU and peripherals.

The EWM differs from the internal watchdog in that it does not reset the MCU's CPU and peripherals. The EWM if
allowed to time-out, provides an independent EWM_out pin that when asserted resets or places an external circuit
into a safe mode. The CPU resets the EWM counter that is logically ANDed with an external digital input pin. This
pin allows an external circuit to influence the reset_out signal.

Modules

• EWM Driver

External Watchdog Monitor Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.29 Flash Memory (Flash) 335

16.29 Flash Memory (Flash)

16.29.1 Detailed Description

This section describes the programming interface of the Flash Peripheral Driver.

Data Structures

• struct flash_user_config_t

Flash User Configuration Structure. More...

• struct flash_ssd_config_t

Flash SSD Configuration Structure. More...

• struct flash_eeprom_status_t

EEPROM status structure. More...

Macros

• #define CLEAR_FTFx_FSTAT_ERROR_BITS FTFx_FSTAT = (uint8_t)(FTFx_FSTAT_FPVIOL_MASK | F←↩

TFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_RDCOLERR_MASK)
• #define FTFx_WORD_SIZE 0x0002U
• #define FTFx_LONGWORD_SIZE 0x0004U
• #define FTFx_PHRASE_SIZE 0x0008U
• #define FTFx_DPHRASE_SIZE 0x0010U
• #define FTFx_RSRC_CODE_REG FTFx_FCCOB8
• #define FTFx_VERIFY_BLOCK 0x00U
• #define FTFx_VERIFY_SECTION 0x01U
• #define FTFx_PROGRAM_CHECK 0x02U
• #define FTFx_READ_RESOURCE 0x03U
• #define FTFx_PROGRAM_LONGWORD 0x06U
• #define FTFx_PROGRAM_PHRASE 0x07U
• #define FTFx_ERASE_BLOCK 0x08U
• #define FTFx_ERASE_SECTOR 0x09U
• #define FTFx_PROGRAM_SECTION 0x0BU
• #define FTFx_VERIFY_ALL_BLOCK 0x40U
• #define FTFx_READ_ONCE 0x41U
• #define FTFx_PROGRAM_ONCE 0x43U
• #define FTFx_ERASE_ALL_BLOCK 0x44U
• #define FTFx_SECURITY_BY_PASS 0x45U
• #define FTFx_PFLASH_SWAP 0x46U
• #define FTFx_ERASE_ALL_BLOCK_UNSECURE 0x49U
• #define FTFx_PROGRAM_PARTITION 0x80U
• #define FTFx_SET_EERAM 0x81U
• #define RESUME_WAIT_CNT 0x20U

Resume wait count used in FLASH_DRV_EraseResume function.

• #define SUSPEND_WAIT_CNT 0x40U

Suspend wait count used in FLASH_DRV_EraseSuspend function.

• #define DFLASH_IFR_READRESOURCE_ADDRESS 0x8000FCU
• #define GET_BIT_0_7(value) ((uint8_t)(((uint32_t)(value)) & 0xFFU))
• #define GET_BIT_8_15(value) ((uint8_t)((((uint32_t)(value)) >> 8) & 0xFFU))
• #define GET_BIT_16_23(value) ((uint8_t)((((uint32_t)(value)) >> 16) & 0xFFU))
• #define GET_BIT_24_31(value) ((uint8_t)(((uint32_t)(value)) >> 24))
• #define FLASH_SECURITY_STATE_KEYEN 0x80U
• #define FLASH_SECURITY_STATE_UNSECURED 0x02U

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

336 CONTENTS

• #define CSE_KEY_SIZE_CODE_MAX 0x03U

• #define FTFx_FSTAT_ERROR_BITS (FTFx_FSTAT & (FTFx_FSTAT_MGSTAT0_MASK | FTFx_FSTAT←↩

_FPVIOL_MASK | FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_RDCOLERR_MASK))

• #define FLASH_CALLBACK_CS 0x0AU

Callback period count for FlashCheckSum.

Typedefs

• typedef void(∗ flash_callback_t) (void)

Call back function pointer data type.

Enumerations

• enum flash_flexRam_function_control_code_t {
EEE_ENABLE = 0x00U, EEE_QUICK_WRITE = 0x55U, EEE_STATUS_QUERY = 0x77U, EEE_COMPL←↩

ETE_INTERRUPT_QUICK_WRITE = 0xAAU,
EEE_DISABLE = 0xFFU }

FlexRAM Function control Code.

Variables

• uint32_t PFlashBase

• uint32_t PFlashSize

• uint32_t DFlashBase

• uint32_t EERAMBase

• flash_callback_t CallBack

• uint32_t PFlashBase

• uint32_t PFlashSize

• uint32_t DFlashBase

• uint32_t DFlashSize

• uint32_t EERAMBase

• uint32_t EEESize

• flash_callback_t CallBack

• uint8_t brownOutCode

• uint16_t numOfRecordReqMaintain

• uint16_t sectorEraseCount

PFlash swap control codes

• #define FTFx_SWAP_SET_INDICATOR_ADDR 0x01U

Initialize Swap System control code.

• #define FTFx_SWAP_SET_IN_PREPARE 0x02U

Set Swap in Update State.

• #define FTFx_SWAP_SET_IN_COMPLETE 0x04U

Set Swap in Complete State.

• #define FTFx_SWAP_REPORT_STATUS 0x08U

Report Swap Status.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.29 Flash Memory (Flash) 337

PFlash swap states

• #define FTFx_SWAP_UNINIT 0x00U

Uninitialized swap mode.

• #define FTFx_SWAP_READY 0x01U

Ready swap mode.

• #define FTFx_SWAP_UPDATE 0x02U

Update swap mode.

• #define FTFx_SWAP_UPDATE_ERASED 0x03U

Update-Erased swap mode.

• #define FTFx_SWAP_COMPLETE 0x04U

Complete swap mode.

Flash security status

• #define FLASH_NOT_SECURE 0x01U

Flash currently not in secure state.

• #define FLASH_SECURE_BACKDOOR_ENABLED 0x02U

Flash is secured and backdoor key access enabled.

• #define FLASH_SECURE_BACKDOOR_DISABLED 0x04U

Flash is secured and backdoor key access disabled.

Null Callback function definition

• #define NULL_CALLBACK ((flash_callback_t)0xFFFFFFFFU)

Null callback.

Flash driver APIs

• status_t FLASH_DRV_Init (const flash_user_config_t ∗const pUserConf, flash_ssd_config_t ∗const pSSD←↩

Config)

Initializes Flash.

• void FLASH_DRV_GetPFlashProtection (uint32_t ∗protectStatus)

P-Flash get protection.

• status_t FLASH_DRV_SetPFlashProtection (uint32_t protectStatus)

P-Flash set protection.

• void FLASH_DRV_GetSecurityState (uint8_t ∗securityState)

Flash get security state.

• status_t FLASH_DRV_SecurityBypass (const flash_ssd_config_t ∗pSSDConfig, const uint8_t ∗keyBuffer)

Flash security bypass.

• status_t FLASH_DRV_EraseAllBlock (const flash_ssd_config_t ∗pSSDConfig)

Flash erase all blocks.

• status_t FLASH_DRV_VerifyAllBlock (const flash_ssd_config_t ∗pSSDConfig, uint8_t marginLevel)

Flash verify all blocks.

• status_t FLASH_DRV_EraseSector (const flash_ssd_config_t ∗pSSDConfig, uint32_t dest, uint32_t size)

Flash erase sector.

• status_t FLASH_DRV_VerifySection (const flash_ssd_config_t ∗pSSDConfig, uint32_t dest, uint16_t number,
uint8_t marginLevel)

Flash verify section.

• void FLASH_DRV_EraseSuspend (void)

Flash erase suspend.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

338 CONTENTS

• void FLASH_DRV_EraseResume (void)

Flash erase resume.

• status_t FLASH_DRV_ReadOnce (const flash_ssd_config_t ∗pSSDConfig, uint8_t recordIndex, uint8_t ∗p←↩

DataArray)

Flash read once.

• status_t FLASH_DRV_ProgramOnce (const flash_ssd_config_t ∗pSSDConfig, uint8_t recordIndex, const
uint8_t ∗pDataArray)

Flash program once.

• status_t FLASH_DRV_Program (const flash_ssd_config_t ∗pSSDConfig, uint32_t dest, uint32_t size, const
uint8_t ∗pData)

Flash program.

• status_t FLASH_DRV_ProgramCheck (const flash_ssd_config_t ∗pSSDConfig, uint32_t dest, uint32_t size,
const uint8_t ∗pExpectedData, uint32_t ∗pFailAddr, uint8_t marginLevel)

Flash program check.

• status_t FLASH_DRV_CheckSum (const flash_ssd_config_t ∗pSSDConfig, uint32_t dest, uint32_t size,
uint32_t ∗pSum)

Calculates check sum.

• status_t FLASH_DRV_EnableCmdCompleteInterupt (void)

Enable the command complete interrupt.

• void FLASH_DRV_DisableCmdCompleteInterupt (void)

Disable the command complete interrupt.

• static bool FLASH_DRV_GetCmdCompleteFlag (void)

Check the command complete flag has completed or not.

• status_t FLASH_DRV_EnableReadColisionInterupt (void)

Enable the read collision error interrupt.

• void FLASH_DRV_DisableReadColisionInterupt (void)

Disable the read collision error interrupt.

• static bool FLASH_DRV_GetReadColisionFlag (void)

Check the read collision error flag is detected or not.

• static void FLASH_DRV_ClearReadColisionFlag (void)

Clear the read collision error flag.

• void FLASH_DRV_GetDefaultConfig (flash_user_config_t ∗const config)

Get default flash configuration.

16.29.2 Data Structure Documentation

16.29.2.1 struct flash_user_config_t

Flash User Configuration Structure.

Implements : flash_user_config_t_Class

Definition at line 786 of file flash_driver.h.

Data Fields

• uint32_t PFlashBase
• uint32_t PFlashSize
• uint32_t DFlashBase
• uint32_t EERAMBase
• flash_callback_t CallBack

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.29 Flash Memory (Flash) 339

16.29.2.2 struct flash_ssd_config_t

Flash SSD Configuration Structure.

The structure includes the static parameters for C90TFS/FTFx which are device-dependent. The fields including
PFlashBlockBase, PFlashBlockSize, DFlashBlockBase, EERAMBlockBase, and CallBack are passed via flash_←↩

user_config_t. The rest of parameters such as DFlashBlockSize, and EEEBlockSize will be initialized in FLASH_←↩

DRV_Init() automatically.

Implements : flash_ssd_config_t_Class

Definition at line 810 of file flash_driver.h.

Data Fields

• uint32_t PFlashBase

• uint32_t PFlashSize

• uint32_t DFlashBase

• uint32_t DFlashSize

• uint32_t EERAMBase

• uint32_t EEESize

• flash_callback_t CallBack

16.29.2.3 struct flash_eeprom_status_t

EEPROM status structure.

Implements : flash_eeprom_status_t_Class

Definition at line 832 of file flash_driver.h.

Data Fields

• uint8_t brownOutCode

• uint16_t numOfRecordReqMaintain

• uint16_t sectorEraseCount

16.29.3 Macro Definition Documentation

16.29.3.1 #define CLEAR_FTFx_FSTAT_ERROR_BITS FTFx_FSTAT = (uint8_t)(FTFx_FSTAT_FPVIOL_MASK |
FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_RDCOLERR_MASK)

Definition at line 602 of file flash_driver.h.

16.29.3.2 #define CSE_KEY_SIZE_CODE_MAX 0x03U

Definition at line 699 of file flash_driver.h.

16.29.3.3 #define DFLASH_IFR_READRESOURCE_ADDRESS 0x8000FCU

Definition at line 681 of file flash_driver.h.

16.29.3.4 #define FLASH_CALLBACK_CS 0x0AU

Callback period count for FlashCheckSum.

This value is only relevant for FlashCheckSum operation, where a high rate of calling back can impair performance.
The rest of the flash operations invoke the callback as often as possible while waiting for the flash controller to finish
the requested operation.

Definition at line 744 of file flash_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

340 CONTENTS

16.29.3.5 #define FLASH_NOT_SECURE 0x01U

Flash currently not in secure state.

Definition at line 727 of file flash_driver.h.

16.29.3.6 #define FLASH_SECURE_BACKDOOR_DISABLED 0x04U

Flash is secured and backdoor key access disabled.

Definition at line 731 of file flash_driver.h.

16.29.3.7 #define FLASH_SECURE_BACKDOOR_ENABLED 0x02U

Flash is secured and backdoor key access enabled.

Definition at line 729 of file flash_driver.h.

16.29.3.8 #define FLASH_SECURITY_STATE_KEYEN 0x80U

Definition at line 690 of file flash_driver.h.

16.29.3.9 #define FLASH_SECURITY_STATE_UNSECURED 0x02U

Definition at line 691 of file flash_driver.h.

16.29.3.10 #define FTFx_DPHRASE_SIZE 0x0010U

Definition at line 611 of file flash_driver.h.

16.29.3.11 #define FTFx_ERASE_ALL_BLOCK 0x44U

Definition at line 635 of file flash_driver.h.

16.29.3.12 #define FTFx_ERASE_ALL_BLOCK_UNSECURE 0x49U

Definition at line 638 of file flash_driver.h.

16.29.3.13 #define FTFx_ERASE_BLOCK 0x08U

Definition at line 629 of file flash_driver.h.

16.29.3.14 #define FTFx_ERASE_SECTOR 0x09U

Definition at line 630 of file flash_driver.h.

16.29.3.15 #define FTFx_FSTAT_ERROR_BITS (FTFx_FSTAT & (FTFx_FSTAT_MGSTAT0_MASK | FTFx_FSTAT_FPVIOL_MASK |
FTFx_FSTAT_ACCERR_MASK | FTFx_FSTAT_RDCOLERR_MASK))

Definition at line 700 of file flash_driver.h.

16.29.3.16 #define FTFx_LONGWORD_SIZE 0x0004U

Definition at line 607 of file flash_driver.h.

16.29.3.17 #define FTFx_PFLASH_SWAP 0x46U

Definition at line 637 of file flash_driver.h.

16.29.3.18 #define FTFx_PHRASE_SIZE 0x0008U

Definition at line 609 of file flash_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.29 Flash Memory (Flash) 341

16.29.3.19 #define FTFx_PROGRAM_CHECK 0x02U

Definition at line 625 of file flash_driver.h.

16.29.3.20 #define FTFx_PROGRAM_LONGWORD 0x06U

Definition at line 627 of file flash_driver.h.

16.29.3.21 #define FTFx_PROGRAM_ONCE 0x43U

Definition at line 634 of file flash_driver.h.

16.29.3.22 #define FTFx_PROGRAM_PARTITION 0x80U

Definition at line 639 of file flash_driver.h.

16.29.3.23 #define FTFx_PROGRAM_PHRASE 0x07U

Definition at line 628 of file flash_driver.h.

16.29.3.24 #define FTFx_PROGRAM_SECTION 0x0BU

Definition at line 631 of file flash_driver.h.

16.29.3.25 #define FTFx_READ_ONCE 0x41U

Definition at line 633 of file flash_driver.h.

16.29.3.26 #define FTFx_READ_RESOURCE 0x03U

Definition at line 626 of file flash_driver.h.

16.29.3.27 #define FTFx_RSRC_CODE_REG FTFx_FCCOB8

Definition at line 617 of file flash_driver.h.

16.29.3.28 #define FTFx_SECURITY_BY_PASS 0x45U

Definition at line 636 of file flash_driver.h.

16.29.3.29 #define FTFx_SET_EERAM 0x81U

Definition at line 640 of file flash_driver.h.

16.29.3.30 #define FTFx_SWAP_COMPLETE 0x04U

Complete swap mode.

Definition at line 670 of file flash_driver.h.

16.29.3.31 #define FTFx_SWAP_READY 0x01U

Ready swap mode.

Definition at line 664 of file flash_driver.h.

16.29.3.32 #define FTFx_SWAP_REPORT_STATUS 0x08U

Report Swap Status.

Definition at line 654 of file flash_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

342 CONTENTS

16.29.3.33 #define FTFx_SWAP_SET_IN_COMPLETE 0x04U

Set Swap in Complete State.

Definition at line 652 of file flash_driver.h.

16.29.3.34 #define FTFx_SWAP_SET_IN_PREPARE 0x02U

Set Swap in Update State.

Definition at line 650 of file flash_driver.h.

16.29.3.35 #define FTFx_SWAP_SET_INDICATOR_ADDR 0x01U

Initialize Swap System control code.

Definition at line 648 of file flash_driver.h.

16.29.3.36 #define FTFx_SWAP_UNINIT 0x00U

Uninitialized swap mode.

Definition at line 662 of file flash_driver.h.

16.29.3.37 #define FTFx_SWAP_UPDATE 0x02U

Update swap mode.

Definition at line 666 of file flash_driver.h.

16.29.3.38 #define FTFx_SWAP_UPDATE_ERASED 0x03U

Update-Erased swap mode.

Definition at line 668 of file flash_driver.h.

16.29.3.39 #define FTFx_VERIFY_ALL_BLOCK 0x40U

Definition at line 632 of file flash_driver.h.

16.29.3.40 #define FTFx_VERIFY_BLOCK 0x00U

Definition at line 623 of file flash_driver.h.

16.29.3.41 #define FTFx_VERIFY_SECTION 0x01U

Definition at line 624 of file flash_driver.h.

16.29.3.42 #define FTFx_WORD_SIZE 0x0002U

Definition at line 605 of file flash_driver.h.

16.29.3.43 #define GET_BIT_0_7(value) ((uint8_t)(((uint32_t)(value)) & 0xFFU))

Definition at line 684 of file flash_driver.h.

16.29.3.44 #define GET_BIT_16_23(value) ((uint8_t)((((uint32_t)(value)) >> 16) & 0xFFU))

Definition at line 686 of file flash_driver.h.

16.29.3.45 #define GET_BIT_24_31(value) ((uint8_t)(((uint32_t)(value)) >> 24))

Definition at line 687 of file flash_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.29 Flash Memory (Flash) 343

16.29.3.46 #define GET_BIT_8_15(value) ((uint8_t)((((uint32_t)(value)) >> 8) & 0xFFU))

Definition at line 685 of file flash_driver.h.

16.29.3.47 #define NULL_CALLBACK ((flash_callback_t)0xFFFFFFFFU)

Null callback.

Definition at line 755 of file flash_driver.h.

16.29.3.48 #define RESUME_WAIT_CNT 0x20U

Resume wait count used in FLASH_DRV_EraseResume function.

Definition at line 674 of file flash_driver.h.

16.29.3.49 #define SUSPEND_WAIT_CNT 0x40U

Suspend wait count used in FLASH_DRV_EraseSuspend function.

Definition at line 676 of file flash_driver.h.

16.29.4 Typedef Documentation

16.29.4.1 typedef void(∗ flash_callback_t) (void)

Call back function pointer data type.

If using callback in the application, any code reachable from this function must not be placed in a Flash block
targeted for a program/erase operation. Functions can be placed in RAM section by using the START/END_FUN←↩

CTION_DEFINITION/DECLARATION_RAMSECTION macros.

Definition at line 772 of file flash_driver.h.

16.29.5 Enumeration Type Documentation

16.29.5.1 enum flash_flexRam_function_control_code_t

FlexRAM Function control Code.

Implements : flash_flexRAM_function_control_code_t_Class

Enumerator

EEE_ENABLE Make FlexRAM available for emulated EEPROM

EEE_QUICK_WRITE Make FlexRAM available for EEPROM quick writes

EEE_STATUS_QUERY EEPROM quick write status query

EEE_COMPLETE_INTERRUPT_QUICK_WRITE Complete interrupted EEPROM quick write process

EEE_DISABLE Make FlexRAM available as RAM

Definition at line 713 of file flash_driver.h.

16.29.6 Function Documentation

16.29.6.1 status_t FLASH_DRV_CheckSum (const flash_ssd_config_t ∗ pSSDConfig, uint32_t dest, uint32_t size,
uint32_t ∗ pSum)

Calculates check sum.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

344 CONTENTS

This API performs 32 bit sum of each byte data over a specified Flash memory range without carry which provides
rapid method for checking data integrity. The callback time period of this API is determined via FLASH_CALLBA←↩

CK_CS macro in flash_driver.h which is used as a counter value for the CallBack() function calling in this API. This
value can be changed as per the user requirement. User can change this value to obtain the maximum permissible
callback time period. This API always returns STATUS_SUCCESS if size provided by user is zero regardless of the
input validation.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in dest Start address of the Flash range to be summed.
in size Size in byte of the Flash range to be summed.
in pSum To return the sum value.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

Definition at line 1041 of file flash_driver.c.

16.29.6.2 static void FLASH_DRV_ClearReadColisionFlag (void) [inline], [static]

Clear the read collision error flag.

Implements : FLASH_DRV_ClearReadColisionFlag_Activity

Definition at line 1690 of file flash_driver.h.

16.29.6.3 void FLASH_DRV_DisableCmdCompleteInterupt (void)

Disable the command complete interrupt.

Definition at line 2004 of file flash_driver.c.

16.29.6.4 void FLASH_DRV_DisableReadColisionInterupt (void)

Disable the read collision error interrupt.

Definition at line 2039 of file flash_driver.c.

16.29.6.5 status_t FLASH_DRV_EnableCmdCompleteInterupt (void)

Enable the command complete interrupt.

This function will enable the command complete interrupt is generated when an FTFC command completes.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

Definition at line 1986 of file flash_driver.c.

16.29.6.6 status_t FLASH_DRV_EnableReadColisionInterupt (void)

Enable the read collision error interrupt.

This function will enable the read collision error interrupt generation when an FTFC read collision error occurs.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.29 Flash Memory (Flash) 345

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

Definition at line 2021 of file flash_driver.c.

16.29.6.7 status_t FLASH_DRV_EraseAllBlock (const flash_ssd_config_t ∗ pSSDConfig)

Flash erase all blocks.

This API erases all Flash memory, initializes the FlexRAM, verifies all memory contents, and then releases the MCU
security.

Parameters

in pSSDConfig The SSD configuration structure pointer.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

Definition at line 461 of file flash_driver.c.

16.29.6.8 void FLASH_DRV_EraseResume (void)

Flash erase resume.

This API is used to resume a previous suspended operation of Flash erase sector command This function must be
located in RAM memory or different Flash blocks which are targeted for writing to avoid RWW error.

Definition at line 707 of file flash_driver.c.

16.29.6.9 status_t FLASH_DRV_EraseSector (const flash_ssd_config_t ∗ pSSDConfig, uint32_t dest, uint32_t size)

Flash erase sector.

This API erases one or more sectors in P-Flash or D-Flash memory. This API always returns FTFx_OK if size
provided by the user is zero regardless of the input validation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

346 CONTENTS

Parameters

in pSSDConfig The SSD configuration structure pointer.
in dest Address in the first sector to be erased. User need to make sure the dest

address in of P-FLASH or D-FLASH block. This address should be aligned to
bytes following a below table

FL←↩

ASH
TY←↩

P←↩

E/←↩

M←↩

CU

S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K146
S32←↩

K148
S32←↩

K142←↩

W

S32←↩

K144←↩

W

P-←↩

FL←↩

ASH

8 8 8 16 16 16 8 16

D-←↩

FL←↩

ASH

8 8 8 8 8 16 8 8

in size Size to be erased in bytes. It is used to determine number of sectors to be
erased. This size should be aligned to bytes following a below table

FL←↩

ASH
TY←↩

P←↩

E/←↩

M←↩

CU

S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K146
S32←↩

K148
S32←↩

K142←↩

W

S32←↩

K144←↩

W

P-←↩

FL←↩

ASH

8 8 8 16 16 16 8 16

D-←↩

FL←↩

ASH

8 8 8 8 8 16 8 8

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

Definition at line 531 of file flash_driver.c.

16.29.6.10 void FLASH_DRV_EraseSuspend (void)

Flash erase suspend.

This API is used to suspend a current operation of Flash erase sector command. This function must be located in
RAM memory or different Flash blocks which are targeted for writing to avoid the RWW error.

Definition at line 682 of file flash_driver.c.

16.29.6.11 static bool FLASH_DRV_GetCmdCompleteFlag (void) [inline], [static]

Check the command complete flag has completed or not.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.29 Flash Memory (Flash) 347

Returns

the command complete flag

• true: The FTFC command has completed.

• false: The FTFC command is in progress.

Implements : FLASH_DRV_GetCmdCompleteFlag_Activity

Definition at line 1649 of file flash_driver.h.

16.29.6.12 void FLASH_DRV_GetDefaultConfig (flash_user_config_t ∗const config)

Get default flash configuration.

This API will get default flash user configuration.

Parameters

out config Pointer flash user configuration structure.

Definition at line 2191 of file flash_driver.c.

16.29.6.13 void FLASH_DRV_GetPFlashProtection (uint32_t ∗ protectStatus)

P-Flash get protection.

This API retrieves the current P-Flash protection status. Considering the time consumption for getting protection
is very low and even can be ignored. It is not necessary to utilize the Callback function to support the time-critical
events.

Parameters

out protectStatus To return the current value of the P-Flash Protection. Each bit is correspond-
ing to protection of 1/32 of the total P-Flash. The least significant bit is cor-
responding to the lowest address area of P-Flash. The most significant bit is
corresponding to the highest address area of P-Flash and so on. There are
two possible cases as below:

• 0: this area is protected.

• 1: this area is unprotected.

Definition at line 314 of file flash_driver.c.

16.29.6.14 static bool FLASH_DRV_GetReadColisionFlag (void) [inline], [static]

Check the read collision error flag is detected or not.

Returns

the read collision error flag

• true: Collision error detected.

• false: No collision error detected.

Implements : FLASH_DRV_GetReadColisionFlag_Activity

Definition at line 1680 of file flash_driver.h.

16.29.6.15 void FLASH_DRV_GetSecurityState (uint8_t ∗ securityState)

Flash get security state.

This API retrieves the current Flash security status, including the security enabling state and the back door key
enabling state.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

348 CONTENTS

Parameters

out securityState To return the current security status code.

• FLASH_NOT_SECURE (0x01U): Flash currently not in secure state

• FLASH_SECURE_BACKDOOR_ENABLED (0x02U): Flash is secured
and back door key access enabled

• FLASH_SECURE_BACKDOOR_DISABLED (0x04U): Flash is secured
and back door key access disabled.

Definition at line 378 of file flash_driver.c.

16.29.6.16 status_t FLASH_DRV_Init (const flash_user_config_t ∗const pUserConf, flash_ssd_config_t ∗const
pSSDConfig)

Initializes Flash.

This API initializes Flash module by reporting the memory configuration via SSD configuration structure.

Parameters

in pUserConf The user configuration structure pointer.
in pSSDConfig The SSD configuration structure pointer.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

Definition at line 225 of file flash_driver.c.

16.29.6.17 status_t FLASH_DRV_Program (const flash_ssd_config_t ∗ pSSDConfig, uint32_t dest, uint32_t size, const
uint8_t ∗ pData)

Flash program.

This API is used to program 4 consecutive bytes (for program long word command) and 8 consecutive bytes (for
program phrase command) on P-Flash or D-Flash block. This API always returns FTFx_OK if size provided by user
is zero regardless of the input validation

Parameters

in pSSDConfig The SSD configuration structure pointer.
in dest Start address for the intended program operation. This address should be

aligned to 8 bytes.
in size Size in byte to be programmed. This size should be aligned to 8 bytes.
in pData Pointer of source address from which data has to be taken for program opera-

tion.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

Definition at line 908 of file flash_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.29 Flash Memory (Flash) 349

16.29.6.18 status_t FLASH_DRV_ProgramCheck (const flash_ssd_config_t ∗ pSSDConfig, uint32_t dest, uint32_t size,
const uint8_t ∗ pExpectedData, uint32_t ∗ pFailAddr, uint8_t marginLevel)

Flash program check.

This API tests a previously programmed P-Flash or D-Flash long word to see if it reads correctly at the specified
margin level. This API always returns FTFx_OK if size provided by user is zero regardless of the input validation

Parameters

in pSSDConfig The SSD configuration structure pointer.
in dest Start address for the intended program check operation. This address should

be aligned to 4 bytes.
in size Size in byte to check accuracy of program operation. This size should be

aligned to 4 bytes.
in pExpectedData The pointer to the expected data.
in pFailAddr Returned the first aligned failing address.
in marginLevel Read margin choice as follows:

• marginLevel = 0x1U: read at User margin 1/0 level.

• marginLevel = 0x2U: read at Factory margin 1/0 level.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

Definition at line 1000 of file flash_driver.c.

16.29.6.19 status_t FLASH_DRV_ProgramOnce (const flash_ssd_config_t ∗ pSSDConfig, uint8_t recordIndex, const
uint8_t ∗ pDataArray)

Flash program once.

This API is used to program to a reserved 64 byte field located in the P-Flash IFR via given number of record. See
the corresponding reference manual to get correct value of this number.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in recordIndex The record index will be read. It can be from 0x0U to 0x7U or from 0x0U to

0xF according to specific derivative.
in pDataArray Pointer to the array from which data will be taken for program once command.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

Definition at line 783 of file flash_driver.c.

16.29.6.20 status_t FLASH_DRV_ReadOnce (const flash_ssd_config_t ∗ pSSDConfig, uint8_t recordIndex, uint8_t ∗
pDataArray)

Flash read once.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

350 CONTENTS

This API is used to read out a reserved 64 byte field located in the P-Flash IFR via given number of record. See the
corresponding reference manual to get the correct value of this number.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in recordIndex The record index will be read. It can be from 0x0U to 0x7U or from 0x0U to

0xF according to specific derivative.
in pDataArray Pointer to the array to return the data read by the read once command.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

Definition at line 732 of file flash_driver.c.

16.29.6.21 status_t FLASH_DRV_SecurityBypass (const flash_ssd_config_t ∗ pSSDConfig, const uint8_t ∗ keyBuffer)

Flash security bypass.

This API un-secures the device by comparing the user's provided back door key with the ones in the Flash Config-
uration Field. If they are matched, the security is released. Otherwise, an error code is returned.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in keyBuffer Point to the user buffer containing the back door key.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

Definition at line 420 of file flash_driver.c.

16.29.6.22 status_t FLASH_DRV_SetPFlashProtection (uint32_t protectStatus)

P-Flash set protection.

This API sets the P-Flash protection to the intended protection status. Setting P-Flash protection status is subject
to a protection, transition restriction. If there is a setting violation, it returns an error code and the current protection
status will not be changed.

Parameters

in protectStatus The expected protect status user wants to set to P-Flash protection register.
Each bit is corresponding to protection of 1/32 of the total P-Flash. The least
significant bit is corresponding to the lowest address area of P-Flash. The
most significant bit is corresponding to the highest address area of P- Flash,
and so on. There are two possible cases as shown below:

• 0: this area is protected.

• 1: this area is unprotected.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.29 Flash Memory (Flash) 351

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

Definition at line 337 of file flash_driver.c.

16.29.6.23 status_t FLASH_DRV_VerifyAllBlock (const flash_ssd_config_t ∗ pSSDConfig, uint8_t marginLevel)

Flash verify all blocks.

This function checks to see if the P-Flash and/or D-Flash, EEPROM backup area, and D-Flash IFR have been
erased to the specified read margin level, if applicable, and releases security if the readout passes.

Parameters

in pSSDConfig The SSD configuration structure pointer.
in marginLevel Read Margin Choice as follows:

• marginLevel = 0x0U: use the Normal read level

• marginLevel = 0x1U: use the User read

• marginLevel = 0x2U: use the Factory read

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

Definition at line 495 of file flash_driver.c.

16.29.6.24 status_t FLASH_DRV_VerifySection (const flash_ssd_config_t ∗ pSSDConfig, uint32_t dest, uint16_t number,
uint8_t marginLevel)

Flash verify section.

This API checks if a section of the P-Flash or the D-Flash memory is erased to the specified read margin level.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

352 CONTENTS

Parameters

in pSSDConfig The SSD configuration structure pointer.
in dest Start address for the intended verify operation. User need to make sure the

dest address in of P-FLASH or D-FLASH block. This address should be
aligned to bytes following a below table

FL←↩

ASH
TY←↩

P←↩

E/←↩

M←↩

CU

S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K146
S32←↩

K148
S32←↩

K142←↩

W

S32←↩

K144←↩

W

P-←↩

FL←↩

ASH

8 8 8 16 16 16 8 16

D-←↩

FL←↩

ASH

8 8 8 8 8 16 8 8

in number Number of alignment unit to be verified. Refer to corresponding reference
manual to get correct information of alignment constrain.

in marginLevel Read Margin Choice as follows:

• marginLevel = 0x0U: use Normal read level

• marginLevel = 0x1U: use the User read

• marginLevel = 0x2U: use the Factory read

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failure was occurred.

• STATUS_BUSY: Operation was busy.

Definition at line 612 of file flash_driver.c.

16.29.7 Variable Documentation

16.29.7.1 uint8_t brownOutCode

Brown-out detection code

Definition at line 834 of file flash_driver.h.

16.29.7.2 flash_callback_t CallBack

Call back function to service the time critical events. Any code reachable from this function must not be placed in a
Flash block targeted for a program/erase operation

Definition at line 794 of file flash_driver.h.

16.29.7.3 flash_callback_t CallBack

Call back function to service the time critical events. Any code reachable from this function must not be placed in a
Flash block targeted for a program/erase operation

Definition at line 823 of file flash_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.29 Flash Memory (Flash) 353

16.29.7.4 uint32_t DFlashBase

For FlexNVM device, this is the base address of D-Flash memory (FlexNVM memory); For non-FlexNVM device,
this field is unused

Definition at line 790 of file flash_driver.h.

16.29.7.5 uint32_t DFlashBase

For FlexNVM device, this is the base address of D-Flash memory (FlexNVM memory); For non-FlexNVM device,
this field is unused

Definition at line 814 of file flash_driver.h.

16.29.7.6 uint32_t DFlashSize

For FlexNVM device, this is the size in byte of area which is used as D-Flash from FlexNVM memory; For non-←↩

FlexNVM device, this field is unused

Definition at line 816 of file flash_driver.h.

16.29.7.7 uint32_t EEESize

For FlexNVM device, this is the size in byte of EEPROM area which was partitioned from FlexRAM; For non-Flex←↩

NVM device, this field is unused

Definition at line 821 of file flash_driver.h.

16.29.7.8 uint32_t EERAMBase

The base address of FlexRAM (for FlexNVM device) or acceleration RAM memory (for non-FlexNVM device)

Definition at line 792 of file flash_driver.h.

16.29.7.9 uint32_t EERAMBase

The base address of FlexRAM (for FlexNVM device) or acceleration RAM memory (for non-FlexNVM device)

Definition at line 819 of file flash_driver.h.

16.29.7.10 uint16_t numOfRecordReqMaintain

Number of EEPROM quick write records requiring maintenance

Definition at line 835 of file flash_driver.h.

16.29.7.11 uint32_t PFlashBase

The base address of P-Flash memory

Definition at line 788 of file flash_driver.h.

16.29.7.12 uint32_t PFlashBase

The base address of P-Flash memory

Definition at line 812 of file flash_driver.h.

16.29.7.13 uint32_t PFlashSize

The size in byte of P-Flash memory

Definition at line 789 of file flash_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

354 CONTENTS

16.29.7.14 uint32_t PFlashSize

The size in byte of P-Flash memory

Definition at line 813 of file flash_driver.h.

16.29.7.15 uint16_t sectorEraseCount

EEPROM sector erase count

Definition at line 836 of file flash_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.30 Flash Memory (Flash) 355

16.30 Flash Memory (Flash)

16.30.1 Detailed Description

Flash Memory Module provides the general flash APIs.

Flash memory is ideal for single-supply applications, permitting in-the-field erase and reprogramming operations
without the need for any external high voltage power sources. The flash module includes a memory controller
that executes commands to modify flash memory contents. An erased bit reads '1' and a programmed bit reads
'0'. The programming operation is unidirectional; it can only move bits from the '1' state (erased) to the '0' state
(programmed). Only the erase operation restores bits from '0' to '1'; bits cannot be programmed from a '0' to a '1'.

C90TFS Flash Driver

The C90TFS flash module includes the following accessible memory regions.

1. Program flash memory for vector space and code store.

2. FlexNVM for data store, additional code store and also non-volatile storage for the EEPROM filing system
representing data written to the FlexRAM requiring highest endurance.

3. FlexRAM for high-endurance EEPROM data store or traditional RAM.

Some platforms may be designed to have only program flash memory or all of them.

The S32 SDK provides the C90TFS Flash driver of S32K platforms. The driver includes general APIs to handle
specific operations on C90TFS Flash module. The user can use those APIs directly in the application.

EEPROM feature

For platforms with FlexNVM, the flash module provides a built-in hardware emulation scheme to emulate the char-
acteristics of an EEPROM by effectively providing a high-endurance, byte write-able NVM. The EEPROM system is
shown in the following figure.

Figure 1. EEPROM Architecture

To handle with various customer's requirements, the FlexRAM and FlexNVM blocks can be split into partitions:

1. EEPROM partition(EEESIZE) — The amount of FlexRAM used for EEPROM can be set from 0 Bytes (no
EEPROM) to the maximum FlexRAM size. The remainder of the FlexRAM not used for EEPROM is not
accessible while the FlexRAM is configured for EEPROM.The EEPROM partition grows upward from the
bottom of the FlexRAM address space.

2. Data flash partition(DEPART) — The amount of FlexNVM memory used for data flash can be programmed
from 0 bytes (all of the FlexNVM block is available for EEPROM backup) to the maximum size of the FlexNVM
block.

3. FlexNVM EEPROM partition — The amount of FlexNVM memory used for EEPROM backup, which is equal
to the FlexNVM block size minus the data flash memory partition size. The EEPROM backup size must be at
least 16 times the EEPROM partition size in FlexRAM.

The partition information (EEESIZE, DEPART) is programmed using the #FLASH_DRV_DEFlashPartition API.

The function of FlexRAM can be changed from EEPROM usage to traditional RAM for accelerate programming in
#FLASH_DRV_ProgramSection API and vice versa by #FLASH_DRV_SetFlexRamFunction API.

This is example code of EEE usage sequence:

/* Provide information about the flash blocks. */
const flash_user_config_t Flash_InitConfig0 = {
.PFlashBase = 0x00000000U, /* Base address of Program Flash block */
.PFlashSize = 0x00100000U, /* Size of Program Flash block */
.DFlashBase = 0x10000000U, /* Base address of Data Flash block */

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

356 CONTENTS

.EERAMBase = 0x14000000U, /* Base address of FlexRAM block */
/* If using callback, any code reachable from this function must not be placed in a Flash block

targeted for a program/erase operation.*/
.CallBack = NULL_CALLBACK
};

/* Declare a FLASH configuration structure which is initialized by FlashInit, and will be used by all
flash APIs */

flash_ssd_config_t flashSSDConfig;
status_t ret; /* Store the driver APIs return code */

/* Data source for program operation */
#define BUFFER_SIZE 0x100u /* Size of data source */
#define SIZE_WRITE_EEE 0x7u /* Size of data write in EEPROM */
uint8_t sourceBuffer[BUFFER_SIZE];

/* Init source data */
for (i = 0u; i < BUFFER_SIZE; i++)
{

sourceBuffer[i] = i;
}

/* Always initialize the driver before calling other functions */
ret = FLASH_DRV_Init(&Flash_InitConfig0, &flashSSDConfig);
if (ret != STATUS_SUCCESS)
{

return ret;
}

#if ((FEATURE_FLS_HAS_FLEX_NVM == 1u) & (FEATURE_FLS_HAS_FLEX_RAM == 1u))
/* Configure FlexRAM as EEPROM if it is currently used as traditional RAM */
if (flashSSDConfig.EEESize == 0u)
{

/* Configure FlexRAM as EEPROM and FlexNVM as EEPROM backup region,
DEFlashPartition will be failed if the IFR region isn’t blank.
Refer to the device document for valid EEPROM Data Size Code
and FlexNVM Partition Code. For example on S32K144:
- EEEDataSizeCode = 0x02u: EEPROM size = 4 Kbytes
- DEPartitionCode = 0x08u: EEPROM backup size = 64 Kbytes */

ret = FLASH_DRV_DEFlashPartition(&flashSSDConfig, 0x02u, 0x08u, 0x0, false, true);
DEV_ASSERT(STATUS_SUCCESS == ret);
else
{

/* Re-initialize the driver to update the new EEPROM configuration */
ret = FLASH_DRV_Init(&Flash_InitConfig0, &flashSSDConfig);
if (ret != STATUS_SUCCESS)
{

return ret;
}

/* Make FlexRAM available for EEPROM */
ret = FLASH_DRV_SetFlexRamFunction(&flashSSDConfig, EEE_ENABLE, 0x0u, NULL);
DEV_ASSERT(STATUS_SUCCESS == ret);

}
}
else /* FLexRAM is already configured as EEPROM */
{

/* Make FlexRAM available for EEPROM, make sure that FlexNVM and FlexRAM
are already partitioned successfully before */

ret = FLASH_DRV_SetFlexRamFunction(&flashSSDConfig, EEE_ENABLE, 0x0u, NULL);
DEV_ASSERT(STATUS_SUCCESS == ret);

}
#endif

/* Erase the sixth PFlash sector */
/* Configure address, size to erase sector function. For example on S32K144 */
address = 6u * FEATURE_FLS_PF_BLOCK_SECTOR_SIZE; /* A sector size is 4KB */
size = FEATURE_FLS_PF_BLOCK_SECTOR_SIZE;
ret = FLASH_DRV_EraseSector(&flashSSDConfig, address, size);
DEV_ASSERT(STATUS_SUCCESS == ret);

/* Verify the erase operation at margin level value of 1, user read */
ret = FLASH_DRV_VerifySection(&flashSSDConfig, address, size, 1u);
DEV_ASSERT(STATUS_SUCCESS == ret);

/* Write some data to the erased PFlash sector */
size = BUFFER_SIZE;
ret = FLASH_DRV_Program(&flashSSDConfig, address, size, sourceBuffer);
DEV_ASSERT(STATUS_SUCCESS == ret);

/* Verify the program operation at margin level value of 1, user margin */
ret = FLASH_DRV_ProgramCheck(&flashSSDConfig, address, size, sourceBuffer, &

failAddr, 1u);
DEV_ASSERT(STATUS_SUCCESS == ret);

/* Try to write data to EEPROM if FlexRAM is configured as EEPROM */
if (flashSSDConfig.EEESize != 0u)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.30 Flash Memory (Flash) 357

{
address = flashSSDConfig.EERAMBase;
size = SIZE_WRITE_EEE;
ret = FLASH_DRV_EEEWrite(&flashSSDConfig, address, size, sourceBuffer);
DEV_ASSERT(STATUS_SUCCESS == ret);

}

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\flash\flash_driver.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager

Important Note

1. If using callback in the application, any code reachable from this function must not be placed in a Flash block
targeted for a program/erase operation to avoid the RWW error. Functions can be placed in RAM section by
using the START/END_FUNCTION_DEFINITION/DECLARATION_RAMSECTION macros.

2. To suspend the sector erase operation for a simple method, invoke the FLASH_DRV_EraseSuspend function
within callback of FLASH_DRV_EraseSector. In this case, the FLASH_DRV_EraseSuspend must not be
placed in the same block in which the Flash erase sector command is going on.

3. #FLASH_DRV_CommandSequence, FLASH_DRV_EraseSuspend and FLASH_DRV_EraseResume
should be executed from RAM or different Flash blocks which are targeted for writing to avoid the RWW error.
FLASH_DRV_EraseSuspend and FLASH_DRV_EraseResume functions should be called in pairs.

4. To guarantee the correct execution of this driver, the Flash cache in the Flash memory controller module
should be disabled before invoking any API.

5. Partitioning FlexNVM and FlexRAM for EEPROM usage shall be executed only once in the lifetime of the
device.

6. After successfully partitioning FlexNVM and FlexRAM for EEPROM usage, user needs to call FLASH_DR←↩

V_Init to update memory information in global structure.

7. Can not erase or program flash when MCU is high speed run mode or very low power mode.

8. S32K14xW needs to enable FlexRAM as traditional RAM for the first time using silicon.

Modules

• Flash Memory (Flash)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

358 CONTENTS

16.31 FlexCAN Driver

16.31.1 Detailed Description

How to use the FlexCAN driver in your application

In order to be able to use the FlexCAN in your application, the first thing to do is initializing it with the desired
configuration. This is done by calling the FLEXCAN_DRV_Init function. One of the arguments passed to this
function is the configuration which will be used for the FlexCAN module, specified by the flexcan_user_config_t
structure.

The flexcan_user_config_t structure allows you to configure the following:

• the number of message buffers needed;

• the number of Rx FIFO ID filters needed;

• enable/disable the Rx FIFO feature;

• the operation mode, which can be one of the following:

– normal mode;

– listen-only mode;

– loopback mode;

– freeze mode;

– disable mode;

• the payload size of the message buffers:

– 8 bytes;

– 16 bytes (only available with the FD feature enabled);

– 32 bytes (only available with the FD feature enabled);

– 64 bytes (only available with the FD feature enabled);

• enable/disable the Flexible Data-rate feature;

• the clock source of the CAN Protocol Engine (PE);

• the bitrate used for standard frames or for the arbitration phase of FD frames;

• the bitrate used for the data phase of FD frames;

• the Rx FIFO transfer type, which can be one of the following:

– using interrupts;

– using DMA, only on supported platforms;

• the DMA channel number to be used for DMA transfers, only on supported platforms;

The bitrate is represented by a flexcan_time_segment_t structure, with the following fields:

• propagation segment;

• phase segment 1;

• phase segment 2;

• clock prescaler division factor;

• resync jump width.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 359

Details about these fields can be found in the reference manual.

In order to use a mailbox for transmission/reception, it should be initialized using either FLEXCAN_DRV_Config←↩

RxMb, FLEXCAN_DRV_ConfigRxFifo or FLEXCAN_DRV_ConfigTxMb.

After having the mailbox configured, you can start sending/receiving data using the specified mailbox, by calling one
of the following functions:

• FLEXCAN_DRV_Send;

• FLEXCAN_DRV_SendBlocking;

• FLEXCAN_DRV_Receive;

• FLEXCAN_DRV_ReceiveBlocking;

• FLEXCAN_DRV_RxFifo;

• FLEXCAN_DRV_RxFifoBlocking.

A default FlexCAN configuration can be accesed by calling the FLEXCAN_DRV_GetDefaultConfig function. This
function takes as argument a flexcan_user_config_t structure and fills it according to the following settings:

• 16 message buffers

• flexible data rate disabled

• Rx FIFO disabled

• normal operation mode

• 8 byte payload size

• Protocol Engine clock = Oscillator clock

• bitrate of 500 Kbit/s (computed for PE clock = 8 MHz with sample point = 87.5)

FlexCAN Rx FIFO configuration

The Rx FIFO is receive-only and 6-message deep. The user can read the received messages sequentially, in the
order they were received, by repeatedly reading Message Buffer 0 (zero). The Rx FIFO ID filter table (configurable
from 8 to 128 table elements) specifies filtering criteria for accepting frames into the FIFO. This table is represented
through a structure of flexcan_id_table_t type, which specifies if specifies if Remote Frames are accepted into the
FIFO if they match the target ID, whether extended or standard frames are accepted into the FIFO if they match the
target ID and the target ID.

/* ID Filter table */
const flexcan_id_table_t filterTable[] = {

{
.isExtendedFrame = false,
.isRemoteFrame = false,
.id = 1U
},
...

};

FLEXCAN_DRV_ConfigRxFifo(INST_CANCOM1,
FLEXCAN_RX_FIFO_ID_FORMAT_A, filterTable);

The number of elements in the ID filter table is defined by the following formula:

• for format A: the number of Rx FIFO ID filters

• for format B: twice the number of Rx FIFO ID filters

• for format C: four times the number of Rx FIFO ID filters The user must provide the exact number of elements
in order to avoid any misconfiguration.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

360 CONTENTS

Each element in the ID filter table specifies an ID to be used as acceptance criteria for the FIFO, as follows:

• for format A: In the standard frame format, bits 10 to 0 of the ID are used for frame identification. In the
extended frame format, bits 28 to 0 are used.

• for format B: In the standard frame format, bits 10 to 0 of the ID are used for frame identification. In the
extended frame format, only the 14 most significant bits (28 to 15) of the ID are compared to the 14 most
significant bits (28 to 15) of the received ID.

• for format C: In both standard and extended frame formats, only the 8 most significant bits (7 to 0 for standard,
28 to 21 for extended) of the ID are compared to the 8 most significant bits (7 to 0 for standard, 28 to 21 for
extended) of the received ID.

When Rx FIFO feature is enabled, buffer 0 (zero) cannot be used for transmission. The transfer status in case of
FIFO enable feature can be monitored by calling FLEXCAN_DRV_GetTransferStatus for buffer index 0.

In order to use Rx FIFO filter mask options, enabled by FLEXCAN_DRV_SetRxIndividualMask() and FLEXCA←↩

N_DRV_SetRxFifoGlobalMask() user needs to call FLEXCAN_DRV_ConfigRxFifo() before using these functions
in Rx FIFO mode. In case of RxFIFO ID filter format B or C the FLEXCAN_DRV_SetRxFifoGlobalMask() will apply
the same mask for all filters IDs.

The FLEXCAN_DRV_SetRxIndividualMask() can self determine if CAN is in normal mode and will only set accep-
tance ID Mask. If CAN is in Rx FIFO mode, will determine the ID format type and will set the acceptance ID Mask
as corresponding Id Filter Format corresponding to individual mask number the user must ensure that the ID Ele-
ment is not affected by RxFIFO Global Mask in this case the ID Filter will be set as normal configuration to allow
functionality of receiving as normal MB of the remaining MBs outside of RxFIFO use.

Important Notes

• The FlexCAN driver does not handle clock setup or any kind of pin configuration. This is handled by the Clock
Manager and PinSettings modules, respectively. The driver assumes that the correct clock configurations
have been made, so it is the user's responsibility to set up clocking and pin configurations correctly.

• For some platforms, the clock source of the CAN Protocol Engine (PE) is not configurable from the FlexCAN
module. If this feature is not supported, the pe_clock field from the FlexCAN configuration structure is not
present.

• DMA module has to be initialized prior to FlexCAN Rx FIFO usage in DMA mode; also, the DMA channel
needs to be allocated by the application (the driver only takes care of configuring the DMA channel received
in the configuration structure).

• When used FLEXCAN_DRV_ReceiveBlocking() and FLEXCAN_DRV_SendBlocking() with timeout pa-
rameter 0 and the message is already in mailbox configured will report timeout and successful transmit or
receive the message.

• For Cortex-M0 architecture S32K116 and S32K118 CPUs need to pass as transmission/reception buffers
memory aligned, the only allowed exceptions are for FLEXCAN_DRV_Send(), FLEXCAN_DRV_Send←↩

Blocking(), FLEXCAN_DRV_ConfigRemoteResponseMb with a payload length less then 3 bytes

• When used the Pretended Network Mode, in Stop Mode the Interface Clock(CHI) (from Clock_Manager) need
to be disabled and Protocol Engine (PE) clock source enabled as selected from Can Module. Be aware that
on wakeup Run Mode to have enabled the Interface Clock(CHI).

• In case inside the callback function is called another blocking reception (FLEXCAN_DRV_Receive←↩

Blocking/FLEXCAN_DRV_RxFifoBlocking) or abort FLEXCAN_DRV_AbortTransfer without polling previ-
ous operation status this can lead to undetermined behavior.

Example:

#define INST_CANCOM1 (0U)
#define RX_MAILBOX (1U)
#define MSG_ID (2U)

flexcan_state_t canCom1_State;

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 361

const flexcan_user_config_t canCom1_InitConfig0 = {
.fd_enable = true,
.pe_clock = FLEXCAN_CLK_SOURCE_OSC,
.max_num_mb = 16,
.num_id_filters = FLEXCAN_RX_FIFO_ID_FILTERS_8,
.is_rx_fifo_needed = false,
.flexcanMode = FLEXCAN_NORMAL_MODE,
.payload = FLEXCAN_PAYLOAD_SIZE_8,
.bitrate = {

.propSeg = 7,

.phaseSeg1 = 4,

.phaseSeg2 = 1,

.preDivider = 0,

.rJumpwidth = 1
},
.bitrate_cbt = {

.propSeg = 11,

.phaseSeg1 = 1,

.phaseSeg2 = 1,

.preDivider = 0,

.rJumpwidth = 1
},
.transfer_type = FLEXCAN_RXFIFO_USING_INTERRUPTS,
.rxFifoDMAChannel = 0U

};

/* Initialize FlexCAN driver */
FLEXCAN_DRV_Init(INST_CANCOM1, &canCom1_State, &canCom1_InitConfig0);

/* Set information about the data to be received */
flexcan_data_info_t dataInfo =
{

.data_length = 1U,

.msg_id_type = FLEXCAN_MSG_ID_STD,

.enable_brs = true,

.fd_enable = true,

.fd_padding = 0U
};

/* Configure Rx message buffer with index 1 to receive frames with ID 2 */
FLEXCAN_DRV_ConfigRxMb(INST_CANCOM1, RX_MAILBOX, &dataInfo, MSG_ID);

/* Receive a frame in the recvBuff variable */
flexcan_msgbuff_t recvBuff;

FLEXCAN_DRV_Receive(INST_CANCOM1, RX_MAILBOX, &recvBuff);
/* Wait for the message to be received */
while (FLEXCAN_DRV_GetTransferStatus(INST_CANCOM1, RX_MAILBOX) == STATUS_BUSY)

;

/* De-initialize driver */
FLEXCAN_DRV_Deinit(INST_CANCOM1);

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\flexcan\flexcan_driver.c
${S32SDK_PATH}\platform\drivers\src\flexcan\flexcan_hw_access.c
${S32SDK_PATH}\platform\drivers\src\flexcan\flexcan_irq.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt) Enhanced Direct Memory Access (eDMA)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

362 CONTENTS

Data Structures

• struct flexcan_msgbuff_t

FlexCAN message buffer structure Implements : flexcan_msgbuff_t_Class. More...

• struct flexcan_mb_handle_t

Information needed for internal handling of a given MB. Implements : flexcan_mb_handle_t_Class. More...

• struct FlexCANState

Internal driver state information. More...

• struct flexcan_data_info_t

FlexCAN data info from user Implements : flexcan_data_info_t_Class. More...

• struct flexcan_id_table_t

FlexCAN Rx FIFO ID filter table structure Implements : flexcan_id_table_t_Class. More...

• struct flexcan_time_segment_t

FlexCAN bitrate related structures Implements : flexcan_time_segment_t_Class. More...

• struct flexcan_user_config_t

FlexCAN configuration. More...

Typedefs

• typedef struct FlexCANState flexcan_state_t

Internal driver state information.

• typedef void(∗ flexcan_callback_t) (uint8_t instance, flexcan_event_type_t eventType, uint32_t buffIdx,
flexcan_state_t ∗flexcanState)

FlexCAN Driver callback function type Implements : flexcan_callback_t_Class.

• typedef void(∗ flexcan_error_callback_t) (uint8_t instance, flexcan_event_type_t eventType, flexcan_state_t
∗flexcanState)

FlexCAN Driver error callback function type Implements : flexcan_error_callback_t_Class.

Enumerations

• enum flexcan_rxfifo_transfer_type_t { FLEXCAN_RXFIFO_USING_INTERRUPTS }

The type of the RxFIFO transfer (interrupts/DMA). Implements : flexcan_rxfifo_transfer_type_t_Class.

• enum flexcan_event_type_t {
FLEXCAN_EVENT_RX_COMPLETE, FLEXCAN_EVENT_RXFIFO_COMPLETE, FLEXCAN_EVENT_RX←↩

FIFO_WARNING, FLEXCAN_EVENT_RXFIFO_OVERFLOW,
FLEXCAN_EVENT_TX_COMPLETE, FLEXCAN_EVENT_ERROR }

The type of the event which occurred when the callback was invoked. Implements : flexcan_event_type_t_Class.

• enum flexcan_mb_state_t { FLEXCAN_MB_IDLE, FLEXCAN_MB_RX_BUSY, FLEXCAN_MB_TX_BUSY }

The state of a given MB (idle/Rx busy/Tx busy). Implements : flexcan_mb_state_t_Class.

• enum flexcan_msgbuff_id_type_t { FLEXCAN_MSG_ID_STD, FLEXCAN_MSG_ID_EXT }

FlexCAN Message Buffer ID type Implements : flexcan_msgbuff_id_type_t_Class.

• enum flexcan_rx_fifo_id_filter_num_t {
FLEXCAN_RX_FIFO_ID_FILTERS_8 = 0x0, FLEXCAN_RX_FIFO_ID_FILTERS_16 = 0x1, FLEXCAN_R←↩

X_FIFO_ID_FILTERS_24 = 0x2, FLEXCAN_RX_FIFO_ID_FILTERS_32 = 0x3,
FLEXCAN_RX_FIFO_ID_FILTERS_40 = 0x4, FLEXCAN_RX_FIFO_ID_FILTERS_48 = 0x5, FLEXCAN_←↩

RX_FIFO_ID_FILTERS_56 = 0x6, FLEXCAN_RX_FIFO_ID_FILTERS_64 = 0x7,
FLEXCAN_RX_FIFO_ID_FILTERS_72 = 0x8, FLEXCAN_RX_FIFO_ID_FILTERS_80 = 0x9, FLEXCAN_←↩

RX_FIFO_ID_FILTERS_88 = 0xA, FLEXCAN_RX_FIFO_ID_FILTERS_96 = 0xB,
FLEXCAN_RX_FIFO_ID_FILTERS_104 = 0xC, FLEXCAN_RX_FIFO_ID_FILTERS_112 = 0xD, FLEXCA←↩

N_RX_FIFO_ID_FILTERS_120 = 0xE, FLEXCAN_RX_FIFO_ID_FILTERS_128 = 0xF }

FlexCAN Rx FIFO filters number Implements : flexcan_rx_fifo_id_filter_num_t_Class.

• enum flexcan_rx_mask_type_t { FLEXCAN_RX_MASK_GLOBAL, FLEXCAN_RX_MASK_INDIVIDUAL }

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 363

FlexCAN Rx mask type. Implements : flexcan_rx_mask_type_t_Class.

• enum flexcan_rx_fifo_id_element_format_t { FLEXCAN_RX_FIFO_ID_FORMAT_A, FLEXCAN_RX_FIFO←↩

_ID_FORMAT_B, FLEXCAN_RX_FIFO_ID_FORMAT_C, FLEXCAN_RX_FIFO_ID_FORMAT_D }

ID formats for Rx FIFO Implements : flexcan_rx_fifo_id_element_format_t_Class.

• enum flexcan_operation_modes_t {
FLEXCAN_NORMAL_MODE, FLEXCAN_LISTEN_ONLY_MODE, FLEXCAN_LOOPBACK_MODE, FLEX←↩

CAN_FREEZE_MODE,
FLEXCAN_DISABLE_MODE }

FlexCAN operation modes Implements : flexcan_operation_modes_t_Class.

Bit rate

• void FLEXCAN_DRV_SetBitrate (uint8_t instance, const flexcan_time_segment_t ∗bitrate)

Sets the FlexCAN bit rate for standard frames or the arbitration phase of FD frames.

• void FLEXCAN_DRV_GetBitrate (uint8_t instance, flexcan_time_segment_t ∗bitrate)

Gets the FlexCAN bit rate for standard frames or the arbitration phase of FD frames.

Rx MB and Rx FIFO masks

• void FLEXCAN_DRV_SetRxMaskType (uint8_t instance, flexcan_rx_mask_type_t type)

Sets the Rx masking type.

• void FLEXCAN_DRV_SetRxFifoGlobalMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t
mask)

Sets the FlexCAN Rx FIFO global mask (standard or extended). This mask is applied to all filters ID regardless the
ID Filter format.

• void FLEXCAN_DRV_SetRxMbGlobalMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t
mask)

Sets the FlexCAN Rx MB global mask (standard or extended).

• void FLEXCAN_DRV_SetRxMb14Mask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t mask)

Sets the FlexCAN Rx MB 14 mask (standard or extended).

• void FLEXCAN_DRV_SetRxMb15Mask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t mask)

Sets the FlexCAN Rx MB 15 mask (standard or extended).

• status_t FLEXCAN_DRV_SetRxIndividualMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint8←↩

_t mb_idx, uint32_t mask)

Sets the FlexCAN Rx individual mask (standard or extended).

Initialization and Shutdown

• uint32_t FLEXCAN_DRV_GetDefaultConfig (flexcan_user_config_t ∗config)

Gets the default configuration structure.

• status_t FLEXCAN_DRV_Init (uint8_t instance, flexcan_state_t ∗state, const flexcan_user_config_t ∗data)

Initializes the FlexCAN peripheral.

• status_t FLEXCAN_DRV_Deinit (uint8_t instance)

Shuts down a FlexCAN instance.

Send configuration

• status_t FLEXCAN_DRV_ConfigTxMb (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗tx_info,
uint32_t msg_id)

FlexCAN transmit message buffer field configuration.

• status_t FLEXCAN_DRV_ConfigRemoteResponseMb (uint8_t instance, uint8_t mb_idx, const flexcan_←↩

data_info_t ∗tx_info, uint32_t msg_id, const uint8_t ∗mb_data)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

364 CONTENTS

Configures a transmit message buffer for remote frame response.

• status_t FLEXCAN_DRV_SendBlocking (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗tx_info,
uint32_t msg_id, const uint8_t ∗mb_data, uint32_t timeout_ms)

Sends a CAN frame using the specified message buffer, in a blocking manner.

• status_t FLEXCAN_DRV_Send (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗tx_info,
uint32_t msg_id, const uint8_t ∗mb_data)

Sends a CAN frame using the specified message buffer.

Receive configuration

• status_t FLEXCAN_DRV_ConfigRxMb (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗rx_info,
uint32_t msg_id)

FlexCAN receive message buffer field configuration.

• void FLEXCAN_DRV_ConfigRxFifo (uint8_t instance, flexcan_rx_fifo_id_element_format_t id_format, const
flexcan_id_table_t ∗id_filter_table)

FlexCAN Rx FIFO field configuration.

• status_t FLEXCAN_DRV_ReceiveBlocking (uint8_t instance, uint8_t mb_idx, flexcan_msgbuff_t ∗data,
uint32_t timeout_ms)

Receives a CAN frame using the specified message buffer, in a blocking manner.

• status_t FLEXCAN_DRV_Receive (uint8_t instance, uint8_t mb_idx, flexcan_msgbuff_t ∗data)

Receives a CAN frame using the specified message buffer.

• status_t FLEXCAN_DRV_RxFifoBlocking (uint8_t instance, flexcan_msgbuff_t ∗data, uint32_t timeout_ms)

Receives a CAN frame using the message FIFO, in a blocking manner.

• status_t FLEXCAN_DRV_RxFifo (uint8_t instance, flexcan_msgbuff_t ∗data)

Receives a CAN frame using the message FIFO.

Transfer status

• status_t FLEXCAN_DRV_AbortTransfer (uint8_t instance, uint8_t mb_idx)

Ends a non-blocking FlexCAN transfer early.

• status_t FLEXCAN_DRV_GetTransferStatus (uint8_t instance, uint8_t mb_idx)

Returns whether the previous FlexCAN transfer has finished.

• uint32_t FLEXCAN_DRV_GetErrorStatus (uint8_t instance)

Returns reported error conditions.

IRQ handler callback

• void FLEXCAN_DRV_InstallEventCallback (uint8_t instance, flexcan_callback_t callback, void ∗callback←↩

Param)

Installs a callback function for the IRQ handler.

• void FLEXCAN_DRV_InstallErrorCallback (uint8_t instance, flexcan_error_callback_t callback, void
∗callbackParam)

Installs an error callback function for the IRQ handler and enables error interrupts.

16.31.2 Data Structure Documentation

16.31.2.1 struct flexcan_msgbuff_t

FlexCAN message buffer structure Implements : flexcan_msgbuff_t_Class.

Definition at line 100 of file flexcan_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 365

Data Fields

• uint32_t cs
• uint32_t msgId
• uint8_t data [64]
• uint8_t dataLen

Field Documentation

16.31.2.1.1 uint32_t cs

Code and Status

Definition at line 101 of file flexcan_driver.h.

16.31.2.1.2 uint8_t data[64]

Data bytes of the FlexCAN message

Definition at line 103 of file flexcan_driver.h.

16.31.2.1.3 uint8_t dataLen

Length of data in bytes

Definition at line 104 of file flexcan_driver.h.

16.31.2.1.4 uint32_t msgId

Message Buffer ID

Definition at line 102 of file flexcan_driver.h.

16.31.2.2 struct flexcan_mb_handle_t

Information needed for internal handling of a given MB. Implements : flexcan_mb_handle_t_Class.

Definition at line 110 of file flexcan_driver.h.

Data Fields

• flexcan_msgbuff_t ∗ mb_message
• semaphore_t mbSema
• volatile flexcan_mb_state_t state
• bool isBlocking
• bool isRemote

Field Documentation

16.31.2.2.1 bool isBlocking

True if the transfer is blocking

Definition at line 114 of file flexcan_driver.h.

16.31.2.2.2 bool isRemote

True if the frame is a remote frame

Definition at line 115 of file flexcan_driver.h.

16.31.2.2.3 flexcan_msgbuff_t∗ mb_message

The FlexCAN MB structure

Definition at line 111 of file flexcan_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

366 CONTENTS

16.31.2.2.4 semaphore_t mbSema

Semaphore used for signaling completion of a blocking transfer

Definition at line 112 of file flexcan_driver.h.

16.31.2.2.5 volatile flexcan_mb_state_t state

The state of the current MB (idle/Rx busy/Tx busy)

Definition at line 113 of file flexcan_driver.h.

16.31.2.3 struct FlexCANState

Internal driver state information.

Note

The contents of this structure are internal to the driver and should not be modified by users. Also, contents of
the structure are subject to change in future releases. Implements : flexcan_state_t_Class

Definition at line 126 of file flexcan_driver.h.

Data Fields

• flexcan_mb_handle_t mbs [FEATURE_CAN_MAX_MB_NUM]
• void(∗ callback)(uint8_t instance, flexcan_event_type_t eventType, uint32_t buffIdx, struct FlexCANState
∗driverState)

• void ∗ callbackParam
• void(∗ error_callback)(uint8_t instance, flexcan_event_type_t eventType, struct FlexCANState ∗driverState)
• void ∗ errorCallbackParam
• flexcan_rxfifo_transfer_type_t transferType

Field Documentation

16.31.2.3.1 void(∗ callback) (uint8_t instance, flexcan_event_type_t eventType, uint32_t buffIdx, struct FlexCANState
∗driverState)

IRQ handler callback function.

Definition at line 129 of file flexcan_driver.h.

16.31.2.3.2 void∗ callbackParam

Parameter used to pass user data when invoking the callback function.

Definition at line 133 of file flexcan_driver.h.

16.31.2.3.3 void(∗ error_callback) (uint8_t instance, flexcan_event_type_t eventType, struct FlexCANState ∗driverState)

Error IRQ handler callback function.

Definition at line 136 of file flexcan_driver.h.

16.31.2.3.4 void∗ errorCallbackParam

Parameter used to pass user data when invoking the error callback function.

Definition at line 140 of file flexcan_driver.h.

16.31.2.3.5 flexcan_mb_handle_t mbs[FEATURE_CAN_MAX_MB_NUM]

Array containing information related to each MB

Definition at line 127 of file flexcan_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 367

16.31.2.3.6 flexcan_rxfifo_transfer_type_t transferType

Type of RxFIFO transfer.

Definition at line 147 of file flexcan_driver.h.

16.31.2.4 struct flexcan_data_info_t

FlexCAN data info from user Implements : flexcan_data_info_t_Class.

Definition at line 153 of file flexcan_driver.h.

Data Fields

• flexcan_msgbuff_id_type_t msg_id_type

• uint32_t data_length

• bool is_remote

Field Documentation

16.31.2.4.1 uint32_t data_length

Length of Data in Bytes

Definition at line 155 of file flexcan_driver.h.

16.31.2.4.2 bool is_remote

Specifies if the frame is standard or remote

Definition at line 162 of file flexcan_driver.h.

16.31.2.4.3 flexcan_msgbuff_id_type_t msg_id_type

Type of message ID (standard or extended)

Definition at line 154 of file flexcan_driver.h.

16.31.2.5 struct flexcan_id_table_t

FlexCAN Rx FIFO ID filter table structure Implements : flexcan_id_table_t_Class.

Definition at line 209 of file flexcan_driver.h.

Data Fields

• bool isRemoteFrame

• bool isExtendedFrame

• uint32_t id

Field Documentation

16.31.2.5.1 uint32_t id

Rx FIFO ID filter element

Definition at line 212 of file flexcan_driver.h.

16.31.2.5.2 bool isExtendedFrame

Extended frame

Definition at line 211 of file flexcan_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

368 CONTENTS

16.31.2.5.3 bool isRemoteFrame

Remote frame

Definition at line 210 of file flexcan_driver.h.

16.31.2.6 struct flexcan_time_segment_t

FlexCAN bitrate related structures Implements : flexcan_time_segment_t_Class.

Definition at line 241 of file flexcan_driver.h.

Data Fields

• uint32_t propSeg
• uint32_t phaseSeg1
• uint32_t phaseSeg2
• uint32_t preDivider
• uint32_t rJumpwidth

Field Documentation

16.31.2.6.1 uint32_t phaseSeg1

Phase segment 1

Definition at line 243 of file flexcan_driver.h.

16.31.2.6.2 uint32_t phaseSeg2

Phase segment 2

Definition at line 244 of file flexcan_driver.h.

16.31.2.6.3 uint32_t preDivider

Clock prescaler division factor

Definition at line 245 of file flexcan_driver.h.

16.31.2.6.4 uint32_t propSeg

Propagation segment

Definition at line 242 of file flexcan_driver.h.

16.31.2.6.5 uint32_t rJumpwidth

Resync jump width

Definition at line 246 of file flexcan_driver.h.

16.31.2.7 struct flexcan_user_config_t

FlexCAN configuration.

Definition at line 253 of file flexcan_driver.h.

Data Fields

• uint32_t max_num_mb
• flexcan_rx_fifo_id_filter_num_t num_id_filters
• bool is_rx_fifo_needed
• flexcan_operation_modes_t flexcanMode
• flexcan_time_segment_t bitrate
• flexcan_rxfifo_transfer_type_t transfer_type

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 369

Field Documentation

16.31.2.7.1 flexcan_time_segment_t bitrate

The bitrate used for standard frames or for the arbitration phase of FD frames.

Definition at line 269 of file flexcan_driver.h.

16.31.2.7.2 flexcan_operation_modes_t flexcanMode

User configurable FlexCAN operation modes.

Definition at line 260 of file flexcan_driver.h.

16.31.2.7.3 bool is_rx_fifo_needed

1 if needed; 0 if not. This controls whether the Rx FIFO feature is enabled or not.

Definition at line 258 of file flexcan_driver.h.

16.31.2.7.4 uint32_t max_num_mb

The maximum number of Message Buffers

Definition at line 254 of file flexcan_driver.h.

16.31.2.7.5 flexcan_rx_fifo_id_filter_num_t num_id_filters

The number of RX FIFO ID filters needed

Definition at line 256 of file flexcan_driver.h.

16.31.2.7.6 flexcan_rxfifo_transfer_type_t transfer_type

Specifies if the Rx FIFO uses interrupts or DMA.

Definition at line 273 of file flexcan_driver.h.

16.31.3 Typedef Documentation

16.31.3.1 typedef void(∗ flexcan_callback_t) (uint8_t instance, flexcan_event_type_t eventType, uint32_t buffIdx,
flexcan_state_t ∗flexcanState)

FlexCAN Driver callback function type Implements : flexcan_callback_t_Class.

Definition at line 335 of file flexcan_driver.h.

16.31.3.2 typedef void(∗ flexcan_error_callback_t) (uint8_t instance, flexcan_event_type_t eventType, flexcan_state_t
∗flexcanState)

FlexCAN Driver error callback function type Implements : flexcan_error_callback_t_Class.

Definition at line 341 of file flexcan_driver.h.

16.31.3.3 typedef struct FlexCANState flexcan_state_t

Internal driver state information.

Note

The contents of this structure are internal to the driver and should not be modified by users. Also, contents of
the structure are subject to change in future releases. Implements : flexcan_state_t_Class

16.31.4 Enumeration Type Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

370 CONTENTS

16.31.4.1 enum flexcan_event_type_t

The type of the event which occurred when the callback was invoked. Implements : flexcan_event_type_t_Class.

Enumerator

FLEXCAN_EVENT_RX_COMPLETE A frame was received in the configured Rx MB.

FLEXCAN_EVENT_RXFIFO_COMPLETE A frame was received in the Rx FIFO.

FLEXCAN_EVENT_RXFIFO_WARNING Rx FIFO is almost full (5 frames).

FLEXCAN_EVENT_RXFIFO_OVERFLOW Rx FIFO is full (incoming message was lost).

FLEXCAN_EVENT_TX_COMPLETE A frame was sent from the configured Tx MB.

FLEXCAN_EVENT_ERROR

Definition at line 49 of file flexcan_driver.h.

16.31.4.2 enum flexcan_mb_state_t

The state of a given MB (idle/Rx busy/Tx busy). Implements : flexcan_mb_state_t_Class.

Enumerator

FLEXCAN_MB_IDLE The MB is not used by any transfer.

FLEXCAN_MB_RX_BUSY The MB is used for a reception.

FLEXCAN_MB_TX_BUSY The MB is used for a transmission.

Definition at line 70 of file flexcan_driver.h.

16.31.4.3 enum flexcan_msgbuff_id_type_t

FlexCAN Message Buffer ID type Implements : flexcan_msgbuff_id_type_t_Class.

Enumerator

FLEXCAN_MSG_ID_STD Standard ID

FLEXCAN_MSG_ID_EXT Extended ID

Definition at line 82 of file flexcan_driver.h.

16.31.4.4 enum flexcan_operation_modes_t

FlexCAN operation modes Implements : flexcan_operation_modes_t_Class.

Enumerator

FLEXCAN_NORMAL_MODE Normal mode or user mode

FLEXCAN_LISTEN_ONLY_MODE Listen-only mode

FLEXCAN_LOOPBACK_MODE Loop-back mode

FLEXCAN_FREEZE_MODE Freeze mode

FLEXCAN_DISABLE_MODE Module disable mode

Definition at line 218 of file flexcan_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 371

16.31.4.5 enum flexcan_rx_fifo_id_element_format_t

ID formats for Rx FIFO Implements : flexcan_rx_fifo_id_element_format_t_Class.

Enumerator

FLEXCAN_RX_FIFO_ID_FORMAT_A One full ID (standard and extended) per ID Filter Table element.

FLEXCAN_RX_FIFO_ID_FORMAT_B Two full standard IDs or two partial 14-bit (standard and extended) IDs
per ID Filter Table element.

FLEXCAN_RX_FIFO_ID_FORMAT_C Four partial 8-bit Standard IDs per ID Filter Table element.

FLEXCAN_RX_FIFO_ID_FORMAT_D All frames rejected.

Definition at line 198 of file flexcan_driver.h.

16.31.4.6 enum flexcan_rx_fifo_id_filter_num_t

FlexCAN Rx FIFO filters number Implements : flexcan_rx_fifo_id_filter_num_t_Class.

Enumerator

FLEXCAN_RX_FIFO_ID_FILTERS_8 8 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_16 16 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_24 24 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_32 32 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_40 40 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_48 48 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_56 56 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_64 64 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_72 72 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_80 80 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_88 88 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_96 96 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_104 104 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_112 112 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_120 120 Rx FIFO Filters.

FLEXCAN_RX_FIFO_ID_FILTERS_128 128 Rx FIFO Filters.

Definition at line 168 of file flexcan_driver.h.

16.31.4.7 enum flexcan_rx_mask_type_t

FlexCAN Rx mask type. Implements : flexcan_rx_mask_type_t_Class.

Enumerator

FLEXCAN_RX_MASK_GLOBAL Rx global mask

FLEXCAN_RX_MASK_INDIVIDUAL Rx individual mask

Definition at line 190 of file flexcan_driver.h.

16.31.4.8 enum flexcan_rxfifo_transfer_type_t

The type of the RxFIFO transfer (interrupts/DMA). Implements : flexcan_rxfifo_transfer_type_t_Class.

Enumerator

FLEXCAN_RXFIFO_USING_INTERRUPTS Use interrupts for RxFIFO.

Definition at line 39 of file flexcan_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

372 CONTENTS

16.31.5 Function Documentation

16.31.5.1 status_t FLEXCAN_DRV_AbortTransfer (uint8_t instance, uint8_t mb_idx)

Ends a non-blocking FlexCAN transfer early.

Parameters

instance A FlexCAN instance number
mb_idx The index of the message buffer

Returns

STATUS_SUCCESS if successful; STATUS_CAN_NO_TRANSFER_IN_PROGRESS if no transfer was run-
ning

Definition at line 1950 of file flexcan_driver.c.

16.31.5.2 status_t FLEXCAN_DRV_ConfigRemoteResponseMb (uint8_t instance, uint8_t mb_idx, const
flexcan_data_info_t ∗ tx_info, uint32_t msg_id, const uint8_t ∗ mb_data)

Configures a transmit message buffer for remote frame response.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer
tx_info Data info

msg_id ID of the message to transmit
mb_data Bytes of the FlexCAN message

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the index of the message
buffer is invalid

Definition at line 931 of file flexcan_driver.c.

16.31.5.3 void FLEXCAN_DRV_ConfigRxFifo (uint8_t instance, flexcan_rx_fifo_id_element_format_t id_format, const
flexcan_id_table_t ∗ id_filter_table)

FlexCAN Rx FIFO field configuration.

Note

The number of elements in the ID filter table is defined by the following formula:

• for format A: the number of Rx FIFO ID filters

• for format B: twice the number of Rx FIFO ID filters

• for format C: four times the number of Rx FIFO ID filters The user must provide the exact number of
elements in order to avoid any misconfiguration.

Each element in the ID filter table specifies an ID to be used as acceptance criteria for the FIFO as follows:

• for format A: In the standard frame format, bits 10 to 0 of the ID are used for frame identification. In the
extended frame format, bits 28 to 0 are used.

• for format B: In the standard frame format, bits 10 to 0 of the ID are used for frame identification. In the
extended frame format, only the 14 most significant bits (28 to 15) of the ID are compared to the 14 most
significant bits (28 to 15) of the received ID.

• for format C: In both standard and extended frame formats, only the 8 most significant bits (7 to 0 for standard,
28 to 21 for extended) of the ID are compared to the 8 most significant bits (7 to 0 for standard, 28 to 21 for
extended) of the received ID.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 373

Parameters

instance A FlexCAN instance number
id_format The format of the Rx FIFO ID Filter Table Elements

id_filter_table The ID filter table elements which contain RTR bit, IDE bit, and Rx message ID

Definition at line 1175 of file flexcan_driver.c.

16.31.5.4 status_t FLEXCAN_DRV_ConfigRxMb (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗ rx_info,
uint32_t msg_id)

FlexCAN receive message buffer field configuration.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer
rx_info Data info
msg_id ID of the message to transmit

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the index of a message buffer
is invalid;

Definition at line 1113 of file flexcan_driver.c.

16.31.5.5 status_t FLEXCAN_DRV_ConfigTxMb (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗ tx_info,
uint32_t msg_id)

FlexCAN transmit message buffer field configuration.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer
tx_info Data info

msg_id ID of the message to transmit

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the index of the message
buffer is invalid

Definition at line 887 of file flexcan_driver.c.

16.31.5.6 status_t FLEXCAN_DRV_Deinit (uint8_t instance)

Shuts down a FlexCAN instance.

Parameters

instance A FlexCAN instance number

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if failed

Definition at line 1379 of file flexcan_driver.c.

16.31.5.7 void FLEXCAN_DRV_GetBitrate (uint8_t instance, flexcan_time_segment_t ∗ bitrate)

Gets the FlexCAN bit rate for standard frames or the arbitration phase of FD frames.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

374 CONTENTS

Parameters

instance A FlexCAN instance number
bitrate A pointer to a variable for returning the FlexCAN bit rate settings

Definition at line 236 of file flexcan_driver.c.

16.31.5.8 uint32_t FLEXCAN_DRV_GetDefaultConfig (flexcan_user_config_t ∗ config)

Gets the default configuration structure.

This function gets the default configuration structure, with the following settings:

• 16 message buffers

• flexible data rate disabled

• Rx FIFO disabled

• normal operation mode

• 8 byte payload size

• Protocol Engine clock = Oscillator clock

• bitrate of 500 Kbit/s (computed for sample point = 87.5)

Parameters

out config The configuration structure

Returns

The bitrate for generated configuration structure.

Definition at line 2759 of file flexcan_driver.c.

16.31.5.9 uint32_t FLEXCAN_DRV_GetErrorStatus (uint8_t instance)

Returns reported error conditions.

Reports various error conditions detected in the reception and transmission of a CAN frame and some general
status of the device.

Parameters

instance The FlexCAN instance number.

Returns

value of the Error and Status 1 register;

Definition at line 1931 of file flexcan_driver.c.

16.31.5.10 status_t FLEXCAN_DRV_GetTransferStatus (uint8_t instance, uint8_t mb_idx)

Returns whether the previous FlexCAN transfer has finished.

When performing an async transfer, call this function to ascertain the state of the current transfer: in progress (or
busy) or complete (success).

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 375

Parameters

instance The FlexCAN instance number.
mb_idx The index of the message buffer.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if a resource is busy; STATUS_ERROR in case of a DMA
error transfer;

Definition at line 1898 of file flexcan_driver.c.

16.31.5.11 status_t FLEXCAN_DRV_Init (uint8_t instance, flexcan_state_t ∗ state, const flexcan_user_config_t ∗ data
)

Initializes the FlexCAN peripheral.

This function initializes

Parameters

instance A FlexCAN instance number
state Pointer to the FlexCAN driver state structure.
data The FlexCAN platform data

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the index of a message buffer
is invalid; STATUS_ERROR if other error occurred

Definition at line 687 of file flexcan_driver.c.

16.31.5.12 void FLEXCAN_DRV_InstallErrorCallback (uint8_t instance, flexcan_error_callback_t callback, void ∗
callbackParam)

Installs an error callback function for the IRQ handler and enables error interrupts.

Parameters

instance The FlexCAN instance number.
callback The error callback function.

callbackParam User parameter passed to the error callback function through the state parameter.

Definition at line 2469 of file flexcan_driver.c.

16.31.5.13 void FLEXCAN_DRV_InstallEventCallback (uint8_t instance, flexcan_callback_t callback, void ∗ callbackParam
)

Installs a callback function for the IRQ handler.

Parameters

instance The FlexCAN instance number.
callback The callback function.

callbackParam User parameter passed to the callback function through the state parameter.

Definition at line 2449 of file flexcan_driver.c.

16.31.5.14 status_t FLEXCAN_DRV_Receive (uint8_t instance, uint8_t mb_idx, flexcan_msgbuff_t ∗ data)

Receives a CAN frame using the specified message buffer.

This function receives a CAN frame using a configured message buffer. The function returns immediately. If a
callback is installed, it will be invoked after the frame was received and read into the specified buffer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

376 CONTENTS

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer

data The FlexCAN receive message buffer data.

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the index of a message buffer
is invalid; STATUS_BUSY if a resource is busy

Definition at line 1268 of file flexcan_driver.c.

16.31.5.15 status_t FLEXCAN_DRV_ReceiveBlocking (uint8_t instance, uint8_t mb_idx, flexcan_msgbuff_t ∗ data,
uint32_t timeout_ms)

Receives a CAN frame using the specified message buffer, in a blocking manner.

This function receives a CAN frame using a configured message buffer. The function blocks until either a frame was
received, or the specified timeout expired.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer

data The FlexCAN receive message buffer data.
timeout_ms A timeout for the transfer in milliseconds.

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the index of a message buffer
is invalid; STATUS_BUSY if a resource is busy; STATUS_TIMEOUT if the timeout is reached

Definition at line 1209 of file flexcan_driver.c.

16.31.5.16 status_t FLEXCAN_DRV_RxFifo (uint8_t instance, flexcan_msgbuff_t ∗ data)

Receives a CAN frame using the message FIFO.

This function receives a CAN frame using the Rx FIFO. The function returns immediately. If a callback is installed,
it will be invoked after the frame was received and read into the specified buffer.

Parameters

instance A FlexCAN instance number
data The FlexCAN receive message buffer data.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if a resource is busy; STATUS_ERROR if other error
occurred

Definition at line 1358 of file flexcan_driver.c.

16.31.5.17 status_t FLEXCAN_DRV_RxFifoBlocking (uint8_t instance, flexcan_msgbuff_t ∗ data, uint32_t timeout_ms)

Receives a CAN frame using the message FIFO, in a blocking manner.

This function receives a CAN frame using the Rx FIFO. The function blocks until either a frame was received, or the
specified timeout expired.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 377

Parameters

instance A FlexCAN instance number
data The FlexCAN receive message buffer data.

timeout_ms A timeout for the transfer in milliseconds.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if a resource is busy; STATUS_TIMEOUT if the timeout
is reached; STATUS_ERROR if other error occurred

Definition at line 1298 of file flexcan_driver.c.

16.31.5.18 status_t FLEXCAN_DRV_Send (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗ tx_info, uint32_t
msg_id, const uint8_t ∗ mb_data)

Sends a CAN frame using the specified message buffer.

This function sends a CAN frame using a configured message buffer. The function returns immediately. If a callback
is installed, it will be invoked after the frame was sent.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer
tx_info Data info

msg_id ID of the message to transmit
mb_data Bytes of the FlexCAN message.

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the index of a message buffer
is invalid; STATUS_BUSY if a resource is busy

Definition at line 1070 of file flexcan_driver.c.

16.31.5.19 status_t FLEXCAN_DRV_SendBlocking (uint8_t instance, uint8_t mb_idx, const flexcan_data_info_t ∗ tx_info,
uint32_t msg_id, const uint8_t ∗ mb_data, uint32_t timeout_ms)

Sends a CAN frame using the specified message buffer, in a blocking manner.

This function sends a CAN frame using a configured message buffer. The function blocks until either the frame was
sent, or the specified timeout expired.

Parameters

instance A FlexCAN instance number
mb_idx Index of the message buffer
tx_info Data info

msg_id ID of the message to transmit
mb_data Bytes of the FlexCAN message

timeout_ms A timeout for the transfer in milliseconds.

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the index of a message buffer
is invalid; STATUS_BUSY if a resource is busy; STATUS_TIMEOUT if the timeout is reached

Definition at line 968 of file flexcan_driver.c.

16.31.5.20 void FLEXCAN_DRV_SetBitrate (uint8_t instance, const flexcan_time_segment_t ∗ bitrate)

Sets the FlexCAN bit rate for standard frames or the arbitration phase of FD frames.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

378 CONTENTS

Parameters

instance A FlexCAN instance number
bitrate A pointer to the FlexCAN bit rate settings.

Definition at line 159 of file flexcan_driver.c.

16.31.5.21 void FLEXCAN_DRV_SetRxFifoGlobalMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t
mask)

Sets the FlexCAN Rx FIFO global mask (standard or extended). This mask is applied to all filters ID regardless the
ID Filter format.

Parameters

instance A FlexCAN instance number
id_type Standard ID or extended ID mask type

mask Mask Value. In FIFO mode, when using ID Format A or B, bit 31 encodes RTR check and bit
30 encodes IDE check respectively. For ID Format C, bits 31 and 30 are ignored.

Definition at line 317 of file flexcan_driver.c.

16.31.5.22 status_t FLEXCAN_DRV_SetRxIndividualMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint8_t
mb_idx, uint32_t mask)

Sets the FlexCAN Rx individual mask (standard or extended).

Parameters

instance A FlexCAN instance number
id_type A standard ID or an extended ID
mb_idx Index of the message buffer

mask Mask Value. In FIFO mode, when using ID Format A or B, bit 31 encodes RTR check and bit
30 encodes IDE check respectively. For ID Format C, bits 31 and 30 are ignored.

Returns

STATUS_SUCCESS if successful; STATUS_CAN_BUFF_OUT_OF_RANGE if the index of the message
buffer is invalid.

Definition at line 504 of file flexcan_driver.c.

16.31.5.23 void FLEXCAN_DRV_SetRxMaskType (uint8_t instance, flexcan_rx_mask_type_t type)

Sets the Rx masking type.

Parameters

instance A FlexCAN instance number
type The FlexCAN RX mask type

Definition at line 288 of file flexcan_driver.c.

16.31.5.24 void FLEXCAN_DRV_SetRxMb14Mask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t mask)

Sets the FlexCAN Rx MB 14 mask (standard or extended).

Parameters

instance A FlexCAN instance number

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.31 FlexCAN Driver 379

id_type Standard ID or extended ID
mask Mask value

Definition at line 416 of file flexcan_driver.c.

16.31.5.25 void FLEXCAN_DRV_SetRxMb15Mask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t mask)

Sets the FlexCAN Rx MB 15 mask (standard or extended).

Parameters

instance A FlexCAN instance number
id_type Standard ID or extended ID

mask Mask value

Definition at line 460 of file flexcan_driver.c.

16.31.5.26 void FLEXCAN_DRV_SetRxMbGlobalMask (uint8_t instance, flexcan_msgbuff_id_type_t id_type, uint32_t
mask)

Sets the FlexCAN Rx MB global mask (standard or extended).

Parameters

instance A FlexCAN instance number
id_type Standard ID or extended ID

mask Mask value

Definition at line 372 of file flexcan_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

380 CONTENTS

16.32 FlexIO Common Driver

16.32.1 Detailed Description

Common services for FlexIO drivers.

The Flexio Common driver layer contains services used by all Flexio drivers. The need for this layer derives from the
requirement to allow multiple Flexio drivers to run in parallel on the same device, to the extent that enough hardware
resources (shifters and timers) are available.

Functionality

The Flexio Common driver layer provides functions for device initialization and reset. Before using any Flexio driver
the device must first be initialized using function FLEXIO_DRV_InitDevice(). Then any number of Flexio drivers can
be initialized on the same device, to the extent that enough hardware resources (shifters and timers) are available.
Driver initialization functions will return STATUS_ERROR if not enough resources are available for a new driver.

Important Notes

Calling any Flexio common function will destroy any driver that is active on that device. Normally these functions
should be called only when there are no active driver instances on the device.

Enumerations

• enum flexio_driver_type_t { FLEXIO_DRIVER_TYPE_INTERRUPTS = 0U, FLEXIO_DRIVER_TYPE_POL←↩

LING = 1U, FLEXIO_DRIVER_TYPE_DMA = 2U }

Driver type: interrupts/polling/DMA Implements : flexio_driver_type_t_Class.

FLEXIO_I2C Driver

• status_t FLEXIO_DRV_InitDevice (uint32_t instance, flexio_device_state_t ∗deviceState)

Initializes the FlexIO device.

• status_t FLEXIO_DRV_DeinitDevice (uint32_t instance)

De-initializes the FlexIO device.

• status_t FLEXIO_DRV_Reset (uint32_t instance)

Resets the FlexIO device.

16.32.2 Enumeration Type Documentation

16.32.2.1 enum flexio_driver_type_t

Driver type: interrupts/polling/DMA Implements : flexio_driver_type_t_Class.

Enumerator

FLEXIO_DRIVER_TYPE_INTERRUPTS Driver uses interrupts for data transfers

FLEXIO_DRIVER_TYPE_POLLING Driver is based on polling

FLEXIO_DRIVER_TYPE_DMA Driver uses DMA for data transfers

Definition at line 46 of file flexio.h.

16.32.3 Function Documentation

16.32.3.1 status_t FLEXIO_DRV_DeinitDevice (uint32_t instance)

De-initializes the FlexIO device.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.32 FlexIO Common Driver 381

This function de-initializes the FlexIO device.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

382 CONTENTS

Parameters

instance FLEXIO peripheral instance number

Returns

Error or success status returned by API

Definition at line 125 of file flexio_common.c.

16.32.3.2 status_t FLEXIO_DRV_InitDevice (uint32_t instance, flexio_device_state_t ∗ deviceState)

Initializes the FlexIO device.

This function resets the FlexIO device, enables interrupts in interrupt manager and enables the device.

Parameters

instance FLEXIO peripheral instance number
deviceState Pointer to the FLEXIO device context structure. The driver uses this memory area for its

internal logic. The application must make no assumptions about the content of this structure,
and must not free this memory until the device is de-initialized using FLEXIO_DRV_Deinit←↩

Device().

Returns

Error or success status returned by API

Definition at line 86 of file flexio_common.c.

16.32.3.3 status_t FLEXIO_DRV_Reset (uint32_t instance)

Resets the FlexIO device.

This function resets the FlexIO device.

Parameters

instance FLEXIO peripheral instance number

Returns

Error or success status returned by API

Definition at line 150 of file flexio_common.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.33 FlexIO I2C Driver 383

16.33 FlexIO I2C Driver

16.33.1 Detailed Description

I2C communication over FlexIO module (FLEXIO_I2C)

The FLEXIO_I2C Driver allows communication on an I2C bus using the FlexIO module in the S32K1xx processors.

Features

• Master operation only

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transmit and receive functions

• 7-bit addressing

• Clock stretching

• Configurable baud rate

Functionality

Before using any Flexio driver the device must first be initialized using function FLEXIO_DRV_InitDevice. Then the
FLEXIO_I2C Driver must be initialized using functions FLEXIO_I2C_DRV_MasterInit(). It is possible to use more
driver instances on the same FlexIO device, as long as sufficient resources are available. Different driver instances
on the same FlexIO device can function independently of each other. When it is no longer needed, the driver can
be de-initialized, using FLEXIO_I2C_DRV_MasterDeinit(). This will release the hardware resources, allowing other
driver instances to be initialized.

Master Mode

Master Mode provides functions for transmitting or receiving data to/from any I2C slave. Slave address and baud
rate are provided at initialization time through the master configuration structure, but they can be changed at runtime
by using FLEXIO_I2C_DRV_MasterSetBaudRate() or FLEXIO_I2C_DRV_MasterSetSlaveAddr(). Note that due to
module limitation not any baud rate can be achieved. The driver will set a baud rate as close as possible to the
requested baud rate, but there may still be substantial differences, for example if requesting a high baud rate while
using a low-frequency FlexIO clock. The application should call FLEXIO_I2C_DRV_MasterGetBaudRate() after
FLEXIO_I2C_DRV_MasterSetBaudRate() to check what baud rate was actually set.

To send or receive data to/from the currently configured slave address, use functions FLEXIO_I2C_DRV_Master←↩

SendData() or FLEXIO_I2C_DRV_MasterReceiveData() (or their blocking counterparts). Parameter sendStop
can be used to chain multiple transfers with repeated START condition between them, for example when sending
a command and then immediately receiving a response. The application should ensure that any send or receive
transfer with sendStop set to false is followed by another transfer. The last transfer from a chain should always
have sendStop set to true. This driver does not support continuous send/receive using a user callback function.
The callback function is only used to signal the end of a transfer.

Blocking operations will return only when the transfer is completed, either successfully or with error. Non-blocking
operations will initiate the transfer and return STATUS_SUCCESS, but the module is still busy with the transfer and
another transfer can't be initiated until the current transfer is complete. The application will be notified through the
user callback when the transfer completes, or it can check the status of the current transfer by calling FLEXIO_I2←↩

C_DRV_MasterGetStatus(). If the transfer is still ongoing this function will return STATUS_BUSY. If the transfer is
completed, the function will return either STATUS_SUCCESS or an error code, depending on the outcome of the
last transfer.

The driver supports interrupt, DMA and polling mode. In polling mode the function FLEXIO_I2C_DRV_Master←↩

GetStatus() ensures the progress of the transfer by checking and handling transmit and receive events reported
by the FlexIO module. The application should ensure that this function is called often enough (at least once per
transferred byte) to avoid Tx underflows or Rx overflows. In DMA mode the DMA channels that will be used by the
driver are received through the configuration structure. The channels must be initialized by the application before
the flexio_i2c driver is initialized. The flexio_i2c driver will only set the DMA request source.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

384 CONTENTS

Important Notes

• There is one limitation of flexio_i2c which no Stop condition is generated when aborting a transfer due to
NACK reception.

• Before using the FLEXIO_I2C Driver the FlexIO clock must be configured. Refer to Clock Manager for clock
configuration.

• Before using the FLEXIO_I2C Driver the pins must be routed to the FlexIO module. Refer to PINS Driver
for pin routing configuration. Note that any of the available FlexIO pins can be used for SDA and SCL
(configurable at initialization time).

• The driver enables the interrupts for the corresponding FlexIO module, but any interrupt priority setting must
be done by the application.

• Aborting a transfer with the function FLEXIO_I2C_DRV_MasterTransferAbort() can't generally be done safely
due to device limitation; there is no way to know the exact stage of the transfer, and if we disable the module
during the ACK bit (transmit) or during a 0 data bit (receive) the slave will hold the SDA line low forever and
block the I2C bus. Therefore this function should only be used in extreme circumstances, and the application
must have a way to reset the I2C slave. NACK reception is the only exception, as there is no slave to hold the
line low, so in this case the driver will automatically abort the transfer.

• The module can handle clock stretching done by the slave, but will not do clock stretching when the application
does not provide data fast enough, so Tx underflows and Rx overflows are possible. This can be an issue
especially in polling mode if the function FLEXIO_I2C_DRV_MasterGetStatus() is not called often enough.

• Due to device limitations it is not always possible to tell the difference between NACK reception and receiver
overflow. When in doubt, the driver will treat these events as overflow and continue the transfer, in order to
avoid the risk of blocking the i2c bus.

• The driver does not support multi-master mode. It does not detect arbitration loss condition.

• Timeout feature for blocking transfers does not work in polling mode.

• This driver needs two shifters and two timers for its operation. Initialization will fail if there are not enough
shifters and timers available on the FlexIO device.

• This driver needs two DMA channels for its operation when it is initialized in DMA mode. The DMA channels
must be initialized by the application before initializing the driver. Refer to EDMA driver for DMA channels
initialization.

• If the application uses an RTOS, this driver uses a semaphore for blocking transfers. Initialization will fail if
the semaphore cannot be created. If the driver uses polling mode no semaphore is used.

• If the application uses an RTOS, the FlexIO drivers use a mutex for channel allocation. Only one mutex per
device is needed, not per driver instance. Device initialization will fail if the mutex cannot be created.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\flexio\flexio_common.c
${S32SDK_PATH}\platform\drivers\src\flexio\flexio_i2c_driver.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc
${S32SDK_PATH}\platform\drivers\src\flexio

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.33 FlexIO I2C Driver 385

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager OS Interface (OSIF) Interrupt Manager (Interrupt) Enhanced Direct Memory Access (eDMA)

Data Structures

• struct flexio_i2c_master_user_config_t

Master configuration structure. More...
• struct flexio_i2c_master_state_t

Master internal context structure. More...

FLEXIO_I2C Driver

• status_t FLEXIO_I2C_DRV_MasterInit (uint32_t instance, const flexio_i2c_master_user_config_t ∗user←↩

ConfigPtr, flexio_i2c_master_state_t ∗master)

Initialize the FLEXIO_I2C master mode driver.
• status_t FLEXIO_I2C_DRV_MasterDeinit (flexio_i2c_master_state_t ∗master)

De-initialize the FLEXIO_I2C master mode driver.
• status_t FLEXIO_I2C_DRV_MasterSetBaudRate (flexio_i2c_master_state_t ∗master, uint32_t baudRate)

Set the baud rate for any subsequent I2C communication.
• status_t FLEXIO_I2C_DRV_MasterGetBaudRate (flexio_i2c_master_state_t ∗master, uint32_t ∗baudRate)

Get the currently configured baud rate.
• status_t FLEXIO_I2C_DRV_MasterSetSlaveAddr (flexio_i2c_master_state_t ∗master, const uint16_t ad-

dress)

Set the slave address for any subsequent I2C communication.
• status_t FLEXIO_I2C_DRV_MasterSendData (flexio_i2c_master_state_t ∗master, const uint8_t ∗txBuff,

uint32_t txSize, bool sendStop)

Perform a non-blocking send transaction on the I2C bus.
• status_t FLEXIO_I2C_DRV_MasterSendDataBlocking (flexio_i2c_master_state_t ∗master, const uint8_←↩

t ∗txBuff, uint32_t txSize, bool sendStop, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.
• status_t FLEXIO_I2C_DRV_MasterReceiveData (flexio_i2c_master_state_t ∗master, uint8_t ∗rxBuff,

uint32_t rxSize, bool sendStop)

Perform a non-blocking receive transaction on the I2C bus.
• status_t FLEXIO_I2C_DRV_MasterReceiveDataBlocking (flexio_i2c_master_state_t ∗master, uint8_t ∗rx←↩

Buff, uint32_t rxSize, bool sendStop, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.
• status_t FLEXIO_I2C_DRV_MasterTransferAbort (flexio_i2c_master_state_t ∗master)

Aborts a non-blocking I2C master transaction.
• status_t FLEXIO_I2C_DRV_MasterGetStatus (flexio_i2c_master_state_t ∗master, uint32_t ∗bytes←↩

Remaining)

Get the status of the current non-blocking I2C master transaction.
• void FLEXIO_I2C_DRV_GetDefaultConfig (flexio_i2c_master_user_config_t ∗userConfigPtr)

Returns default configuration structure for FLEXIO_I2C.
• status_t FLEXIO_I2C_DRV_GenerateNineClock (flexio_i2c_master_state_t ∗master)

Generate nine clock on SCL line to free SDA line.
• status_t FLEXIO_I2C_DRV_StatusGenerateNineClock (flexio_i2c_master_state_t ∗master)

Indicate the generation nine clock is done or not.
• bool FLEXIO_I2C_DRV_GetBusStatus (const flexio_i2c_master_state_t ∗master, bool sdaLine)

Check status whether SDA or SCL line be low or high.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

386 CONTENTS

16.33.2 Data Structure Documentation

16.33.2.1 struct flexio_i2c_master_user_config_t

Master configuration structure.

This structure is used to provide configuration parameters for the flexio_i2c master at initialization time. Implements
: flexio_i2c_master_user_config_t_Class

Definition at line 84 of file flexio_i2c_driver.h.

Data Fields

• uint16_t slaveAddress
• flexio_driver_type_t driverType
• uint32_t baudRate
• uint8_t sdaPin
• uint8_t sclPin
• i2c_master_callback_t callback
• void ∗ callbackParam
• uint8_t rxDMAChannel
• uint8_t txDMAChannel

Field Documentation

16.33.2.1.1 uint32_t baudRate

Baud rate in hertz

Definition at line 88 of file flexio_i2c_driver.h.

16.33.2.1.2 i2c_master_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 91 of file flexio_i2c_driver.h.

16.33.2.1.3 void∗ callbackParam

Parameter for the callback function

Definition at line 95 of file flexio_i2c_driver.h.

16.33.2.1.4 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 87 of file flexio_i2c_driver.h.

16.33.2.1.5 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 96 of file flexio_i2c_driver.h.

16.33.2.1.6 uint8_t sclPin

Flexio pin to use as I2C SCL pin

Definition at line 90 of file flexio_i2c_driver.h.

16.33.2.1.7 uint8_t sdaPin

Flexio pin to use as I2C SDA pin

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.33 FlexIO I2C Driver 387

Definition at line 89 of file flexio_i2c_driver.h.

16.33.2.1.8 uint16_t slaveAddress

Slave address, 7-bit

Definition at line 86 of file flexio_i2c_driver.h.

16.33.2.1.9 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 97 of file flexio_i2c_driver.h.

16.33.2.2 struct flexio_i2c_master_state_t

Master internal context structure.

This structure is used by the driver for its internal logic. It must be provided by the application through the FLEXI←↩

O_I2C_DRV_MasterInit() function, then it cannot be freed until the driver is de-initialized using FLEXIO_I2C_DR←↩

V_MasterDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 109 of file flexio_i2c_driver.h.

16.33.3 Function Documentation

16.33.3.1 status_t FLEXIO_I2C_DRV_GenerateNineClock (flexio_i2c_master_state_t ∗ master)

Generate nine clock on SCL line to free SDA line.

This function should be called when SDA line be stuck in low.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.

Returns

STATUS_BUSY: Driver is transfering data, STATUS_SUCCESS: Function started generating clock

Definition at line 1681 of file flexio_i2c_driver.c.

16.33.3.2 bool FLEXIO_I2C_DRV_GetBusStatus (const flexio_i2c_master_state_t ∗ master, bool sdaLine)

Check status whether SDA or SCL line be low or high.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
sdaLine true - function return status of SDA line. false - function return status of SCL line.

Returns

true: Pin selected is high, false: Pin selected is low

Definition at line 1766 of file flexio_i2c_driver.c.

16.33.3.3 void FLEXIO_I2C_DRV_GetDefaultConfig (flexio_i2c_master_user_config_t ∗ userConfigPtr)

Returns default configuration structure for FLEXIO_I2C.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

388 CONTENTS

Parameters

userConfigPtr Pointer to the FLEXIO_I2C user configuration structure.

Definition at line 1658 of file flexio_i2c_driver.c.

16.33.3.4 status_t FLEXIO_I2C_DRV_MasterDeinit (flexio_i2c_master_state_t ∗ master)

De-initialize the FLEXIO_I2C master mode driver.

This function de-initializes the FLEXIO_I2C driver in master mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.

Returns

Error or success status returned by API

Definition at line 1286 of file flexio_i2c_driver.c.

16.33.3.5 status_t FLEXIO_I2C_DRV_MasterGetBaudRate (flexio_i2c_master_state_t ∗ master, uint32_t ∗ baudRate)

Get the currently configured baud rate.

This function returns the currently configured I2C baud rate.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
baudRate the current baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1356 of file flexio_i2c_driver.c.

16.33.3.6 status_t FLEXIO_I2C_DRV_MasterGetStatus (flexio_i2c_master_state_t ∗ master, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking I2C master transaction.

This function returns the current status of a non-blocking I2C master transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
bytesRemaining The remaining number of bytes to be transferred

Returns

Error or success status returned by API

Definition at line 1603 of file flexio_i2c_driver.c.

16.33.3.7 status_t FLEXIO_I2C_DRV_MasterInit (uint32_t instance, const flexio_i2c_master_user_config_t ∗
userConfigPtr, flexio_i2c_master_state_t ∗ master)

Initialize the FLEXIO_I2C master mode driver.

This function initializes the FLEXIO_I2C driver in master mode.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.33 FlexIO I2C Driver 389

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_I2C master user configuration structure. The function reads configu-

ration data from this structure and initializes the driver accordingly. The application may free
this structure after the function returns.

master Pointer to the FLEXIO_I2C master driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLEXIO_I2←↩

C_DRV_MasterDeinit().

Returns

Error or success status returned by API

Definition at line 1195 of file flexio_i2c_driver.c.

16.33.3.8 status_t FLEXIO_I2C_DRV_MasterReceiveData (flexio_i2c_master_state_t ∗ master, uint8_t ∗ rxBuff, uint32_t
rxSize, bool sendStop)

Perform a non-blocking receive transaction on the I2C bus.

This function starts the reception of a block of data from the currently configured slave address and returns im-
mediately. The rest of the transmission is handled by the interrupt service routine (if the driver is initialized in
interrupt mode) or by the FLEXIO_I2C_DRV_MasterGetStatus function (if the driver is initialized in polling mode).
Use FLEXIO_I2C_DRV_MasterGetStatus() to check the progress of the reception.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the reception

Returns

Error or success status returned by API

Definition at line 1494 of file flexio_i2c_driver.c.

16.33.3.9 status_t FLEXIO_I2C_DRV_MasterReceiveDataBlocking (flexio_i2c_master_state_t ∗ master, uint8_t ∗ rxBuff,
uint32_t rxSize, bool sendStop, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

This function receives a block of data from the currently configured slave address, and only returns when the
transmission is complete.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the reception
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1523 of file flexio_i2c_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

390 CONTENTS

16.33.3.10 status_t FLEXIO_I2C_DRV_MasterSendData (flexio_i2c_master_state_t ∗ master, const uint8_t ∗ txBuff,
uint32_t txSize, bool sendStop)

Perform a non-blocking send transaction on the I2C bus.

This function starts the transmission of a block of data to the currently configured slave address and returns im-
mediately. The rest of the transmission is handled by the interrupt service routine (if the driver is initialized in
interrupt mode) or by the FLEXIO_I2C_DRV_MasterGetStatus function (if the driver is initialized in polling mode).
Use FLEXIO_I2C_DRV_MasterGetStatus() to check the progress of the transmission.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the transmission

Returns

Error or success status returned by API

Definition at line 1417 of file flexio_i2c_driver.c.

16.33.3.11 status_t FLEXIO_I2C_DRV_MasterSendDataBlocking (flexio_i2c_master_state_t ∗ master, const uint8_t ∗
txBuff, uint32_t txSize, bool sendStop, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

This function sends a block of data to the currently configured slave address, and only returns when the transmission
is complete.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the transmission
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1446 of file flexio_i2c_driver.c.

16.33.3.12 status_t FLEXIO_I2C_DRV_MasterSetBaudRate (flexio_i2c_master_state_t ∗ master, uint32_t baudRate)

Set the baud rate for any subsequent I2C communication.

This function sets the baud rate (SCL frequency) for the I2C master. Note that due to module limitation not any
baud rate can be achieved. The driver will set a baud rate as close as possible to the requested baud rate, but there
may still be substantial differences, for example if requesting a high baud rate while using a low-frequency FlexIO
clock. The application should call FLEXIO_I2C_DRV_MasterGetBaudRate() after FLEXIO_I2C_DRV_MasterSet←↩

BaudRate() to check what baud rate was actually set.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.33 FlexIO I2C Driver 391

baudRate the desired baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1312 of file flexio_i2c_driver.c.

16.33.3.13 status_t FLEXIO_I2C_DRV_MasterSetSlaveAddr (flexio_i2c_master_state_t ∗ master, const uint16_t address)

Set the slave address for any subsequent I2C communication.

This function sets the slave address which will be used for any future transfer.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.
address slave address, 7-bit

Returns

Error or success status returned by API

Definition at line 1395 of file flexio_i2c_driver.c.

16.33.3.14 status_t FLEXIO_I2C_DRV_MasterTransferAbort (flexio_i2c_master_state_t ∗ master)

Aborts a non-blocking I2C master transaction.

This function aborts a non-blocking I2C transfer.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.

Returns

Error or success status returned by API

Definition at line 1571 of file flexio_i2c_driver.c.

16.33.3.15 status_t FLEXIO_I2C_DRV_StatusGenerateNineClock (flexio_i2c_master_state_t ∗ master)

Indicate the generation nine clock is done or not.

Parameters

master Pointer to the FLEXIO_I2C master driver context structure.

Returns

STATUS_BUSY: Clock generation not done yet, STATUS_SUCCESS: Device finished generating nine clock

Definition at line 1730 of file flexio_i2c_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

392 CONTENTS

16.34 FlexIO I2S Driver

16.34.1 Detailed Description

I2S communication over FlexIO module (FLEXIO_I2S)

The FLEXIO_I2S Driver allows communication on an I2S bus using the FlexIO module in the S32K1xx processors.

Features

• Master or slave operation

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transmit and receive functions

• Configurable baud rate and bit count

Functionality

Before using any Flexio driver the device must first be initialized using function FLEXIO_DRV_InitDevice. Then
the FLEXIO_I2S Driver must be initialized, using functions FLEXIO_I2S_DRV_MasterInit() or FLEXIO_I2S_DRV←↩

_SlaveInit(). It is possible to use more driver instances on the same FlexIO device, as long as sufficient resources
are available. Different driver instances on the same FlexIO device can function independently of each other. When
it is no longer needed, the driver can be de-initialized, using FLEXIO_I2S_DRV_MasterDeinit() or FLEXIO_I2S_←↩

DRV_SlaveDeinit(). This will release the hardware resources, allowing other driver instances to be initialized.

Master Mode

Master Mode provides functions for transmitting or receiving data to/from any I2S slave. The number of bits per
word and the baud rate are provided at initialization time through the master configuration structure, but they can
be changed at runtime by using FLEXIO_I2S_DRV_MasterSetConfig(). Note that due to module limitation not any
baud rate can be achieved. The driver will set a baud rate as close as possible to the requested baud rate, but there
may still be substantial differences, for example if requesting a high baud rate while using a low-frequency FlexIO
clock. The application should call FLEXIO_I2S_DRV_MasterGetBaudRate() to check what baud rate was actually
set.

To send or receive data to/from the currently configured slave address, use functions FLEXIO_I2S_DRV_Master←↩

SendData() or FLEXIO_I2S_DRV_MasterReceiveData() (or their blocking counterparts). The driver is not full-
duplex, only one direction (send or receive) can be used at one time. It is possible to configure both Rx and
Tx pin to use the same Flexio pin.

Continuous send/receive can be realized by registering a user callback function. When the driver completes the
transmission or reception of the current buffer, it will invoke the user callback with an appropriate event. The callback
function can the use FLEXIO_I2S_DRV_MasterSetTxBuffer() or FLEXIO_I2S_DRV_MasterSetRxBuffer() to provide
a new buffer.

Blocking operations will return only when the transfer is completed, either successfully or with error. Non-blocking
operations will initiate the transfer and return STATUS_SUCCESS, but the module is still busy with the transfer and
another transfer can't be initiated until the current transfer is complete. The application will be notified through the
user callback when the transfer completes, or it can check the status of the current transfer by calling FLEXIO_I2←↩

S_DRV_MasterGetStatus(). If the transfer is still ongoing this function will return STATUS_BUSY. If the transfer is
completed, the function will return either STATUS_SUCCESS or an error code, depending on the outcome of the
last transfer.

The driver supports interrupt, DMA and polling mode. In polling mode the function FLEXIO_I2S_DRV_Master←↩

GetStatus() ensures the progress of the transfer by checking and handling transmit and receive events reported
by the FlexIO module. The application should ensure that this function is called often enough (at least once per
transferred byte) to avoid Tx underflows or Rx overflows. In DMA mode the DMA channels that will be used by the
driver are received through the configuration structure. The channels must be initialized by the application before
the flexio_i2s driver is initialized. The flexio_i2s driver will only set the DMA request source.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.34 FlexIO I2S Driver 393

Slave Mode

Slave Mode is very similar to master mode, the main difference being that the FLEXIO_I2S_DRV_SlaveInit() function
initializes the FlexIO module to use the clock signal received from the master instead of generating it. Consequently,
there is no baud rate setting in slave mode. Other than that, the slave mode offers a similar interface to the
master mode. FLEXIO_I2S_DRV_MasterSendData() or FLEXIO_I2S_DRV_MasterReceiveData() (or their blocking
counterparts) can be used to initiate transfers, and FLEXIO_I2S_DRV_SlaveGetStatus() is used to check the status
of the transfer and advance the transfer in polling mode. All other specifications from the Master Mode description
apply for Slave Mode too.

Important Notes

• Before using the FLEXIO_I2S Driver the FlexIO clock must be configured. Refer to Clock Manager for clock
configuration.

• Before using the FLEXIO_I2S Driver the pins must be routed to the FlexIO module. Refer to PINS Driver for
pin routing configuration. Note that any of the available FlexIO pins can be used for any of the TX, RX, SCK
and WS signals (configurable at initialization time). If more than one driver instance is used on the same
Flexio module, it is the responsibility of the application to ensure there are no conflicts between pins.

• The driver enables the interrupts for the corresponding FlexIO module, but any interrupt priority setting must
be done by the application.

• Timeout feature for blocking transfers does not work in polling mode.

• This driver needs two shifters and two timers for its operation. Initialization will fail if there are not enough
shifters and timers available on the FlexIO device.

• This driver needs two DMA channels for its operation when it is initialized in DMA mode. The DMA channels
must be initialized by the application before initializing the driver. Refer to EDMA driver for DMA channels
initialization.

• If the application uses an RTOS, this driver uses a semaphore for blocking transfers. Initialization will fail if
the semaphore cannot be created. If the driver uses polling mode no semaphore is used.

• If the application uses an RTOS, the FlexIO drivers use a mutex for channel allocation. Only one mutex per
device is needed, not per driver instance. Device initialization will fail if the mutex cannot be created.

• For transfers where the data size is more than 1 byte (bitsWidth is greater than 8) the driver assumes that the
data buffers are defined with the proper type (uint16_t or uint32_t) and are properly aligned.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\flexio\flexio_common.c
${S32SDK_PATH}\platform\drivers\src\flexio\flexio_i2s_driver.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc
${S32SDK_PATH}\platform\drivers\src\flexio

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager OS Interface (OSIF) Interrupt Manager (Interrupt) Enhanced Direct Memory Access (eDMA)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

394 CONTENTS

Data Structures

• struct flexio_i2s_master_user_config_t

Master configuration structure. More...

• struct flexio_i2s_slave_user_config_t

Slave configuration structure. More...

• struct flexio_i2s_master_state_t

Master internal context structure. More...

Typedefs

• typedef flexio_i2s_master_state_t flexio_i2s_slave_state_t

Slave internal context structure.

FLEXIO_I2S Driver

• status_t FLEXIO_I2S_DRV_MasterInit (uint32_t instance, const flexio_i2s_master_user_config_t ∗user←↩

ConfigPtr, flexio_i2s_master_state_t ∗master)

Initialize the FLEXIO_I2S master mode driver.

• status_t FLEXIO_I2S_DRV_MasterDeinit (flexio_i2s_master_state_t ∗master)

De-initialize the FLEXIO_I2S master mode driver.

• status_t FLEXIO_I2S_DRV_MasterSetConfig (flexio_i2s_master_state_t ∗master, uint32_t baudRate,
uint8_t bitsWidth)

Set the baud rate and bit width for any subsequent I2S communication.

• status_t FLEXIO_I2S_DRV_MasterGetBaudRate (flexio_i2s_master_state_t ∗master, uint32_t ∗baudRate)

Get the currently configured baud rate.

• status_t FLEXIO_I2S_DRV_MasterSendData (flexio_i2s_master_state_t ∗master, const uint8_t ∗txBuff,
uint32_t txSize)

Perform a non-blocking send transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_MasterSendDataBlocking (flexio_i2s_master_state_t ∗master, const uint8_←↩

t ∗txBuff, uint32_t txSize, uint32_t timeout)

Perform a blocking send transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_MasterReceiveData (flexio_i2s_master_state_t ∗master, uint8_t ∗rxBuff,
uint32_t rxSize)

Perform a non-blocking receive transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_MasterReceiveDataBlocking (flexio_i2s_master_state_t ∗master, uint8_t ∗rx←↩

Buff, uint32_t rxSize, uint32_t timeout)

Perform a blocking receive transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_MasterTransferAbort (flexio_i2s_master_state_t ∗master)

Aborts a non-blocking I2S master transaction.

• status_t FLEXIO_I2S_DRV_MasterGetStatus (flexio_i2s_master_state_t ∗master, uint32_t ∗bytes←↩

Remaining)

Get the status of the current non-blocking I2S master transaction.

• status_t FLEXIO_I2S_DRV_MasterSetRxBuffer (flexio_i2s_master_state_t ∗master, uint8_t ∗rxBuff, uint32←↩

_t rxSize)

Provide a buffer for receiving data.

• status_t FLEXIO_I2S_DRV_MasterSetTxBuffer (flexio_i2s_master_state_t ∗master, const uint8_t ∗txBuff,
uint32_t txSize)

Provide a buffer for transmitting data.

• status_t FLEXIO_I2S_DRV_SlaveInit (uint32_t instance, const flexio_i2s_slave_user_config_t ∗userConfig←↩

Ptr, flexio_i2s_slave_state_t ∗slave)

Initialize the FLEXIO_I2S slave mode driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.34 FlexIO I2S Driver 395

• status_t FLEXIO_I2S_DRV_SlaveDeinit (flexio_i2s_slave_state_t ∗slave)

De-initialize the FLEXIO_I2S slave mode driver.

• status_t FLEXIO_I2S_DRV_SlaveSetConfig (flexio_i2s_slave_state_t ∗slave, uint8_t bitsWidth)

Set the bit width for any subsequent I2S communication.

• status_t FLEXIO_I2S_DRV_SlaveSendData (flexio_i2s_slave_state_t ∗slave, const uint8_t ∗txBuff, uint32_t
txSize)

Perform a non-blocking send transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_SlaveSendDataBlocking (flexio_i2s_slave_state_t ∗slave, const uint8_t ∗txBuff,
uint32_t txSize, uint32_t timeout)

Perform a blocking send transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_SlaveReceiveData (flexio_i2s_slave_state_t ∗slave, uint8_t ∗rxBuff, uint32_←↩

t rxSize)

Perform a non-blocking receive transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_SlaveReceiveDataBlocking (flexio_i2s_slave_state_t ∗slave, uint8_t ∗rxBuff,
uint32_t rxSize, uint32_t timeout)

Perform a blocking receive transaction on the I2S bus.

• status_t FLEXIO_I2S_DRV_SlaveTransferAbort (flexio_i2s_slave_state_t ∗slave)

Aborts a non-blocking I2S slave transaction.

• status_t FLEXIO_I2S_DRV_SlaveGetStatus (flexio_i2s_slave_state_t ∗slave, uint32_t ∗bytesRemaining)

Get the status of the current non-blocking I2S slave transaction.

• status_t FLEXIO_I2S_DRV_SlaveSetRxBuffer (flexio_i2s_slave_state_t ∗slave, uint8_t ∗rxBuff, uint32_t rx←↩

Size)

Provide a buffer for receiving data.

• status_t FLEXIO_I2S_DRV_SlaveSetTxBuffer (flexio_i2s_slave_state_t ∗slave, const uint8_t ∗txBuff,
uint32_t txSize)

Provide a buffer for transmitting data.

• void FLEXIO_I2S_DRV_MasterGetDefaultConfig (flexio_i2s_master_user_config_t ∗userConfigPtr)

Returns default configuration structure for FLEXIO_I2S master.

• void FLEXIO_I2S_DRV_SlaveGetDefaultConfig (flexio_i2s_slave_user_config_t ∗userConfigPtr)

Returns default configuration structure for FLEXIO_I2S slave.

16.34.2 Data Structure Documentation

16.34.2.1 struct flexio_i2s_master_user_config_t

Master configuration structure.

This structure is used to provide configuration parameters for the flexio_i2s master at initialization time. Implements
: flexio_i2s_master_user_config_t_Class

Definition at line 67 of file flexio_i2s_driver.h.

Data Fields

• flexio_driver_type_t driverType
• uint32_t baudRate
• uint8_t bitsWidth
• uint8_t txPin
• uint8_t rxPin
• uint8_t sckPin
• uint8_t wsPin
• i2s_callback_t callback
• void ∗ callbackParam
• uint8_t rxDMAChannel
• uint8_t txDMAChannel

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

396 CONTENTS

Field Documentation

16.34.2.1.1 uint32_t baudRate

Baud rate in hertz

Definition at line 70 of file flexio_i2s_driver.h.

16.34.2.1.2 uint8_t bitsWidth

Number of bits in a word - multiple of 8

Definition at line 71 of file flexio_i2s_driver.h.

16.34.2.1.3 i2s_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 76 of file flexio_i2s_driver.h.

16.34.2.1.4 void∗ callbackParam

Parameter for the callback function

Definition at line 80 of file flexio_i2s_driver.h.

16.34.2.1.5 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 69 of file flexio_i2s_driver.h.

16.34.2.1.6 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 81 of file flexio_i2s_driver.h.

16.34.2.1.7 uint8_t rxPin

Flexio pin to use for receive

Definition at line 73 of file flexio_i2s_driver.h.

16.34.2.1.8 uint8_t sckPin

Flexio pin to use for serial clock

Definition at line 74 of file flexio_i2s_driver.h.

16.34.2.1.9 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 82 of file flexio_i2s_driver.h.

16.34.2.1.10 uint8_t txPin

Flexio pin to use for transmit

Definition at line 72 of file flexio_i2s_driver.h.

16.34.2.1.11 uint8_t wsPin

Flexio pin to use for word select

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.34 FlexIO I2S Driver 397

Definition at line 75 of file flexio_i2s_driver.h.

16.34.2.2 struct flexio_i2s_slave_user_config_t

Slave configuration structure.

This structure is used to provide configuration parameters for the flexio_i2s slave at initialization time. Implements :
flexio_i2s_slave_user_config_t_Class

Definition at line 92 of file flexio_i2s_driver.h.

Data Fields

• flexio_driver_type_t driverType

• uint8_t bitsWidth

• uint8_t txPin

• uint8_t rxPin

• uint8_t sckPin

• uint8_t wsPin

• i2s_callback_t callback

• void ∗ callbackParam

• uint8_t rxDMAChannel

• uint8_t txDMAChannel

Field Documentation

16.34.2.2.1 uint8_t bitsWidth

Number of bits in a word - multiple of 8

Definition at line 95 of file flexio_i2s_driver.h.

16.34.2.2.2 i2s_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 100 of file flexio_i2s_driver.h.

16.34.2.2.3 void∗ callbackParam

Parameter for the callback function

Definition at line 104 of file flexio_i2s_driver.h.

16.34.2.2.4 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 94 of file flexio_i2s_driver.h.

16.34.2.2.5 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 105 of file flexio_i2s_driver.h.

16.34.2.2.6 uint8_t rxPin

Flexio pin to use for receive

Definition at line 97 of file flexio_i2s_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

398 CONTENTS

16.34.2.2.7 uint8_t sckPin

Flexio pin to use for serial clock

Definition at line 98 of file flexio_i2s_driver.h.

16.34.2.2.8 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 106 of file flexio_i2s_driver.h.

16.34.2.2.9 uint8_t txPin

Flexio pin to use for transmit

Definition at line 96 of file flexio_i2s_driver.h.

16.34.2.2.10 uint8_t wsPin

Flexio pin to use for word select

Definition at line 99 of file flexio_i2s_driver.h.

16.34.2.3 struct flexio_i2s_master_state_t

Master internal context structure.

This structure is used by the driver for its internal logic. It must be provided by the application through the FLEXI←↩

O_I2S_DRV_MasterInit() function, then it cannot be freed until the driver is de-initialized using FLEXIO_I2S_DR←↩

V_MasterDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 118 of file flexio_i2s_driver.h.

16.34.3 Typedef Documentation

16.34.3.1 typedef flexio_i2s_master_state_t flexio_i2s_slave_state_t

Slave internal context structure.

This structure is used by the driver for its internal logic. It must be provided by the application through the FLEXI←↩

O_I2S_DRV_SlaveInit() function, then it cannot be freed until the driver is de-initialized using FLEXIO_I2S_DRV←↩

_SlaveDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 150 of file flexio_i2s_driver.h.

16.34.4 Function Documentation

16.34.4.1 status_t FLEXIO_I2S_DRV_MasterDeinit (flexio_i2s_master_state_t ∗ master)

De-initialize the FLEXIO_I2S master mode driver.

This function de-initializes the FLEXIO_I2S driver in master mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.

Returns

Error or success status returned by API

Definition at line 1082 of file flexio_i2s_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.34 FlexIO I2S Driver 399

16.34.4.2 status_t FLEXIO_I2S_DRV_MasterGetBaudRate (flexio_i2s_master_state_t ∗ master, uint32_t ∗ baudRate)

Get the currently configured baud rate.

This function returns the currently configured I2S baud rate.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
baudRate the current baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1161 of file flexio_i2s_driver.c.

16.34.4.3 void FLEXIO_I2S_DRV_MasterGetDefaultConfig (flexio_i2s_master_user_config_t ∗ userConfigPtr)

Returns default configuration structure for FLEXIO_I2S master.

Parameters

userConfigPtr Pointer to the FLEXIO_I2S user configuration structure.

Definition at line 1655 of file flexio_i2s_driver.c.

16.34.4.4 status_t FLEXIO_I2S_DRV_MasterGetStatus (flexio_i2s_master_state_t ∗ master, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking I2S master transaction.

This function returns the current status of a non-blocking I2S master transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API

Definition at line 1429 of file flexio_i2s_driver.c.

16.34.4.5 status_t FLEXIO_I2S_DRV_MasterInit (uint32_t instance, const flexio_i2s_master_user_config_t ∗
userConfigPtr, flexio_i2s_master_state_t ∗ master)

Initialize the FLEXIO_I2S master mode driver.

This function initializes the FLEXIO_I2S driver in master mode.

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_I2S master user configuration structure. The function reads configu-

ration data from this structure and initializes the driver accordingly. The application may free
this structure after the function returns.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

400 CONTENTS

master Pointer to the FLEXIO_I2S master driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLEXIO_I2S←↩

_DRV_MasterDeinit().

Returns

Error or success status returned by API

Definition at line 991 of file flexio_i2s_driver.c.

16.34.4.6 status_t FLEXIO_I2S_DRV_MasterReceiveData (flexio_i2s_master_state_t ∗ master, uint8_t ∗ rxBuff, uint32_t
rxSize)

Perform a non-blocking receive transaction on the I2S bus.

This function starts the reception of a block of data and returns immediately. The rest of the reception is handled by
the interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_I2S_DRV_MasterGet←↩

Status function (if the driver is initialized in polling mode). Use FLEXIO_I2S_DRV_MasterGetStatus() to check the
progress of the reception.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1302 of file flexio_i2s_driver.c.

16.34.4.7 status_t FLEXIO_I2S_DRV_MasterReceiveDataBlocking (flexio_i2s_master_state_t ∗ master, uint8_t ∗ rxBuff,
uint32_t rxSize, uint32_t timeout)

Perform a blocking receive transaction on the I2S bus.

This function receives a block of data and only returns when the reception is complete.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1372 of file flexio_i2s_driver.c.

16.34.4.8 status_t FLEXIO_I2S_DRV_MasterSendData (flexio_i2s_master_state_t ∗ master, const uint8_t ∗ txBuff,
uint32_t txSize)

Perform a non-blocking send transaction on the I2S bus.

This function starts the transmission of a block of data and returns immediately. The rest of the transmission is
handled by the interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_I2S_DRV_←↩

MasterGetStatus function (if the driver is initialized in polling mode). Use FLEXIO_I2S_DRV_MasterGetStatus() to
check the progress of the transmission.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.34 FlexIO I2S Driver 401

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1201 of file flexio_i2s_driver.c.

16.34.4.9 status_t FLEXIO_I2S_DRV_MasterSendDataBlocking (flexio_i2s_master_state_t ∗ master, const uint8_t ∗
txBuff, uint32_t txSize, uint32_t timeout)

Perform a blocking send transaction on the I2S bus.

This function sends a block of data, and only returns when the transmission is complete.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1269 of file flexio_i2s_driver.c.

16.34.4.10 status_t FLEXIO_I2S_DRV_MasterSetConfig (flexio_i2s_master_state_t ∗ master, uint32_t baudRate, uint8_t
bitsWidth)

Set the baud rate and bit width for any subsequent I2S communication.

This function sets the baud rate (SCK frequency) and bit width for the I2S master. Note that due to module limitation
not any baud rate can be achieved. The driver will set a baud rate as close as possible to the requested baud rate,
but there may still be substantial differences, for example if requesting a high baud rate while using a low-frequency
FlexIO clock. The application should call FLEXIO_I2S_DRV_MasterGetBaudRate() after FLEXIO_I2S_DRV_←↩

MasterSetConfig() to check what baud rate was actually set.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
baudRate the desired baud rate in hertz
bitsWidth number of bits per word

Returns

Error or success status returned by API

Definition at line 1108 of file flexio_i2s_driver.c.

16.34.4.11 status_t FLEXIO_I2S_DRV_MasterSetRxBuffer (flexio_i2s_master_state_t ∗ master, uint8_t ∗ rxBuff, uint32_t
rxSize)

Provide a buffer for receiving data.

This function can be used to provide a new buffer for receiving data to the driver. It can be called from the us-
er callback when event STATUS_I2S_RX_OVERRUN is reported. This way the reception will continue without
interruption.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

402 CONTENTS

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1484 of file flexio_i2s_driver.c.

16.34.4.12 status_t FLEXIO_I2S_DRV_MasterSetTxBuffer (flexio_i2s_master_state_t ∗ master, const uint8_t ∗ txBuff,
uint32_t txSize)

Provide a buffer for transmitting data.

This function can be used to provide a new buffer for transmitting data to the driver. It can be called from the user
callback when event STATUS_I2S_TX_UNDERRUN is reported. This way the transmission will continue without
interruption.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.
txBuff pointer to the buffer containing transmit data
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1506 of file flexio_i2s_driver.c.

16.34.4.13 status_t FLEXIO_I2S_DRV_MasterTransferAbort (flexio_i2s_master_state_t ∗ master)

Aborts a non-blocking I2S master transaction.

This function aborts a non-blocking I2S transfer.

Parameters

master Pointer to the FLEXIO_I2S master driver context structure.

Returns

Error or success status returned by API

Definition at line 1405 of file flexio_i2s_driver.c.

16.34.4.14 status_t FLEXIO_I2S_DRV_SlaveDeinit (flexio_i2s_slave_state_t ∗ slave)

De-initialize the FLEXIO_I2S slave mode driver.

This function de-initializes the FLEXIO_I2S driver in slave mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.

Returns

Error or success status returned by API

This function de-initializes the FLEXIO_I2S driver in slave mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.34 FlexIO I2S Driver 403

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveDeinit_Activity

Definition at line 1708 of file flexio_i2s_driver.c.

16.34.4.15 void FLEXIO_I2S_DRV_SlaveGetDefaultConfig (flexio_i2s_slave_user_config_t ∗ userConfigPtr)

Returns default configuration structure for FLEXIO_I2S slave.

Parameters

userConfigPtr Pointer to the FLEXIO_I2S user configuration structure.

Definition at line 1680 of file flexio_i2s_driver.c.

16.34.4.16 status_t FLEXIO_I2S_DRV_SlaveGetStatus (flexio_i2s_slave_state_t ∗ slave, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking I2S slave transaction.

This function returns the current status of a non-blocking I2S slave transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API

This function returns the current status of a non-blocking I2S slave transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveGetStatus_Activity

Definition at line 1834 of file flexio_i2s_driver.c.

16.34.4.17 status_t FLEXIO_I2S_DRV_SlaveInit (uint32_t instance, const flexio_i2s_slave_user_config_t ∗
userConfigPtr, flexio_i2s_slave_state_t ∗ slave)

Initialize the FLEXIO_I2S slave mode driver.

This function initializes the FLEXIO_I2S driver in slave mode.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

404 CONTENTS

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_I2S slave user configuration structure. The function reads configura-

tion data from this structure and initializes the driver accordingly. The application may free
this structure after the function returns.

slave Pointer to the FLEXIO_I2S slave driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLEXIO_I2S←↩

_DRV_SlaveDeinit().

Returns

Error or success status returned by API

Definition at line 1530 of file flexio_i2s_driver.c.

16.34.4.18 status_t FLEXIO_I2S_DRV_SlaveReceiveData (flexio_i2s_slave_state_t ∗ slave, uint8_t ∗ rxBuff, uint32_t
rxSize)

Perform a non-blocking receive transaction on the I2S bus.

This function starts the reception of a block of data and returns immediately. The rest of the reception is handled
by the interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_I2S_DRV_SlaveGet←↩

Status function (if the driver is initialized in polling mode). Use FLEXIO_I2S_DRV_SlaveGetStatus() to check the
progress of the reception.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

This function starts the reception of a block of data and returns immediately. The rest of the reception is handled
by the interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_I2S_DRV_SlaveGet←↩

Status function (if the driver is initialized in polling mode). Use FLEXIO_I2S_DRV_SlaveGetStatus() to check the
progress of the reception.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveReceiveData_Activity

Definition at line 1775 of file flexio_i2s_driver.c.

16.34.4.19 status_t FLEXIO_I2S_DRV_SlaveReceiveDataBlocking (flexio_i2s_slave_state_t ∗ slave, uint8_t ∗ rxBuff,
uint32_t rxSize, uint32_t timeout)

Perform a blocking receive transaction on the I2S bus.

This function receives a block of data and only returns when the reception is complete.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.34 FlexIO I2S Driver 405

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

This function receives a block of data and only returns when the reception is complete.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveReceiveDataBlocking_Activity

Definition at line 1795 of file flexio_i2s_driver.c.

16.34.4.20 status_t FLEXIO_I2S_DRV_SlaveSendData (flexio_i2s_slave_state_t ∗ slave, const uint8_t ∗ txBuff, uint32_t
txSize)

Perform a non-blocking send transaction on the I2S bus.

This function starts the transmission of a block of data and returns immediately. The rest of the transmission is
handled by the interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_I2S_DRV←↩

_SlaveGetStatus function (if the driver is initialized in polling mode). Use FLEXIO_I2S_DRV_SlaveGetStatus() to
check the progress of the transmission.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

This function starts the transmission of a block of data and returns immediately. The rest of the transmission is
handled by the interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_I2S_DRV←↩

_SlaveGetStatus function (if the driver is initialized in polling mode). Use FLEXIO_I2S_DRV_SlaveGetStatus() to
check the progress of the transmission.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveSendData_Activity

Definition at line 1729 of file flexio_i2s_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

406 CONTENTS

16.34.4.21 status_t FLEXIO_I2S_DRV_SlaveSendDataBlocking (flexio_i2s_slave_state_t ∗ slave, const uint8_t ∗ txBuff,
uint32_t txSize, uint32_t timeout)

Perform a blocking send transaction on the I2S bus.

This function sends a block of data, and only returns when the transmission is complete.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

This function sends a block of data, and only returns when the transmission is complete.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveSendDataBlocking_Activity

Definition at line 1751 of file flexio_i2s_driver.c.

16.34.4.22 status_t FLEXIO_I2S_DRV_SlaveSetConfig (flexio_i2s_slave_state_t ∗ slave, uint8_t bitsWidth)

Set the bit width for any subsequent I2S communication.

This function sets the bit width for the I2S slave.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
bitsWidth number of bits per word

Returns

Error or success status returned by API

Definition at line 1612 of file flexio_i2s_driver.c.

16.34.4.23 status_t FLEXIO_I2S_DRV_SlaveSetRxBuffer (flexio_i2s_slave_state_t ∗ slave, uint8_t ∗ rxBuff, uint32_t
rxSize)

Provide a buffer for receiving data.

This function can be used to provide a driver with a new buffer for receiving data. It can be called from the us-
er callback when event STATUS_I2S_RX_OVERRUN is reported. This way the reception will continue without
interruption.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.34 FlexIO I2S Driver 407

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

This function can be used to provide a driver with a new buffer for receiving data. It can be called from the us-
er callback when event STATUS_I2S_RX_OVERRUN is reported. This way the reception will continue without
interruption.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveSetRxBuffer_Activity

Definition at line 1853 of file flexio_i2s_driver.c.

16.34.4.24 status_t FLEXIO_I2S_DRV_SlaveSetTxBuffer (flexio_i2s_slave_state_t ∗ slave, const uint8_t ∗ txBuff,
uint32_t txSize)

Provide a buffer for transmitting data.

This function can be used to provide a driver with a new buffer for transmitting data. It can be called from the user
callback when event STATUS_I2S_TX_UNDERRUN is reported. This way the transmission will continue without
interruption.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
txBuff pointer to the buffer containing transmit data
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

This function can be used to provide a driver with a new buffer for transmitting data. It can be called from the user
callback when event STATUS_I2S_TX_UNDERRUN is reported. This way the transmission will continue without
interruption.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.
txBuff pointer to the buffer containing transmit data
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveSetTxBuffer_Activity

Definition at line 1874 of file flexio_i2s_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

408 CONTENTS

16.34.4.25 status_t FLEXIO_I2S_DRV_SlaveTransferAbort (flexio_i2s_slave_state_t ∗ slave)

Aborts a non-blocking I2S slave transaction.

This function aborts a non-blocking I2S transfer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.34 FlexIO I2S Driver 409

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.

Returns

Error or success status returned by API

This function aborts a non-blocking I2S transfer.

Parameters

slave Pointer to the FLEXIO_I2S slave driver context structure.

Returns

Error or success status returned by API Implements : FLEXIO_I2S_DRV_SlaveTransferAbort_Activity

Definition at line 1813 of file flexio_i2s_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

410 CONTENTS

16.35 FlexIO SPI Driver

16.35.1 Detailed Description

SPI communication over FlexIO module (FLEXIO_SPI)

The FLEXIO_SPI Driver allows communication on an SPI bus using the FlexIO module in the S32K1xx processors.

Features

• Master or slave operation

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transfer functions

• Configurable baud rate

• Configurable clock polarity and phase

• Configurable bit order and data size

Functionality

Before using any Flexio driver the device must first be initialized using function FLEXIO_DRV_InitDevice. Then the
FLEXIO_SPI Driver must be initialized, using functions FLEXIO_SPI_DRV_MasterInit() or FLEXIO_SPI_DRV_←↩

SlaveInit(). It is possible to use more driver instances on the same FlexIO device, as long as sufficient resources
are available. Different driver instances on the same FlexIO device can function independently of each other. When
it is no longer needed, the driver can be de-initialized, using FLEXIO_SPI_DRV_MasterDeinit() or FLEXIO_S←↩

PI_DRV_SlaveDeinit(). This will release the hardware resources, allowing other driver instances to be initialized
other.

Master Mode

Master Mode provides functions for transmitting or receiving data to/from an SPI slave. Baud rate is provided at
initialization time through the master configuration structure, but can be changed at runtime by using FLEXIO_SP←↩

I_DRV_MasterSetBaudRate() function. Note that due to module limitation not any baud rate can be achieved. The
driver will set a baud rate as close as possible to the requested baud rate, but there may still be substantial differ-
ences, for example if requesting a high baud rate while using a low-frequency FlexIO clock. The application should
call FLEXIO_SPI_DRV_MasterGetBaudRate() after FLEXIO_SPI_DRV_MasterSetBaudRate() to check what baud
rate was actually set.

To send or receive data, use function FLEXIO_SPI_DRV_MasterTransfer(). The transmit and receive buffers, to-
gether with parameters for the transfer are provided through the flexio_spi_transfer_t structure. If only transmit
or receive is desired, any one of the Rx/Tx buffers can be set to NULL. This driver does not support continuous
send/receive using a user callback function. The callback function is only used to signal the end of a transfer.

Blocking operations will return only when the transfer is completed, either successfully or with error. Non-blocking
operations will initiate the transfer and return STATUS_SUCCESS, but the module is still busy with the transfer and
another transfer can't be initiated until the current transfer is complete. The application will be notified through the
user callback when the transfer completes, or it can check the status of the current transfer by calling FLEXIO_S←↩

PI_DRV_MasterGetStatus(). If the transfer is still ongoing this function will return STATUS_BUSY. If the transfer is
completed, the function will return either STATUS_SUCCESS or an error code, depending on the outcome of the
last transfer.

The driver supports interrupt, DMA and polling mode. In polling mode the function FLEXIO_SPI_DRV_Master←↩

GetStatus() ensures the progress of the transfer by checking and handling transmit and receive events reported
by the FlexIO module. The application should ensure that this function is called often enough (at least once per
transferred byte)to avoid Tx underflows or Rx overflows. In DMA mode the DMA channels that will be used by the
driver are received through the configuration structure. The channels must be initialized by the application before
the flexio_spi driver is initialized. The flexio_spi driver will only set the DMA request source.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.35 FlexIO SPI Driver 411

Slave Mode

Slave Mode is very similar to master mode, the main difference being that the FLEXIO_SPI_DRV_SlaveInit() func-
tion initializes the FlexIO module to use the clock signal received from the master instead of generating it. Con-
sequently, there is no SetBaudRate function in slave mode. Other than that, the slave mode offers a similar
interface to the master mode. FLEXIO_SPI_DRV_MasterTransfer() can be used to initiate transfers, and FLEXIO←↩

_SPI_DRV_SlaveGetStatus() is used to check the status of the transfer and advance the transfer in polling mode.
All other specifications from the Master Mode description apply for Slave Mode too

Important Notes

• Before using the FLEXIO_SPI Driver the protocol clock of the module must be configured. Refer to Clock
Manager for clock configuration.

• Before using the FLEXIO_SPI Driver the pins must be routed to the FlexIO module. Refer to PINS Driver for
pin routing configuration. Note that any of the available FlexIO pins can be used for MOSI, MISO, SCK and
SS (configurable at initialization time).

• The driver enables the interrupts for the corresponding FlexIO module, but any interrupt priority setting must
be done by the application.

• The driver does not support back-to-back transmission mode for CPHA = 1

• The driver does not support configurable polarity for SS signal (only active-low is supported)

• Timeout feature for blocking transfers does not work in polling mode.

• This driver needs two shifters and two timers for its operation. Initialization will fail if there are not enough
shifters and timers available on the FlexIO device.

• This driver needs two DMA channels for its operation when it is initialized in DMA mode. The DMA channels
must be initialized by the application before initializing the driver. Refer to EDMA driver for DMA channels
initialization.

• If the application uses an RTOS, this driver uses a semaphore for blocking transfers. Initialization will fail if
the semaphore cannot be created. If the driver uses polling mode no semaphore is used.

• If the application uses an RTOS, the FlexIO drivers use a mutex for channel allocation. Only one mutex per
device is needed, not per driver instance. Device initialization will fail if the mutex cannot be created.

• For transfers where the data size is more than 1 byte (transferSize is 2 or 4) the driver assumes that the data
buffers are defined with the proper type (uint16_t or uint32_t) and are properly aligned.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\flexio\flexio_common.c
${S32SDK_PATH}\platform\drivers\src\flexio\flexio_spi_driver.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc
${S32SDK_PATH}\platform\drivers\src\flexio

Compile symbols

No special symbols are required for this component

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

412 CONTENTS

Dependencies

Clock Manager OS Interface (OSIF) Interrupt Manager (Interrupt) Enhanced Direct Memory Access (eDMA)

Data Structures

• struct flexio_spi_master_user_config_t

Master configuration structure. More...

• struct flexio_spi_slave_user_config_t

Slave configuration structure. More...

• struct flexio_spi_master_state_t

Master internal context structure. More...

Typedefs

• typedef flexio_spi_master_state_t flexio_spi_slave_state_t

Slave internal context structure.

Enumerations

• enum flexio_spi_transfer_bit_order_t { FLEXIO_SPI_TRANSFER_MSB_FIRST = 0U, FLEXIO_SPI_TRAN←↩

SFER_LSB_FIRST = 1U }

Order in which the data bits are transferred Implements : flexio_spi_transfer_bit_order_t_Class.

• enum flexio_spi_transfer_size_t { FLEXIO_SPI_TRANSFER_1BYTE = 1U, FLEXIO_SPI_TRANSFER_2B←↩

YTE = 2U, FLEXIO_SPI_TRANSFER_4BYTE = 4U }

Size of transferred data in bytes Implements : flexio_spi_transfer_size_t_Class.

FLEXIO_SPI Driver

• status_t FLEXIO_SPI_DRV_MasterInit (uint32_t instance, const flexio_spi_master_user_config_t ∗user←↩

ConfigPtr, flexio_spi_master_state_t ∗master)

Initialize the FLEXIO_SPI master mode driver.

• status_t FLEXIO_SPI_DRV_MasterDeinit (flexio_spi_master_state_t ∗master)

De-initialize the FLEXIO_SPI master mode driver.

• status_t FLEXIO_SPI_DRV_MasterSetBaudRate (flexio_spi_master_state_t ∗master, uint32_t baudRate)

Set the baud rate for any subsequent SPI communication.

• status_t FLEXIO_SPI_DRV_MasterGetBaudRate (flexio_spi_master_state_t ∗master, uint32_t ∗baudRate)

Get the currently configured baud rate.

• status_t FLEXIO_SPI_DRV_MasterTransfer (flexio_spi_master_state_t ∗master, const uint8_t ∗txData,
uint8_t ∗rxData, uint32_t dataSize)

Perform a non-blocking SPI master transaction.

• status_t FLEXIO_SPI_DRV_MasterTransferBlocking (flexio_spi_master_state_t ∗master, const uint8_t ∗tx←↩

Data, uint8_t ∗rxData, uint32_t dataSize, uint32_t timeout)

Perform a blocking SPI master transaction.

• status_t FLEXIO_SPI_DRV_MasterTransferAbort (flexio_spi_master_state_t ∗master)

Aborts a non-blocking SPI master transaction.

• status_t FLEXIO_SPI_DRV_MasterGetStatus (flexio_spi_master_state_t ∗master, uint32_t ∗bytes←↩

Remaining)

Get the status of the current non-blocking SPI master transaction.

• status_t FLEXIO_SPI_DRV_SlaveInit (uint32_t instance, const flexio_spi_slave_user_config_t ∗userConfig←↩

Ptr, flexio_spi_slave_state_t ∗slave)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.35 FlexIO SPI Driver 413

Initialize the FLEXIO_SPI slave mode driver.
• status_t FLEXIO_SPI_DRV_SlaveDeinit (flexio_spi_slave_state_t ∗slave)

De-initialize the FLEXIO_SPI slave mode driver.
• status_t FLEXIO_SPI_DRV_SlaveTransfer (flexio_spi_slave_state_t ∗slave, const uint8_t ∗txData, uint8_←↩

t ∗rxData, uint32_t dataSize)

Perform a non-blocking SPI slave transaction.
• status_t FLEXIO_SPI_DRV_SlaveTransferBlocking (flexio_spi_slave_state_t ∗slave, const uint8_t ∗txData,

uint8_t ∗rxData, uint32_t dataSize, uint32_t timeout)

Perform a blocking SPI slave transaction.
• status_t FLEXIO_SPI_DRV_SlaveTransferAbort (flexio_spi_slave_state_t ∗slave)

Aborts a non-blocking SPI slave transaction.
• status_t FLEXIO_SPI_DRV_SlaveGetStatus (flexio_spi_slave_state_t ∗slave, uint32_t ∗bytesRemaining)

Get the status of the current non-blocking SPI slave transaction.
• void FLEXIO_SPI_DRV_MasterGetDefaultConfig (flexio_spi_master_user_config_t ∗userConfigPtr)

Returns default configuration structure for FLEXIO_SPI master.
• void FLEXIO_SPI_DRV_SlaveGetDefaultConfig (flexio_spi_slave_user_config_t ∗userConfigPtr)

Returns default configuration structure for FLEXIO_SPI slave.

16.35.2 Data Structure Documentation

16.35.2.1 struct flexio_spi_master_user_config_t

Master configuration structure.

This structure is used to provide configuration parameters for the flexio_spi master at initialization time. Implements
: flexio_spi_master_user_config_t_Class

Definition at line 67 of file flexio_spi_driver.h.

Data Fields

• uint32_t baudRate
• flexio_driver_type_t driverType
• flexio_spi_transfer_bit_order_t bitOrder
• flexio_spi_transfer_size_t transferSize
• uint8_t clockPolarity
• uint8_t clockPhase
• uint8_t mosiPin
• uint8_t misoPin
• uint8_t sckPin
• uint8_t ssPin
• spi_callback_t callback
• void ∗ callbackParam
• uint8_t rxDMAChannel
• uint8_t txDMAChannel

Field Documentation

16.35.2.1.1 uint32_t baudRate

Baud rate in hertz

Definition at line 69 of file flexio_spi_driver.h.

16.35.2.1.2 flexio_spi_transfer_bit_order_t bitOrder

Bit order: LSB-first / MSB-first

Definition at line 71 of file flexio_spi_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

414 CONTENTS

16.35.2.1.3 spi_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 79 of file flexio_spi_driver.h.

16.35.2.1.4 void∗ callbackParam

Parameter for the callback function

Definition at line 83 of file flexio_spi_driver.h.

16.35.2.1.5 uint8_t clockPhase

Clock Phase (CPHA) 0 = sample on leading clock edge; 1 = sample on trailing clock edge

Definition at line 74 of file flexio_spi_driver.h.

16.35.2.1.6 uint8_t clockPolarity

Clock Polarity (CPOL) 0 = active-high clock; 1 = active-low clock

Definition at line 73 of file flexio_spi_driver.h.

16.35.2.1.7 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 70 of file flexio_spi_driver.h.

16.35.2.1.8 uint8_t misoPin

Flexio pin to use as MISO pin

Definition at line 76 of file flexio_spi_driver.h.

16.35.2.1.9 uint8_t mosiPin

Flexio pin to use as MOSI pin

Definition at line 75 of file flexio_spi_driver.h.

16.35.2.1.10 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 84 of file flexio_spi_driver.h.

16.35.2.1.11 uint8_t sckPin

Flexio pin to use as SCK pin

Definition at line 77 of file flexio_spi_driver.h.

16.35.2.1.12 uint8_t ssPin

Flexio pin to use as SS pin

Definition at line 78 of file flexio_spi_driver.h.

16.35.2.1.13 flexio_spi_transfer_size_t transferSize

Transfer size in bytes: 1/2/4

Definition at line 72 of file flexio_spi_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.35 FlexIO SPI Driver 415

16.35.2.1.14 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 85 of file flexio_spi_driver.h.

16.35.2.2 struct flexio_spi_slave_user_config_t

Slave configuration structure.

This structure is used to provide configuration parameters for the flexio_spi slave at initialization time. Implements :
flexio_spi_slave_user_config_t_Class

Definition at line 94 of file flexio_spi_driver.h.

Data Fields

• flexio_driver_type_t driverType
• flexio_spi_transfer_bit_order_t bitOrder
• flexio_spi_transfer_size_t transferSize
• uint8_t clockPolarity
• uint8_t clockPhase
• uint8_t mosiPin
• uint8_t misoPin
• uint8_t sckPin
• uint8_t ssPin
• spi_callback_t callback
• void ∗ callbackParam
• uint8_t rxDMAChannel
• uint8_t txDMAChannel

Field Documentation

16.35.2.2.1 flexio_spi_transfer_bit_order_t bitOrder

Bit order: LSB-first / MSB-first

Definition at line 97 of file flexio_spi_driver.h.

16.35.2.2.2 spi_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 105 of file flexio_spi_driver.h.

16.35.2.2.3 void∗ callbackParam

Parameter for the callback function

Definition at line 109 of file flexio_spi_driver.h.

16.35.2.2.4 uint8_t clockPhase

Clock Phase (CPHA) 0 = sample on leading clock edge; 1 = sample on trailing clock edge

Definition at line 100 of file flexio_spi_driver.h.

16.35.2.2.5 uint8_t clockPolarity

Clock Polarity (CPOL) 0 = active-low clock; 1 = active-high clock

Definition at line 99 of file flexio_spi_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

416 CONTENTS

16.35.2.2.6 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 96 of file flexio_spi_driver.h.

16.35.2.2.7 uint8_t misoPin

Flexio pin to use as MISO pin

Definition at line 102 of file flexio_spi_driver.h.

16.35.2.2.8 uint8_t mosiPin

Flexio pin to use as MOSI pin

Definition at line 101 of file flexio_spi_driver.h.

16.35.2.2.9 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 110 of file flexio_spi_driver.h.

16.35.2.2.10 uint8_t sckPin

Flexio pin to use as SCK pin

Definition at line 103 of file flexio_spi_driver.h.

16.35.2.2.11 uint8_t ssPin

Flexio pin to use as SS pin

Definition at line 104 of file flexio_spi_driver.h.

16.35.2.2.12 flexio_spi_transfer_size_t transferSize

Transfer size in bytes: 1/2/4

Definition at line 98 of file flexio_spi_driver.h.

16.35.2.2.13 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 111 of file flexio_spi_driver.h.

16.35.2.3 struct flexio_spi_master_state_t

Master internal context structure.

This structure is used by the master-mode driver for its internal logic. It must be provided by the application through
the FLEXIO_SPI_DRV_MasterInit() function, then it cannot be freed until the driver is de-initialized using FLEXI←↩

O_SPI_DRV_MasterDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 123 of file flexio_spi_driver.h.

16.35.3 Typedef Documentation

16.35.3.1 typedef flexio_spi_master_state_t flexio_spi_slave_state_t

Slave internal context structure.

This structure is used by the slave-mode driver for its internal logic. It must be provided by the application through
the FLEXIO_SPI_DRV_SlaveInit() function, then it cannot be freed until the driver is de-initialized using FLEXIO←↩

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.35 FlexIO SPI Driver 417

_SPI_DRV_SlaveDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 155 of file flexio_spi_driver.h.

16.35.4 Enumeration Type Documentation

16.35.4.1 enum flexio_spi_transfer_bit_order_t

Order in which the data bits are transferred Implements : flexio_spi_transfer_bit_order_t_Class.

Enumerator

FLEXIO_SPI_TRANSFER_MSB_FIRST Transmit data starting with most significant bit

FLEXIO_SPI_TRANSFER_LSB_FIRST Transmit data starting with least significant bit

Definition at line 39 of file flexio_spi_driver.h.

16.35.4.2 enum flexio_spi_transfer_size_t

Size of transferred data in bytes Implements : flexio_spi_transfer_size_t_Class.

Enumerator

FLEXIO_SPI_TRANSFER_1BYTE Data size is 1-byte

FLEXIO_SPI_TRANSFER_2BYTE Data size is 2-bytes

FLEXIO_SPI_TRANSFER_4BYTE Data size is 4-bytes

Definition at line 48 of file flexio_spi_driver.h.

16.35.5 Function Documentation

16.35.5.1 status_t FLEXIO_SPI_DRV_MasterDeinit (flexio_spi_master_state_t ∗ master)

De-initialize the FLEXIO_SPI master mode driver.

This function de-initializes the FLEXIO_SPI driver in master mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.

Returns

Error or success status returned by API

Definition at line 982 of file flexio_spi_driver.c.

16.35.5.2 status_t FLEXIO_SPI_DRV_MasterGetBaudRate (flexio_spi_master_state_t ∗ master, uint32_t ∗ baudRate)

Get the currently configured baud rate.

This function returns the currently configured SPI baud rate.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

418 CONTENTS

master Pointer to the FLEXIO_SPI master driver context structure.
baudRate the current baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1054 of file flexio_spi_driver.c.

16.35.5.3 void FLEXIO_SPI_DRV_MasterGetDefaultConfig (flexio_spi_master_user_config_t ∗ userConfigPtr)

Returns default configuration structure for FLEXIO_SPI master.

Parameters

userConfigPtr Pointer to the FLEXIO_SPI user configuration structure.

Definition at line 1352 of file flexio_spi_driver.c.

16.35.5.4 status_t FLEXIO_SPI_DRV_MasterGetStatus (flexio_spi_master_state_t ∗ master, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking SPI master transaction.

This function returns the current status of a non-blocking SPI master transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API

Definition at line 1225 of file flexio_spi_driver.c.

16.35.5.5 status_t FLEXIO_SPI_DRV_MasterInit (uint32_t instance, const flexio_spi_master_user_config_t ∗
userConfigPtr, flexio_spi_master_state_t ∗ master)

Initialize the FLEXIO_SPI master mode driver.

This function initializes the FLEXIO_SPI driver in master mode.

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_SPI master user configuration structure. The function reads configu-

ration data from this structure and initializes the driver accordingly. The application may free
this structure after the function returns.

master Pointer to the FLEXIO_SPI master driver context structure. The driver uses this memory
area for its internal logic. The application must make no assumptions about the content of
this structure, and must not free this memory until the driver is de-initialized using FLEXIO←↩

_SPI_DRV_MasterDeinit().

Returns

Error or success status returned by API

Definition at line 893 of file flexio_spi_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.35 FlexIO SPI Driver 419

16.35.5.6 status_t FLEXIO_SPI_DRV_MasterSetBaudRate (flexio_spi_master_state_t ∗ master, uint32_t baudRate)

Set the baud rate for any subsequent SPI communication.

This function sets the baud rate for the SPI master. Note that due to module limitation not any baud rate can be
achieved. The driver will set a baud rate as close as possible to the requested baud rate, but there may still be
substantial differences, for example if requesting a high baud rate while using a low-frequency FlexIO clock. The
application should call FLEXIO_SPI_DRV_MasterGetBaudRate() after FLEXIO_SPI_DRV_MasterSetBaudRate()
to check what baud rate was actually set.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.
baudRate the desired baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1009 of file flexio_spi_driver.c.

16.35.5.7 status_t FLEXIO_SPI_DRV_MasterTransfer (flexio_spi_master_state_t ∗ master, const uint8_t ∗ txData, uint8_t
∗ rxData, uint32_t dataSize)

Perform a non-blocking SPI master transaction.

This function performs an SPI full-duplex transaction, transmit and receive in parallel. If only transmit or receive
are required, it is possible to provide NULL pointers for txData or rxData. The transfer is non-blocking, the function
only initiates the transfer and then returns, leaving the transfer to complete asynchronously). FLEXIO_SPI_DRV←↩

_MasterGetStatus() can be called to check the status of the transfer.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.
txData pointer to the data to be transmitted
rxData pointer to the buffer where to store received data

dataSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1095 of file flexio_spi_driver.c.

16.35.5.8 status_t FLEXIO_SPI_DRV_MasterTransferAbort (flexio_spi_master_state_t ∗ master)

Aborts a non-blocking SPI master transaction.

This function aborts a non-blocking SPI transfer.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.

Returns

Error or success status returned by API

Definition at line 1201 of file flexio_spi_driver.c.

16.35.5.9 status_t FLEXIO_SPI_DRV_MasterTransferBlocking (flexio_spi_master_state_t ∗ master, const uint8_t ∗
txData, uint8_t ∗ rxData, uint32_t dataSize, uint32_t timeout)

Perform a blocking SPI master transaction.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

420 CONTENTS

This function performs an SPI full-duplex transaction, transmit and receive in parallel. If only transmit or receive
are required, it is possible to provide NULL pointers for txData or rxData. The transfer is blocking, the function only
returns when the transfer is complete.

Parameters

master Pointer to the FLEXIO_SPI master driver context structure.
txData pointer to the data to be transmitted
rxData pointer to the buffer where to store received data

dataSize length in bytes of the data to be transferred
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1160 of file flexio_spi_driver.c.

16.35.5.10 status_t FLEXIO_SPI_DRV_SlaveDeinit (flexio_spi_slave_state_t ∗ slave)

De-initialize the FLEXIO_SPI slave mode driver.

This function de-initializes the FLEXIO_SPI driver in slave mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.

Returns

Error or success status returned by API

This function de-initializes the FLEXIO_SPI driver in slave mode. The driver can't be used again until reinitialized.
The context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.

Returns

Error or success status returned by API Implements : FLEXIO_SPI_DRV_SlaveDeinit_Activity

Definition at line 1411 of file flexio_spi_driver.c.

16.35.5.11 void FLEXIO_SPI_DRV_SlaveGetDefaultConfig (flexio_spi_slave_user_config_t ∗ userConfigPtr)

Returns default configuration structure for FLEXIO_SPI slave.

Parameters

userConfigPtr Pointer to the FLEXIO_SPI user configuration structure.

Definition at line 1380 of file flexio_spi_driver.c.

16.35.5.12 status_t FLEXIO_SPI_DRV_SlaveGetStatus (flexio_spi_slave_state_t ∗ slave, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking SPI slave transaction.

This function returns the current status of a non-blocking SPI slave transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.35 FlexIO SPI Driver 421

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API

This function returns the current status of a non-blocking SPI slave transaction. A return code of STATUS_BUSY
means the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last
transfer. When the driver is initialized in polling mode this function also advances the transfer by checking and
handling the transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_SPI_DRV_SlaveGetStatus_Activity

Definition at line 1498 of file flexio_spi_driver.c.

16.35.5.13 status_t FLEXIO_SPI_DRV_SlaveInit (uint32_t instance, const flexio_spi_slave_user_config_t ∗
userConfigPtr, flexio_spi_slave_state_t ∗ slave)

Initialize the FLEXIO_SPI slave mode driver.

This function initializes the FLEXIO_SPI driver in slave mode.

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_SPI slave user configuration structure. The function reads configura-

tion data from this structure and initializes the driver accordingly. The application may free
this structure after the function returns.

slave Pointer to the FLEXIO_SPI slave driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLEXIO_SP←↩

I_DRV_SlaveDeinit().

Returns

Error or success status returned by API

Definition at line 1273 of file flexio_spi_driver.c.

16.35.5.14 status_t FLEXIO_SPI_DRV_SlaveTransfer (flexio_spi_slave_state_t ∗ slave, const uint8_t ∗ txData, uint8_t ∗
rxData, uint32_t dataSize)

Perform a non-blocking SPI slave transaction.

This function performs an SPI full-duplex transaction, transmit and receive in parallel. If only transmit or receive
are required, it is possible to provide NULL pointers for txData or rxData. The transfer is non-blocking, the function
only initiates the transfer and then returns, leaving the transfer to complete asynchronously). FLEXIO_SPI_DRV←↩

_SlaveGetStatus() can be called to check the status of the transfer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

422 CONTENTS

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.
txData pointer to the data to be transmitted
rxData pointer to the buffer where to store received data

dataSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

This function performs an SPI full-duplex transaction, transmit and receive in parallel. If only transmit or receive
are required, it is possible to provide NULL pointers for txData or rxData. The transfer is non-blocking, the function
only initiates the transfer and then returns, leaving the transfer to complete asynchronously). FLEXIO_SPI_DRV←↩

_SlaveGetStatus() can be called to check the status of the transfer.

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.
txData pointer to the data to be transmitted
rxData pointer to the buffer where to store received data

dataSize length in bytes of the data to be transferred

Returns

Error or success status returned by API Implements : FLEXIO_SPI_DRV_SlaveTransfer_Activity

Definition at line 1433 of file flexio_spi_driver.c.

16.35.5.15 status_t FLEXIO_SPI_DRV_SlaveTransferAbort (flexio_spi_slave_state_t ∗ slave)

Aborts a non-blocking SPI slave transaction.

This function aborts a non-blocking SPI transfer.

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.

Returns

Error or success status returned by API

This function aborts a non-blocking SPI transfer.

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.

Returns

Error or success status returned by API Implements : FLEXIO_SPI_DRV_SlaveTransferAbort_Activity

Definition at line 1477 of file flexio_spi_driver.c.

16.35.5.16 status_t FLEXIO_SPI_DRV_SlaveTransferBlocking (flexio_spi_slave_state_t ∗ slave, const uint8_t ∗ txData,
uint8_t ∗ rxData, uint32_t dataSize, uint32_t timeout)

Perform a blocking SPI slave transaction.

This function performs an SPI full-duplex transaction, transmit and receive in parallel. If only transmit or receive
are required, it is possible to provide NULL pointers for txData or rxData. The transfer is blocking, the function only
returns when the transfer is complete.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.35 FlexIO SPI Driver 423

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.
txData pointer to the data to be transmitted
rxData pointer to the buffer where to store received data

dataSize length in bytes of the data to be transferred
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

This function performs an SPI full-duplex transaction, transmit and receive in parallel. If only transmit or receive
are required, it is possible to provide NULL pointers for txData or rxData. The transfer is blocking, the function only
returns when the transfer is complete.

Parameters

slave Pointer to the FLEXIO_SPI slave driver context structure.
txData pointer to the data to be transmitted
rxData pointer to the buffer where to store received data

dataSize length in bytes of the data to be transferred
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API Implements : FLEXIO_SPI_DRV_SlaveTransferBlocking_Activity

Definition at line 1458 of file flexio_spi_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

424 CONTENTS

16.36 FlexIO UART Driver

16.36.1 Detailed Description

UART communication over FlexIO module (FLEXIO_UART)

The FLEXIO_UART Driver allows UART communication using the FlexIO module in the S32K1xx processors.

Features

• Interrupt, DMA or polling mode

• Provides blocking and non-blocking transmit and receive functions

• Configurable baud rate and number of bits

• Single stop bit only

• Parity bit not supported

Functionality

Initialization

Before using any Flexio driver the device must first be initialized using function FLEXIO_DRV_InitDevice. Then
the FLEXIO_UART Driver must be initialized, using function FLEXIO_UART_DRV_Init(). It is possible to use more
driver instances on the same FlexIO device, as long as sufficient resources are available. Different driver instances
on the same FlexIO device can function independently of each other. When it is no longer needed, the driver can be
de-initialized, using FLEXIO_UART_DRV_Deinit(). This will release the hardware resources, allowing other driver
instances to be initialized.

Choosing transmit/receive mode

To initialize the UART driver in transmit / receive mode the direction field of the configuration structure must
be set to FLEXIO_UART_DIRECTION_TX / FLEXIO_UART_DIRECTION_RX when calling FLEXIO_UAR←↩

T_DRV_Init(). Once configured for one direction the driver must be used only for the chosen direction until it is
de-initialized. One driver instance can only work in one direction at a time, but more driver instances can be created
on the same device, up to the number of shifters present on the device (for example on S32K144 up to 4 driver
instances can run in parallel on one device).

Setting the baud rate and bit count

The baud rate and bit count are provided at initialization time through the master configuration structure, but they
can be changed at runtime by using function FLEXIO_UART_DRV_SetConfig(). Note that due to module limitation
not any baud rate can be achieved. The driver will set a baud rate as close as possible to the requested baud
rate, but there may still be substantial differences, for example if requesting a high baud rate while using a low-
frequency FlexIO clock. The application should call FLEXIO_UART_DRV_GetBaudRate() to check what baud rate
was actually set.

Transmitting / Receiving

To send or receive data to/from the currently configured slave address, use functions FLEXIO_UART_DRV_Send←↩

Data() or FLEXIO_UART_DRV_ReceiveData() (or their blocking counterparts). Continuous send/receive can be
realized by registering a user callback function. When the driver completes the transmission or reception of the
current buffer, it will invoke the user callback with an appropriate event. The callback function can the use FLEXI←↩

O_UART_DRV_SetTxBuffer() orFLEXIO_UART_DRV_SetRxBuffer() to provide a new buffer.

Blocking operations will return only when the transfer is completed, either successfully or with error. Non-blocking
operations will initiate the transfer and return STATUS_SUCCESS, but the module is still busy with the transfer and
another transfer can't be initiated until the current transfer is complete. The application will be notified through the
user callback when the transfer completes, or it can check the status of the current transfer by calling FLEXIO←↩

_UART_DRV_GetStatus(). If the transfer is still ongoing this function will return STATUS_BUSY. If the transfer is

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.36 FlexIO UART Driver 425

completed, the function will return either STATUS_SUCCESS or an error code, depending on the outcome of the
last transfer.

The driver supports interrupt, DMA and polling mode. In polling mode the function FLEXIO_UART_DRV_Get←↩

Status() ensures the progress of the transfer by checking and handling transmit and receive events reported by the
FlexIO module. The application should ensure that this function is called often enough (at least once per transferred
byte) to avoid Tx underflows or Rx overflows. In DMA mode the DMA channel that will be used by the driver is
received through the configuration structure. The channel must be initialized by the application before the flexio_←↩

uart driver is initialized. The flexio_uart driver will only set the DMA request source.

Important Notes

• Before using the FLEXIO_UART Driver the FlexIO clock must be configured. Refer to Clock Manager for
clock configuration.

• Before using the FLEXIO_UART Driver the pins must be routed to the FlexIO module. Refer to PINS Driver
for pin routing configuration. Note that any of the available FlexIO pins can be used for the UART TX / RX
line (configurable at initialization time). If more than one driver instance is used on the same Flexio module,
it is the responsibility of the application to ensure there are no conflicts between pins.

• The driver enables the interrupts for the corresponding FlexIO module, but any interrupt priority setting must
be done by the application.

• Timeout feature for blocking transfers does not work in polling mode.

• This driver needs one shifter and one timer for its operation. Initialization will fail if there are not enough
shifters and timers available on the FlexIO device.

• This driver needs one DMA channel for its operation when it is initialized in DMA mode. The DMA channels
must be initialized by the application before initializing the driver. Refer to EDMA driver for DMA channels
initialization.

• If the application uses an RTOS, this driver uses a semaphore for blocking transfers. Initialization will fail if
the semaphore cannot be created. If the driver uses polling mode no semaphore is used.

• If the application uses an RTOS, the FlexIO drivers use a mutex for channel allocation. Only one mutex per
device is needed, not per driver instance. Device initialization will fail if the mutex cannot be created.

• For transfers where the data size is 2 bytes (bitCount is greater than 8) the driver assumes that the data
buffers are defined with the proper type (uint16_t) and are properly aligned.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\flexio\flexio_common.c
${S32SDK_PATH}\platform\drivers\src\flexio\flexio_uart_driver.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc
${S32SDK_PATH}\platform\drivers\src\flexio

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager OS Interface (OSIF) Interrupt Manager (Interrupt) Enhanced Direct Memory Access (eDMA)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

426 CONTENTS

Data Structures

• struct flexio_uart_user_config_t

Driver configuration structure. More...
• struct flexio_uart_state_t

Driver internal context structure. More...

Enumerations

• enum flexio_uart_driver_direction_t { FLEXIO_UART_DIRECTION_TX = 0x01U, FLEXIO_UART_DIRECT←↩

ION_RX = 0x00U }

flexio_uart driver direction (tx or rx)

FLEXIO_UART Driver

• status_t FLEXIO_UART_DRV_Init (uint32_t instance, const flexio_uart_user_config_t ∗userConfigPtr,
flexio_uart_state_t ∗state)

Initialize the FLEXIO_UART driver.
• status_t FLEXIO_UART_DRV_Deinit (flexio_uart_state_t ∗state)

De-initialize the FLEXIO_UART driver.
• status_t FLEXIO_UART_DRV_SetConfig (flexio_uart_state_t ∗state, uint32_t baudRate, uint8_t bitCount)

Set the baud rate and bit width for any subsequent UART communication.
• status_t FLEXIO_UART_DRV_GetBaudRate (flexio_uart_state_t ∗state, uint32_t ∗baudRate)

Get the currently configured baud rate.
• status_t FLEXIO_UART_DRV_SendDataBlocking (flexio_uart_state_t ∗state, const uint8_t ∗txBuff, uint32←↩

_t txSize, uint32_t timeout)

Perform a blocking UART transmission.
• status_t FLEXIO_UART_DRV_SendData (flexio_uart_state_t ∗state, const uint8_t ∗txBuff, uint32_t txSize)

Perform a non-blocking UART transmission.
• status_t FLEXIO_UART_DRV_ReceiveDataBlocking (flexio_uart_state_t ∗state, uint8_t ∗rxBuff, uint32_←↩

t rxSize, uint32_t timeout)

Perform a blocking UART reception.
• status_t FLEXIO_UART_DRV_ReceiveData (flexio_uart_state_t ∗state, uint8_t ∗rxBuff, uint32_t rxSize)

Perform a non-blocking UART reception.
• status_t FLEXIO_UART_DRV_GetStatus (flexio_uart_state_t ∗state, uint32_t ∗bytesRemaining)

Get the status of the current non-blocking UART transfer.
• status_t FLEXIO_UART_DRV_TransferAbort (flexio_uart_state_t ∗state)

Aborts a non-blocking UART transfer.
• status_t FLEXIO_UART_DRV_SetRxBuffer (flexio_uart_state_t ∗state, uint8_t ∗rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.
• status_t FLEXIO_UART_DRV_SetTxBuffer (flexio_uart_state_t ∗state, const uint8_t ∗txBuff, uint32_t txSize)

Provide a buffer for transmitting data.
• void FLEXIO_UART_DRV_GetDefaultConfig (flexio_uart_user_config_t ∗userConfigPtr)

Returns default configuration structure for FLEXIO_UART.

16.36.2 Data Structure Documentation

16.36.2.1 struct flexio_uart_user_config_t

Driver configuration structure.

This structure is used to provide configuration parameters for the flexio_uart driver at initialization time. Implements
: flexio_uart_user_config_t_Class

Definition at line 60 of file flexio_uart_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.36 FlexIO UART Driver 427

Data Fields

• flexio_driver_type_t driverType
• uint32_t baudRate
• uint8_t bitCount
• flexio_uart_driver_direction_t direction
• uint8_t dataPin
• uart_callback_t callback
• void ∗ callbackParam
• uint8_t dmaChannel

Field Documentation

16.36.2.1.1 uint32_t baudRate

Baud rate in hertz

Definition at line 63 of file flexio_uart_driver.h.

16.36.2.1.2 uint8_t bitCount

Number of bits per word

Definition at line 64 of file flexio_uart_driver.h.

16.36.2.1.3 uart_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 67 of file flexio_uart_driver.h.

16.36.2.1.4 void∗ callbackParam

Parameter for the callback function

Definition at line 71 of file flexio_uart_driver.h.

16.36.2.1.5 uint8_t dataPin

Flexio pin to use as Tx or Rx pin

Definition at line 66 of file flexio_uart_driver.h.

16.36.2.1.6 flexio_uart_driver_direction_t direction

Driver direction: Tx or Rx

Definition at line 65 of file flexio_uart_driver.h.

16.36.2.1.7 uint8_t dmaChannel

DMA channel number. Only used in DMA mode

Definition at line 72 of file flexio_uart_driver.h.

16.36.2.1.8 flexio_driver_type_t driverType

Driver type: interrupts/polling/DMA

Definition at line 62 of file flexio_uart_driver.h.

16.36.2.2 struct flexio_uart_state_t

Driver internal context structure.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

428 CONTENTS

This structure is used by the flexio_uart driver for its internal logic. It must be provided by the application through
the FLEXIO_UART_DRV_Init() function, then it cannot be freed until the driver is de-initialized using FLEXIO_U←↩

ART_DRV_DeInit(). The application should make no assumptions about the content of this structure.

Definition at line 84 of file flexio_uart_driver.h.

16.36.3 Enumeration Type Documentation

16.36.3.1 enum flexio_uart_driver_direction_t

flexio_uart driver direction (tx or rx)

This structure describes the direction configuration options for the flexio_uart driver. Implements : flexio_uart_←↩

driver_direction_t_Class

Enumerator

FLEXIO_UART_DIRECTION_TX Tx UART driver

FLEXIO_UART_DIRECTION_RX Rx UART driver

Definition at line 42 of file flexio_uart_driver.h.

16.36.4 Function Documentation

16.36.4.1 status_t FLEXIO_UART_DRV_Deinit (flexio_uart_state_t ∗ state)

De-initialize the FLEXIO_UART driver.

This function de-initializes the FLEXIO_UART driver. The driver can't be used again until reinitialized. The context
structure is no longer needed by the driver and can be freed after calling this function.

Parameters

state Pointer to the FLEXIO_UART driver context structure.

Returns

Error or success status returned by API

Definition at line 1065 of file flexio_uart_driver.c.

16.36.4.2 status_t FLEXIO_UART_DRV_GetBaudRate (flexio_uart_state_t ∗ state, uint32_t ∗ baudRate)

Get the currently configured baud rate.

This function returns the currently configured UART baud rate.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
baudRate the current baud rate in hertz

Returns

Error or success status returned by API

Definition at line 1142 of file flexio_uart_driver.c.

16.36.4.3 void FLEXIO_UART_DRV_GetDefaultConfig (flexio_uart_user_config_t ∗ userConfigPtr)

Returns default configuration structure for FLEXIO_UART.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.36 FlexIO UART Driver 429

Parameters

userConfigPtr Pointer to the FLEXIO_UART user configuration structure.

Definition at line 1495 of file flexio_uart_driver.c.

16.36.4.4 status_t FLEXIO_UART_DRV_GetStatus (flexio_uart_state_t ∗ state, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking UART transfer.

This function returns the current status of a non-blocking UART transfer. A return code of STATUS_BUSY means
the transfer is still in progress. Otherwise the function returns a status reflecting the outcome of the last transfer.
When the driver is initialized in polling mode this function also advances the transfer by checking and handling the
transmit and receive events, so it must be called frequently to avoid overflows or underflows.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
bytesRemaining the remaining number of bytes to be transferred

Note

In DMA mode, this parameter may not be accurate, in case the transfer completes right after calling this
function; in this edge-case, the parameter will reflect the initial transfer size, due to automatic reloading of the
major loop count in the DMA transfer descriptor.

Returns

Error or success status returned by API

Definition at line 1396 of file flexio_uart_driver.c.

16.36.4.5 status_t FLEXIO_UART_DRV_Init (uint32_t instance, const flexio_uart_user_config_t ∗ userConfigPtr,
flexio_uart_state_t ∗ state)

Initialize the FLEXIO_UART driver.

This function initializes the FLEXIO_UART driver.

Parameters

instance FLEXIO peripheral instance number
userConfigPtr Pointer to the FLEXIO_UART user configuration structure. The function reads configuration

data from this structure and initializes the driver accordingly. The application may free this
structure after the function returns.

state Pointer to the FLEXIO_UART driver context structure. The driver uses this memory area
for its internal logic. The application must make no assumptions about the content of this
structure, and must not free this memory until the driver is de-initialized using FLEXIO_UA←↩

RT_DRV_Deinit().

Returns

Error or success status returned by API

Definition at line 959 of file flexio_uart_driver.c.

16.36.4.6 status_t FLEXIO_UART_DRV_ReceiveData (flexio_uart_state_t ∗ state, uint8_t ∗ rxBuff, uint32_t rxSize)

Perform a non-blocking UART reception.

This function receives a block of data and returns immediately. The rest of the transmission is handled by the
interrupt service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_UART_DRV_GetReceive←↩

Status() function (if the driver is initialized in polling mode).

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

430 CONTENTS

Parameters

state Pointer to the FLEXIO_UART driver context structure.
rxBuff pointer to the receive buffer
rxSize length in bytes of the data to be received

Returns

Error or success status returned by API

Definition at line 1278 of file flexio_uart_driver.c.

16.36.4.7 status_t FLEXIO_UART_DRV_ReceiveDataBlocking (flexio_uart_state_t ∗ state, uint8_t ∗ rxBuff, uint32_t rxSize,
uint32_t timeout)

Perform a blocking UART reception.

This function receives a block of data and only returns when the transmission is complete.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
rxBuff pointer to the receive buffer
rxSize length in bytes of the data to be received

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1339 of file flexio_uart_driver.c.

16.36.4.8 status_t FLEXIO_UART_DRV_SendData (flexio_uart_state_t ∗ state, const uint8_t ∗ txBuff, uint32_t txSize)

Perform a non-blocking UART transmission.

This function sends a block of data and returns immediately. The rest of the transmission is handled by the interrupt
service routine (if the driver is initialized in interrupt mode) or by the FLEXIO_UART_DRV_GetTransmitStatus()
function (if the driver is initialized in polling mode).

Parameters

state Pointer to the FLEXIO_UART driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1182 of file flexio_uart_driver.c.

16.36.4.9 status_t FLEXIO_UART_DRV_SendDataBlocking (flexio_uart_state_t ∗ state, const uint8_t ∗ txBuff, uint32_t
txSize, uint32_t timeout)

Perform a blocking UART transmission.

This function sends a block of data and only returns when the transmission is complete.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.36 FlexIO UART Driver 431

Parameters

state Pointer to the FLEXIO_UART driver context structure.
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1245 of file flexio_uart_driver.c.

16.36.4.10 status_t FLEXIO_UART_DRV_SetConfig (flexio_uart_state_t ∗ state, uint32_t baudRate, uint8_t bitCount)

Set the baud rate and bit width for any subsequent UART communication.

This function sets the baud rate and bit width for the UART driver. Note that due to module limitation not any baud
rate can be achieved. The driver will set a baud rate as close as possible to the requested baud rate, but there may
still be substantial differences, for example if requesting a high baud rate while using a low-frequency FlexIO clock.
The application should call FLEXIO_UART_DRV_GetBaudRate() after FLEXIO_UART_DRV_SetConfig() to check
what baud rate was actually set.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
baudRate the desired baud rate in hertz

bitCount number of bits per word

Returns

Error or success status returned by API

Definition at line 1092 of file flexio_uart_driver.c.

16.36.4.11 status_t FLEXIO_UART_DRV_SetRxBuffer (flexio_uart_state_t ∗ state, uint8_t ∗ rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.

This function can be used to provide a new buffer for receiving data to the driver. It can be called from the user
callback when event STATUS_UART_RX_OVERRUN is reported. This way the reception will continue without
interruption.

Parameters

state Pointer to the FLEXIO_UART driver context structure.
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1449 of file flexio_uart_driver.c.

16.36.4.12 status_t FLEXIO_UART_DRV_SetTxBuffer (flexio_uart_state_t ∗ state, const uint8_t ∗ txBuff, uint32_t txSize)

Provide a buffer for transmitting data.

This function can be used to provide a new buffer for transmitting data to the driver. It can be called from the user
callback when event STATUS_UART_TX_UNDERRUN is reported. This way the transmission will continue without
interruption.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

432 CONTENTS

Parameters

state Pointer to the FLEXIO_UART driver context structure.
txBuff pointer to the buffer containing transmit data
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1471 of file flexio_uart_driver.c.

16.36.4.13 status_t FLEXIO_UART_DRV_TransferAbort (flexio_uart_state_t ∗ state)

Aborts a non-blocking UART transfer.

This function aborts a non-blocking UART transfer.

Parameters

state Pointer to the FLEXIO_UART driver context structure.

Returns

Error or success status returned by API

Definition at line 1372 of file flexio_uart_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 433

16.37 FlexTimer (FTM)

16.37.1 Detailed Description

FlexTimer Peripheral Driver.

Hardware background

The FTM of the S32K1xx is based on a 16 bits counter and supports: input capture, output compare, PWM and
some instances include quadrature decoder. The main features are:

•FTM source clock is selectable (Source clock can be the system clock, the fixed frequency clock, or an external
clock)

•Prescaler: 1, 2, 4, 8, 16, 32, 64, 128

•16 bit counter (up and up-down counting)

•Each channel can be configured for input capture, output compare, or PWM mode.

•Input Capture mode (single edge, dual edge or measure period/duty cycle)

•Output Compare mode (set, cleared or toggle on match)

•All channels can be configured for center-aligned PWM mode.

•Each pair of channels can be combined to generate a PWM signal with independent control of both edges of PWM
signal and with dead-time insertion.

•Up to 4 fault inputs for global fault control

•Dual edge capture for pulse and period width measurement

•Quadrature decoder with input filters, relative position counting, and interrupt on position count or capture of posi-
tion count on external event.

Modules

• FlexTimer Input Capture Driver (FTM_IC)

FlexTimer Input Capture Peripheral Driver.

• FlexTimer Module Counter Driver (FTM_MC)

FlexTimer Module Counter Peripheral Driver.

• FlexTimer Output Compare Driver (FTM_OC)

FlexTimer Output Compare Peripheral Driver.

• FlexTimer Pulse Width Modulation Driver (FTM_PWM)

FlexTimer Pulse Width Modulation Peripheral Driver.

• FlexTimer Quadrature Decoder Driver (FTM_QD)

FlexTimer Quadrature Decoder Peripheral Driver.

Data Structures

• struct ftm_state_t

FlexTimer state structure of the driver. More...

• struct ftm_pwm_sync_t

FlexTimer Registers sync parameters Please don't use software and hardware trigger simultaneously Implements :
ftm_pwm_sync_t_Class. More...

• struct ftm_user_config_t

Configuration structure that the user needs to set. More...

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

434 CONTENTS

Macros

• #define FTM_RMW_SC(base, mask, value) (((base)->SC) = ((((base)->SC) & ∼(mask)) | (value)))

FTM_SC - Read and modify and write to Status And Control (RW)

• #define FTM_RMW_CNT(base, mask, value) (((base)->CNT) = ((((base)->CNT) & ∼(mask)) | (value)))

FTM_CNT - Read and modify and write to Counter (RW)

• #define FTM_RMW_MOD(base, mask, value) (((base)->MOD) = ((((base)->MOD) & ∼(mask)) | (value)))

FTM_MOD - Read and modify and write Modulo (RW)

• #define FTM_RMW_CNTIN(base, mask, value) (((base)->CNTIN) = ((((base)->CNTIN) & ∼(mask)) | (val-
ue)))

FTM_CNTIN - Read and modify and write Counter Initial Value (RW)

• #define FTM_RMW_STATUS(base, mask, value) (((base)->STATUS) = ((((base)->STATUS) & ∼(mask)) |
(value)))

FTM_STATUS - Read and modify and write Capture And Compare Status (RW)

• #define FTM_RMW_MODE(base, mask, value) (((base)->MODE) = ((((base)->MODE) & ∼(mask)) | (val-
ue)))

FTM_MODE - Read and modify and write Counter Features Mode Selection (RW)

• #define FTM_RMW_CnSCV_REG(base, channel, mask, value) (((base)->CONTROLS[channel].CnSC) =
((((base)->CONTROLS[channel].CnSC) & ∼(mask)) | (value)))

FTM_CnSCV - Read and modify and write Channel (n) Status And Control (RW)

• #define FTM_RMW_DEADTIME(base, mask, value) (((base)->DEADTIME) = ((((base)->DEADTIME) &
∼(mask)) | (value)))

FTM_DEADTIME - Read and modify and write Dead-time Insertion Control (RW)

• #define FTM_RMW_EXTTRIG_REG(base, mask, value) (((base)->EXTTRIG) = ((((base)->EXTTRIG) &
∼(mask)) | (value)))

FTM_EXTTRIG - Read and modify and write External Trigger Control (RW)

• #define FTM_RMW_FLTCTRL(base, mask, value) (((base)->FLTCTRL) = ((((base)->FLTCTRL) &
∼(mask)) | (value)))

FTM_FLTCTRL - Read and modify and write Fault Control (RW)

• #define FTM_RMW_FMS(base, mask, value) (((base)->FMS) = ((((base)->FMS) & ∼(mask)) | (value)))

FTM_FMS - Read and modify and write Fault Mode Status (RW)

• #define FTM_RMW_CONF(base, mask, value) (((base)->CONF) = ((((base)->CONF) &∼(mask)) | (value)))

FTM_CONF - Read and modify and write Configuration (RW)

• #define FTM_RMW_POL(base, mask, value) (((base)->POL) = ((((base)->POL) & ∼(mask)) | (value)))

POL - Read and modify and write Polarity (RW)

• #define FTM_RMW_FILTER(base, mask, value) (((base)->FILTER) = ((((base)->FILTER) &∼(mask)) | (val-
ue)))

FILTER - Read and modify and write Filter (RW)

• #define FTM_RMW_SYNC(base, mask, value) (((base)->SYNC) = ((((base)->SYNC) &∼(mask)) | (value)))

SYNC - Read and modify and write Synchronization (RW)

• #define FTM_RMW_QDCTRL(base, mask, value) (((base)->QDCTRL) = ((((base)->QDCTRL) & ∼(mask))
| (value)))

QDCTRL - Read and modify and write Quadrature Decoder Control And Status (RW)

• #define FTM_RMW_PAIR0DEADTIME(base, mask, value) (((base)->PAIR0DEADTIME) = ((((base)->PA←↩

IR0DEADTIME) & ∼(mask)) | (value)))

FTM_PAIR0DEADTIME - Read and modify and write Dead-time Insertion Control for the pair 0 (RW)

• #define FTM_RMW_PAIR1DEADTIME(base, mask, value) (((base)->PAIR1DEADTIME) = ((((base)->PA←↩

IR1DEADTIME) & ∼(mask)) | (value)))

FTM_PAIR1DEADTIME - Read and modify and write Dead-time Insertion Control for the pair 1 (RW)

• #define FTM_RMW_PAIR2DEADTIME(base, mask, value) (((base)->PAIR2DEADTIME) = ((((base)->PA←↩

IR2DEADTIME) & ∼(mask)) | (value)))

FTM_PAIR2DEADTIME - Read and modify and write Dead-time Insertion Control for the pair 2 (RW)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 435

• #define FTM_RMW_PAIR3DEADTIME(base, mask, value) (((base)->PAIR3DEADTIME) = ((((base)->PA←↩

IR3DEADTIME) & ∼(mask)) | (value)))

FTM_PAIR3DEADTIME - Read and modify and write Dead-time Insertion Control for the pair 3 (RW)

• #define CHAN0_IDX (0U)

Channel number for CHAN1.

• #define CHAN1_IDX (1U)

Channel number for CHAN2.

• #define CHAN2_IDX (2U)

Channel number for CHAN3.

• #define CHAN3_IDX (3U)

Channel number for CHAN4.

• #define CHAN4_IDX (4U)

Channel number for CHAN5.

• #define CHAN5_IDX (5U)

Channel number for CHAN6.

• #define CHAN6_IDX (6U)

Channel number for CHAN7.

• #define CHAN7_IDX (7U)

Enumerations

• enum ftm_config_mode_t {
FTM_MODE_NOT_INITIALIZED = 0x00U, FTM_MODE_INPUT_CAPTURE = 0x01U, FTM_MODE_OUT←↩

PUT_COMPARE = 0x02U, FTM_MODE_EDGE_ALIGNED_PWM = 0x03U,
FTM_MODE_CEN_ALIGNED_PWM = 0x04U, FTM_MODE_QUADRATURE_DECODER = 0x05U, FTM_←↩

MODE_UP_TIMER = 0x06U, FTM_MODE_UP_DOWN_TIMER = 0x07U,
FTM_MODE_EDGE_ALIGNED_PWM_AND_INPUT_CAPTURE = 0x08U }

FlexTimer operation mode.

• enum ftm_clock_source_t { FTM_CLOCK_SOURCE_NONE = 0x00U, FTM_CLOCK_SOURCE_SYSTEM←↩

CLK = 0x01U, FTM_CLOCK_SOURCE_FIXEDCLK = 0x02U, FTM_CLOCK_SOURCE_EXTERNALCLK =
0x03U }

FlexTimer clock source selection.

• enum ftm_clock_ps_t {
FTM_CLOCK_DIVID_BY_1 = 0x00U, FTM_CLOCK_DIVID_BY_2 = 0x01U, FTM_CLOCK_DIVID_BY_4 =
0x02U, FTM_CLOCK_DIVID_BY_8 = 0x03U,
FTM_CLOCK_DIVID_BY_16 = 0x04U, FTM_CLOCK_DIVID_BY_32 = 0x05U, FTM_CLOCK_DIVID_BY_64
= 0x06U, FTM_CLOCK_DIVID_BY_128 = 0x07U }

FlexTimer pre-scaler factor selection for the clock source. In quadrature decoder mode set FTM_CLOCK_DIVID_←↩

BY_1.

• enum ftm_interrupt_option_t {
FTM_CHANNEL0_INT_ENABLE = 0x00000001U, FTM_CHANNEL1_INT_ENABLE = 0x00000002U, FT←↩

M_CHANNEL2_INT_ENABLE = 0x00000004U, FTM_CHANNEL3_INT_ENABLE = 0x00000008U,
FTM_CHANNEL4_INT_ENABLE = 0x00000010U, FTM_CHANNEL5_INT_ENABLE = 0x00000020U, FT←↩

M_CHANNEL6_INT_ENABLE = 0x00000040U, FTM_CHANNEL7_INT_ENABLE = 0x00000080U,
FTM_FAULT_INT_ENABLE = 0x00000100U, FTM_TIME_OVER_FLOW_INT_ENABLE = 0x00000200←↩

U, FTM_RELOAD_INT_ENABLE = 0x00000400U }

List of FTM interrupts.

• enum ftm_status_flag_t {
FTM_CHANNEL0_FLAG = 0x00000001U, FTM_CHANNEL1_FLAG = 0x00000002U, FTM_CHANNEL2_←↩

FLAG = 0x00000004U, FTM_CHANNEL3_FLAG = 0x00000008U,
FTM_CHANNEL4_FLAG = 0x00000010U, FTM_CHANNEL5_FLAG = 0x00000020U, FTM_CHANNEL6_←↩

FLAG = 0x00000040U, FTM_CHANNEL7_FLAG = 0x00000080U,
FTM_FAULT_FLAG = 0x00000100U, FTM_TIME_OVER_FLOW_FLAG = 0x00000200U, FTM_RELOAD←↩

_FLAG = 0x00000400U, FTM_CHANNEL_TRIGGER_FLAG = 0x00000800U }

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

436 CONTENTS

List of FTM flags.

• enum ftm_reg_update_t { FTM_SYSTEM_CLOCK = 0U, FTM_PWM_SYNC = 1U }

FTM sync source.

• enum ftm_pwm_sync_mode_t { FTM_WAIT_LOADING_POINTS = 0U, FTM_UPDATE_NOW = 1U }

FTM update register.

• enum ftm_deadtime_ps_t { FTM_DEADTIME_DIVID_BY_1 = 0x01U, FTM_DEADTIME_DIVID_BY_4 =
0x02U, FTM_DEADTIME_DIVID_BY_16 = 0x03U }

FlexTimer pre-scaler factor for the dead-time insertion.

• enum ftm_bdm_mode_t { FTM_BDM_MODE_00 = 0x00U, FTM_BDM_MODE_01 = 0x01U, FTM_BDM_M←↩

ODE_10 = 0x02U, FTM_BDM_MODE_11 = 0x03U }

Options for the FlexTimer behavior in BDM Mode.

Functions

• static void FTM_DRV_SetClockFilterPs (FTM_Type ∗const ftmBase, uint8_t filterPrescale)

Sets the filter Pre-scaler divider.

• static uint8_t FTM_DRV_GetClockFilterPs (const FTM_Type ∗ftmBase)

Reads the FTM filter clock divider.

• static uint16_t FTM_DRV_GetCounter (const FTM_Type ∗ftmBase)

Returns the FTM peripheral current counter value.

• static uint16_t FTM_DRV_GetMod (const FTM_Type ∗ftmBase)

Returns the FTM peripheral counter modulo value.

• static uint16_t FTM_DRV_GetCounterInitVal (const FTM_Type ∗ftmBase)

Returns the FTM peripheral counter initial value.

• static void FTM_DRV_ClearChSC (FTM_Type ∗const ftmBase, uint8_t channel)

Clears the content of Channel (n) Status And Control.

• static uint8_t FTM_DRV_GetChnEdgeLevel (const FTM_Type ∗ftmBase, uint8_t channel)

Gets the FTM peripheral timer channel edge level.

• static void FTM_DRV_SetChnIcrstCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Configure the feature of FTM counter reset by the selected input capture event.

• static bool FTM_DRV_IsChnIcrst (const FTM_Type ∗ftmBase, uint8_t channel)

Returns whether the FTM FTM counter is reset.

• static void FTM_DRV_SetChnDmaCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Enables or disables the FTM peripheral timer channel DMA.

• static bool FTM_DRV_IsChnDma (const FTM_Type ∗ftmBase, uint8_t channel)

Returns whether the FTM peripheral timer channel DMA is enabled.

• static void FTM_DRV_SetTrigModeControlCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Enables or disables the trigger generation on FTM channel outputs.

• static bool FTM_DRV_GetTriggerControled (const FTM_Type ∗ftmBase, uint8_t channel)

Returns whether the trigger mode is enabled.

• static bool FTM_DRV_GetChInputState (const FTM_Type ∗ftmBase, uint8_t channel)

Get the state of channel input.

• static bool FTM_DRV_GetChOutputValue (const FTM_Type ∗ftmBase, uint8_t channel)

Get the value of channel output.

• static uint16_t FTM_DRV_GetChnCountVal (const FTM_Type ∗ftmBase, uint8_t channel)

Gets the FTM peripheral timer channel counter value.

• static bool FTM_DRV_GetChnEventStatus (const FTM_Type ∗ftmBase, uint8_t channel)

Gets the FTM peripheral timer channel event status.

• static uint32_t FTM_DRV_GetEventStatus (const FTM_Type ∗ftmBase)

Gets the FTM peripheral timer status info for all channels.

• static void FTM_DRV_ClearChnEventStatus (FTM_Type ∗const ftmBase, uint8_t channel)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 437

Clears the FTM peripheral timer all channel event status.

• static void FTM_DRV_SetChnOutputMask (FTM_Type ∗const ftmBase, uint8_t channel, bool mask)

Sets the FTM peripheral timer channel output mask.

• static void FTM_DRV_SetChnOutputInitStateCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool state)

Sets the FTM peripheral timer channel output initial state 0 or 1.

• static void FTM_DRV_DisableFaultInt (FTM_Type ∗const ftmBase)

Disables the FTM peripheral timer fault interrupt.

• static void FTM_DRV_SetCaptureTestCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the FTM peripheral timer capture test mode.

• static bool FTM_DRV_IsFtmEnable (const FTM_Type ∗ftmBase)

Get status of the FTMEN bit in the FTM_MODE register.

• static void FTM_DRV_SetCountReinitSyncCmd (FTM_Type ∗const ftmBase, bool enable)

Determines if the FTM counter is re-initialized when the selected trigger for synchronization is detected.

• static bool FTM_DRV_IsWriteProtectionEnabled (const FTM_Type ∗ftmBase)

Checks whether the write protection is enabled.

• static bool FTM_DRV_IsFaultInputEnabled (const FTM_Type ∗ftmBase)

Checks whether the logic OR of the fault inputs is enabled.

• static bool FTM_DRV_IsFaultFlagDetected (const FTM_Type ∗ftmBase, uint8_t channel)

Checks whether a fault condition is detected at the fault input.

• static void FTM_DRV_ClearFaultFlagDetected (FTM_Type ∗const ftmBase, uint8_t channel)

Clear a fault condition is detected at the fault input.

• static void FTM_DRV_SetDualChnInvertCmd (FTM_Type ∗const ftmBase, uint8_t chnlPairNum, bool enable)

Enables or disables the channel invert for a channel pair.

• static void FTM_DRV_SetChnSoftwareCtrlCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Enables or disables the channel software output control.

• static void FTM_DRV_SetChnSoftwareCtrlVal (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Sets the channel software output control value. Despite the odd channels are configured as HIGH/LOW, they will
be inverted in the following configuration: COMP bit = 1 and CH(n)OCV and CH(n+1)OCV are HIGH. Please check
Software output control behavior chapter from RM.

• static void FTM_DRV_SetGlobalLoadCmd (FTM_Type ∗const ftmBase)

Set the global load mechanism.

• static void FTM_DRV_SetLoadCmd (FTM_Type ∗const ftmBase, bool enable)

Enable the global load.

• static void FTM_DRV_SetHalfCycleCmd (FTM_Type ∗const ftmBase, bool enable)

Enable the half cycle reload.

• static void FTM_DRV_SetPwmLoadCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the loading of MOD, CNTIN and CV with values of their write buffer.

• static void FTM_DRV_SetPwmLoadChnSelCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)

Includes or excludes the channel in the matching process.

• static void FTM_DRV_SetInitTrigOnReloadCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the FTM initialization trigger on Reload Point.

• static void FTM_DRV_SetGlobalTimeBaseOutputCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the FTM global time base signal generation to other FTM's.

• static void FTM_DRV_SetGlobalTimeBaseCmd (FTM_Type ∗const ftmBase, bool enable)

Enables or disables the FTM timer global time base.

• static void FTM_DRV_SetLoadFreq (FTM_Type ∗const ftmBase, uint8_t val)

Sets the frequency of reload points.

• static void FTM_DRV_SetExtPairDeadtimeValue (FTM_Type ∗const ftmBase, uint8_t channelPair, uint8_←↩

t value)

Sets the FTM extended dead-time value for the channel pair.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

438 CONTENTS

• static void FTM_DRV_SetPairDeadtimePrescale (FTM_Type ∗const ftmBase, uint8_t channelPair, ftm_←↩

deadtime_ps_t divider)

Sets the FTM dead time divider for the channel pair.

• static void FTM_DRV_SetPairDeadtimeCount (FTM_Type ∗const ftmBase, uint8_t channelPair, uint8_t count)

Sets the FTM dead-time value for the channel pair.

• status_t FTM_DRV_Init (uint32_t instance, const ftm_user_config_t ∗info, ftm_state_t ∗state)

Initializes the FTM driver.

• status_t FTM_DRV_Deinit (uint32_t instance)

Shuts down the FTM driver.

• void FTM_DRV_GetDefaultConfig (ftm_user_config_t ∗const config)

This function will get the default configuration values in the structure which is used as a common use-case.

• status_t FTM_DRV_MaskOutputChannels (uint32_t instance, uint32_t channelsMask, bool softwareTrigger)

This function will mask the output of the channels and at match events will be ignored by the masked channels.

• status_t FTM_DRV_SetInitialCounterValue (uint32_t instance, uint16_t counterValue, bool softwareTrigger)

This function configure the initial counter value. The counter will get this value after an overflow event.

• status_t FTM_DRV_SetHalfCycleReloadPoint (uint32_t instance, uint16_t reloadPoint, bool softwareTrigger)

This function configure the value of the counter which will generates an reload point.

• status_t FTM_DRV_SetSoftOutChnValue (uint32_t instance, uint8_t channelsValues, bool softwareTrigger)

This function will force the output value of a channel to a specific value. Before using this function it's mandatory
to mask the match events using FTM_DRV_MaskOutputChannels and to enable software output control using FT←↩

M_DRV_SetSoftwareOutputChannelControl. : When the PWM signal is configured with LOW/HIGH polarity on the
channel (n). It should be set the safe state as LOW level state. However, We will have an issue with COMP bit is zero
and CH(n)OCV is HIGH and CH(n+1)OCV is LOW.in the independent channel configuration. Code configuration←↩

: { .polarity = FTM_POLARITY_HIGH, .safeState = FTM_POLARITY_LOW, .enableSecondChannelOutput = true,
.secondChannelPolarity = FTM_MAIN_DUPLICATED, }.

• status_t FTM_DRV_SetSoftwareOutputChannelControl (uint32_t instance, uint8_t channelsMask, bool
softwareTrigger)

This function will configure which output channel can be software controlled. Software output control forces the
following values on channels (n) and (n+1) when the COMP bit is zero and POL bit is zero. CH(n)OC|CH(n+1)OC|←↩

CH(n)OCV|CH(n+1)OCV|Channel (n) Output | Channel (n+1) Output 0 | 0 | X | X | is not modified by SWOC| is not
modified by SWOC 1 | 1 | 0 | 0 | is forced to zero | is forced to zero 1 | 1 | 0 | 1 | is forced to zero | is forced to one 1 |
1 | 1 | 0 | is forced to one | is forced to zero 1 | 1 | 1 | 1 | is forced to one | is forced to one.

• status_t FTM_DRV_SetAllChnSoftwareOutputControl (uint32_t instance, uint8_t channelMask, uint8_←↩

t channelValueMask, bool softwareTrigger)

This function will control list of channels by software to force the output to specified value. Despite the odd channels
are configured as HIGH/LOW, they will be inverted in the following configuration: COMP bit = 1 and CH(n)OCV and
CH(n+1)OCV are HIGH. Please check software output control behavior chapter from reference manual. : When the
PWM signal is configured with LOW/HIGH polarity on the channel (n). It should be set the safe state as LOW level
state. However, We will have an issue with COMP bit is zero and CH(n)OCV is HIGH and CH(n+1)OCV is LOW.in
the independent channel configuration. Code configuration: { .polarity = FTM_POLARITY_HIGH, .safeState = F←↩

TM_POLARITY_LOW, .enableSecondChannelOutput = true, .secondChannelPolarity = FTM_MAIN_DUPLICATED,
}.

• status_t FTM_DRV_SetInvertingControl (uint32_t instance, uint8_t channelsPairMask, bool softwareTrigger)

This function will configure if the second channel of a pair will be inverted or not.

• status_t FTM_DRV_SetModuloCounterValue (uint32_t instance, uint16_t counterValue, bool softwareTrigger)

This function configure the maximum counter value.

• status_t FTM_DRV_SetOutputlevel (uint32_t instance, uint8_t channel, uint8_t level)

This function will set the channel edge or level on the selection of the channel mode.

• status_t FTM_DRV_SetSync (uint32_t instance, const ftm_pwm_sync_t ∗param)

This function configures sync mechanism for some FTM registers (MOD, CNINT, HCR, CnV, OUTMASK, INVCTRL,
SWOCTRL).

• status_t FTM_DRV_GenerateHardwareTrigger (uint32_t instance)

This function is used to configure a trigger source for FTM instance. This allow a hardware trigger input which can be
used in PWM synchronization. Note that the hardware trigger is implemented only on trigger 1 for each instance.

• status_t FTM_DRV_EnableInterrupts (uint32_t instance, uint32_t interruptMask)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 439

This function will enable the generation a list of interrupts. It includes the FTM overflow interrupts, the reload point
interrupt, the fault interrupt and the channel (n) interrupt.

• void FTM_DRV_DisableInterrupts (uint32_t instance, uint32_t interruptMask)

This function is used to disable some interrupts.

• uint32_t FTM_DRV_GetEnabledInterrupts (uint32_t instance)

This function will get the enabled FTM interrupts.

• uint32_t FTM_DRV_GetStatusFlags (uint32_t instance)

This function will get the FTM status flags. : Regarding the duty cycle is 100% at the channel output, the match
interrupt has no event due to the C(n)V and C(n+1)V value are not between CNTIN value and MOD value.

• void FTM_DRV_ClearStatusFlags (uint32_t instance, uint32_t flagMask)

This function is used to clear the FTM status flags.

• uint32_t FTM_DRV_GetFrequency (uint32_t instance)

Retrieves the frequency of the clock source feeding the FTM counter.

• uint16_t FTM_DRV_ConvertFreqToPeriodTicks (uint32_t instance, uint32_t freqencyHz)

This function is used to covert the given frequency to period in ticks.

• status_t FTM_DRV_CounterReset (uint32_t instance, bool softwareTrigger)

This function will allow the FTM to restart the counter to its initial counting value in the register. Note that the
configuration is set in the FTM_DRV_SetSync() function to make sure that the FTM registers are updated by software
trigger or hardware trigger.

Variables

• FTM_Type ∗const g_ftmBase [FTM_INSTANCE_COUNT]

Table of base addresses for FTM instances.

• const IRQn_Type g_ftmIrqId [FTM_INSTANCE_COUNT][FEATURE_FTM_CHANNEL_COUNT]

Interrupt vectors for the FTM peripheral.

• const IRQn_Type g_ftmFaultIrqId [FTM_INSTANCE_COUNT]
• const IRQn_Type g_ftmOverflowIrqId [FTM_INSTANCE_COUNT]
• const IRQn_Type g_ftmReloadIrqId [FTM_INSTANCE_COUNT]
• ftm_state_t ∗ ftmStatePtr [FTM_INSTANCE_COUNT]

Pointer to runtime state structure.

16.37.2 Data Structure Documentation

16.37.2.1 struct ftm_state_t

FlexTimer state structure of the driver.

Implements : ftm_state_t_Class

Definition at line 376 of file ftm_common.h.

Data Fields

• ftm_clock_source_t ftmClockSource
• ftm_config_mode_t ftmMode
• uint16_t ftmModValue
• uint16_t ftmPeriod
• uint32_t ftmSourceClockFrequency
• uint16_t measurementResults [FEATURE_FTM_CHANNEL_COUNT]
• void ∗ channelsCallbacksParams [FEATURE_FTM_CHANNEL_COUNT]
• ic_callback_t channelsCallbacks [FEATURE_FTM_CHANNEL_COUNT]
• bool enableNotification [FEATURE_FTM_CHANNEL_COUNT]

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

440 CONTENTS

Field Documentation

16.37.2.1.1 ic_callback_t channelsCallbacks[FEATURE_FTM_CHANNEL_COUNT]

The callback function for channels events

Definition at line 385 of file ftm_common.h.

16.37.2.1.2 void∗ channelsCallbacksParams[FEATURE_FTM_CHANNEL_COUNT]

The parameters of callback function for channels events

Definition at line 384 of file ftm_common.h.

16.37.2.1.3 bool enableNotification[FEATURE_FTM_CHANNEL_COUNT]

To save channels enable the notification on the callback application

Definition at line 386 of file ftm_common.h.

16.37.2.1.4 ftm_clock_source_t ftmClockSource

Clock source used by FTM counter

Definition at line 378 of file ftm_common.h.

16.37.2.1.5 ftm_config_mode_t ftmMode

Mode of operation for FTM

Definition at line 379 of file ftm_common.h.

16.37.2.1.6 uint16_t ftmModValue

This field is used only in input capture mode to store MOD value

Definition at line 380 of file ftm_common.h.

16.37.2.1.7 uint16_t ftmPeriod

This field is used only in PWM mode to store signal period

Definition at line 381 of file ftm_common.h.

16.37.2.1.8 uint32_t ftmSourceClockFrequency

The clock frequency is used for counting

Definition at line 382 of file ftm_common.h.

16.37.2.1.9 uint16_t measurementResults[FEATURE_FTM_CHANNEL_COUNT]

This field is used only in input capture mode to store edges time stamps

Definition at line 383 of file ftm_common.h.

16.37.2.2 struct ftm_pwm_sync_t

FlexTimer Registers sync parameters Please don't use software and hardware trigger simultaneously Implements :
ftm_pwm_sync_t_Class.

Definition at line 394 of file ftm_common.h.

Data Fields

• bool softwareSync
• bool hardwareSync0

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 441

• bool hardwareSync1
• bool hardwareSync2
• bool maxLoadingPoint
• bool minLoadingPoint
• ftm_reg_update_t inverterSync
• ftm_reg_update_t outRegSync
• ftm_reg_update_t maskRegSync
• ftm_reg_update_t initCounterSync
• bool autoClearTrigger
• ftm_pwm_sync_mode_t syncPoint

Field Documentation

16.37.2.2.1 bool autoClearTrigger

Available only for hardware trigger

Definition at line 412 of file ftm_common.h.

16.37.2.2.2 bool hardwareSync0

True - enable hardware 0 sync, False - disable hardware 0 sync

Definition at line 398 of file ftm_common.h.

16.37.2.2.3 bool hardwareSync1

True - enable hardware 1 sync, False - disable hardware 1 sync

Definition at line 400 of file ftm_common.h.

16.37.2.2.4 bool hardwareSync2

True - enable hardware 2 sync, False - disable hardware 2 sync

Definition at line 402 of file ftm_common.h.

16.37.2.2.5 ftm_reg_update_t initCounterSync

Configures CNTIN sync

Definition at line 411 of file ftm_common.h.

16.37.2.2.6 ftm_reg_update_t inverterSync

Configures INVCTRL sync

Definition at line 408 of file ftm_common.h.

16.37.2.2.7 ftm_reg_update_t maskRegSync

Configures OUTMASK sync

Definition at line 410 of file ftm_common.h.

16.37.2.2.8 bool maxLoadingPoint

True - enable maximum loading point, False - disable maximum loading point

Definition at line 404 of file ftm_common.h.

16.37.2.2.9 bool minLoadingPoint

True - enable minimum loading point, False - disable minimum loading point

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

442 CONTENTS

Definition at line 406 of file ftm_common.h.

16.37.2.2.10 ftm_reg_update_t outRegSync

Configures SWOCTRL sync

Definition at line 409 of file ftm_common.h.

16.37.2.2.11 bool softwareSync

True - enable software sync, False - disable software sync

Definition at line 396 of file ftm_common.h.

16.37.2.2.12 ftm_pwm_sync_mode_t syncPoint

Configure synchronization method (waiting next loading point or immediate)

Definition at line 413 of file ftm_common.h.

16.37.2.3 struct ftm_user_config_t

Configuration structure that the user needs to set.

Implements : ftm_user_config_t_Class

Definition at line 422 of file ftm_common.h.

Data Fields

• ftm_pwm_sync_t syncMethod

• ftm_config_mode_t ftmMode

• ftm_clock_ps_t ftmPrescaler

• ftm_clock_source_t ftmClockSource

• ftm_bdm_mode_t BDMMode

• bool isTofIsrEnabled

• bool enableInitializationTrigger

Field Documentation

16.37.2.3.1 ftm_bdm_mode_t BDMMode

Select FTM behavior in BDM mode

Definition at line 430 of file ftm_common.h.

16.37.2.3.2 bool enableInitializationTrigger

true: enable the generation of initialization trigger false: disable the generation of initialization trigger

Definition at line 433 of file ftm_common.h.

16.37.2.3.3 ftm_clock_source_t ftmClockSource

Select clock source for FTM

Definition at line 429 of file ftm_common.h.

16.37.2.3.4 ftm_config_mode_t ftmMode

Mode of operation for FTM

Definition at line 426 of file ftm_common.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 443

16.37.2.3.5 ftm_clock_ps_t ftmPrescaler

Register pre-scaler options available in the ftm_clock_ps_t enumeration

Definition at line 427 of file ftm_common.h.

16.37.2.3.6 bool isTofIsrEnabled

true: enable interrupt, false: write interrupt is disabled

Definition at line 431 of file ftm_common.h.

16.37.2.3.7 ftm_pwm_sync_t syncMethod

Register sync options available in the ftm_sync_method_t enumeration

Definition at line 424 of file ftm_common.h.

16.37.3 Macro Definition Documentation

16.37.3.1 #define CHAN0_IDX (0U)

Channel number for CHAN1.

Definition at line 205 of file ftm_common.h.

16.37.3.2 #define CHAN1_IDX (1U)

Channel number for CHAN2.

Definition at line 207 of file ftm_common.h.

16.37.3.3 #define CHAN2_IDX (2U)

Channel number for CHAN3.

Definition at line 209 of file ftm_common.h.

16.37.3.4 #define CHAN3_IDX (3U)

Channel number for CHAN4.

Definition at line 211 of file ftm_common.h.

16.37.3.5 #define CHAN4_IDX (4U)

Channel number for CHAN5.

Definition at line 213 of file ftm_common.h.

16.37.3.6 #define CHAN5_IDX (5U)

Channel number for CHAN6.

Definition at line 215 of file ftm_common.h.

16.37.3.7 #define CHAN6_IDX (6U)

Channel number for CHAN7.

Definition at line 217 of file ftm_common.h.

16.37.3.8 #define CHAN7_IDX (7U)

Definition at line 219 of file ftm_common.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

444 CONTENTS

16.37.3.9 #define FTM_RMW_CnSCV_REG(base, channel, mask, value) (((base)->CONTROLS[channel].CnSC) =
((((base)->CONTROLS[channel].CnSC) &∼(mask)) | (value)))

FTM_CnSCV - Read and modify and write Channel (n) Status And Control (RW)

Definition at line 112 of file ftm_common.h.

16.37.3.10 #define FTM_RMW_CNT(base, mask, value) (((base)->CNT) = ((((base)->CNT) &∼(mask)) | (value)))

FTM_CNT - Read and modify and write to Counter (RW)

Definition at line 87 of file ftm_common.h.

16.37.3.11 #define FTM_RMW_CNTIN(base, mask, value) (((base)->CNTIN) = ((((base)->CNTIN) &∼(mask)) | (value)))

FTM_CNTIN - Read and modify and write Counter Initial Value (RW)

Definition at line 97 of file ftm_common.h.

16.37.3.12 #define FTM_RMW_CONF(base, mask, value) (((base)->CONF) = ((((base)->CONF) &∼(mask)) | (value)))

FTM_CONF - Read and modify and write Configuration (RW)

Definition at line 136 of file ftm_common.h.

16.37.3.13 #define FTM_RMW_DEADTIME(base, mask, value) (((base)->DEADTIME) = ((((base)->DEADTIME) &∼(mask)) |
(value)))

FTM_DEADTIME - Read and modify and write Dead-time Insertion Control (RW)

Definition at line 117 of file ftm_common.h.

16.37.3.14 #define FTM_RMW_EXTTRIG_REG(base, mask, value) (((base)->EXTTRIG) = ((((base)->EXTTRIG) &∼(mask)) |
(value)))

FTM_EXTTRIG - Read and modify and write External Trigger Control (RW)

Definition at line 121 of file ftm_common.h.

16.37.3.15 #define FTM_RMW_FILTER(base, mask, value) (((base)->FILTER) = ((((base)->FILTER) &∼(mask)) | (value)))

FILTER - Read and modify and write Filter (RW)

Definition at line 146 of file ftm_common.h.

16.37.3.16 #define FTM_RMW_FLTCTRL(base, mask, value) (((base)->FLTCTRL) = ((((base)->FLTCTRL) &∼(mask)) |
(value)))

FTM_FLTCTRL - Read and modify and write Fault Control (RW)

Definition at line 126 of file ftm_common.h.

16.37.3.17 #define FTM_RMW_FMS(base, mask, value) (((base)->FMS) = ((((base)->FMS) &∼(mask)) | (value)))

FTM_FMS - Read and modify and write Fault Mode Status (RW)

Definition at line 131 of file ftm_common.h.

16.37.3.18 #define FTM_RMW_MOD(base, mask, value) (((base)->MOD) = ((((base)->MOD) &∼(mask)) | (value)))

FTM_MOD - Read and modify and write Modulo (RW)

Definition at line 92 of file ftm_common.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 445

16.37.3.19 #define FTM_RMW_MODE(base, mask, value) (((base)->MODE) = ((((base)->MODE) &∼(mask)) | (value)))

FTM_MODE - Read and modify and write Counter Features Mode Selection (RW)

Definition at line 107 of file ftm_common.h.

16.37.3.20 #define FTM_RMW_PAIR0DEADTIME(base, mask, value) (((base)->PAIR0DEADTIME) =
((((base)->PAIR0DEADTIME) &∼(mask)) | (value)))

FTM_PAIR0DEADTIME - Read and modify and write Dead-time Insertion Control for the pair 0 (RW)

Definition at line 161 of file ftm_common.h.

16.37.3.21 #define FTM_RMW_PAIR1DEADTIME(base, mask, value) (((base)->PAIR1DEADTIME) =
((((base)->PAIR1DEADTIME) &∼(mask)) | (value)))

FTM_PAIR1DEADTIME - Read and modify and write Dead-time Insertion Control for the pair 1 (RW)

Definition at line 166 of file ftm_common.h.

16.37.3.22 #define FTM_RMW_PAIR2DEADTIME(base, mask, value) (((base)->PAIR2DEADTIME) =
((((base)->PAIR2DEADTIME) &∼(mask)) | (value)))

FTM_PAIR2DEADTIME - Read and modify and write Dead-time Insertion Control for the pair 2 (RW)

Definition at line 171 of file ftm_common.h.

16.37.3.23 #define FTM_RMW_PAIR3DEADTIME(base, mask, value) (((base)->PAIR3DEADTIME) =
((((base)->PAIR3DEADTIME) &∼(mask)) | (value)))

FTM_PAIR3DEADTIME - Read and modify and write Dead-time Insertion Control for the pair 3 (RW)

Channel number for CHAN0.

Definition at line 176 of file ftm_common.h.

16.37.3.24 #define FTM_RMW_POL(base, mask, value) (((base)->POL) = ((((base)->POL) &∼(mask)) | (value)))

POL - Read and modify and write Polarity (RW)

Definition at line 141 of file ftm_common.h.

16.37.3.25 #define FTM_RMW_QDCTRL(base, mask, value) (((base)->QDCTRL) = ((((base)->QDCTRL) &∼(mask)) |
(value)))

QDCTRL - Read and modify and write Quadrature Decoder Control And Status (RW)

Definition at line 156 of file ftm_common.h.

16.37.3.26 #define FTM_RMW_SC(base, mask, value) (((base)->SC) = ((((base)->SC) &∼(mask)) | (value)))

FTM_SC - Read and modify and write to Status And Control (RW)

Definition at line 82 of file ftm_common.h.

16.37.3.27 #define FTM_RMW_STATUS(base, mask, value) (((base)->STATUS) = ((((base)->STATUS) &∼(mask)) |
(value)))

FTM_STATUS - Read and modify and write Capture And Compare Status (RW)

Definition at line 102 of file ftm_common.h.

16.37.3.28 #define FTM_RMW_SYNC(base, mask, value) (((base)->SYNC) = ((((base)->SYNC) &∼(mask)) | (value)))

SYNC - Read and modify and write Synchronization (RW)

Definition at line 151 of file ftm_common.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

446 CONTENTS

16.37.4 Enumeration Type Documentation

16.37.4.1 enum ftm_bdm_mode_t

Options for the FlexTimer behavior in BDM Mode.

Implements : ftm_bdm_mode_t_Class

Enumerator

FTM_BDM_MODE_00 FTM counter stopped, CH(n)F bit can be set, FTM channels in functional mode, writes
to MOD,CNTIN and C(n)V registers bypass the register buffers

FTM_BDM_MODE_01 FTM counter stopped, CH(n)F bit is not set, FTM channels outputs are forced to their
safe value , writes to MOD,CNTIN and C(n)V registers bypass the register buffers

FTM_BDM_MODE_10 FTM counter stopped, CH(n)F bit is not set, FTM channels outputs are frozen when
chip enters in BDM mode, writes to MOD, CNTIN and C(n)V registers bypass the register buffers

FTM_BDM_MODE_11 FTM counter in functional mode, CH(n)F bit can be set, FTM channels in functional
mode, writes to MOD,CNTIN and C(n)V registers is in fully functional mode

Definition at line 355 of file ftm_common.h.

16.37.4.2 enum ftm_clock_ps_t

FlexTimer pre-scaler factor selection for the clock source. In quadrature decoder mode set FTM_CLOCK_DIVID←↩

_BY_1.

Implements : ftm_clock_ps_t_Class

Enumerator

FTM_CLOCK_DIVID_BY_1 Divide by 1

FTM_CLOCK_DIVID_BY_2 Divide by 2

FTM_CLOCK_DIVID_BY_4 Divide by 4

FTM_CLOCK_DIVID_BY_8 Divide by 8

FTM_CLOCK_DIVID_BY_16 Divide by 16

FTM_CLOCK_DIVID_BY_32 Divide by 32

FTM_CLOCK_DIVID_BY_64 Divide by 64

FTM_CLOCK_DIVID_BY_128 Divide by 128

Definition at line 261 of file ftm_common.h.

16.37.4.3 enum ftm_clock_source_t

FlexTimer clock source selection.

Implements : ftm_clock_source_t_Class

Enumerator

FTM_CLOCK_SOURCE_NONE None use clock for FTM

FTM_CLOCK_SOURCE_SYSTEMCLK System clock

FTM_CLOCK_SOURCE_FIXEDCLK Fixed clock

FTM_CLOCK_SOURCE_EXTERNALCLK External clock

Definition at line 247 of file ftm_common.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 447

16.37.4.4 enum ftm_config_mode_t

FlexTimer operation mode.

Implements : ftm_config_mode_t_Class

Enumerator

FTM_MODE_NOT_INITIALIZED The driver is not initialized

FTM_MODE_INPUT_CAPTURE Input capture

FTM_MODE_OUTPUT_COMPARE Output compare

FTM_MODE_EDGE_ALIGNED_PWM Edge aligned PWM

FTM_MODE_CEN_ALIGNED_PWM Center aligned PWM

FTM_MODE_QUADRATURE_DECODER Quadrature decoder

FTM_MODE_UP_TIMER Timer with up counter

FTM_MODE_UP_DOWN_TIMER timer with up-down counter

FTM_MODE_EDGE_ALIGNED_PWM_AND_INPUT_CAPTURE Edge aligned PWM and input capture

Definition at line 229 of file ftm_common.h.

16.37.4.5 enum ftm_deadtime_ps_t

FlexTimer pre-scaler factor for the dead-time insertion.

Implements : ftm_deadtime_ps_t_Class

Enumerator

FTM_DEADTIME_DIVID_BY_1 Divide by 1

FTM_DEADTIME_DIVID_BY_4 Divide by 4

FTM_DEADTIME_DIVID_BY_16 Divide by 16

Definition at line 343 of file ftm_common.h.

16.37.4.6 enum ftm_interrupt_option_t

List of FTM interrupts.

Implements : ftm_interrupt_option_t_Class

Enumerator

FTM_CHANNEL0_INT_ENABLE Channel 0 interrupt

FTM_CHANNEL1_INT_ENABLE Channel 1 interrupt

FTM_CHANNEL2_INT_ENABLE Channel 2 interrupt

FTM_CHANNEL3_INT_ENABLE Channel 3 interrupt

FTM_CHANNEL4_INT_ENABLE Channel 4 interrupt

FTM_CHANNEL5_INT_ENABLE Channel 5 interrupt

FTM_CHANNEL6_INT_ENABLE Channel 6 interrupt

FTM_CHANNEL7_INT_ENABLE Channel 7 interrupt

FTM_FAULT_INT_ENABLE Fault interrupt

FTM_TIME_OVER_FLOW_INT_ENABLE Time overflow interrupt

FTM_RELOAD_INT_ENABLE Reload interrupt; Available only on certain SoC's

Definition at line 278 of file ftm_common.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

448 CONTENTS

16.37.4.7 enum ftm_pwm_sync_mode_t

FTM update register.

Implements : ftm_pwm_sync_mode_t_Class

Enumerator

FTM_WAIT_LOADING_POINTS FTM register is updated at first loading point

FTM_UPDATE_NOW FTM register is updated immediately

Definition at line 332 of file ftm_common.h.

16.37.4.8 enum ftm_reg_update_t

FTM sync source.

Implements : ftm_reg_update_t_Class

Enumerator

FTM_SYSTEM_CLOCK Register is updated with its buffer value at all rising edges of system clock

FTM_PWM_SYNC Register is updated with its buffer value at the FTM synchronization

Definition at line 319 of file ftm_common.h.

16.37.4.9 enum ftm_status_flag_t

List of FTM flags.

Implements : ftm_status_flag_t_Class

Enumerator

FTM_CHANNEL0_FLAG Channel 0 Flag

FTM_CHANNEL1_FLAG Channel 1 Flag

FTM_CHANNEL2_FLAG Channel 2 Flag

FTM_CHANNEL3_FLAG Channel 3 Flag

FTM_CHANNEL4_FLAG Channel 4 Flag

FTM_CHANNEL5_FLAG Channel 5 Flag

FTM_CHANNEL6_FLAG Channel 6 Flag

FTM_CHANNEL7_FLAG Channel 7 Flag

FTM_FAULT_FLAG Fault Flag

FTM_TIME_OVER_FLOW_FLAG Time overflow Flag

FTM_RELOAD_FLAG Reload Flag; Available only on certain SoC's

FTM_CHANNEL_TRIGGER_FLAG Channel trigger Flag

Definition at line 298 of file ftm_common.h.

16.37.5 Function Documentation

16.37.5.1 static void FTM_DRV_ClearChnEventStatus (FTM_Type ∗const ftmBase, uint8_t channel) [inline],
[static]

Clears the FTM peripheral timer all channel event status.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 449

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Implements : FTM_DRV_ClearChnEventStatus_Activity

Definition at line 782 of file ftm_common.h.

16.37.5.2 static void FTM_DRV_ClearChSC (FTM_Type ∗const ftmBase, uint8_t channel) [inline], [static]

Clears the content of Channel (n) Status And Control.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Implements : FTM_DRV_ClearChSC_Activity

Definition at line 529 of file ftm_common.h.

16.37.5.3 static void FTM_DRV_ClearFaultFlagDetected (FTM_Type ∗const ftmBase, uint8_t channel) [inline],
[static]

Clear a fault condition is detected at the fault input.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel

Implements : FTM_DRV_ClearFaultFlagDetected_Activity

Definition at line 968 of file ftm_common.h.

16.37.5.4 void FTM_DRV_ClearStatusFlags (uint32_t instance, uint32_t flagMask)

This function is used to clear the FTM status flags.

Parameters

in instance The FTM peripheral instance number.
in flagMask The status flags to clear. This is a logical OR of members of the enumeration

ftm_status_flag_t

Definition at line 739 of file ftm_common.c.

16.37.5.5 uint16_t FTM_DRV_ConvertFreqToPeriodTicks (uint32_t instance, uint32_t freqencyHz)

This function is used to covert the given frequency to period in ticks.

Parameters

in instance The FTM peripheral instance number.
in freqencyHz Frequency value in Hz.

Returns

The value in ticks of the frequency

Definition at line 835 of file ftm_common.c.

16.37.5.6 status_t FTM_DRV_CounterReset (uint32_t instance, bool softwareTrigger)

This function will allow the FTM to restart the counter to its initial counting value in the register. Note that the con-
figuration is set in the FTM_DRV_SetSync() function to make sure that the FTM registers are updated by software
trigger or hardware trigger.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

450 CONTENTS

Parameters

in instance The FTM peripheral instance number.
in softwareTrigger Selects the software trigger or hardware trigger to update COUNT register.

• true: A software trigger is generate to update register

• false: A software trigger is not implemented and need to update later
or select a hardware trigger and waiting an external trigger for updating
register.

Definition at line 857 of file ftm_common.c.

16.37.5.7 status_t FTM_DRV_Deinit (uint32_t instance)

Shuts down the FTM driver.

Parameters

in instance The FTM peripheral instance number.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 196 of file ftm_common.c.

16.37.5.8 static void FTM_DRV_DisableFaultInt (FTM_Type ∗const ftmBase) [inline], [static]

Disables the FTM peripheral timer fault interrupt.

Parameters

in ftmBase The FTM base address pointer

Implements : FTM_DRV_DisableFaultInt_Activity

Definition at line 855 of file ftm_common.h.

16.37.5.9 void FTM_DRV_DisableInterrupts (uint32_t instance, uint32_t interruptMask)

This function is used to disable some interrupts.

Parameters

in instance The FTM peripheral instance number.
in interruptMask The mask of interrupt. This is a logical OR of members of the enumeration

ftm_interrupt_option_t

Definition at line 594 of file ftm_common.c.

16.37.5.10 status_t FTM_DRV_EnableInterrupts (uint32_t instance, uint32_t interruptMask)

This function will enable the generation a list of interrupts. It includes the FTM overflow interrupts, the reload point
interrupt, the fault interrupt and the channel (n) interrupt.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 451

in instance The FTM peripheral instance number.
in interruptMask The mask of interrupt. This is a logical OR of members of the enumeration

ftm_interrupt_option_t

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

Definition at line 543 of file ftm_common.c.

16.37.5.11 status_t FTM_DRV_GenerateHardwareTrigger (uint32_t instance)

This function is used to configure a trigger source for FTM instance. This allow a hardware trigger input which can
be used in PWM synchronization. Note that the hardware trigger is implemented only on trigger 1 for each instance.

Parameters

in instance The FTM peripheral instance number.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

Definition at line 524 of file ftm_common.c.

16.37.5.12 static bool FTM_DRV_GetChInputState (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Get the state of channel input.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

State of the channel inputs

• true : The channel input is one

• false: The channel input is zero

Implements : FTM_DRV_GetChInputState_Activity

Definition at line 695 of file ftm_common.h.

16.37.5.13 static uint16_t FTM_DRV_GetChnCountVal (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Gets the FTM peripheral timer channel counter value.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

Channel counter value

Implements : FTM_DRV_GetChnCountVal_Activity

Definition at line 732 of file ftm_common.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

452 CONTENTS

16.37.5.14 static uint8_t FTM_DRV_GetChnEdgeLevel (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Gets the FTM peripheral timer channel edge level.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

The ELSnB:ELSnA mode value, will be 00, 01, 10, 11

Implements : FTM_DRV_GetChnEdgeLevel_Activity

Definition at line 551 of file ftm_common.h.

16.37.5.15 static bool FTM_DRV_GetChnEventStatus (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Gets the FTM peripheral timer channel event status.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

Channel event status

• true : A channel event has occurred

• false : No channel event has occurred

Implements : FTM_DRV_GetChnEventStatus_Activity

Definition at line 752 of file ftm_common.h.

16.37.5.16 static bool FTM_DRV_GetChOutputValue (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Get the value of channel output.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

Value of the channel outputs

• true : The channel output is one

• false: The channel output is zero

Implements : FTM_DRV_GetChOutputValue_Activity

Definition at line 714 of file ftm_common.h.

16.37.5.17 static uint8_t FTM_DRV_GetClockFilterPs (const FTM_Type ∗ ftmBase) [inline], [static]

Reads the FTM filter clock divider.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 453

Parameters

in ftmBase The FTM base address pointer

Returns

The FTM filter clock pre-scale divider

Implements : FTM_DRV_GetClockFilterPs_Activity

Definition at line 474 of file ftm_common.h.

16.37.5.18 static uint16_t FTM_DRV_GetCounter (const FTM_Type ∗ ftmBase) [inline], [static]

Returns the FTM peripheral current counter value.

Parameters

in ftmBase The FTM base address pointer

Returns

The current FTM timer counter value

Implements : FTM_DRV_GetCounter_Activity

Definition at line 488 of file ftm_common.h.

16.37.5.19 static uint16_t FTM_DRV_GetCounterInitVal (const FTM_Type ∗ ftmBase) [inline], [static]

Returns the FTM peripheral counter initial value.

Parameters

in ftmBase The FTM base address pointer

Returns

FTM timer counter initial value

Implements : FTM_DRV_GetCounterInitVal_Activity

Definition at line 516 of file ftm_common.h.

16.37.5.20 void FTM_DRV_GetDefaultConfig (ftm_user_config_t ∗const config)

This function will get the default configuration values in the structure which is used as a common use-case.

Parameters

out config Pointer to the structure in which the configuration will be saved.

Returns

None

Definition at line 216 of file ftm_common.c.

16.37.5.21 uint32_t FTM_DRV_GetEnabledInterrupts (uint32_t instance)

This function will get the enabled FTM interrupts.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

454 CONTENTS

Parameters

in instance The FTM peripheral instance number.

Returns

The enabled interrupts. This is the logical OR of members of the enumeration ftm_interrupt_option_t

Definition at line 643 of file ftm_common.c.

16.37.5.22 static uint32_t FTM_DRV_GetEventStatus (const FTM_Type ∗ ftmBase) [inline], [static]

Gets the FTM peripheral timer status info for all channels.

Parameters

in ftmBase The FTM base address pointer

Returns

Channel event status value

Implements : FTM_DRV_GetEventStatus_Activity

Definition at line 769 of file ftm_common.h.

16.37.5.23 uint32_t FTM_DRV_GetFrequency (uint32_t instance)

Retrieves the frequency of the clock source feeding the FTM counter.

Function will return a 0 if no clock source is selected and the FTM counter is disabled

Parameters

in instance The FTM peripheral instance number.

Returns

The frequency of the clock source running the FTM counter (0 if counter is disabled)

Definition at line 791 of file ftm_common.c.

16.37.5.24 static uint16_t FTM_DRV_GetMod (const FTM_Type ∗ ftmBase) [inline], [static]

Returns the FTM peripheral counter modulo value.

Parameters

in ftmBase The FTM base address pointer

Returns

FTM timer modulo value

Implements : FTM_DRV_GetMod_Activity

Definition at line 502 of file ftm_common.h.

16.37.5.25 uint32_t FTM_DRV_GetStatusFlags (uint32_t instance)

This function will get the FTM status flags. : Regarding the duty cycle is 100% at the channel output, the match
interrupt has no event due to the C(n)V and C(n+1)V value are not between CNTIN value and MOD value.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 455

Parameters

in instance The FTM peripheral instance number.

Returns

The status flags. This is the logical OR of members of the enumeration ftm_status_flag_t

Definition at line 689 of file ftm_common.c.

16.37.5.26 static bool FTM_DRV_GetTriggerControled (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Returns whether the trigger mode is enabled.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

State of the channel outputs

• true : Enabled a trigger generation on channel output

• false: PWM outputs without generating a pulse

Implements : FTM_DRV_GetTriggerControled_Activity

Definition at line 676 of file ftm_common.h.

16.37.5.27 status_t FTM_DRV_Init (uint32_t instance, const ftm_user_config_t ∗ info, ftm_state_t ∗ state)

Initializes the FTM driver.

Parameters

in instance The FTM peripheral instance number.
in info The FTM user configuration structure, see ftm_user_config_t.
out state The FTM state structure of the driver.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 114 of file ftm_common.c.

16.37.5.28 static bool FTM_DRV_IsChnDma (const FTM_Type ∗ ftmBase, uint8_t channel) [inline], [static]

Returns whether the FTM peripheral timer channel DMA is enabled.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

456 CONTENTS

Returns

State of the FTM peripheral timer channel DMA

• true : Enabled DMA transfers

• false: Disabled DMA transfers

Implements : FTM_DRV_IsChnDma_Activity

Definition at line 636 of file ftm_common.h.

16.37.5.29 static bool FTM_DRV_IsChnIcrst (const FTM_Type ∗ ftmBase, uint8_t channel) [inline], [static]

Returns whether the FTM FTM counter is reset.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number

Returns

State of the FTM peripheral timer channel ICRST

• true : Enabled the FTM counter reset

• false: Disabled the FTM counter reset

Implements : FTM_DRV_IsChnIcrst_Activity

Definition at line 596 of file ftm_common.h.

16.37.5.30 static bool FTM_DRV_IsFaultFlagDetected (const FTM_Type ∗ ftmBase, uint8_t channel) [inline],
[static]

Checks whether a fault condition is detected at the fault input.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel

Returns

the fault condition status

• true : A fault condition was detected at the fault input

• false: No fault condition was detected at the fault input

Implements : FTM_DRV_IsFaultFlagDetected_Activity

Definition at line 952 of file ftm_common.h.

16.37.5.31 static bool FTM_DRV_IsFaultInputEnabled (const FTM_Type ∗ ftmBase) [inline], [static]

Checks whether the logic OR of the fault inputs is enabled.

Parameters

in ftmBase The FTM base address pointer

Returns

the enabled fault inputs status

• true : The logic OR of the enabled fault inputs is 1

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 457

• false: The logic OR of the enabled fault inputs is 0

Implements : FTM_DRV_IsFaultInputEnabled_Activity

Definition at line 935 of file ftm_common.h.

16.37.5.32 static bool FTM_DRV_IsFtmEnable (const FTM_Type ∗ ftmBase) [inline], [static]

Get status of the FTMEN bit in the FTM_MODE register.

Parameters

in ftmBase The FTM base address pointer

Returns

the FTM Enable status

• true : TPM compatibility. Free running counter and synchronization compatible with TPM

• false: Free running counter and synchronization are different from TPM behavior

Implements : FTM_DRV_IsFtmEnable_Activity

Definition at line 886 of file ftm_common.h.

16.37.5.33 static bool FTM_DRV_IsWriteProtectionEnabled (const FTM_Type ∗ ftmBase) [inline], [static]

Checks whether the write protection is enabled.

Parameters

in ftmBase The FTM base address pointer

Returns

Write-protection status

• true : If enabled

• false: If not

Implements : FTM_DRV_IsWriteProtectionEnabled_Activity

Definition at line 919 of file ftm_common.h.

16.37.5.34 status_t FTM_DRV_MaskOutputChannels (uint32_t instance, uint32_t channelsMask, bool softwareTrigger)

This function will mask the output of the channels and at match events will be ignored by the masked channels.

Parameters

in instance The FTM peripheral instance number.
in channelsMask The mask which will select which channels will ignore match events.
in softwareTrigger If true a software trigger is generate to update PWM parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 249 of file ftm_common.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

458 CONTENTS

16.37.5.35 status_t FTM_DRV_SetAllChnSoftwareOutputControl (uint32_t instance, uint8_t channelMask, uint8_t
channelValueMask, bool softwareTrigger)

This function will control list of channels by software to force the output to specified value. Despite the odd channels
are configured as HIGH/LOW, they will be inverted in the following configuration: COMP bit = 1 and CH(n)OCV and
CH(n+1)OCV are HIGH. Please check software output control behavior chapter from reference manual. : When the
PWM signal is configured with LOW/HIGH polarity on the channel (n). It should be set the safe state as LOW level
state. However, We will have an issue with COMP bit is zero and CH(n)OCV is HIGH and CH(n+1)OCV is LOW.in
the independent channel configuration. Code configuration: { .polarity = FTM_POLARITY_HIGH, .safeState = FT←↩

M_POLARITY_LOW, .enableSecondChannelOutput = true, .secondChannelPolarity = FTM_MAIN_DUPLICATED,
}.

Workaround: Configure the safe state as HIGH level state. The expected output will be correctly controlling Should
change configuration as following: { .polarity = FTM_POLARITY_HIGH, .safeState = FTM_HIGH_STATE, .enable←↩

SecondChannelOutput = true, .secondChannelPolarity = FTM_MAIN_DUPLICATED, }

Parameters

in instance The FTM peripheral instance number.
in channelMask The mask which will configure the channels which can be software controlled.
in channelValue←↩

Mask
The values which will be software configured for channels.

in softwareTrigger If true a software trigger is generate to update registers.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 357 of file ftm_common.c.

16.37.5.36 static void FTM_DRV_SetCaptureTestCmd (FTM_Type ∗const ftmBase, bool enable) [inline], [static]

Enables or disables the FTM peripheral timer capture test mode.

Parameters

in ftmBase The FTM base address pointer
in enable Capture Test Mode Enable

• true : Capture test mode is enabled

• false: Capture test mode is disabled

Implements : FTM_DRV_SetCaptureTestCmd_Activity

Definition at line 870 of file ftm_common.h.

16.37.5.37 static void FTM_DRV_SetChnDmaCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable) [inline],
[static]

Enables or disables the FTM peripheral timer channel DMA.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number
in enable Enable DMA transfers for the channel

• true : Enabled DMA transfers

• false: Disabled DMA transfers

Implements : FTM_DRV_SetChnDmaCmd_Activity

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 459

Definition at line 615 of file ftm_common.h.

16.37.5.38 static void FTM_DRV_SetChnIcrstCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable) [inline],
[static]

Configure the feature of FTM counter reset by the selected input capture event.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number
in enable Enable the FTM counter reset

• true : FTM counter is reset

• false: FTM counter is not reset

Implements : FTM_DRV_SetChnIcrstCmd_Activity

Definition at line 575 of file ftm_common.h.

16.37.5.39 static void FTM_DRV_SetChnOutputInitStateCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool state)
[inline], [static]

Sets the FTM peripheral timer channel output initial state 0 or 1.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number
in state Initial state for channels output

• true : The initialization value is 1

• false: The initialization value is 0

Implements : FTM_DRV_SetChnOutputInitStateCmd_Activity

Definition at line 832 of file ftm_common.h.

16.37.5.40 static void FTM_DRV_SetChnOutputMask (FTM_Type ∗const ftmBase, uint8_t channel, bool mask)
[inline], [static]

Sets the FTM peripheral timer channel output mask.

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number
in mask Value to set Output Mask

• true : Channel output is masked

• false: Channel output is not masked

Implements : FTM_DRV_SetChnOutputMask_Activity

Definition at line 805 of file ftm_common.h.

16.37.5.41 static void FTM_DRV_SetChnSoftwareCtrlCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)
[inline], [static]

Enables or disables the channel software output control.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

460 CONTENTS

Parameters

in ftmBase The FTM base address pointer
in channel Channel to be enabled or disabled
in enable State of channel software output control

• true : To enable the channel output will be affected by software output
control

• false: To disable the channel output is unaffected

Implements : FTM_DRV_SetChnSoftwareCtrlCmd_Activity

Definition at line 1018 of file ftm_common.h.

16.37.5.42 static void FTM_DRV_SetChnSoftwareCtrlVal (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)
[inline], [static]

Sets the channel software output control value. Despite the odd channels are configured as HIGH/LOW, they will
be inverted in the following configuration: COMP bit = 1 and CH(n)OCV and CH(n+1)OCV are HIGH. Please check
Software output control behavior chapter from RM.

Parameters

in ftmBase The FTM base address pointer.
in channel Channel to be configured
in enable State of software output control value

• true : to force 1 to the channel output

• false: to force 0 to the channel output

Implements : FTM_DRV_SetChnSoftwareCtrlVal_Activity

Definition at line 1048 of file ftm_common.h.

16.37.5.43 static void FTM_DRV_SetClockFilterPs (FTM_Type ∗const ftmBase, uint8_t filterPrescale) [inline],
[static]

Sets the filter Pre-scaler divider.

Parameters

in ftmBase The FTM base address pointer
in filterPrescale The FTM peripheral clock pre-scale divider

Implements : FTM_DRV_SetClockFilterPs_Activity

Definition at line 459 of file ftm_common.h.

16.37.5.44 static void FTM_DRV_SetCountReinitSyncCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Determines if the FTM counter is re-initialized when the selected trigger for synchronization is detected.

Parameters

in ftmBase The FTM base address pointer
in enable FTM counter re-initialization selection

• true : To update FTM counter when triggered

• false: To count normally

Implements : FTM_DRV_SetCountReinitSyncCmd_Activity

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 461

Definition at line 902 of file ftm_common.h.

16.37.5.45 static void FTM_DRV_SetDualChnInvertCmd (FTM_Type ∗const ftmBase, uint8_t chnlPairNum, bool enable)
[inline], [static]

Enables or disables the channel invert for a channel pair.

Parameters

in ftmBase The FTM base address pointer
in chnlPairNum The FTM peripheral channel pair number
in enable State of channel invert for a channel pair

• true : To enable channel inverting

• false: To disable channel inversion

Implements : FTM_DRV_SetDualChnInvertCmd_Activity

Definition at line 991 of file ftm_common.h.

16.37.5.46 static void FTM_DRV_SetExtPairDeadtimeValue (FTM_Type ∗const ftmBase, uint8_t channelPair, uint8_t value)
[inline], [static]

Sets the FTM extended dead-time value for the channel pair.

Parameters

in ftmBase The FTM base address pointer
in channelPair The FTM peripheral channel pair (n)
in value The FTM peripheral extend pre-scale divider using the concatenation with the

dead-time value

Implements : FTM_DRV_SetExtPairDeadtimeValue_Activity

Definition at line 1245 of file ftm_common.h.

16.37.5.47 static void FTM_DRV_SetGlobalLoadCmd (FTM_Type ∗const ftmBase) [inline], [static]

Set the global load mechanism.

Parameters

in ftmBase The FTM base address pointer

Implements : FTM_DRV_SetGlobalLoadCmd_Activity

Definition at line 1072 of file ftm_common.h.

16.37.5.48 static void FTM_DRV_SetGlobalTimeBaseCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Enables or disables the FTM timer global time base.

Parameters

in ftmBase The FTM base address pointer
in enable State of global time base

• true : To enable an external global time base signal

• false: To disable an external global time base signal

Implements : FTM_DRV_SetGlobalTimeBaseCmd_Activity

Definition at line 1216 of file ftm_common.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

462 CONTENTS

16.37.5.49 static void FTM_DRV_SetGlobalTimeBaseOutputCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Enables or disables the FTM global time base signal generation to other FTM's.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 463

Parameters

in ftmBase The FTM base address pointer
in enable State of global time base signal

• true : To enable the golobal time base generation to other FTM instances

• false: To disable the golobal time base generation to other FTM in-
stances

Implements : FTM_DRV_SetGlobalTimeBaseOutputCmd_Activity

Definition at line 1200 of file ftm_common.h.

16.37.5.50 static void FTM_DRV_SetHalfCycleCmd (FTM_Type ∗const ftmBase, bool enable) [inline], [static]

Enable the half cycle reload.

Parameters

in ftmBase The FTM base address pointer
in enable State of the half cycle match as a reload opportunity

• true : Half cycle reload is enabled

• false: Half cycle reload is disabled

Implements : FTM_DRV_SetHalfCycleCmd_Activity

Definition at line 1110 of file ftm_common.h.

16.37.5.51 status_t FTM_DRV_SetHalfCycleReloadPoint (uint32_t instance, uint16_t reloadPoint, bool softwareTrigger)

This function configure the value of the counter which will generates an reload point.

Parameters

in instance The FTM peripheral instance number.
in reloadPoint Counter value which generates the reload point.
in softwareTrigger If true a software trigger is generate to update parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 291 of file ftm_common.c.

16.37.5.52 status_t FTM_DRV_SetInitialCounterValue (uint32_t instance, uint16_t counterValue, bool softwareTrigger)

This function configure the initial counter value. The counter will get this value after an overflow event.

Parameters

in instance The FTM peripheral instance number.
in counterValue Initial counter value.
in softwareTrigger If true a software trigger is generate to update parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 270 of file ftm_common.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

464 CONTENTS

16.37.5.53 static void FTM_DRV_SetInitTrigOnReloadCmd (FTM_Type ∗const ftmBase, bool enable) [inline],
[static]

Enables or disables the FTM initialization trigger on Reload Point.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 465

Parameters

in ftmBase The FTM base address pointer
in enable bit controls whether an initialization trigger is generated

• true : Trigger is generated when a reload point is reached

• false: Trigger is generated on counter wrap events

Implements : FTM_DRV_SetInitTrigOnReloadCmd_Activity

Definition at line 1184 of file ftm_common.h.

16.37.5.54 status_t FTM_DRV_SetInvertingControl (uint32_t instance, uint8_t channelsPairMask, bool softwareTrigger)

This function will configure if the second channel of a pair will be inverted or not.

Parameters

in instance The FTM peripheral instance number.
in channelsPair←↩

Mask
The mask which will configure which channel pair will invert the second chan-
nel.

in softwareTrigger If true a software trigger is generate to update registers.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 383 of file ftm_common.c.

16.37.5.55 static void FTM_DRV_SetLoadCmd (FTM_Type ∗const ftmBase, bool enable) [inline], [static]

Enable the global load.

Parameters

in ftmBase The FTM base address pointer
in enable State of the global load mechanism

• true : Global Load OK enabled

• false: Global Load OK disabled

Implements : FTM_DRV_SetLoadCmd_Activity

Definition at line 1087 of file ftm_common.h.

16.37.5.56 static void FTM_DRV_SetLoadFreq (FTM_Type ∗const ftmBase, uint8_t val) [inline], [static]

Sets the frequency of reload points.

Parameters

in ftmBase The FTM base address pointer
in val Value of the TOF bit set frequency

Implements : FTM_DRV_SetLoadFreq_Activity

Definition at line 1230 of file ftm_common.h.

16.37.5.57 status_t FTM_DRV_SetModuloCounterValue (uint32_t instance, uint16_t counterValue, bool softwareTrigger)

This function configure the maximum counter value.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

466 CONTENTS

Parameters

in instance The FTM peripheral instance number.
in counterValue Maximum counter value
in softwareTrigger If true a software trigger is generate to update parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 403 of file ftm_common.c.

16.37.5.58 status_t FTM_DRV_SetOutputlevel (uint32_t instance, uint8_t channel, uint8_t level)

This function will set the channel edge or level on the selection of the channel mode.

Parameters

in instance The FTM peripheral instance number.
in channel The channel number.
in level The level or edge selection for channel mode.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 424 of file ftm_common.c.

16.37.5.59 static void FTM_DRV_SetPairDeadtimeCount (FTM_Type ∗const ftmBase, uint8_t channelPair, uint8_t count)
[inline], [static]

Sets the FTM dead-time value for the channel pair.

Parameters

in ftmBase The FTM base address pointer
in channelPair The FTM peripheral channel pair (n)
in count The FTM peripheral selects the dead-time value

• 0U : no counts inserted

• 1U : 1 count is inserted

• 2U : 2 count is inserted

• ... up to a possible 63 counts

Implements : FTM_DRV_SetPairDeadtimeCount_Activity

Definition at line 1323 of file ftm_common.h.

16.37.5.60 static void FTM_DRV_SetPairDeadtimePrescale (FTM_Type ∗const ftmBase, uint8_t channelPair,
ftm_deadtime_ps_t divider) [inline], [static]

Sets the FTM dead time divider for the channel pair.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 467

Parameters

in ftmBase The FTM base address pointer
in channelPair The FTM peripheral channel pair (n)
in divider The FTM peripheral pre-scaler divider

• FTM_DEADTIME_DIVID_BY_1 : Divide by 1

• FTM_DEADTIME_DIVID_BY_4 : Divide by 4

• FTM_DEADTIME_DIVID_BY_16: Divide by 16

Implements : FTM_DRV_SetPairDeadtimePrescale_Activity

Definition at line 1284 of file ftm_common.h.

16.37.5.61 static void FTM_DRV_SetPwmLoadChnSelCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)
[inline], [static]

Includes or excludes the channel in the matching process.

Parameters

in ftmBase The FTM base address pointer
in channel Channel to be configured
in enable State of channel

• true : means include the channel in the matching process

• false: means do not include channel in the matching process

Implements : FTM_DRV_SetPwmLoadChnSelCmd_Activity

Definition at line 1157 of file ftm_common.h.

16.37.5.62 static void FTM_DRV_SetPwmLoadCmd (FTM_Type ∗const ftmBase, bool enable) [inline], [static]

Enables or disables the loading of MOD, CNTIN and CV with values of their write buffer.

Parameters

in ftmBase The FTM base address pointer
in enable State of loading updated values

• true : To enable the loading of value of their buffer

• false: To disable the loading of value of their buffer

Implements : FTM_DRV_SetPwmLoadCmd_Activity

Definition at line 1133 of file ftm_common.h.

16.37.5.63 status_t FTM_DRV_SetSoftOutChnValue (uint32_t instance, uint8_t channelsValues, bool softwareTrigger)

This function will force the output value of a channel to a specific value. Before using this function it's mandatory to
mask the match events using FTM_DRV_MaskOutputChannels and to enable software output control using FT←↩

M_DRV_SetSoftwareOutputChannelControl. : When the PWM signal is configured with LOW/HIGH polarity on the
channel (n). It should be set the safe state as LOW level state. However, We will have an issue with COMP bit is zero
and CH(n)OCV is HIGH and CH(n+1)OCV is LOW.in the independent channel configuration. Code configuration←↩

: { .polarity = FTM_POLARITY_HIGH, .safeState = FTM_POLARITY_LOW, .enableSecondChannelOutput = true,
.secondChannelPolarity = FTM_MAIN_DUPLICATED, }.

Workaround: Configure the safe state as HIGH level state. The expected output will be correctly controlling Should
change configuration as following: { .polarity = FTM_POLARITY_HIGH, .safeState = FTM_HIGH_STATE, .enable←↩

SecondChannelOutput = true, .secondChannelPolarity = FTM_MAIN_DUPLICATED, }

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

468 CONTENTS

Parameters

in instance The FTM peripheral instance number.
in channelsValues The values which will be software configured for channels.
in softwareTrigger If true a software trigger is generate to update registers.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 314 of file ftm_common.c.

16.37.5.64 status_t FTM_DRV_SetSoftwareOutputChannelControl (uint32_t instance, uint8_t channelsMask, bool
softwareTrigger)

This function will configure which output channel can be software controlled. Software output control forces the
following values on channels (n) and (n+1) when the COMP bit is zero and POL bit is zero. CH(n)OC|CH(n+1)O←↩

C|CH(n)OCV|CH(n+1)OCV|Channel (n) Output | Channel (n+1) Output 0 | 0 | X | X | is not modified by SWOC| is
not modified by SWOC 1 | 1 | 0 | 0 | is forced to zero | is forced to zero 1 | 1 | 0 | 1 | is forced to zero | is forced to
one 1 | 1 | 1 | 0 | is forced to one | is forced to zero 1 | 1 | 1 | 1 | is forced to one | is forced to one.

Software output control forces the following values on channels (n) and (n+1) when the COMP bit is one and POL
bit is zero. CH(n)OC|CH(n+1)OC|CH(n)OCV|CH(n+1)OCV|Channel (n) Output | Channel (n+1) Output 0 | 0 | X | X
| is not modified by SWOC| is not modified by SWOC 1 | 1 | 0 | 0 | is forced to zero | is forced to zero 1 | 1 | 0 | 1 |
is forced to zero | is forced to one 1 | 1 | 1 | 0 | is forced to one | is forced to zero 1 | 1 | 1 | 1 | is forced to one | is
forced to zero

Parameters

in instance The FTM peripheral instance number.
in channelsMask The mask which will configure the channels which can be software controlled.
in softwareTrigger If true a software trigger is generate to update registers.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 334 of file ftm_common.c.

16.37.5.65 status_t FTM_DRV_SetSync (uint32_t instance, const ftm_pwm_sync_t ∗ param)

This function configures sync mechanism for some FTM registers (MOD, CNINT, HCR, CnV, OUTMASK, INVCTRL,
SWOCTRL).

Parameters

in instance The FTM peripheral instance number.
in param The sync configuration structure.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 448 of file ftm_common.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.37 FlexTimer (FTM) 469

16.37.5.66 static void FTM_DRV_SetTrigModeControlCmd (FTM_Type ∗const ftmBase, uint8_t channel, bool enable)
[inline], [static]

Enables or disables the trigger generation on FTM channel outputs.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

470 CONTENTS

Parameters

in ftmBase The FTM base address pointer
in channel The FTM peripheral channel number
in enable Trigger mode control

• false : Enable PWM output without generating a pulse

• true : Disable a trigger generation on channel output

Implements : FTM_DRV_SetTrigModeControlCmd_Activity

Definition at line 655 of file ftm_common.h.

16.37.6 Variable Documentation

16.37.6.1 ftm_state_t∗ ftmStatePtr[FTM_INSTANCE_COUNT]

Pointer to runtime state structure.

Definition at line 81 of file ftm_common.c.

16.37.6.2 FTM_Type∗ const g_ftmBase[FTM_INSTANCE_COUNT]

Table of base addresses for FTM instances.

Definition at line 68 of file ftm_common.c.

16.37.6.3 const IRQn_Type g_ftmFaultIrqId[FTM_INSTANCE_COUNT]

Definition at line 72 of file ftm_common.c.

16.37.6.4 const IRQn_Type g_ftmIrqId[FTM_INSTANCE_COUNT][FEATURE_FTM_CHANNEL_COUNT]

Interrupt vectors for the FTM peripheral.

Definition at line 71 of file ftm_common.c.

16.37.6.5 const IRQn_Type g_ftmOverflowIrqId[FTM_INSTANCE_COUNT]

Definition at line 73 of file ftm_common.c.

16.37.6.6 const IRQn_Type g_ftmReloadIrqId[FTM_INSTANCE_COUNT]

Definition at line 74 of file ftm_common.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.38 FlexTimer Input Capture Driver (FTM_IC) 471

16.38 FlexTimer Input Capture Driver (FTM_IC)

16.38.1 Detailed Description

FlexTimer Input Capture Peripheral Driver.

Hardware background

The FTM of the S32K1xx is based on a 16 bits counter and supports: input capture, output compare, PWM and
some instances include quadrature decoder.

How to use FTM driver in your application

For all operation modes (without Quadrature Decoder mode) the user need to configure ftm_user_config_t. This
structure will be used for initialization (FTM_DRV_Init). The next functions used are specific for each operation
mode.

Single edge input capture mode

For this mode the user needs to configure parameters such: maximum counter value, number of channels, input
capture operation mode (for single edge input are used edge detect mode) and edge alignment. All this information
is included in the ftm_input_param_t structure.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\ftm\ftm_ic_driver.c
${S32SDK_PATH}\platform\drivers\src\ftm\ftm_common.c
${S32SDK_PATH}\platform\drivers\src\ftm\ftm_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\
${S32SDK_PATH}\platform\drivers\src\ftm\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt)

Example:

/* The state structure of instance in the input capture mode */
ftm_state_t stateInputCapture;
#define FTM_IC_INSTANCE 0UL
/* Channels configuration structure for inputCapture input capture */
ftm_input_ch_param_t inputCapture_InputCaptureChannelConfig[1] =
{

{
0U, /* Channel Id */
FTM_EDGE_DETECT, /* Input capture operation Mode */
FTM_RISING_EDGE, /* Edge alignment Mode */
FTM_NO_MEASUREMENT, /* Signal measurement operation type */
0U, /* Filter value */
false, /* Filter disabled */
true /* Continuous mode measurement */
NULL, /* Vector of callbacks parameters for channels events */
NULL /* Vector of callbacks for channels events */
}

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

472 CONTENTS

};
/* Input capture configuration for inputCapture */
ftm_input_param_t inputCapture_InputCaptureConfig =
{

1U, /* Number of channels */
65535U, /* Maximum count value */
inputCapture_InputCaptureChannelConfig /* Channels configuration */

};
/* Timer mode configuration for inputCapture */
/* Global configuration of inputCapture */
ftm_user_config_t inputCapture_InitConfig =
{

{
false, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
false, /* Maximum loading point state */
false, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* Select synchronization method */

},
FTM_MODE_INPUT_CAPTURE, /* Mode of operation for FTM */
FTM_CLOCK_DIVID_BY_4, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_00, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_IC_INSTANCE, &inputCapture_InitConfig, &stateInputCapture);
FTM_DRV_InitInputCapture(FTM_IC_INSTANCE, &inputCapture_InputCaptureConfig);
counter = FTM_DRV_GetInputCaptureMeasurement(FTM_IC_INSTANCE, 0UL);

FTM_DRV_GetInputCaptureMeasurement is now used in interrupt mode and this function is used to save time
stamps in internal buffers.

Edge-Aligned PWM and Input Capture mode

• Support both Edge-Aligned PWM and Input Capture mode can work over the same FTM instance.

• The guideline can be found here FlexTimer Pulse Width Modulation Driver (FTM_PWM)

Data Structures

• struct ftm_input_ch_param_t

FlexTimer driver Input capture parameters for each channel. More...

• struct ftm_input_param_t

FlexTimer driver input capture parameters. More...

Enumerations

• enum ftm_input_op_mode_t { FTM_EDGE_DETECT = 0U, FTM_SIGNAL_MEASUREMENT = 1U, FTM_←↩

NO_OPERATION = 2U }

Selects mode operation in the input capture.

• enum ftm_signal_measurement_mode_t {
FTM_NO_MEASUREMENT = 0x00U, FTM_RISING_EDGE_PERIOD_MEASUREMENT = 0x01U, FTM_F←↩

ALLING_EDGE_PERIOD_MEASUREMENT = 0x02U, FTM_PERIOD_ON_MEASUREMENT = 0x03U,
FTM_PERIOD_OFF_MEASUREMENT = 0x04U }

FlexTimer input capture measurement type for dual edge input capture.

• enum ftm_edge_alignment_mode_t { FTM_NO_PIN_CONTROL = 0x00U, FTM_RISING_EDGE = 0x01U,
FTM_FALLING_EDGE = 0x02U, FTM_BOTH_EDGES = 0x03U }

FlexTimer input capture edge mode as rising edge or falling edge.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.38 FlexTimer Input Capture Driver (FTM_IC) 473

• enum ftm_ic_op_mode_t {
FTM_DISABLE_OPERATION = 0x00U, FTM_TIMESTAMP_RISING_EDGE = 0x01U, FTM_TIMESTAMP←↩

_FALLING_EDGE = 0x02U, FTM_TIMESTAMP_BOTH_EDGES = 0x03U,
FTM_MEASURE_RISING_EDGE_PERIOD = 0x04U, FTM_MEASURE_FALLING_EDGE_PERIOD =
0x05U, FTM_MEASURE_PULSE_HIGH = 0x06U, FTM_MEASURE_PULSE_LOW = 0x07U }

The measurement type for input capture mode Implements : ftm_ic_op_mode_t_Class.

Functions

• status_t FTM_DRV_InitInputCapture (uint32_t instance, const ftm_input_param_t ∗param)

This function configures the channel in the Input Capture mode for either getting time-stamps on edge detection or
on signal measurement. When the edge specified in the captureMode argument occurs on the channel and then the
FTM counter is captured into the CnV register. The user have to read the CnV register separately to get this value.
The filter function is disabled if the filterVal argument passed as 0. The filter feature. is available only on channels
0,1,2,3.

• status_t FTM_DRV_DeinitInputCapture (uint32_t instance, const ftm_input_param_t ∗param)

Disables input capture mode and clears FTM timer configuration.

• uint16_t FTM_DRV_GetInputCaptureMeasurement (uint32_t instance, uint8_t channel)

This function is used to calculate the measurement and/or time stamps values which are read from the C(n, n+1)V
registers and stored to the static buffers.

• status_t FTM_DRV_StartNewSignalMeasurement (uint32_t instance, uint8_t channel)

Starts new single-shot signal measurement of the given channel.

• status_t FTM_IC_DRV_SetChannelMode (uint32_t instance, uint8_t channel, ftm_ic_op_mode_t inputMode,
bool enableContinuousCapture)

Set mode operation for channel in the input capture mode.

16.38.2 Data Structure Documentation

16.38.2.1 struct ftm_input_ch_param_t

FlexTimer driver Input capture parameters for each channel.

Implements : ftm_input_ch_param_t_Class

Definition at line 96 of file ftm_ic_driver.h.

Data Fields

• uint8_t hwChannelId

• ftm_input_op_mode_t inputMode

• ftm_edge_alignment_mode_t edgeAlignement

• ftm_signal_measurement_mode_t measurementType

• uint16_t filterValue

• bool filterEn

• bool continuousModeEn

• void ∗ channelsCallbacksParams

• ic_callback_t channelsCallbacks

Field Documentation

16.38.2.1.1 ic_callback_t channelsCallbacks

The callback function for channels events

Definition at line 106 of file ftm_ic_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

474 CONTENTS

16.38.2.1.2 void∗ channelsCallbacksParams

The parameters of callback functions for channels events

Definition at line 105 of file ftm_ic_driver.h.

16.38.2.1.3 bool continuousModeEn

Continuous measurement state

Definition at line 104 of file ftm_ic_driver.h.

16.38.2.1.4 ftm_edge_alignment_mode_t edgeAlignement

Edge alignment Mode for signal measurement

Definition at line 100 of file ftm_ic_driver.h.

16.38.2.1.5 bool filterEn

Input capture filter state

Definition at line 103 of file ftm_ic_driver.h.

16.38.2.1.6 uint16_t filterValue

Filter Value

Definition at line 102 of file ftm_ic_driver.h.

16.38.2.1.7 uint8_t hwChannelId

Physical hardware channel ID

Definition at line 98 of file ftm_ic_driver.h.

16.38.2.1.8 ftm_input_op_mode_t inputMode

FlexTimer module mode of operation

Definition at line 99 of file ftm_ic_driver.h.

16.38.2.1.9 ftm_signal_measurement_mode_t measurementType

Measurement Mode for signal measurement

Definition at line 101 of file ftm_ic_driver.h.

16.38.2.2 struct ftm_input_param_t

FlexTimer driver input capture parameters.

Implements : ftm_input_param_t_Class

Definition at line 114 of file ftm_ic_driver.h.

Data Fields

• uint8_t nNumChannels
• uint16_t nMaxCountValue
• ftm_input_ch_param_t ∗ inputChConfig

Field Documentation

16.38.2.2.1 ftm_input_ch_param_t∗ inputChConfig

Input capture channels configuration

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.38 FlexTimer Input Capture Driver (FTM_IC) 475

Definition at line 118 of file ftm_ic_driver.h.

16.38.2.2.2 uint16_t nMaxCountValue

Maximum counter value. Minimum value is 0 for this mode

Definition at line 117 of file ftm_ic_driver.h.

16.38.2.2.3 uint8_t nNumChannels

Number of input capture channel used

Definition at line 116 of file ftm_ic_driver.h.

16.38.3 Enumeration Type Documentation

16.38.3.1 enum ftm_edge_alignment_mode_t

FlexTimer input capture edge mode as rising edge or falling edge.

Implements : ftm_edge_alignment_mode_t_Class

Enumerator

FTM_NO_PIN_CONTROL No trigger

FTM_RISING_EDGE Rising edge trigger

FTM_FALLING_EDGE Falling edge trigger

FTM_BOTH_EDGES Rising and falling edge trigger

Definition at line 67 of file ftm_ic_driver.h.

16.38.3.2 enum ftm_ic_op_mode_t

The measurement type for input capture mode Implements : ftm_ic_op_mode_t_Class.

Enumerator

FTM_DISABLE_OPERATION Have no operation

FTM_TIMESTAMP_RISING_EDGE Rising edge trigger

FTM_TIMESTAMP_FALLING_EDGE Falling edge trigger

FTM_TIMESTAMP_BOTH_EDGES Rising and falling edge trigger

FTM_MEASURE_RISING_EDGE_PERIOD Period measurement between two consecutive rising edges

FTM_MEASURE_FALLING_EDGE_PERIOD Period measurement between two consecutive falling edges

FTM_MEASURE_PULSE_HIGH The time measurement taken for the pulse to remain ON or HIGH state

FTM_MEASURE_PULSE_LOW The time measurement taken for the pulse to remain OFF or LOW state

Definition at line 79 of file ftm_ic_driver.h.

16.38.3.3 enum ftm_input_op_mode_t

Selects mode operation in the input capture.

Implements : ftm_input_op_mode_t_Class

Enumerator

FTM_EDGE_DETECT FTM edge detect

FTM_SIGNAL_MEASUREMENT FTM signal measurement

FTM_NO_OPERATION FTM no operation

Definition at line 41 of file ftm_ic_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

476 CONTENTS

16.38.3.4 enum ftm_signal_measurement_mode_t

FlexTimer input capture measurement type for dual edge input capture.

Implements : ftm_signal_measurement_mode_t_Class

Enumerator

FTM_NO_MEASUREMENT No measurement

FTM_RISING_EDGE_PERIOD_MEASUREMENT Period measurement between two consecutive rising
edges

FTM_FALLING_EDGE_PERIOD_MEASUREMENT Period measurement between two consecutive falling
edges

FTM_PERIOD_ON_MEASUREMENT The time measurement taken for the pulse to remain ON or HIGH state

FTM_PERIOD_OFF_MEASUREMENT The time measurement taken for the pulse to remain OFF or LOW
state

Definition at line 53 of file ftm_ic_driver.h.

16.38.4 Function Documentation

16.38.4.1 status_t FTM_DRV_DeinitInputCapture (uint32_t instance, const ftm_input_param_t ∗ param)

Disables input capture mode and clears FTM timer configuration.

Parameters

in instance The FTM peripheral instance number.
in param Configuration of the output compare channel.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 333 of file ftm_ic_driver.c.

16.38.4.2 uint16_t FTM_DRV_GetInputCaptureMeasurement (uint32_t instance, uint8_t channel)

This function is used to calculate the measurement and/or time stamps values which are read from the C(n, n+1)V
registers and stored to the static buffers.

Parameters

in instance The FTM peripheral instance number.
in channel For getting the time stamp of the last edge (in normal input capture) this pa-

rameter represents the channel number. For getting the last measured value
(in dual edge input capture) this parameter is the lowest channel number of
the pair (EX: 0, 2, 4, 6).

Returns

value The measured value

Definition at line 403 of file ftm_ic_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.38 FlexTimer Input Capture Driver (FTM_IC) 477

16.38.4.3 status_t FTM_DRV_InitInputCapture (uint32_t instance, const ftm_input_param_t ∗ param)

This function configures the channel in the Input Capture mode for either getting time-stamps on edge detection or
on signal measurement. When the edge specified in the captureMode argument occurs on the channel and then
the FTM counter is captured into the CnV register. The user have to read the CnV register separately to get this
value. The filter function is disabled if the filterVal argument passed as 0. The filter feature. is available only on
channels 0,1,2,3.

Parameters

in instance The FTM peripheral instance number.
in param Configuration of the input capture channel.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 215 of file ftm_ic_driver.c.

16.38.4.4 status_t FTM_DRV_StartNewSignalMeasurement (uint32_t instance, uint8_t channel)

Starts new single-shot signal measurement of the given channel.

Parameters

in instance The FTM peripheral instance number.
in channel Configuration of the output compare channel.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 427 of file ftm_ic_driver.c.

16.38.4.5 status_t FTM_IC_DRV_SetChannelMode (uint32_t instance, uint8_t channel, ftm_ic_op_mode_t inputMode,
bool enableContinuousCapture)

Set mode operation for channel in the input capture mode.

This function will change the channel mode at run time or when stopping channel. The channel mode is selected in
the ftm_ic_op_mode_t enumeration type.

Parameters

in instance The input capture instance number.
in channel The channel number.
in inputMode The channel operation mode.
in enable←↩

Continuous←↩

Capture

Enable/disable the continuous capture mode.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 466 of file ftm_ic_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

478 CONTENTS

16.39 FlexTimer Module Counter Driver (FTM_MC)

16.39.1 Detailed Description

FlexTimer Module Counter Peripheral Driver.

Hardware background

The FTM of the S32K1xx is based on a 16 bits counter and supports: input capture, output compare, PWM and
some instances include quadrature decoder.

How to use FTM driver in your application

For all operation modes (without Quadrature Decoder mode) the user need to configure ftm_user_config_t. This
structure will be used for initialization (FTM_DRV_Init). The next functions used are specific for each operation
mode.

Counter mode

For this mode the user needs to configure parameters like: counter mode (up-counting or up-down counting),
maximum counter value, initial counter value. All this information is included in the ftm_timer_param_t structure.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\ftm\ftm_mc_driver.c
${S32SDK_PATH}\platform\drivers\src\ftm\ftm_common.c
${S32SDK_PATH}\platform\drivers\src\ftm\ftm_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\
${S32SDK_PATH}\platform\drivers\src\ftm\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt)

Example:

/* The state structure of instance in the input capture mode */
ftm_state_t stateTimer;
#define FTM_TIMER_INSTANCE 1UL
/* Timer mode configuration for Timer */
ftm_timer_param_t Timer_TimerConfig =
{

FTM_MODE_UP_TIMER, /* Counter mode */
0U, /* Initial counter value */
0x8000U /* Final counter value */

};

/* Global configuration of Timer*/
ftm_user_config_t Timer_InitConfig =
{

{
false, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.39 FlexTimer Module Counter Driver (FTM_MC) 479

false, /* Maximum loading point state */
false, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* Select synchronization method */

},
FTM_MODE_UP_TIMER, /* Mode of operation for FTM */
FTM_CLOCK_DIVID_BY_2, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_TIMER_INSTANCE,&Timer_InitConfig, &stateTimer);
FTM_DRV_InitCounter(FTM_TIMER_INSTANCE, &Timer_TimerConfig);
FTM_DRV_CounterStart(FTM_TIMER_INSTANCE);

Data Structures

• struct ftm_timer_param_t

The configuration structure in timer mode. More...

Functions

• status_t FTM_DRV_InitCounter (uint32_t instance, const ftm_timer_param_t ∗timer)

Initialize the FTM counter.

• status_t FTM_DRV_CounterStart (uint32_t instance)

Starts the FTM counter.

• status_t FTM_DRV_CounterStop (uint32_t instance)

Stops the FTM counter.

• uint32_t FTM_DRV_CounterRead (uint32_t instance)

Reads back the current value of the FTM counter.

• void FTM_MC_DRV_GetDefaultConfig (ftm_timer_param_t ∗const config)

This function will get the default configuration values in the structure which is used as a common use-case.

16.39.2 Data Structure Documentation

16.39.2.1 struct ftm_timer_param_t

The configuration structure in timer mode.

Implements : ftm_timer_param_t_Class

Definition at line 41 of file ftm_mc_driver.h.

Data Fields

• ftm_config_mode_t mode
• uint16_t initialValue
• uint16_t finalValue

Field Documentation

16.39.2.1.1 uint16_t finalValue

Final counter value

Definition at line 45 of file ftm_mc_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

480 CONTENTS

16.39.2.1.2 uint16_t initialValue

Initial counter value

Definition at line 44 of file ftm_mc_driver.h.

16.39.2.1.3 ftm_config_mode_t mode

FTM mode

Definition at line 43 of file ftm_mc_driver.h.

16.39.3 Function Documentation

16.39.3.1 uint32_t FTM_DRV_CounterRead (uint32_t instance)

Reads back the current value of the FTM counter.

Parameters

in instance The FTM peripheral instance number.

Returns

The current counter value

Definition at line 150 of file ftm_mc_driver.c.

16.39.3.2 status_t FTM_DRV_CounterStart (uint32_t instance)

Starts the FTM counter.

Parameters

in instance The FTM peripheral instance number.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 111 of file ftm_mc_driver.c.

16.39.3.3 status_t FTM_DRV_CounterStop (uint32_t instance)

Stops the FTM counter.

Parameters

in instance The FTM peripheral instance number.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

Definition at line 132 of file ftm_mc_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.39 FlexTimer Module Counter Driver (FTM_MC) 481

16.39.3.4 status_t FTM_DRV_InitCounter (uint32_t instance, const ftm_timer_param_t ∗ timer)

Initialize the FTM counter.

Starts the FTM counter. This function provides access to the FTM counter settings. The counter can be run in Up
counting and Up-down counting modes. To run the counter in Free running mode, choose Up counting option and
provide 0x0 value for the initialValue and 0xFFFF for finalValue. Please call this function only when FTM is used as
timer/counter. User must call the FTM_DRV_Deinit and the FTM_DRV_Init to Re-Initialize the FTM before calling
FTM_DRV_InitCounter for the second time and afterwards.

Parameters

in instance The FTM peripheral instance number.
in timer Timer configuration structure.

Returns

operation status

• STATUS_SUCCESS : Initialized successfully.

Definition at line 52 of file ftm_mc_driver.c.

16.39.3.5 void FTM_MC_DRV_GetDefaultConfig (ftm_timer_param_t ∗const config)

This function will get the default configuration values in the structure which is used as a common use-case.

Parameters

out config Pointer to the structure in which the configuration will be saved.

Returns

None

Definition at line 166 of file ftm_mc_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

482 CONTENTS

16.40 FlexTimer Output Compare Driver (FTM_OC)

16.40.1 Detailed Description

FlexTimer Output Compare Peripheral Driver.

Hardware background

The FTM of the S32K1xx is based on a 16 bits counter and supports: input capture, output compare, PWM and
some instances include quadrature decoder.

How to use FTM driver in your application

For all operation modes (without Quadrature Decoder mode) the user need to configure ftm_user_config_t. This
structure will be used for initialization (FTM_DRV_Init). The next functions used are specific for each operation
mode.

Output compare mode

For this mode the user needs to configure maximum counter value, number of channels used and output mode for
each channel (toggle/clear/set on match). This information is stored in ftm_output_cmp_param_t structure type and
are used in FTM_DRV_InitOutputCompare function. Next step is to set a value for comparison with the FTM_DR←↩

V_UpdateOutputCompareChannel function.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\ftm\ftm_oc_driver.c
${S32SDK_PATH}\platform\drivers\src\ftm\ftm_common.c
${S32SDK_PATH}\platform\drivers\src\ftm\ftm_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\
${S32SDK_PATH}\platform\drivers\src\ftm\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt)

Example:

/* The state structure of instance in the output compare mode */
ftm_state_t stateOutputCompare;
#define FTM_OUTPUT_COMPARE_INSTANCE 1UL
/* Channels configuration structure for PWM output compare */
ftm_output_cmp_ch_param_t PWM_OutputCompareChannelConfig[2] =
{

{
0U, /* Channel id */
FTM_TOGGLE_ON_MATCH, /* Output mode */
10000U, /* Compared value */
false, /* External Trigger */

},
{

1U, /* Channel id */
FTM_TOGGLE_ON_MATCH, /* Output mode */
20000U, /* Compared value */

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.40 FlexTimer Output Compare Driver (FTM_OC) 483

false, /* External Trigger */
}

};

/* Output compare configuration for PWM */
ftm_output_cmp_param_t PWM_OutputCompareConfig =
{

2U, /* Number of channels */
FTM_MODE_OUTPUT_COMPARE, /* FTM mode */
40000U, /* Maximum count value */
PWM_OutputCompareChannelConfig /* Channels configuration */

};
/* Timer mode configuration for PWM */
/* Global configuration of PWM */
ftm_user_config_t PWM_InitConfig =
{

{
true, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
true, /* Maximum loading point state */
true, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* select synchronization method */

},
FTM_MODE_OUTPUT_COMPARE, /* Mode of operation for FTM */
FTM_CLOCK_DIVID_BY_4, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_OUTPUT_COMPARE_INSTANCE, &PWM_InitConfig, &stateOutputCompare);
FTM_DRV_InitOutputCompare(FTM_OUTPUT_COMPARE_INSTANCE, &PWM_OutputCompareConfig);
/* If you want to change compared value */
FTM_DRV_UpdateOutputCompareChannel(FTM_OUTPUT_COMPARE_INSTANCE, 0UL, 1500

0U);

Data Structures

• struct ftm_output_cmp_ch_param_t

FlexTimer driver PWM parameters each channel in the output compare mode. More...

• struct ftm_output_cmp_param_t

FlexTimer driver PWM parameters which is configured for the list of channels. More...

Enumerations

• enum ftm_output_compare_mode_t { FTM_DISABLE_OUTPUT = 0x00U, FTM_TOGGLE_ON_MATCH =
0x01U, FTM_CLEAR_ON_MATCH = 0x02U, FTM_SET_ON_MATCH = 0x03U }

FlexTimer Mode configuration for output compare mode.

• enum ftm_output_compare_update_t { FTM_RELATIVE_VALUE = 0x00U, FTM_ABSOLUTE_VALUE =
0x01U }

FlexTimer input capture type of the next output compare value.

Functions

• status_t FTM_DRV_InitOutputCompare (uint32_t instance, const ftm_output_cmp_param_t ∗param)

Configures the FTM to generate timed pulses (Output compare mode).

• status_t FTM_DRV_DeinitOutputCompare (uint32_t instance, const ftm_output_cmp_param_t ∗param)

Disables compare match output control and clears FTM timer configuration.

• status_t FTM_DRV_UpdateOutputCompareChannel (uint32_t instance, uint8_t channel, uint16_t next←↩

ComparematchValue, ftm_output_compare_update_t update, bool softwareTrigger)

Sets the next compare match value based on the current counter value.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

484 CONTENTS

16.40.2 Data Structure Documentation

16.40.2.1 struct ftm_output_cmp_ch_param_t

FlexTimer driver PWM parameters each channel in the output compare mode.

Implements : ftm_output_cmp_ch_param_t_Class

Definition at line 65 of file ftm_oc_driver.h.

Data Fields

• uint8_t hwChannelId
• ftm_output_compare_mode_t chMode
• uint16_t comparedValue
• bool enableExternalTrigger

Field Documentation

16.40.2.1.1 ftm_output_compare_mode_t chMode

Channel output mode

Definition at line 68 of file ftm_oc_driver.h.

16.40.2.1.2 uint16_t comparedValue

The compared value

Definition at line 69 of file ftm_oc_driver.h.

16.40.2.1.3 bool enableExternalTrigger

true: enable the generation of a trigger is used for on-chip modules false: disable the generation of a trigger

Definition at line 70 of file ftm_oc_driver.h.

16.40.2.1.4 uint8_t hwChannelId

Physical hardware channel ID

Definition at line 67 of file ftm_oc_driver.h.

16.40.2.2 struct ftm_output_cmp_param_t

FlexTimer driver PWM parameters which is configured for the list of channels.

Implements : ftm_output_cmp_param_t_Class

Definition at line 79 of file ftm_oc_driver.h.

Data Fields

• uint8_t nNumOutputChannels
• ftm_config_mode_t mode
• uint16_t maxCountValue
• ftm_output_cmp_ch_param_t ∗ outputChannelConfig

Field Documentation

16.40.2.2.1 uint16_t maxCountValue

Maximum count value in ticks

Definition at line 83 of file ftm_oc_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.40 FlexTimer Output Compare Driver (FTM_OC) 485

16.40.2.2.2 ftm_config_mode_t mode

FlexTimer PWM operation mode

Definition at line 82 of file ftm_oc_driver.h.

16.40.2.2.3 uint8_t nNumOutputChannels

Number of output compare channels

Definition at line 81 of file ftm_oc_driver.h.

16.40.2.2.4 ftm_output_cmp_ch_param_t∗ outputChannelConfig

Output compare channels configuration

Definition at line 84 of file ftm_oc_driver.h.

16.40.3 Enumeration Type Documentation

16.40.3.1 enum ftm_output_compare_mode_t

FlexTimer Mode configuration for output compare mode.

Implements : ftm_output_compare_mode_t_Class

Enumerator

FTM_DISABLE_OUTPUT No action on output pin

FTM_TOGGLE_ON_MATCH Toggle on match

FTM_CLEAR_ON_MATCH Clear on match

FTM_SET_ON_MATCH Set on match

Definition at line 41 of file ftm_oc_driver.h.

16.40.3.2 enum ftm_output_compare_update_t

FlexTimer input capture type of the next output compare value.

Implements : ftm_output_compare_update_t_Class

Enumerator

FTM_RELATIVE_VALUE Next compared value is relative to current value

FTM_ABSOLUTE_VALUE Next compared value is absolute

Definition at line 54 of file ftm_oc_driver.h.

16.40.4 Function Documentation

16.40.4.1 status_t FTM_DRV_DeinitOutputCompare (uint32_t instance, const ftm_output_cmp_param_t ∗ param)

Disables compare match output control and clears FTM timer configuration.

Parameters

in instance The FTM peripheral instance number.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

486 CONTENTS

in param Configuration of the output compare channel

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 107 of file ftm_oc_driver.c.

16.40.4.2 status_t FTM_DRV_InitOutputCompare (uint32_t instance, const ftm_output_cmp_param_t ∗ param)

Configures the FTM to generate timed pulses (Output compare mode).

When the FTM counter matches the value of CnV, the channel output is changed based on what is specified in the
mode argument. The signal period can be modified using param->maxCountValue. After this function when the
max counter value and CnV are equal. FTM_DRV_UpdateOutputCompareChannel function can be used to change
CnV value.

Parameters

in instance The FTM peripheral instance number.
in param configuration of the output compare channels

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 42 of file ftm_oc_driver.c.

16.40.4.3 status_t FTM_DRV_UpdateOutputCompareChannel (uint32_t instance, uint8_t channel, uint16_t
nextComparematchValue, ftm_output_compare_update_t update, bool softwareTrigger)

Sets the next compare match value based on the current counter value.

Parameters

in instance The FTM peripheral instance number.
in channel Configuration of the output compare channel
in next←↩

Comparematch←↩

Value

Timer value in ticks until the next compare match event should appear

in update

• FTM_RELATIVE_VALUE : nextComparemantchValue will be added to
current counter value

• FTM_ABSOLUTE_VALUE : nextComparemantchValue will be written in
counter register as it is

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.40 FlexTimer Output Compare Driver (FTM_OC) 487

in softwareTrigger This parameter will be true if software trigger sync is enabled and the user
want to generate a software trigger (the value from buffer will be moved to reg-
ister immediate or at next loading point depending on the sync configuration).
Otherwise this parameter must be false and the next compared value will be
stored in buffer until a trigger signal will be received.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 150 of file ftm_oc_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

488 CONTENTS

16.41 FlexTimer Pulse Width Modulation Driver (FTM_PWM)

16.41.1 Detailed Description

FlexTimer Pulse Width Modulation Peripheral Driver.

Hardware background

The FlexTimer module is based on a 16 bits counter and supports: input capture, output compare, PWM and some
instances include quadrature decoder.

How to use FTM driver in your application

For all operation modes (without Quadrature Decoder mode) the user need to configure ftm_user_config_t. This
structure will be used for initialization (FTM_DRV_Init). The next functions used are specific for each operation
mode.

PWM mode

For this mode, the user needs to configure parameters such: number of PWM channels, frequency, dead time,
fault channels and duty cycle, alignment (edge or center). All this information is included in the ftm_pwm_param_t
structure.

FTM_DRV_UpdatePwmChannel can be used to update duty cycles at run time. If the type of update in the duty
cycle when the duty cycle can have value between 0x0 (0%) and 0x8000 (100%). If the type of update in ticks
when the firstEdge and secondEdge variables can have value between 0 and ftmPeriod which is stored in the state
structure.

Safe state and polarity of the PWM channels

These 2 parameters are dependent from FTM hardware perspective, but the FTM_PWM driver can handle them
independently, so polarity field configures the final polarity measured at MCU pins and safeState field is the value
of the PWM channel when fault is detected and fault is configured to use safe state, not tri-state mode. The same
behavior is available for combined mode, polarity and safe state can be configured independently.

API code changes

In BETA 2.9.0 the following changes were made in FTM_PWM API:

• from ftm_independent_ch_param_t the following fields were removed: levelSelect

• in ftm_independent_ch_param_t safeState field was added

• from ftm_combined_ch_param_t the following fields were removed: levelSelect, levelSelectOnNextChn.

• in ftm_combined_ch_param_t mainChannelSafeState and secondChannelSafeState fields were added.

• ftm_safe_state_polarity_t enum was changed

From application perspective the impact is the following:

• second channel can't be used in independent channels, just in combined channels

• polarity and safe state should be checked with the new API.

The advantages of the FTM_PWM API from BETA 2.9,0 are:

• safe state and polarity can be configured without strong understatement of the Reference Manual

• dead time will be always inserted Note that:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.41 FlexTimer Pulse Width Modulation Driver (FTM_PWM) 489

• In the ftm_independent_ch_param_t structure has the "ftm_safe_state_polarity_t safeState" variable which
user can configure the polarity of PWM signal on the channel n+1. and the "ftm_second_channel_polarity_t
secondChannelPolarity" is only used to configure the channel n+1 in the complementary mode for the inverted
or duplicated channel n.

• In the combined channel, the configuration structure has same feature as in the independent mode. It is only
difference which the "ftm_safe_state_polarity_t secondChannelSafeState" variable should be set the channel
(n+1) polarity if needed.

• When the fault input is disabled in the configuration the user should be set the ftm_safe_state_polarity_t as
FTM_LOW_STATE for both cases in the independent and combined channel because it is not necessary.

• On S32K1xx, the clock source for Deadtime is always the System Clock, regardless of the current Clock
Source used for FTM (Fixed, External).

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\ftm\ftm_pwm_driver.c
${S32SDK_PATH}\platform\drivers\src\ftm\ftm_common.c
${S32SDK_PATH}\platform\drivers\src\ftm\ftm_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\
${S32SDK_PATH}\platform\drivers\src\ftm\

Preprocessor symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt)

Example:

/* The state structure of instance in the PWM mode */
ftm_state_t statePwm;
#define FTM_PWM_INSTANCE 1UL
/* Fault configuration structure */
ftm_pwm_fault_param_t PWM_FaultConfig =
{

false,
true,
5U, /* Fault filter value */
FTM_FAULT_CONTROL_MAN_EVEN,
{

{
true, /* Fault channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_HIGH, /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

490 CONTENTS

FTM_POLARITY_LOW /* Channel output state on fault */
}

}
};

/* Independent channels configuration structure for PWM */
ftm_independent_ch_param_t PWM_IndependentChannelsConfig[1] =
{

{
0U, /* hwChannelId */
FTM_POLARITY_LOW, /* Polarity of the PWM signal */
4096U, /* Duty cycle percent 0-0x8000 */
false, /* External Trigger */
FTM_LOW_STATE, /* Safe state of the PWM channel when faults are detected */
}

};

/* PWM configuration for PWM */
ftm_pwm_param_t PWM_PwmConfig =
{

1U, /* Number of independent PWM channels */
0U, /* Number of combined PWM channels */
FTM_MODE_EDGE_ALIGNED_PWM, /* PWM mode */
0U, /* DeadTime Value */
FTM_DEADTIME_DIVID_BY_4, /* DeadTime clock divider */
7481U, /* PWM frequency */
PWM_IndependentChannelsConfig, /* Independent PWM channels configuration structure */
NULL, /* Combined PWM channels configuration structure */
&PWM_FaultConfig /* PWM fault configuration structure */

};

/* Timer mode configuration for PWM */
/* Global configuration of PWM */
ftm_user_config_t PWM_InitConfig =
{

{
true, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
true, /* Maximum loading point state */
true, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* Select synchronization method */

},
FTM_MODE_EDGE_ALIGNED_PWM, /* PWM mode */
FTM_CLOCK_DIVID_BY_4, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_PWM_INSTANCE, &PWM_InitConfig, &statePwm);
FTM_DRV_InitPwm(FTM_PWM_INSTANCE, &PWM_PwmConfig);
/* It’s recommended to use softwareTrigger = true */
/* The SECOND_EDGE value is used only when PWM is used in combined mode */
FTM_DRV_UpdatePwmChannel(FTM_PWM_INSTANCE, 0UL,

FTM_PWM_UPDATE_IN_DUTY_CYCLE, 0x800U, 0x2000U, true);

PWM in Modified Combine mode

For this mode the user needs to configure parameters such: number of PWM channels, frequency, dead time, fault
channels and duty cycle, alignment (edge or center). All this information is included in ftm_pwm_param_t data type.
The Modified Combine PWM mode is intended to support the generation of PWM signals where the period is not
modified while the signal is being generated, but the duty cycle will be varied. FTM_DRV_UpdatePwmChannel can
be used to update duty cycles at run time. If the type of update in the duty cycle when the duty cycle can have value
between 0x0 (0%) and 0x8000 (100%). If the type of update in ticks when the firstEdge and secondEdge variables
can have value between 0 and ftmPeriod which is stored in the state structure.In this mode, an even channel (n) and
adjacent odd channel (n+1) are combined to generate a PWM signal in the channel (n) output. Thus, the channel
(n) match edge is fixed and the channel (n+1) match edge can be varied.

Example:

/* The state structure of instance in the PWM mode */
ftm_state_t statePwm;
#define FTM_PWM_INSTANCE 0UL

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.41 FlexTimer Pulse Width Modulation Driver (FTM_PWM) 491

/* Fault configuration structure */
ftm_pwm_fault_param_t PWM_FaultConfig =
{

false,
true,
5U, /* Fault filter value */
FTM_FAULT_CONTROL_MAN_EVEN,
{

{
true, /* Fault channel state (Enabled/Disabled)*/
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_HIGH, /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

}
}

};
/* Combine channels configuration structure for PWM */
ftm_combined_ch_param_t flexTimer1_CombinedChannelsConfig[1] =
{

{
2U, /* Hardware channel for channel (n) */
0U, /* First edge time */
0U, /* Second edge time */
true, /* Dead time enabled/disabled */
true, /* The modified combine mode enabled/disabled */
FTM_POLARITY_HIGH, /* Select channel (n) polarity */
true, /* Enabled/disabled the channel (n+1) output */
FTM_MAIN_INVERTED, /* Select channel (n+1) output relative to channel (n) */
false, /* External Trigger on the channel (n) */
false, /* External Trigger on the channel (n+1) */
FTM_LOW_STATE, /* Safe state of the PWM channel n when faults are detected */
FTM_LOW_STATE, /* Safe state of the PWM channel n+1 when faults are detected

*/
}

};
/* PWM configuration for PWM */
ftm_pwm_param_t PWM_PwmConfig =
{

0U, /* Number of independent PWM channels */
1U, /* Number of combined PWM channels */
FTM_MODE_EDGE_ALIGNED_PWM, /* PWM mode */
0U, /* DeadTime Value */
FTM_DEADTIME_DIVID_BY_4, /* DeadTime clock divider */
7481U, /* PWM frequency */
NULL, /* Independent PWM channels configuration structure */
flexTimer1_CombinedChannelsConfig, /* Combined PWM channels configuration structure */
&PWM_FaultConfig /* PWM fault configuration structure */

};
/* Timer mode configuration for PWM */
/* Global configuration of PWM */
ftm_user_config_t PWM_InitConfig =
{

{
true, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
true, /* Maximum loading point state */
true, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* Select synchronization method */

},
FTM_MODE_EDGE_ALIGNED_PWM, /* PWM mode */
FTM_CLOCK_DIVID_BY_4, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

492 CONTENTS

FTM_DRV_Init(FTM_PWM_INSTANCE, &PWM_InitConfig, &statePwm);
FTM_DRV_InitPwm(FTM_PWM_INSTANCE, &PWM_PwmConfig);
/* It’s recommended to use softwareTrigger = true */
/* Only second edge can be updated when FTM is running. */
FTM_DRV_UpdatePwmChannel(FTM_PWM_INSTANCE, 0UL,

FTM_PWM_UPDATE_IN_DUTY_CYCLE, 0x0U, 0x2000U, true);

Edge-Aligned PWM and Input Capture mode

Support an additional Input Capture mode on other channels in the same FTM instance:

• The measurement range of Input Capture will depend on PWM configuration. The frequency of measured
signal must greater than frequency of PWM signal.

• For this mode, the recommended synchronization point is the next loading point (not immediately) to avoid
breaking the current measurement signal from Input Capture.

• The S32CT configuration is not possible to add both drivers on the same instance, even if the driver support
this. The initialization sequences below:

/* The state structure of instance in the PWM and Input Capture mode */
ftm_state_t statePwmIc;
#define FTM_PWM_IC_INSTANCE 0UL
/* Fault configuration structure */
ftm_pwm_fault_param_t PWM_FaultConfig =
{

false,
true,
5U, /* Fault filter value */
FTM_FAULT_CONTROL_MAN_EVEN,
{

{
true, /* Fault channel state (Enabled/Disabled)*/
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_HIGH, /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

},
{

false, /* Fault Channel state (Enabled/Disabled) */
false, /* Fault channel filter state (Enabled/Disabled) */
FTM_POLARITY_LOW /* Channel output state on fault */

}
}

};
/* Combine channels configuration structure for PWM */
ftm_combined_ch_param_t flexTimer1_CombinedChannelsConfig[1] =
{

{
0U, /* Hardware channel for channel 0 and channel 1 */
0U, /* First edge time */
0x2000U, /* Second edge time */
true, /* Dead time enabled/disabled */
true, /* The modified combine mode enabled/disabled */
FTM_POLARITY_HIGH, /* Select channel (n) polarity */
true, /* Enabled/disabled the channel (n+1) output */
FTM_MAIN_INVERTED, /* Select channel (n+1) output relative to channel (n) */
false, /* External Trigger on the channel (n) */
false, /* External Trigger on the channel (n+1) */
FTM_LOW_STATE, /* Safe state of the PWM channel n when faults are detected */
FTM_LOW_STATE, /* Safe state of the PWM channel n+1 when faults are detected

*/
}

};
/* PWM configuration for PWM */
ftm_pwm_param_t PWM_PwmConfig =
{

0U, /* Number of independent PWM channels */
1U, /* Number of combined PWM channels */
FTM_MODE_EDGE_ALIGNED_PWM, /* PWM mode */
0U, /* DeadTime Value */
FTM_DEADTIME_DIVID_BY_4, /* DeadTime clock divider */
7481U, /* PWM frequency */

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.41 FlexTimer Pulse Width Modulation Driver (FTM_PWM) 493

NULL, /* Independent PWM channels configuration structure */
flexTimer1_CombinedChannelsConfig, /* Combined PWM channels configuration structure */
&PWM_FaultConfig /* PWM fault configuration structure */

};
/* Channels configuration structure for inputCapture input capture */
ftm_input_ch_param_t inputCapture_InputCaptureChannelConfig[1] =
{

{
3U, /* Channel 3 (Make sure that the channel ID must different than PWM

channels) */
FTM_EDGE_DETECT, /* Input capture operation Mode */
FTM_RISING_EDGE, /* Edge alignment Mode */
FTM_NO_MEASUREMENT, /* Signal measurement operation type */
0U, /* Filter value */
false, /* Filter disabled */
true /* Continuous mode measurement */
NULL, /* Vector of callbacks parameters for channels events */
NULL /* Vector of callbacks for channels events */
}

};
/* Input capture configuration for inputCapture */
ftm_input_param_t inputCapture_InputCaptureConfig =
{

1U, /* Number of channels */
65535U, /* Maximum count value (This value is ignored and replaced by

period value calculated from PWM configuration) */
inputCapture_InputCaptureChannelConfig /* Channels configuration */

};
/* Timer mode configuration for PWM and Input Capture */
ftm_user_config_t PWM_IC_InitConfig =
{

{
true, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
true, /* Maximum loading point state */
true, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_WAIT_LOADING_POINTS, /* Select synchronization method (Next Loading
Point is recommended) */

},
FTM_MODE_EDGE_ALIGNED_PWM, /* Edge-Align PWM mode that can be used with

Input Capture mode */
FTM_CLOCK_DIVID_BY_4, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};

/* Initialize FTM module */
FTM_DRV_Init(FTM_PWM_IC_INSTANCE, &PWM_IC_InitConfig, &statePwmIc);
/* Initialize PWM cofiguration (Clock configuration for both PWM and Input Capture mode)

* Initialize the additional Input Capture mode for other channels

* FTM_DRV_InitPwm() must be called first before user calls FTM_DRV_InitInputCapture()

*/
FTM_DRV_InitPwm(FTM_PWM_IC_INSTANCE, &PWM_PwmConfig);
FTM_DRV_InitInputCapture(FTM_PWM_IC_INSTANCE, &inputCapture_InputCaptureConfig);

...

/* De-initialize Input Capture first

* PWM signal still work normally

*/
FTM_DRV_DeinitInputCapture(FTM_PWM_IC_INSTANCE, &inputCapture_InputCaptureConfig);
/* De-initialize PWM (FTM counter will be disabled) */
FTM_DRV_DeinitPwm(FTM_PWM_IC_INSTANCE);

Data Structures

• struct ftm_pwm_ch_fault_param_t

FlexTimer driver PWM Fault channel parameters. More...

• struct ftm_pwm_fault_param_t

FlexTimer driver PWM Fault parameter. More...

• struct ftm_independent_ch_param_t

FlexTimer driver independent PWM parameter. More...

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

494 CONTENTS

• struct ftm_combined_ch_param_t

FlexTimer driver combined PWM parameter. More...

• struct ftm_pwm_param_t

FlexTimer driver PWM parameters. More...

Macros

• #define FTM_MAX_DUTY_CYCLE (0x8000U)

Maximum value for PWM duty cycle.

• #define FTM_DUTY_TO_TICKS_SHIFT (15U)

Shift value which converts duty to ticks.

Enumerations

• enum ftm_pwm_update_option_t { FTM_PWM_UPDATE_IN_DUTY_CYCLE = 0x00U, FTM_PWM_UPDA←↩

TE_IN_TICKS = 0x01U }

FlexTimer Configure type of PWM update in the duty cycle or in ticks.

• enum ftm_polarity_t { FTM_POLARITY_LOW = 0x00U, FTM_POLARITY_HIGH = 0x01U }

The polarity of the channel output is configured in PWM signal.

• enum ftm_second_channel_polarity_t { FTM_MAIN_INVERTED = 0x01U, FTM_MAIN_DUPLICATED =
0x00U }

FlexTimer PWM channel (n+1) polarity for combine mode.

• enum ftm_fault_mode_t { FTM_FAULT_CONTROL_DISABLED = 0x00U, FTM_FAULT_CONTROL_MA←↩

N_EVEN = 0x01U, FTM_FAULT_CONTROL_MAN_ALL = 0x02U, FTM_FAULT_CONTROL_AUTO_ALL =
0x03U }

FlexTimer fault control.

• enum ftm_safe_state_polarity_t { FTM_LOW_STATE = 0x00U, FTM_HIGH_STATE = 0x01U }

Select level of the channel (n) output at the beginning.

Functions

• status_t FTM_DRV_DeinitPwm (uint32_t instance)

Stops all PWM channels .

• status_t FTM_DRV_InitPwm (uint32_t instance, const ftm_pwm_param_t ∗param)

Configures the duty cycle and frequency and starts the output of the PWM on all channels configured in the param
structure. The independent channel configuration need to clarify the polarity and safe state as following:

• status_t FTM_DRV_UpdatePwmChannel (uint32_t instance, uint8_t channel, ftm_pwm_update_option_←↩

t typeOfUpdate, uint16_t firstEdge, uint16_t secondEdge, bool softwareTrigger)

This function updates the waveform output in PWM mode (duty cycle and phase).

• status_t FTM_DRV_FastUpdatePwmChannels (uint32_t instance, uint8_t numberOfChannels, const uint8_t
∗channels, const uint16_t ∗duty, bool softwareTrigger)

This function will update the duty cycle of PWM output for multiple channels.

• status_t FTM_DRV_UpdatePwmPeriod (uint32_t instance, ftm_pwm_update_option_t typeOfUpdate,
uint32_t newValue, bool softwareTrigger)

This function will update the new period in the frequency or in the counter value into mode register which modify the
period of PWM signal on the channel output.

• status_t FTM_DRV_ControlChannelOutput (uint32_t instance, uint8_t channel, bool enableChannelOutput)

This function is used to control the final logic of the channel output.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.41 FlexTimer Pulse Width Modulation Driver (FTM_PWM) 495

16.41.2 Data Structure Documentation

16.41.2.1 struct ftm_pwm_ch_fault_param_t

FlexTimer driver PWM Fault channel parameters.

Implements : ftm_pwm_ch_fault_param_t_Class

Definition at line 112 of file ftm_pwm_driver.h.

Data Fields

• bool faultChannelEnabled
• bool faultFilterEnabled
• ftm_polarity_t ftmFaultPinPolarity

Field Documentation

16.41.2.1.1 bool faultChannelEnabled

Fault channel state

Definition at line 114 of file ftm_pwm_driver.h.

16.41.2.1.2 bool faultFilterEnabled

Fault channel filter state

Definition at line 115 of file ftm_pwm_driver.h.

16.41.2.1.3 ftm_polarity_t ftmFaultPinPolarity

Channel output state on fault

Definition at line 116 of file ftm_pwm_driver.h.

16.41.2.2 struct ftm_pwm_fault_param_t

FlexTimer driver PWM Fault parameter.

Implements : ftm_pwm_fault_param_t_Class

Definition at line 124 of file ftm_pwm_driver.h.

Data Fields

• bool pwmOutputStateOnFault
• bool pwmFaultInterrupt
• uint8_t faultFilterValue
• ftm_fault_mode_t faultMode
• ftm_pwm_ch_fault_param_t ftmFaultChannelParam [FTM_FEATURE_FAULT_CHANNELS]

Field Documentation

16.41.2.2.1 uint8_t faultFilterValue

Fault filter value

Definition at line 128 of file ftm_pwm_driver.h.

16.41.2.2.2 ftm_fault_mode_t faultMode

Fault mode

Definition at line 129 of file ftm_pwm_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

496 CONTENTS

16.41.2.2.3 ftm_pwm_ch_fault_param_t ftmFaultChannelParam[FTM_FEATURE_FAULT_CHANNELS]

Fault channels configuration

Definition at line 130 of file ftm_pwm_driver.h.

16.41.2.2.4 bool pwmFaultInterrupt

PWM fault interrupt state

Definition at line 127 of file ftm_pwm_driver.h.

16.41.2.2.5 bool pwmOutputStateOnFault

Output pin state on fault (safe state or tri-state)

Definition at line 126 of file ftm_pwm_driver.h.

16.41.2.3 struct ftm_independent_ch_param_t

FlexTimer driver independent PWM parameter.

Implements : ftm_independent_ch_param_t_Class

Definition at line 138 of file ftm_pwm_driver.h.

Data Fields

• uint8_t hwChannelId
• ftm_polarity_t polarity
• uint16_t uDutyCyclePercent
• bool enableExternalTrigger
• ftm_safe_state_polarity_t safeState
• bool enableSecondChannelOutput
• ftm_second_channel_polarity_t secondChannelPolarity
• bool deadTime

Field Documentation

16.41.2.3.1 bool deadTime

Enable/disable dead time for channel

Definition at line 150 of file ftm_pwm_driver.h.

16.41.2.3.2 bool enableExternalTrigger

true: enable the generation of a trigger is used for on-chip modules false: disable the generation of a trigger

Definition at line 144 of file ftm_pwm_driver.h.

16.41.2.3.3 bool enableSecondChannelOutput

Enable complementary mode on next channel

Definition at line 148 of file ftm_pwm_driver.h.

16.41.2.3.4 uint8_t hwChannelId

Physical hardware channel ID

Definition at line 140 of file ftm_pwm_driver.h.

16.41.2.3.5 ftm_polarity_t polarity

Polarity of the PWM signal generated on MCU pin.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.41 FlexTimer Pulse Width Modulation Driver (FTM_PWM) 497

Definition at line 141 of file ftm_pwm_driver.h.

16.41.2.3.6 ftm_safe_state_polarity_t safeState

Logical state of the PWM channel n when an fault is detected and to set up the polarity of PWM signal on the
channel (n+1)

Definition at line 146 of file ftm_pwm_driver.h.

16.41.2.3.7 ftm_second_channel_polarity_t secondChannelPolarity

Polarity of the channel n+1 relative to channel n in the complementary mode

Definition at line 149 of file ftm_pwm_driver.h.

16.41.2.3.8 uint16_t uDutyCyclePercent

PWM pulse width, value should be between 0 (0%) to FTM_MAX_DUTY_CYCLE (100%)

Definition at line 142 of file ftm_pwm_driver.h.

16.41.2.4 struct ftm_combined_ch_param_t

FlexTimer driver combined PWM parameter.

Implements : ftm_combined_ch_param_t_Class

Definition at line 159 of file ftm_pwm_driver.h.

Data Fields

• uint8_t hwChannelId
• uint16_t firstEdge
• uint16_t secondEdge
• bool deadTime
• bool enableModifiedCombine
• ftm_polarity_t mainChannelPolarity
• bool enableSecondChannelOutput
• ftm_second_channel_polarity_t secondChannelPolarity
• bool enableExternalTrigger
• bool enableExternalTriggerOnNextChn
• ftm_safe_state_polarity_t mainChannelSafeState
• ftm_safe_state_polarity_t secondChannelSafeState

Field Documentation

16.41.2.4.1 bool deadTime

Enable/disable dead time for channel

Definition at line 166 of file ftm_pwm_driver.h.

16.41.2.4.2 bool enableExternalTrigger

The generation of the channel (n) trigger true: enable the generation of a trigger on the channel (n) false: disable
the generation of a trigger on the channel (n)

Definition at line 171 of file ftm_pwm_driver.h.

16.41.2.4.3 bool enableExternalTriggerOnNextChn

The generation of the channel (n+1) trigger true: enable the generation of a trigger on the channel (n+1) false:
disable the generation of a trigger on the channel (n+1)

Definition at line 174 of file ftm_pwm_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

498 CONTENTS

16.41.2.4.4 bool enableModifiedCombine

Enable/disable the modified combine mode for channels (n) and (n+1)

Definition at line 167 of file ftm_pwm_driver.h.

16.41.2.4.5 bool enableSecondChannelOutput

Select if channel (n+1) output is enabled/disabled for the complementary mode

Definition at line 169 of file ftm_pwm_driver.h.

16.41.2.4.6 uint16_t firstEdge

First edge time. This time is relative to signal period. The value for this parameter is between 0 and FTM_MAX_←↩

DUTY_CYCLE(0 = 0% from period and FTM_MAX_DUTY_CYCLE = 100% from period)

Definition at line 162 of file ftm_pwm_driver.h.

16.41.2.4.7 uint8_t hwChannelId

Physical hardware channel ID for channel (n)

Definition at line 161 of file ftm_pwm_driver.h.

16.41.2.4.8 ftm_polarity_t mainChannelPolarity

Polarity of the PWM signal generated on MCU pin for channel n.

Definition at line 168 of file ftm_pwm_driver.h.

16.41.2.4.9 ftm_safe_state_polarity_t mainChannelSafeState

The selection of the channel (n) state when fault is detected

Definition at line 177 of file ftm_pwm_driver.h.

16.41.2.4.10 ftm_second_channel_polarity_t secondChannelPolarity

Select channel (n+1) polarity relative to channel (n) in the complementary mode

Definition at line 170 of file ftm_pwm_driver.h.

16.41.2.4.11 ftm_safe_state_polarity_t secondChannelSafeState

The selection of the channel (n+1) state when fault is detected and set up the polarity of PWM signal on the channel
(n+1)

Definition at line 178 of file ftm_pwm_driver.h.

16.41.2.4.12 uint16_t secondEdge

Second edge time. This time is relative to signal period. The value for this parameter is between 0 and FTM_MA←↩

X_DUTY_CYCLE(0 = 0% from period and FTM_MAX_DUTY_CYCLE = 100% from period)

Definition at line 164 of file ftm_pwm_driver.h.

16.41.2.5 struct ftm_pwm_param_t

FlexTimer driver PWM parameters.

Implements : ftm_pwm_param_t_Class

Definition at line 187 of file ftm_pwm_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.41 FlexTimer Pulse Width Modulation Driver (FTM_PWM) 499

Data Fields

• uint8_t nNumIndependentPwmChannels
• uint8_t nNumCombinedPwmChannels
• ftm_config_mode_t mode
• uint8_t deadTimeValue
• ftm_deadtime_ps_t deadTimePrescaler
• uint32_t uFrequencyHZ
• ftm_independent_ch_param_t ∗ pwmIndependentChannelConfig
• ftm_combined_ch_param_t ∗ pwmCombinedChannelConfig
• ftm_pwm_fault_param_t ∗ faultConfig

Field Documentation

16.41.2.5.1 ftm_deadtime_ps_t deadTimePrescaler

Dead time pre-scaler value[ticks]

Definition at line 193 of file ftm_pwm_driver.h.

16.41.2.5.2 uint8_t deadTimeValue

Dead time value in [ticks]

Definition at line 192 of file ftm_pwm_driver.h.

16.41.2.5.3 ftm_pwm_fault_param_t∗ faultConfig

Configuration for PWM fault

Definition at line 197 of file ftm_pwm_driver.h.

16.41.2.5.4 ftm_config_mode_t mode

FTM mode

Definition at line 191 of file ftm_pwm_driver.h.

16.41.2.5.5 uint8_t nNumCombinedPwmChannels

Number of combined PWM channels

Definition at line 190 of file ftm_pwm_driver.h.

16.41.2.5.6 uint8_t nNumIndependentPwmChannels

Number of independent PWM channels

Definition at line 189 of file ftm_pwm_driver.h.

16.41.2.5.7 ftm_combined_ch_param_t∗ pwmCombinedChannelConfig

Configuration for combined PWM channels

Definition at line 196 of file ftm_pwm_driver.h.

16.41.2.5.8 ftm_independent_ch_param_t∗ pwmIndependentChannelConfig

Configuration for independent PWM channels

Definition at line 195 of file ftm_pwm_driver.h.

16.41.2.5.9 uint32_t uFrequencyHZ

PWM period in Hz

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

500 CONTENTS

Definition at line 194 of file ftm_pwm_driver.h.

16.41.3 Macro Definition Documentation

16.41.3.1 #define FTM_DUTY_TO_TICKS_SHIFT (15U)

Shift value which converts duty to ticks.

Definition at line 42 of file ftm_pwm_driver.h.

16.41.3.2 #define FTM_MAX_DUTY_CYCLE (0x8000U)

Maximum value for PWM duty cycle.

Definition at line 40 of file ftm_pwm_driver.h.

16.41.4 Enumeration Type Documentation

16.41.4.1 enum ftm_fault_mode_t

FlexTimer fault control.

Implements : ftm_fault_mode_t_Class

Enumerator

FTM_FAULT_CONTROL_DISABLED Fault control is disabled for all channels

FTM_FAULT_CONTROL_MAN_EVEN Fault control is enabled for even channels only (channels 0, 2, 4, and
6), and the selected mode is the manual fault clearing

FTM_FAULT_CONTROL_MAN_ALL Fault control is enabled for all channels, and the selected mode is the
manual fault clearing

FTM_FAULT_CONTROL_AUTO_ALL Fault control is enabled for all channels, and the selected mode is the
automatic fault clearing

Definition at line 84 of file ftm_pwm_driver.h.

16.41.4.2 enum ftm_polarity_t

The polarity of the channel output is configured in PWM signal.

Implements : ftm_polarity_t_Class

Enumerator

FTM_POLARITY_LOW The channel polarity is active LOW which is defined again

FTM_POLARITY_HIGH The channel polarity is active HIGH which is defined again

Definition at line 60 of file ftm_pwm_driver.h.

16.41.4.3 enum ftm_pwm_update_option_t

FlexTimer Configure type of PWM update in the duty cycle or in ticks.

Implements : ftm_pwm_update_option_t_Class

Enumerator

FTM_PWM_UPDATE_IN_DUTY_CYCLE The type of PWM update in the duty cycle/pulse or also use in
frequency update

FTM_PWM_UPDATE_IN_TICKS The type of PWM update in ticks

Definition at line 49 of file ftm_pwm_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.41 FlexTimer Pulse Width Modulation Driver (FTM_PWM) 501

16.41.4.4 enum ftm_safe_state_polarity_t

Select level of the channel (n) output at the beginning.

Implements : ftm_safe_state_polarity_t_Class

Enumerator

FTM_LOW_STATE When fault is detected PWM channel is low.

FTM_HIGH_STATE When fault is detected PWM channel is high.

Definition at line 101 of file ftm_pwm_driver.h.

16.41.4.5 enum ftm_second_channel_polarity_t

FlexTimer PWM channel (n+1) polarity for combine mode.

Implements : ftm_second_channel_polarity_t_Class

Enumerator

FTM_MAIN_INVERTED The channel (n+1) output is the inverse of the channel (n) output

FTM_MAIN_DUPLICATED The channel (n+1) output is the same as the channel (n) output

Definition at line 71 of file ftm_pwm_driver.h.

16.41.5 Function Documentation

16.41.5.1 status_t FTM_DRV_ControlChannelOutput (uint32_t instance, uint8_t channel, bool enableChannelOutput)

This function is used to control the final logic of the channel output.

Parameters

in instance The FTM peripheral instance number.
in channel The channel which is used in PWM mode.
in enable←↩

ChannelOutput
Enable/disable the channel output.

Returns

success

• STATUS_SUCCESS : Completed successfully.

Definition at line 675 of file ftm_pwm_driver.c.

16.41.5.2 status_t FTM_DRV_DeinitPwm (uint32_t instance)

Stops all PWM channels .

Parameters

in instance The FTM peripheral instance number.

Returns

counter the current counter value

Definition at line 382 of file ftm_pwm_driver.c.

16.41.5.3 status_t FTM_DRV_FastUpdatePwmChannels (uint32_t instance, uint8_t numberOfChannels, const uint8_t ∗
channels, const uint16_t ∗ duty, bool softwareTrigger)

This function will update the duty cycle of PWM output for multiple channels.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

502 CONTENTS

Parameters

in instance The FTM peripheral instance number.
in numberOf←↩

Channels
The number of channels which should be updated.

in channels The list of channels which should be updated.
in duty The list of duty cycles for selected channels.
in softwareTrigger If true a software trigger is generate to update PWM parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 643 of file ftm_pwm_driver.c.

16.41.5.4 status_t FTM_DRV_InitPwm (uint32_t instance, const ftm_pwm_param_t ∗ param)

Configures the duty cycle and frequency and starts the output of the PWM on all channels configured in the param
structure. The independent channel configuration need to clarify the polarity and safe state as following:

• In the first channel, the POL bit is the value of safeState variable. In the second channel, the POL bit is the
same value of safeSate with the inverted channel and the POL bit is inverted safeState with the duplicated
channel.

• If the polarity and sate state are the value, it will be Low-true pulses. It means the ELSB:ELSA = 0:1.
Otherwise, it will be High-true pulses. It means the ELSB:ELSA = 1:0. Regarding the combined channel
configuration:

• In both channels, the POL bit is the same value with the safeState variable

• If the polarity and sate state are the value, it will be Low-true pulses. It means the ELSB:ELSA = 0:1.
Otherwise, it will be High-true pulses. It means the ELSB:ELSA = 1:0.

• COMP bit will be true when the polarity and safeState are the same value, the second channel is inverted
.the first channel or when the polarity and safeState are difference value, the second channel is duplicated
the first channel.

• COMP bit will be false when the polarity and safeState are the same value, the second channel is duplicated
.the first channel or when the polarity and safeState are difference value, the second channel is inverted the
first channel.

: These configuration will impact to the FTM_DRV_SetSoftwareOutputChannelControl and FTM_DRV_SetAllChn←↩

SoftwareOutputControl function. Because the software output control behavior depends on the polarity and COMP
bit.

Parameters

in instance The FTM peripheral instance number.
in param FTM driver PWM parameter to configure PWM options.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 258 of file ftm_pwm_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.41 FlexTimer Pulse Width Modulation Driver (FTM_PWM) 503

16.41.5.5 status_t FTM_DRV_UpdatePwmChannel (uint32_t instance, uint8_t channel, ftm_pwm_update_option_t
typeOfUpdate, uint16_t firstEdge, uint16_t secondEdge, bool softwareTrigger)

This function updates the waveform output in PWM mode (duty cycle and phase).

: Regarding the type of updating PWM in the duty cycle, if the expected duty is 100% then the value that is to be
written to hardware will be exceed value of period. It means that the FTM counter will not match the value of the
CnV register in this case.

Parameters

in instance The FTM peripheral instance number.
in channel The channel number. In combined mode, the code finds the channel.
in typeOfUpdate The type of PWM update in the duty cycle/pulse or in ticks.
in firstEdge Duty cycle or first edge time for PWM mode. Can take value between 0 - F←↩

TM_MAX_DUTY_CYCLE(0 = 0% from period and FTM_MAX_DUTY_CYCLE
= 100% from period) Or value in ticks for the first of the PWM mode in which
can have value between 0 and ftmPeriod is stored in the state structure.

in secondEdge Second edge time - only for combined mode. Can take value between 0 - F←↩

TM_MAX_DUTY_CYCLE(0 = 0% from period and FTM_MAX_DUTY_CYCLE
= 100% from period). Or value in ticks for the second of the PWM mode in
which can have value between 0 and ftmPeriod is stored in the state structure.

in softwareTrigger If true a software trigger is generate to update PWM parameters.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 447 of file ftm_pwm_driver.c.

16.41.5.6 status_t FTM_DRV_UpdatePwmPeriod (uint32_t instance, ftm_pwm_update_option_t typeOfUpdate, uint32_t
newValue, bool softwareTrigger)

This function will update the new period in the frequency or in the counter value into mode register which modify the
period of PWM signal on the channel output.

Parameters

in instance The FTM peripheral instance number.
in typeOfUpdate The type of PWM update is a period in Hz or in ticks.

• For FTM_PWM_UPDATE_IN_DUTY_CYCLE which reuse in FTM_D←↩

RV_UpdatePwmChannel function will update in Hz.

• For FTM_PWM_UPDATE_IN_TICKS will update in ticks.

in newValue The frequency or the counter value which will select with modified value for
PWM signal. If the type of update in the duty cycle, the newValue parameter
must be value between 1U and maximum is the frequency of the FTM counter.
If the type of update in ticks, the newValue parameter must be value between
1U and 0xFFFFU.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

504 CONTENTS

in softwareTrigger If true a software trigger is generate to update PWM parameters.

Returns

operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 576 of file ftm_pwm_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.42 FlexTimer Quadrature Decoder Driver (FTM_QD) 505

16.42 FlexTimer Quadrature Decoder Driver (FTM_QD)

16.42.1 Detailed Description

FlexTimer Quadrature Decoder Peripheral Driver.

Hardware background

The FTM of the S32K1xx is based on a 16 bits counter and supports: input capture, output compare, PWM and
some instances include quadrature decoder.

How to use FTM driver in your application

For all operation modes (without Quadrature Decoder mode) the user need to configure ftm_user_config_t. This
structure will be used for initialization (FTM_DRV_Init). The next functions used are specific for each operation
mode.

Quadrature decoder mode

For this mode the user needs to configure parameters like: maximum counter value, initial counter value, mode
(Count and Direction Encoding mode), and for both input phases polarity and filtering. All this information is included
in ftm_quad_decode_config_t. In this mode, the counter is clocked by the phase A and phase B. The current state
of the decoder can be obtained using FTM_DRV_QuadGetState.

Hardware limitation:

In count and direction mode if initial value of the PHASE_A is HIGH the counter will be incremented.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\ftm\ftm_qd_driver.c
${S32SDK_PATH}\platform\drivers\src\ftm\ftm_common.c
${S32SDK_PATH}\platform\drivers\src\ftm\ftm_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\
${S32SDK_PATH}\platform\drivers\src\ftm\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt)

Example:

/* The state structure of instance in the quadrature mode */
ftm_state_t stateQuad;
#define FTM_QUADRATURE_INSTANCE 1UL
ftm_quad_decoder_state_t quadra_state;
ftm_quad_decode_config_t quadrature_decoder_configuration =
{

FTM_QUAD_COUNT_AND_DIR, /* Quadrature decoder mode */
0U, /* Initial counter value */
32500U, /* Maximum counter value */
{

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

506 CONTENTS

false, /* Filter state */
0U, /* Filter value */
FTM_QUAD_PHASE_NORMAL /* Phase polarity */

},
{

false, /* Filter state */
0U, /* Filter value */
FTM_QUAD_PHASE_NORMAL /* Phase polarity */

}
};
/* Timer mode configuration for Quadrature */
/* Global configuration of Quadrature */
ftm_user_config_t Quadrature_InitConfig =
{

{
false, /* Software trigger state */
false, /* Hardware trigger 1 state */
false, /* Hardware trigger 2 state */
false, /* Hardware trigger 3 state */
false, /* Maximum loading point state */
false, /* Min loading point state */
FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
false, /* Auto clear trigger state for hardware trigger */
FTM_UPDATE_NOW, /* Select synchronization method */

},
FTM_MODE_QUADRATURE_DECODER, /* Mode of operation for FTM */
FTM_CLOCK_DIVID_BY_2, /* FTM clock pre-scaler */
FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
FTM_BDM_MODE_11, /* FTM debug mode */
false, /* Interrupt state */
false /* Initialization trigger */

};
FTM_DRV_Init(FTM_QUADRATURE_INSTANCE, &Quadrature_InitConfig, &stateQuad);
FTM_DRV_QuadDecodeStart(FTM_QUADRATURE_INSTANCE, &quadrature_decoder_configuration);
quadra_state = FTM_DRV_QuadGetState(FTM_QUADRATURE_INSTANCE);

Data Structures

• struct ftm_phase_params_t

FlexTimer quadrature decoder channel parameters. More...

• struct ftm_quad_decode_config_t

FTM quadrature configure structure. More...

• struct ftm_quad_decoder_state_t

FTM quadrature state(counter value and flags) More...

Enumerations

• enum ftm_quad_decode_mode_t { FTM_QUAD_PHASE_ENCODE = 0x00U, FTM_QUAD_COUNT_AND←↩

_DIR = 0x01U }

FlexTimer quadrature decode modes, phase encode or count and direction mode.

• enum ftm_quad_phase_polarity_t { FTM_QUAD_PHASE_NORMAL = 0x00U, FTM_QUAD_PHASE_INVE←↩

RT = 0x01U }

FlexTimer quadrature phase polarities, normal or inverted polarity.

Functions

• status_t FTM_DRV_QuadDecodeStart (uint32_t instance, const ftm_quad_decode_config_t ∗config)

Configures the quadrature mode and starts measurement.

• status_t FTM_DRV_QuadDecodeStop (uint32_t instance)

De-activates the quadrature decode mode.

• ftm_quad_decoder_state_t FTM_DRV_QuadGetState (uint32_t instance)

Return the current quadrature decoder state (counter value, overflow flag and overflow direction)

• void FTM_QD_DRV_GetDefaultConfig (ftm_quad_decode_config_t ∗const config)

This function will get the default configuration values in the structure which is used as a common use-case.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.42 FlexTimer Quadrature Decoder Driver (FTM_QD) 507

16.42.2 Data Structure Documentation

16.42.2.1 struct ftm_phase_params_t

FlexTimer quadrature decoder channel parameters.

Implements : ftm_phase_params_t_Class

Definition at line 64 of file ftm_qd_driver.h.

Data Fields

• bool phaseInputFilter
• uint8_t phaseFilterVal
• ftm_quad_phase_polarity_t phasePolarity

Field Documentation

16.42.2.1.1 uint8_t phaseFilterVal

Filter value (if input filter is enabled)

Definition at line 68 of file ftm_qd_driver.h.

16.42.2.1.2 bool phaseInputFilter

false: disable phase filter, true: enable phase filter

Definition at line 66 of file ftm_qd_driver.h.

16.42.2.1.3 ftm_quad_phase_polarity_t phasePolarity

Phase polarity

Definition at line 69 of file ftm_qd_driver.h.

16.42.2.2 struct ftm_quad_decode_config_t

FTM quadrature configure structure.

Implements : ftm_quad_decode_config_t_Class

Definition at line 77 of file ftm_qd_driver.h.

Data Fields

• ftm_quad_decode_mode_t mode
• uint16_t initialVal
• uint16_t maxVal
• ftm_phase_params_t phaseAConfig
• ftm_phase_params_t phaseBConfig

Field Documentation

16.42.2.2.1 uint16_t initialVal

Initial counter value

Definition at line 80 of file ftm_qd_driver.h.

16.42.2.2.2 uint16_t maxVal

Maximum counter value

Definition at line 81 of file ftm_qd_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

508 CONTENTS

16.42.2.2.3 ftm_quad_decode_mode_t mode

FTM_QUAD_PHASE_ENCODE or FTM_QUAD_COUNT_AND_DIR

Definition at line 79 of file ftm_qd_driver.h.

16.42.2.2.4 ftm_phase_params_t phaseAConfig

Configuration for the input phase a

Definition at line 82 of file ftm_qd_driver.h.

16.42.2.2.5 ftm_phase_params_t phaseBConfig

Configuration for the input phase b

Definition at line 83 of file ftm_qd_driver.h.

16.42.2.3 struct ftm_quad_decoder_state_t

FTM quadrature state(counter value and flags)

Implements : ftm_quad_decoder_state_t_Class

Definition at line 91 of file ftm_qd_driver.h.

Data Fields

• uint16_t counter
• bool overflowFlag
• bool overflowDirection
• bool counterDirection

Field Documentation

16.42.2.3.1 uint16_t counter

Counter value

Definition at line 93 of file ftm_qd_driver.h.

16.42.2.3.2 bool counterDirection

False FTM counter is decreasing, True FTM counter is increasing

Definition at line 98 of file ftm_qd_driver.h.

16.42.2.3.3 bool overflowDirection

False if overflow occurred at minimum value, True if overflow occurred at maximum value

Definition at line 96 of file ftm_qd_driver.h.

16.42.2.3.4 bool overflowFlag

True if overflow occurred, False if overflow doesn't occurred

Definition at line 94 of file ftm_qd_driver.h.

16.42.3 Enumeration Type Documentation

16.42.3.1 enum ftm_quad_decode_mode_t

FlexTimer quadrature decode modes, phase encode or count and direction mode.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.42 FlexTimer Quadrature Decoder Driver (FTM_QD) 509

Implements : ftm_quad_decode_mode_t_Class

Enumerator

FTM_QUAD_PHASE_ENCODE Phase encoding mode

FTM_QUAD_COUNT_AND_DIR Counter and direction encoding mode

Definition at line 40 of file ftm_qd_driver.h.

16.42.3.2 enum ftm_quad_phase_polarity_t

FlexTimer quadrature phase polarities, normal or inverted polarity.

Implements : ftm_quad_phase_polarity_t_Class

Enumerator

FTM_QUAD_PHASE_NORMAL Phase input signal is not inverted before identifying the rising and falling
edges of this signal

FTM_QUAD_PHASE_INVERT Phase input signal is inverted before identifying the rising and falling edges of
this signal

Definition at line 51 of file ftm_qd_driver.h.

16.42.4 Function Documentation

16.42.4.1 status_t FTM_DRV_QuadDecodeStart (uint32_t instance, const ftm_quad_decode_config_t ∗ config)

Configures the quadrature mode and starts measurement.

Parameters

in instance Instance number of the FTM module.
in config Configuration structure(quadrature decode mode, polarity for both phases, ini-

tial and maximum value for the counter, filter configuration).

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 47 of file ftm_qd_driver.c.

16.42.4.2 status_t FTM_DRV_QuadDecodeStop (uint32_t instance)

De-activates the quadrature decode mode.

Parameters

in instance Instance number of the FTM module.

Returns

success

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 106 of file ftm_qd_driver.c.

16.42.4.3 ftm_quad_decoder_state_t FTM_DRV_QuadGetState (uint32_t instance)

Return the current quadrature decoder state (counter value, overflow flag and overflow direction)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

510 CONTENTS

Parameters

in instance Instance number of the FTM module.

Returns

The current state of quadrature decoder

Definition at line 128 of file ftm_qd_driver.c.

16.42.4.4 void FTM_QD_DRV_GetDefaultConfig (ftm_quad_decode_config_t ∗const config)

This function will get the default configuration values in the structure which is used as a common use-case.

Parameters

out config Pointer to the structure in which the configuration will be saved.

Returns

None

Definition at line 150 of file ftm_qd_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.43 Flexible I/O (FlexIO) 511

16.43 Flexible I/O (FlexIO)

16.43.1 Detailed Description

The FlexIO is a highly configurable module providing a wide range of functionality including:

• Emulation of a variety of serial communication protocols, such as SPI, I2C, I2S or UART, while requiring low
CPU overhead and being more efficient that having multiple dedicated peripherals for each protocol.

• Flexible 16-bit timers with support for a variety of trigger, reset, enable and disable conditions

• PWM/Waveform generation

Several drivers are provided for this device, implementing a variety of communication protocols. There is also a
common layer on which all the drivers are based, allowing more driver instances, either of the same type or different
types, to function in parallel on the same FlexIO device. Each driver instance needs a certain number of Flex←↩

IO resources (shifters and timers) and as long as there are enough free resources new driver instances can be
initialized. The table below shows the driver types and the number of resources needed by each one:

Drivers Timers Shifters Pins
SPI 2 2 4
I2C 2 2 2
I2S 2 2 4

UART 1 1 1

The number of timers and shifters available on a specific device can be found in the reference manual.

Modules

• FlexIO Common Driver

Common services for FlexIO drivers.

• FlexIO I2C Driver

I2C communication over FlexIO module (FLEXIO_I2C)

• FlexIO I2S Driver

I2S communication over FlexIO module (FLEXIO_I2S)

• FlexIO SPI Driver

SPI communication over FlexIO module (FLEXIO_SPI)

• FlexIO UART Driver

UART communication over FlexIO module (FLEXIO_UART)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

512 CONTENTS

16.44 FreeRTOS

FreeRTOS is a Real Time Operating System (RTOS) design to run on microcontrollers which have size constraints
and dedicated end applications.

FreeRTOS provides:

• core real time scheduling functionality

• inter-task communication

• timing and synchronisation primitives

Additonal functionality can be included with add-on components.

More information about FreeRTOS can be found on the FreeRTOS website: www.freertos.org

Compiler Settings

Please refer to the "Compiler options" section in Release Notes document when creating a new project. The
provided compiler options must match with the project to avoid compilation issue or undefined behavior.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

http://www.freertos.org/

16.45 I2S - Peripheral Abstraction Layer (I2S PAL) 513

16.45 I2S - Peripheral Abstraction Layer (I2S PAL)

16.45.1 Detailed Description

The S32 SDK provides a Peripheral Abstraction Layer for I2S modules of S32 SDK devices.

The I2S PAL is designed to be portable across all platforms and IPs which support I2S communication.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\i2s\i2s_pal.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc
i2s_pal_cfg.h path (this file is provided by user or generated by pex)

Compile symbols

No special symbols are required for this component

Dependencies

sai flexio_i2s Enhanced Direct Memory Access (eDMA) OS Interface (OSIF) Clock manager Interrupt Manager
(Interrupt)

How to integrate I2S PAL in your application

Unlike the other drivers, I2S PAL modules need to include a configuration file named i2s_pal_cfg.h, which allows
the user to specify which IPSs are used and how many resources are allocated for each of them (state structures).
The following code example shows how to configure one instance for each available I2S IPs.

#ifndef i2s_pal_cfg_H
#define i2s_pal_cfg_H

/* Define which IP instance will be used in current project */
#define I2S_OVER_FLEXIO
#define I2S_OVER_SAI

/* Define the resources necessary for current project */
#define NO_OF_FLEXIO_MASTER_INSTS_FOR_I2S 1U
#define NO_OF_FLEXIO_SLAVE_INSTS_FOR_I2S 1U
#define NO_OF_SAI_INSTS_FOR_I2S 1U

#endif /* i2s_pal_cfg_H */

The following table contains the matching between platforms and available IPs

IP/MCU S32K116 S32K118 S32K142 S32K144 S32K146 S32K148 MP←↩

C5748G
MP←↩

C5746C
SAI NO NO NO NO NO YES YES YES
FLEXI←↩

O_I2S
YES YES YES YES YES YES NO NO

In order to use the I2S driver it must be first initialized using function I2S_Init. Once initialized, it cannot be initialized
again for the same instance until it is de-initialized, using I2S_Deinit. Different instances can work independently of
each other.

Important Notes

• I2S PAL only works in half duplex mode, meaning it cannot send and receive simultaneously over one in-
stance.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

514 CONTENTS

• The driver enables the interrupts for the corresponding module, but any interrupt priority setting must be done
by the application.

• When using SAI module for I2S, a success status of sending operation means that all data has been pushed
to hardware fifo (not output pin), up to 8 tx words will be discarded if users call deinit or switch to receiving
operation right after that.

Example code

/* Buffers */

uint8_t tx[6] = {1,2,3,4,5,6};

/* Callback to continue sending data */
void i2s_Callback0(i2s_event_t event, void *userData)
{

/* Get from userData the I2S instance of the I2S module */
i2s_instance_t* instance;
instance = (i2s_instance_t*)(userData);

/* Check the event type:

* - set TX buffers on I2S_EVENT_TX_EMPTY

*/
if (event == I2S_EVENT_TX_EMPTY)
{

I2S_SetTxBuffer(instance, tx, 6UL);
}

}
/* Define I2S instance */
i2s_instance_t flexioInst = {I2S_INST_TYPE_FLEXIO,0UL};
/* Configure I2S */
i2s_user_config_t i2sUserConfig0 =
{

.baudRate = 100000U,

.mode = I2S_MASTER,

.wordWidth = 8U,

.transferType = I2S_USING_INTERRUPT,

.rxDMAChannel = 0U,

.txDMAChannel = 0U,

.callback = i2s_Callback0,

.callbackParam = &flexioInst,

.extension = NULL
};

/* Configure FLEXIO pins routing */
extension_flexio_for_i2s_t extension;
extension.txPin = 0U;
extension.rxPin = 1U;
extension.sckPin = 2U;
extension.wsPin = 3U;
i2sUserConfig0.extension = &extension;

/* Initializes i2s master for flexio 0 and send 6 words */
I2S_Init(&flexioInst, &i2sUserConfig0);
I2S_SendData(&flexioInst, tx, 6UL);
/* Wait for sending complete */
while (I2S_GetStatus(&flexioInst, NULL) == STATUS_BUSY);
I2S_Deinit(&flexioInst);

Data Structures

• struct i2s_user_config_t

I2S user configuration structure. More...

• struct extension_flexio_for_i2s_t

Defines the extension structure for the I2S over FLEXIO. More...

Enumerations

• enum i2s_transfer_type_t { I2S_USING_INTERRUPT = 0U, I2S_USING_DMA = 1U }

Defines the transfer type.

• enum i2s_mode_t { I2S_MASTER = 0U, I2S_SLAVE = 1U }

Master or slave.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.45 I2S - Peripheral Abstraction Layer (I2S PAL) 515

Functions

• status_t I2S_Init (const i2s_instance_t ∗instance, const i2s_user_config_t ∗config)

Initializes the I2S module.
• status_t I2S_Deinit (const i2s_instance_t ∗instance)

De-initializes the I2S module.
• status_t I2S_GetBaudRate (const i2s_instance_t ∗instance, uint32_t ∗configuredBaudRate)

Returns the i2s baud rate.
• status_t I2S_SetTxBuffer (const i2s_instance_t ∗instance, const uint8_t ∗txBuff, uint32_t txSize)

Keep sending.
• status_t I2S_SetRxBuffer (const i2s_instance_t ∗instance, uint8_t ∗rxBuff, uint32_t rxSize)

Keep receiving.
• status_t I2S_SendDataBlocking (const i2s_instance_t ∗instance, const uint8_t ∗txBuff, uint32_t txSize,

uint32_t timeout)

Perform a blocking I2S transmission.
• status_t I2S_SendData (const i2s_instance_t ∗instance, const uint8_t ∗txBuff, uint32_t txSize)

Perform a non-blocking I2S transmission.
• status_t I2S_GetStatus (const i2s_instance_t ∗instance, uint32_t ∗countRemaining)

Get the status of the current I2S transfer.
• status_t I2S_ReceiveDataBlocking (const i2s_instance_t ∗instance, uint8_t ∗rxBuff, uint32_t rxSize, uint32←↩

_t timeout)

Perform a blocking I2S reception.
• status_t I2S_ReceiveData (const i2s_instance_t ∗instance, uint8_t ∗rxBuff, uint32_t rxSize)

Perform a non-blocking I2S reception.
• status_t I2S_Abort (const i2s_instance_t ∗instance)

Terminates a non-blocking transfer early.
• void I2S_GetDefaultConfig (i2s_user_config_t ∗const config)

Return default configuration.

16.45.2 Data Structure Documentation

16.45.2.1 struct i2s_user_config_t

I2S user configuration structure.

Implements : i2s_user_config_t_Class

Definition at line 59 of file i2s_pal.h.

Data Fields

• i2s_transfer_type_t transferType
• i2s_mode_t mode
• uint32_t baudRate
• uint8_t wordWidth
• i2s_callback_t callback
• void ∗ callbackParam
• uint8_t rxDMAChannel
• uint8_t txDMAChannel
• void ∗ extension

Field Documentation

16.45.2.1.1 uint32_t baudRate

Baud rate in hertz

Definition at line 63 of file i2s_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

516 CONTENTS

16.45.2.1.2 i2s_callback_t callback

User callback function. Can be null if not needed.

Definition at line 67 of file i2s_pal.h.

16.45.2.1.3 void∗ callbackParam

Parameter for the callback function

Definition at line 68 of file i2s_pal.h.

16.45.2.1.4 void∗ extension

This field will be used to add extra settings to the basic configuration like FlexIO data pins

Definition at line 71 of file i2s_pal.h.

16.45.2.1.5 i2s_mode_t mode

Master or slave

Definition at line 62 of file i2s_pal.h.

16.45.2.1.6 uint8_t rxDMAChannel

Rx DMA channel number. Only used in DMA mode

Definition at line 69 of file i2s_pal.h.

16.45.2.1.7 i2s_transfer_type_t transferType

Driver type: interrupts/DMA

Definition at line 61 of file i2s_pal.h.

16.45.2.1.8 uint8_t txDMAChannel

Tx DMA channel number. Only used in DMA mode

Definition at line 70 of file i2s_pal.h.

16.45.2.1.9 uint8_t wordWidth

Number of bits in a word - multiple of 8. The word size in transfer functions depends on this parameter Word size
for each buffer read/write is 1 byte, 2 bytes or 4 byte, whichever larger and close to wordWidth the most

Definition at line 64 of file i2s_pal.h.

16.45.2.2 struct extension_flexio_for_i2s_t

Defines the extension structure for the I2S over FLEXIO.

Definition at line 78 of file i2s_pal.h.

Data Fields

• uint8_t txPin

• uint8_t rxPin

• uint8_t sckPin

• uint8_t wsPin

Field Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.45 I2S - Peripheral Abstraction Layer (I2S PAL) 517

16.45.2.2.1 uint8_t rxPin

Flexio pin to use for receive

Definition at line 81 of file i2s_pal.h.

16.45.2.2.2 uint8_t sckPin

Flexio pin to use for serial clock

Definition at line 82 of file i2s_pal.h.

16.45.2.2.3 uint8_t txPin

Flexio pin to use for transmit

Definition at line 80 of file i2s_pal.h.

16.45.2.2.4 uint8_t wsPin

Flexio pin to use for word select

Definition at line 83 of file i2s_pal.h.

16.45.3 Enumeration Type Documentation

16.45.3.1 enum i2s_mode_t

Master or slave.

Implements : i2s_mode_t_Class

Enumerator

I2S_MASTER Generate bit clock and word select signal

I2S_SLAVE Receive bit clock and word select signal

Definition at line 48 of file i2s_pal.h.

16.45.3.2 enum i2s_transfer_type_t

Defines the transfer type.

Implements : i2s_transfer_type_t_Class

Enumerator

I2S_USING_INTERRUPT Driver uses interrupts for data transfers

I2S_USING_DMA Driver uses DMA for data transfers

Definition at line 37 of file i2s_pal.h.

16.45.4 Function Documentation

16.45.4.1 status_t I2S_Abort (const i2s_instance_t ∗ instance)

Terminates a non-blocking transfer early.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

518 CONTENTS

Parameters

instance Instance number

Definition at line 694 of file i2s_pal.c.

16.45.4.2 status_t I2S_Deinit (const i2s_instance_t ∗ instance)

De-initializes the I2S module.

This function de-initializes the I2S module.

Parameters

in instance Instance number

Definition at line 453 of file i2s_pal.c.

16.45.4.3 status_t I2S_GetBaudRate (const i2s_instance_t ∗ instance, uint32_t ∗ configuredBaudRate)

Returns the i2s baud rate.

This function returns the i2s configured baud rate, only call this when instance is configured as master.

Parameters

instance Instance number.
out configured←↩

BaudRate
configured baud rate.

Returns

STATUS_SUCCESS

Definition at line 494 of file i2s_pal.c.

16.45.4.4 void I2S_GetDefaultConfig (i2s_user_config_t ∗const config)

Return default configuration.

Return default config for 8 kHz sample rate, 16 bit sample width and 2 channels.

Parameters

out Pointer to configuration structure

Definition at line 907 of file i2s_pal.c.

16.45.4.5 status_t I2S_GetStatus (const i2s_instance_t ∗ instance, uint32_t ∗ countRemaining)

Get the status of the current I2S transfer.

Parameters

instance Instance number
countRemaining Pointer to value that is populated with the number of words that have been sent in the active

transfer

Returns

The transmit status.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.45 I2S - Peripheral Abstraction Layer (I2S PAL) 519

Return values

STATUS_SUCCESS The transmit has completed successfully.
STATUS_BUSY The transmit is still in progress. will be filled with the number of words that have

been transferred so far.
STATUS_I2S_ABORTED The transmit was aborted.

STATUS_TIMEOUT A timeout was reached.
STATUS_ERROR An error occurred.

Definition at line 749 of file i2s_pal.c.

16.45.4.6 status_t I2S_Init (const i2s_instance_t ∗ instance, const i2s_user_config_t ∗ config)

Initializes the I2S module.

This function initializes and enables the requested I2S module. Note that when use I2S over SAI, tx and rx line are
separated with SAI0, with other SAI instance tx and rx share one line.

Parameters

in instance Instance number
in config The configuration structure

Definition at line 294 of file i2s_pal.c.

16.45.4.7 status_t I2S_ReceiveData (const i2s_instance_t ∗ instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Perform a non-blocking I2S reception.

This function receives a block of data and returns immediately. The rest of the transmission is handled by the
interrupt service routine (if the driver is initialized in interrupt mode).

Parameters

in instance Instance number
in rxBuff pointer to the data to be transferred
in rxSize length in words of the data to be transferred

Definition at line 858 of file i2s_pal.c.

16.45.4.8 status_t I2S_ReceiveDataBlocking (const i2s_instance_t ∗ instance, uint8_t ∗ rxBuff, uint32_t rxSize, uint32_t
timeout)

Perform a blocking I2S reception.

This function receives a block of data and only returns when the transmission is complete.

Parameters

in instance Instance number
rxBuff pointer to the receive buffer
rxSize length in words of the data to be received

timeout timeout for the transfer in milliseconds

Returns

Error, success or timed out status

Definition at line 808 of file i2s_pal.c.

16.45.4.9 status_t I2S_SendData (const i2s_instance_t ∗ instance, const uint8_t ∗ txBuff, uint32_t txSize)

Perform a non-blocking I2S transmission.

This function sends a block of data and returns immediately. The rest of the transmission is handled by the interrupt
service routine (if the driver is initialized in interrupt mode).

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

520 CONTENTS

Parameters

in instance Instance number
in txBuff pointer to the data to be transferred
in txSize length in words of the data to be transferred

Definition at line 649 of file i2s_pal.c.

16.45.4.10 status_t I2S_SendDataBlocking (const i2s_instance_t ∗ instance, const uint8_t ∗ txBuff, uint32_t txSize,
uint32_t timeout)

Perform a blocking I2S transmission.

This function sends a block of data and only returns when the transmission is complete.

Parameters

in instance Instance number
in txBuff pointer to the data to be transferred
in txSize length in words of the data to be transferred
in timeout timeout value in milliseconds

Returns

Error, success or timed out status

Definition at line 526 of file i2s_pal.c.

16.45.4.11 status_t I2S_SetRxBuffer (const i2s_instance_t ∗ instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Keep receiving.

This function must be called in callback function when RX_FULl event is reported to ensure rx operation working
continuously.

Parameters

in instance Instance number
in rxBuff pointer to the data to be transferred
in rxSize length in words of the data to be transferred

Definition at line 572 of file i2s_pal.c.

16.45.4.12 status_t I2S_SetTxBuffer (const i2s_instance_t ∗ instance, const uint8_t ∗ txBuff, uint32_t txSize)

Keep sending.

This function must be called in callback function when TX_EMPTY event is reported to ensure tx operation working
continuously.

Parameters

in instance Instance number
in txBuff pointer to the data to be transferred
in txSize length in words of the data to be transferred

Definition at line 611 of file i2s_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.46 Initialization 521

16.46 Initialization

16.46.1 Detailed Description

Initialize transport layer (queues, status, ...).

Functions

• void ld_init (l_ifc_handle iii)

Initialize or reinitialize the raw and cooked layers.

16.46.2 Function Documentation

16.46.2.1 void ld_init (l_ifc_handle iii)

Initialize or reinitialize the raw and cooked layers.

Parameters

in iii Interface name

Returns

void

Initialize or reinitialize the raw and cooked layers on the interface iii. All the transport layer buffers will be initialized.

Definition at line 49 of file lin_commontl_api.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

522 CONTENTS

16.47 Input Capture - Peripheral Abstraction Layer (IC PAL)

16.47.1 Detailed Description

The S32 SDK provides a Peripheral Abstraction Layer for the input capture mode of S32 SDK devices.

The IC PAL driver allows to detect the input signal and measure pulse width or period of the channel input signal. It
was designed to be portable across all platforms and IPs which support FTM , eMIOS, FLEXPWM and ETIMER.

How to integrate IC PAL in your application

Unlike the other drivers, IC PAL modules need to include a configuration file named ic_pal_cfg.h, which allows the
user to specify which IPs are used. The following code example shows how to configure one instance for each
available IC IPs.

#ifndef IC_PAL_CFG_H
#define IC_PAL_CFG_H

/* Define which IP instance will be used in current project */
#define IC_PAL_OVER_FTM

#endif /* IC_PAL_CFG_H */

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\ic\ic_pal.c
${S32SDK_PATH}\platform\pal\src\ic\ic_irq.c
${S32SDK_PATH}\platform\pal\src\ic\ic_irq.h

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc\

Compile symbols

No special symbols are required for this component

Dependencies

ftm_ic emios_ic etimer flexpwm

The following table contains the matching between platforms and available IPs

IP/←↩

M←↩

CU
S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K146
S32←↩

K148

M←↩

P←↩

C5748←↩

G

M←↩

P←↩

C5746←↩

C

M←↩

P←↩

C5744←↩

P

S32←↩

R274
S32←↩

R372
S32←↩

K142←↩

W

S32←↩

K144←↩

W
FT←↩

M←↩

_IC

Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO NO Y←↩

ES
Y←↩

ES

e←↩

MI←↩

O←↩

S_←↩

IC

NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
NO NO NO NO NO

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.47 Input Capture - Peripheral Abstraction Layer (IC PAL) 523

E←↩

TI←↩

M←↩

ER

NO NO NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO

FL←↩

E←↩

X←↩

P←↩

WM

NO NO NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO

Features

• Start timer channel counting with period in ticks function

• Start/stop the channel in the input capture mode

• Get the measured value in ticks for the detection or measurement

Functionality

Initialization

In order to use the IC PAL driver it must be first initialized, using IC_Init() function. Once initialized, it should be
de-initialized before initialized again for the same IC module instance, using IC_Deinit(). The initialization function
does the following operations:

• sets the clock source, clock prescaler

• sets the number of channel input capture are used

• configures in the input capture mode for detection or measurement signal

Example:

/*PAL instance information */
ic_instance_t ic_pal1_instance = { IC_INST_TYPE_FTM, 0U };

ic_input_ch_param_t icPalChnConfig[1] =
{

{
.hwChannelId = 0U,
.inputCaptureMode = IC_DETECT_RISING_EDGE,
.filterEn = false,
.filterValue = 0U,
.channelExtension = &ftmChnExtension0,
.channelCallbackParams = NULL,
.channelCallbacks = ic_pal1_channel_callBack0

}
};

channel_extension_ftm_for_ic_t ftmChnExtension0 =
{

.continuousModeEn = true
};

extension_ftm_for_ic_t ftmExtensionConfig =
{

.ftmClockSource = FTM_CLOCK_SOURCE_SYSTEMCLK,

.ftmPrescaler = FTM_CLOCK_DIVID_BY_1
};

ic_config_t icPal1_InitConfig =
{

.nNumChannels = 1U,

.inputChConfig = icPalChnConfig,

.extension = &ftmExtensionConfig
};

/* Initialize input capture mode */
IC_Init(&ic_pal1_instance, &icPal1_InitConfig);

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

524 CONTENTS

De-initialize a input capture instance

This function will disable the input capture mode. The driver can't be used again until reinitialized. All register are
reset to default value and counter is stopped.

Example:

/* De-initialize input capture mode */
IC_Deinit(&ic_pal1_instance);

Start the channel in the input capture mode

This function will set the channel is in the input capture mode.

Example:

uint8_t hwChannel = icPal1_InitConfig.inputChConfig[0].hwChannelId;

/* Start channel in the input capture mode */
IC_StartChannel(&ic_pal1_instance, hwChannel);

Stop the channel in the input capture mode

This function will set the channel is used in GPIO mode or other peripheral.

Example:

uint8_t hwChannel = icPal1_InitConfig.inputChConfig[0].hwChannelId;

/* Stop channel in the input capture mode */
IC_StopChannel(&ic_pal1_instance, hwChannel);

Get the measured value

The pulse width measurement and the period measurement can be made after the channel input is in the input
capture mode. The value is last captured by count. Note that to get true value of measurement at the first of pulse,
please use the IC_GetValueMeasurement function in interrupt.

Example:

uint16_t retResult = 0U;
uint8_t hwChannel = icPal1_InitConfig.inputChConfig[0].hwChannelId;

/* Get the last captured value */
retResult = IC_GetMeasurement(&ic_pal1_instance, hwChannel);

Enable notifications on the channel

The notification is executed in the callback application with the IC_EVENT_MEASUREMENT_COMPLETE event
which indicates that the measurement of input signal is completed.

Example:

uint8_t hwChannel = icPal1_InitConfig.inputChConfig[0].hwChannelId;

/* Enable the notification */
IC_EnableNotification(&ic_pal1_instance, hwChannel);

Disable notifications on the channel

The callback application will be not executed when the notification is disabled.

Example:

uint8_t hwChannel = icPal1_InitConfig.inputChConfig[0].hwChannelId;

/* Disable the notification */
IC_DisableNotification(&ic_pal1_instance, hwChannel);

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.47 Input Capture - Peripheral Abstraction Layer (IC PAL) 525

Important Notes

• Before using the IC PAL driver the module clock must be configured. Refer to Clock Manager for clock
configuration.

• The board specific configurations must be done prior to driver after that can call APIs.

• Some features are not available for all IC IPs and incorrect parameters will be handled by DEV_ASSERT.

Data Structures

• struct ic_input_ch_param_t

The configuration structure of input capture parameters for each channel. More...

• struct ic_config_t

Defines the configuration structures are used in the input capture mode. More...

• struct channel_extension_ftm_for_ic_t

Defines the extension structure for the channel configuration over FTM. More...

• struct extension_ftm_for_ic_t

Defines the extension structure for the input capture mode over FTM. More...

• struct ic_pal_state_t

The internal context structure. More...

Enumerations

• enum ic_option_mode_t {
IC_DISABLE_OPERATION = 0x00U, IC_TIMESTAMP_RISING_EDGE = 0x01U, IC_TIMESTAMP_FALLI←↩

NG_EDGE = 0x02U, IC_TIMESTAMP_BOTH_EDGES = 0x03U,
IC_MEASURE_RISING_EDGE_PERIOD = 0x04U, IC_MEASURE_FALLING_EDGE_PERIOD = 0x05U, I←↩

C_MEASURE_PULSE_HIGH = 0x06U, IC_MEASURE_PULSE_LOW = 0x07U }

The measurement type for input capture mode Implements : ic_option_mode_t_Class.

Functions

• status_t IC_Init (const ic_instance_t ∗const instance, const ic_config_t ∗configPtr)

Initializes the input capture mode.

• status_t IC_Deinit (const ic_instance_t ∗const instance)

De-initialize a input capture instance.

• void IC_StartChannel (const ic_instance_t ∗const instance, uint8_t channel)

Start the counter.

• void IC_StopChannel (const ic_instance_t ∗const instance, uint8_t channel)

Stop the counter.

• status_t IC_SetChannelMode (const ic_instance_t ∗const instance, uint8_t channel, ic_option_mode_←↩

t channelMode)

Get the measured value.

• uint16_t IC_GetMeasurement (const ic_instance_t ∗const instance, uint8_t channel)

Get the measured value.

• void IC_EnableNotification (const ic_instance_t ∗const instance, uint8_t channel)

Enable channel notifications.

• void IC_DisableNotification (const ic_instance_t ∗const instance, uint8_t channel)

Disable channel notifications.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

526 CONTENTS

16.47.2 Data Structure Documentation

16.47.2.1 struct ic_input_ch_param_t

The configuration structure of input capture parameters for each channel.

Implements : ic_input_ch_param_t_Class

Definition at line 132 of file ic_pal.h.

Data Fields

• uint8_t hwChannelId

• ic_option_mode_t inputCaptureMode

• bool filterEn

• uint16_t filterValue

• void ∗ channelExtension

• void ∗ channelCallbackParams

• ic_callback_t channelCallbacks

Field Documentation

16.47.2.1.1 void∗ channelCallbackParams

The parameter of callback application for channels event

Definition at line 139 of file ic_pal.h.

16.47.2.1.2 ic_callback_t channelCallbacks

The callback function for channels event

Definition at line 140 of file ic_pal.h.

16.47.2.1.3 void∗ channelExtension

The IP specific configuration structure for channel

Definition at line 138 of file ic_pal.h.

16.47.2.1.4 bool filterEn

Input capture filter state

Definition at line 136 of file ic_pal.h.

16.47.2.1.5 uint16_t filterValue

Filter Value

Definition at line 137 of file ic_pal.h.

16.47.2.1.6 uint8_t hwChannelId

Physical hardware channel ID

Definition at line 134 of file ic_pal.h.

16.47.2.1.7 ic_option_mode_t inputCaptureMode

Input capture mode of operation

Definition at line 135 of file ic_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.47 Input Capture - Peripheral Abstraction Layer (IC PAL) 527

16.47.2.2 struct ic_config_t

Defines the configuration structures are used in the input capture mode.

Implements : ic_config_t_Class

Definition at line 148 of file ic_pal.h.

Data Fields

• uint8_t nNumChannels
• const ic_input_ch_param_t ∗ inputChConfig
• void ∗ extension

Field Documentation

16.47.2.2.1 void∗ extension

IP specific configuration structure

Definition at line 152 of file ic_pal.h.

16.47.2.2.2 const ic_input_ch_param_t∗ inputChConfig

Input capture channels configuration

Definition at line 151 of file ic_pal.h.

16.47.2.2.3 uint8_t nNumChannels

Number of input capture channel used

Definition at line 150 of file ic_pal.h.

16.47.2.3 struct channel_extension_ftm_for_ic_t

Defines the extension structure for the channel configuration over FTM.

Part of FTM channel configuration structure Implements : channel_extension_ftm_for_ic_t_Class

Definition at line 162 of file ic_pal.h.

Data Fields

• bool continuousModeEn

Field Documentation

16.47.2.3.1 bool continuousModeEn

Continuous measurement state

Definition at line 164 of file ic_pal.h.

16.47.2.4 struct extension_ftm_for_ic_t

Defines the extension structure for the input capture mode over FTM.

Part of FTM configuration structure Implements : extension_ftm_for_ic_t_Class

Definition at line 173 of file ic_pal.h.

Data Fields

• ftm_clock_source_t ftmClockSource
• ftm_clock_ps_t ftmPrescaler

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

528 CONTENTS

Field Documentation

16.47.2.4.1 ftm_clock_source_t ftmClockSource

Select clock source for FTM

Definition at line 175 of file ic_pal.h.

16.47.2.4.2 ftm_clock_ps_t ftmPrescaler

Register pre-scaler options available in the ftm_clock_ps_t enumeration

Definition at line 176 of file ic_pal.h.

16.47.2.5 struct ic_pal_state_t

The internal context structure.

This structure is used by the driver for its internal logic. It must be provided by the application through the IC_Init()
function, then it cannot be freed until the driver is de-initialized using IC_Deinit(). The application should make no
assumptions about the content of this structure.

Definition at line 248 of file ic_pal.h.

16.47.3 Enumeration Type Documentation

16.47.3.1 enum ic_option_mode_t

The measurement type for input capture mode Implements : ic_option_mode_t_Class.

Enumerator

IC_DISABLE_OPERATION Have no operation

IC_TIMESTAMP_RISING_EDGE Rising edge trigger

IC_TIMESTAMP_FALLING_EDGE Falling edge trigger

IC_TIMESTAMP_BOTH_EDGES Rising and falling edge trigger

IC_MEASURE_RISING_EDGE_PERIOD Period measurement between two consecutive rising edges

IC_MEASURE_FALLING_EDGE_PERIOD Period measurement between two consecutive falling edges

IC_MEASURE_PULSE_HIGH The time measurement taken for the pulse to remain ON or HIGH state

IC_MEASURE_PULSE_LOW The time measurement taken for the pulse to remain OFF or LOW state

Definition at line 115 of file ic_pal.h.

16.47.4 Function Documentation

16.47.4.1 status_t IC_Deinit (const ic_instance_t ∗const instance)

De-initialize a input capture instance.

This function will disable the input capture mode. The driver can't be used again until reinitialized. The context
structure is no longer needed by the driver and can be freed after calling this function.

Parameters

in instance The pointer to instance number structure.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.47 Input Capture - Peripheral Abstraction Layer (IC PAL) 529

Returns

Operation status

• STATUS_SUCCESS: Operation was successful

Definition at line 1043 of file ic_pal.c.

16.47.4.2 void IC_DisableNotification (const ic_instance_t ∗const instance, uint8_t channel)

Disable channel notifications.

This function disables channel notification.

Parameters

in instance The pointer to instance number structure.
in channel The channel number.

Definition at line 1551 of file ic_pal.c.

16.47.4.3 void IC_EnableNotification (const ic_instance_t ∗const instance, uint8_t channel)

Enable channel notifications.

This function enables channel notification.

Parameters

in instance The pointer to instance number structure.
in channel The channel number.

Definition at line 1500 of file ic_pal.c.

16.47.4.4 uint16_t IC_GetMeasurement (const ic_instance_t ∗const instance, uint8_t channel)

Get the measured value.

This function will get the value of measured signal in ticks.

Parameters

in instance The pointer to instance number structure.
in channel The channel number.

Returns

The last value of measured signal in ticks.

Definition at line 1423 of file ic_pal.c.

16.47.4.5 status_t IC_Init (const ic_instance_t ∗const instance, const ic_config_t ∗ configPtr)

Initializes the input capture mode.

This function will initialize the IC PAL instance, including the other platform specific HW units used together in the
input capture mode. This function configures a group of channels in instance to detect or measure the input signal.
: If the filter input is enabled on the channel 0,1,2 or 3 over FTM. The filter pre-scaler will be configured to divide by
4. The maximum frequency for the channel input to be detected correctly is FTM input clock divided by 16.

Parameters

in instance The pointer to instance number structure.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

530 CONTENTS

in configPtr The pointer to configuration structure.

Returns

Operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 971 of file ic_pal.c.

16.47.4.6 status_t IC_SetChannelMode (const ic_instance_t ∗const instance, uint8_t channel, ic_option_mode_t
channelMode)

Get the measured value.

This function will get the value of measured signal in ticks.

Parameters

in instance The pointer to instance number structure.
in channel The channel number.

Returns

The last value of measured signal in ticks.

Definition at line 1297 of file ic_pal.c.

16.47.4.7 void IC_StartChannel (const ic_instance_t ∗const instance, uint8_t channel)

Start the counter.

This function start channel counting.

Parameters

in instance The pointer to instance number structure.
in channel The channel number.

Definition at line 1160 of file ic_pal.c.

16.47.4.8 void IC_StopChannel (const ic_instance_t ∗const instance, uint8_t channel)

Stop the counter.

This function stop channel counting.

Parameters

in instance The pointer to instance number structure.
in channel The channel number.

Definition at line 1232 of file ic_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.48 Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 531

16.48 Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL)

16.48.1 Detailed Description

Inter Integrated Circuit- Peripheral Abstraction Layer.

The I2C PAL driver allows communication on an I2C bus. It was designed to be portable across all platforms and
IPs which support I2C communication.

How to integrate I2C in your application

I2C PAL modules need to include a configuration file named i2c_pal_cfg.h, which allows the user to specify which
IPSs are used and how many resources are allocated for each of them (state structures). The following code
example shows how to configure one instance for each available I2C IPs.

#ifndef I2C_PAL_cfg_H
#define I2C_PAL_cfg_H

/* Define which IP instance will be used in current project */
#define I2C_OVER_LPI2C
#define I2C_OVER_FLEXIO
#define I2C_OVER_I2C
#define I2C_OVER_SWI2C

/* Define the resources necessary for current project */
#define NO_OF_LPI2C_INSTS_FOR_I2C 2
#define NO_OF_FLEXIO_INSTS_FOR_I2C 1
#define NO_OF_I2C_INSTS_FOR_I2C 0
#define NO_OF_SWI2C_INSTS_FOR_I2C 1
#endif /* I2C_PAL_cfg_H */

The following table contains the matching between platforms and available IPs

IP/←↩

M←↩

CU
S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K146
S32←↩

K148

M←↩

P←↩

C5748←↩

G

M←↩

P←↩

C5746←↩

C

M←↩

P←↩

C5744←↩

P

S32←↩

R274
S32←↩

R372
S32←↩

K144←↩

W

S32←↩

K142←↩

W
LP←↩

I2C
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO NO Y←↩

ES
Y←↩

ES

Flex←↩

IO

Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO NO Y←↩

ES
Y←↩

ES

I2C NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
NO Y←↩

ES
Y←↩

ES
NO NO

S←↩

W←↩

I2C

NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO

In order to use the I2C driver it must be first initialized in either master or slave mode, using functions I2C_Master←↩

Init() or I2C_SlaveInit(). Once initialized, it cannot be initialized again for the same I2C module instance until it is
de-initialized, using I2C_SlaveDeinit() or I2C_MasterDeinit. Different I2C module instances can work independently
of each other.

In each mode (master/slave) are available two types of transfers: blocking and non-blocking. The functions which
initiate blocking transfers will configure the time out for transmission. If time expires the blocking functions will return
STATUS_TIMEOUT and transmission will be aborted. The blocking functions are: I2C_MasterSendDataBlocking,
I2C_MasterReceiveDataBlocking, I2C_SlaveSendDataBlocking and I2C_SlaveReceiveDataBlocking.

Slave Mode provides functions for transmitting or receiving data to/from any I2C master. There are two slave
operating modes, selected by the field slaveListening in the slave configuration structure:

• Slave always listening: the slave interrupt is enabled at initialization time and the slave always listens to
the line for a master addressing it. Any events are reported to the application through the callback function
provided at initialization time.

• On-demand operation: the slave is commanded to transmit or receive data through the call of I2C_Slave←↩

SendData() and I2C_SlaveReceiveData() (or their blocking counterparts). The actual moment of the transfer

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

532 CONTENTS

depends on the I2C master.

The configuration structure includes a special field named extension. It will be used only for I2C transfers over
FLEXIO and should contain a pointer to extension_flexio_for_i2c_t structure. The purpose of this structure is to
configure which FLEXIO pins are used by the applications and their functionality (SDA and SCL).

Important Notes

• The I2C transfers could be done using interrupts and DMA mode.

• FlexIO driver only supports master mode.

• The driver enables the interrupts for the corresponding module, but any interrupt priority setting must be done
by the application.

• SWI2C driver supports only master mode.

• For send/receive blocking functions the timeout parameter is unused for SWI2C driver. The driver has a
timeout independent of this parameter.

• The baud rate for SWI2C can reach a maximum value of 90Kbps.

• SWI2C baud rate depends on many parameters such as CPU frequency, compiler, optimizations and pull-up
resistors. The I2C_MasterSetBaudrate is considering the maximum baud rate for swi2c device to be 90Kbps
and it was tested using gcc compiler with -O1 optimizations, system clock of 200MHz and external pull-up
resistors of 2KOhm each.

• Aborting a transfer with the function I2C_MasterAbortTransferData() can't be done safely due to device limi-
tation; the user must ensure that the address is sent before aborting the transfer.

Example code

/* Configure I2C master */
i2c_master_t i2c1_MasterConfig0 =
{

.slaveAddress = 10,

.is10bitAddr = false,

.baudRate = 100000,

.transferType = I2C_PAL_USING_INTERRUPTS,

.operatingMode = I2C_PAL_STANDARD_MODE,

.dmaChannel1 = 255,

.dmaChannel2 = 255,

.callback = NULL,

.callbackParam = NULL,

.extension = NULL
};

/* Configure I2C slave */
i2c_slave_t i2c2_SlaveConfig0 =
{

.slaveAddress = 10,

.is10bitAddr = false,

.slaveListening = true,

.transferType = I2C_PAL_USING_INTERRUPTS,

.dmaChannel = 255,

.callback = i2c2_SlaveCallback0,

.callbackParam = NULL
};

i2c_instance_t i2c1_instance = {I2C_INST_TYPE_FLEXIO, 0U};
i2c_instance_t i2c2_instance = {I2C_INST_TYPE_LPI2C, 0U};
i2c_instance_t i2c3_instance = {I2C_INST_TYPE_LPI2C, 1U};

/* Callback for I2C slave */
void i2c2_SlaveCallback0(i2c_slave_event_t slaveEvent, void *userData)
{

/* Get instance number from userData */
i2c_instance_t * instance;
instance = (i2c_instance_t *) userData;

/* Check the event type:

* - set RX or TX buffers depending on the master request type

*/
if (slaveEvent == I2C_SLAVE_EVENT_RX_REQ)

I2C_SlaveSetRxBuffer(instance, slaveRxBuffer, TRANSFER_SIZE);

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.48 Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 533

if (slaveEvent == I2C_SLAVE_EVENT_TX_REQ)
I2C_SlaveSetTxBuffer(instance, slaveTxBuffer, TRANSFER_SIZE);

}

/* Configure FLEXIO pins routing */
extension_flexio_for_i2c_t extension;
extension.sclPin = 1;
extension.sdaPin = 0;
i2c1_MasterConfig0.extension = &extension;

/* Buffers */
uint8_t slaveTxBuffer[16] = {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE,

0xF};
uint8_t slaveRxBuffer[16] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

0x0};
uint8_t masterTxBuffer[16] = {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE,

0xF};
uint8_t masterRxBuffer[16] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

0x0};

/* Initializes I2C master for FlexIO */
I2C_MasterInit(&i2c1_instance, &i2c1_MasterConfig0);

/* Initialize I2C slave instance for LPI2C driver*/
I2C_SlaveInit(&i2c2_instance, &i2c2_SlaveConfig0);

/* FlexIO master sends masterTxBuffer to LPI2C0 configured as slave */
I2C_MasterSendDataBlocking(&i2c1_instance, masterTxBuffer, BUFFER_SIZE, true, 0

xFF);

/* Initialize I2C master for LPI2C1 instance */
I2C_MasterInit(&i2c3_instance, &i2c1_MasterConfig0);

/* LPI2C1 master sends data to LPI2C0 configured as slave */
I2C_MasterSendDataBlocking(&i2c3_instance, masterTxBuffer, BUFFER_SIZE, true, 0

xFF);

/* De-initialize I2C modules */
I2C_MasterDeinit(&i2c1_instance);
I2C_MasterDeinit(&i2c3_instance);
I2C_SlaveDeinit(&i2c2_instance);

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\i2c\i2c_pal.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc
i2c_pal_cfg.h path

Compile symbols

No special symbols are required for this component

Dependencies

i2c swi2c Low Power Inter-Integrated Circuit (LPI2C) flexio_i2c Enhanced Direct Memory Access (eDMA) OS Inter-
face (OSIF) Clock manager Interrupt Manager (Interrupt)

Data Structures

• struct extension_flexio_for_i2c_t

Defines the extension structure for the I2C over FLEXIO Implements : extension_flexio_for_i2c_t_Class. More...

• struct i2c_master_t

Defines the configuration structure for I2C master Implements : i2c_master_t_Class. More...

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

534 CONTENTS

• struct i2c_slave_t

Defines the configuration structure for I2C slave Implements : i2c_slave_t_Class. More...

Enumerations

• enum i2c_pal_transfer_type_t { I2C_PAL_USING_DMA = 0U, I2C_PAL_USING_INTERRUPTS = 1U }

Defines the mechanism to update the rx or tx buffers Implements : i2c_pal_transfer_type_t_Class.

• enum i2c_operating_mode_t {
I2C_PAL_STANDARD_MODE = 0x0U, I2C_PAL_FAST_MODE = 0x1U, I2C_PAL_FASTPLUS_MODE =
0x2U, I2C_PAL_HIGHSPEED_MODE = 0x3U,
I2C_PAL_ULTRAFAST_MODE = 0x4U }

Defines the operation mode of the i2c pal Implements : i2c_operating_mode_t_Class.

Functions

• status_t I2C_MasterInit (const i2c_instance_t ∗const instance, const i2c_master_t ∗config)

Initializes the I2C module in master mode.

• status_t I2C_MasterSendData (const i2c_instance_t ∗const instance, const uint8_t ∗txBuff, uint32_t txSize,
bool sendStop)

Perform a non-blocking send transaction on the I2C bus.

• status_t I2C_MasterSendDataBlocking (const i2c_instance_t ∗const instance, const uint8_t ∗txBuff, uint32←↩

_t txSize, bool sendStop, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

• status_t I2C_MasterReceiveData (const i2c_instance_t ∗const instance, uint8_t ∗rxBuff, uint32_t rxSize, bool
sendStop)

Perform a non-blocking receive transaction on the I2C bus.

• status_t I2C_MasterReceiveDataBlocking (const i2c_instance_t ∗const instance, uint8_t ∗rxBuff, uint32_←↩

t rxSize, bool sendStop, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

• status_t I2C_MasterSetSlaveAddress (const i2c_instance_t ∗const instance, const uint16_t address, const
bool is10bitAddr)

Set the slave address for the I2C communication.

• status_t I2C_MasterDeinit (const i2c_instance_t ∗const instance)

De-initializes the I2C master module.

• status_t I2C_GetDefaultMasterConfig (i2c_master_t ∗config)

Gets the default configuration structure for master.

• status_t I2C_GetDefaultSlaveConfig (i2c_slave_t ∗config)

Gets the default configuration structure for slave.

• status_t I2C_SlaveInit (const i2c_instance_t ∗const instance, const i2c_slave_t ∗config)

Initializes the I2C module in slave mode.

• status_t I2C_SlaveSendData (const i2c_instance_t ∗const instance, const uint8_t ∗txBuff, uint32_t txSize)

Perform a non-blocking send transaction on the I2C bus.

• status_t I2C_SlaveSendDataBlocking (const i2c_instance_t ∗const instance, const uint8_t ∗txBuff, uint32_t
txSize, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

• status_t I2C_SlaveReceiveData (const i2c_instance_t ∗const instance, uint8_t ∗rxBuff, uint32_t rxSize)

Perform a non-blocking receive transaction on the I2C bus.

• status_t I2C_SlaveReceiveDataBlocking (const i2c_instance_t ∗const instance, uint8_t ∗rxBuff, uint32_t rx←↩

Size, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

• status_t I2C_SlaveSetRxBuffer (const i2c_instance_t ∗const instance, uint8_t ∗rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.48 Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 535

• status_t I2C_SlaveSetTxBuffer (const i2c_instance_t ∗const instance, const uint8_t ∗txBuff, uint32_t txSize)

Provide a buffer for transmitting data.

• status_t I2C_SlaveDeinit (const i2c_instance_t ∗const instance)

De-initializes the i2c slave module.

• status_t I2C_MasterGetTransferStatus (const i2c_instance_t ∗const instance, uint32_t ∗bytesRemaining)

Return the current status of the I2C master transfer.

• status_t I2C_SlaveGetTransferStatus (const i2c_instance_t ∗const instance, uint32_t ∗bytesRemaining)

Return the current status of the I2C slave transfer.

• status_t I2C_MasterSetBaudRate (const i2c_instance_t ∗const instance, const i2c_master_t ∗config,
uint32_t baudRate)

Set the master baud rate for the I2C communication.

• status_t I2C_MasterGetBaudRate (const i2c_instance_t ∗const instance, uint32_t ∗baudRate)

Get the master baud rate for the I2C communication.

• status_t I2C_MasterAbortTransfer (const i2c_instance_t ∗const instance)

Abort a non-blocking I2C Master transmission or reception.

• status_t I2C_SlaveAbortTransfer (const i2c_instance_t ∗const instance)

Abort a non-blocking I2C slave transmission or reception.

16.48.2 Data Structure Documentation

16.48.2.1 struct extension_flexio_for_i2c_t

Defines the extension structure for the I2C over FLEXIO Implements : extension_flexio_for_i2c_t_Class.

Definition at line 62 of file i2c_pal.h.

Data Fields

• uint8_t sclPin
• uint8_t sdaPin

Field Documentation

16.48.2.1.1 uint8_t sclPin

FlexIO pin for SCL

Definition at line 64 of file i2c_pal.h.

16.48.2.1.2 uint8_t sdaPin

FlexIO pin for SDA

Definition at line 65 of file i2c_pal.h.

16.48.2.2 struct i2c_master_t

Defines the configuration structure for I2C master Implements : i2c_master_t_Class.

Definition at line 101 of file i2c_pal.h.

Data Fields

• uint16_t slaveAddress
• bool is10bitAddr
• uint32_t baudRate
• uint8_t dmaChannel1
• uint8_t dmaChannel2

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

536 CONTENTS

• i2c_pal_transfer_type_t transferType
• i2c_operating_mode_t operatingMode
• i2c_master_callback_t callback
• void ∗ callbackParam
• void ∗ extension

Field Documentation

16.48.2.2.1 uint32_t baudRate

Baud rate in hertz

Definition at line 105 of file i2c_pal.h.

16.48.2.2.2 i2c_master_callback_t callback

User callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if it is not needed

Definition at line 111 of file i2c_pal.h.

16.48.2.2.3 void∗ callbackParam

Parameter for the callback function

Definition at line 115 of file i2c_pal.h.

16.48.2.2.4 uint8_t dmaChannel1

DMA channel number. Only used in DMA mode

Definition at line 106 of file i2c_pal.h.

16.48.2.2.5 uint8_t dmaChannel2

DMA channel used only by Flexio I2C which needs two DMA channels, one for receiving and one for transmitting.

Definition at line 107 of file i2c_pal.h.

16.48.2.2.6 void∗ extension

This field will be used to add extra settings to the basic configuration like FlexIO pins

Definition at line 116 of file i2c_pal.h.

16.48.2.2.7 bool is10bitAddr

Selects 7-bit or 10-bit slave address

Definition at line 104 of file i2c_pal.h.

16.48.2.2.8 i2c_operating_mode_t operatingMode

I2C Operating mode

Definition at line 110 of file i2c_pal.h.

16.48.2.2.9 uint16_t slaveAddress

Slave address, 7-bit or 10-bit

Definition at line 103 of file i2c_pal.h.

16.48.2.2.10 i2c_pal_transfer_type_t transferType

Type of I2C transfer (interrupts or DMA)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.48 Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 537

Definition at line 109 of file i2c_pal.h.

16.48.2.3 struct i2c_slave_t

Defines the configuration structure for I2C slave Implements : i2c_slave_t_Class.

Definition at line 124 of file i2c_pal.h.

Data Fields

• uint16_t slaveAddress

• bool is10bitAddr

• bool slaveListening

• i2c_operating_mode_t operatingMode

• i2c_pal_transfer_type_t transferType

• uint8_t dmaChannel

• i2c_slave_callback_t callback

• void ∗ callbackParam

Field Documentation

16.48.2.3.1 i2c_slave_callback_t callback

Callback function.

Definition at line 133 of file i2c_pal.h.

16.48.2.3.2 void∗ callbackParam

Parameter for the slave callback function

Definition at line 134 of file i2c_pal.h.

16.48.2.3.3 uint8_t dmaChannel

Channel number for DMA channel. If DMA mode is not supported or is not used this field will be ignored.

Definition at line 131 of file i2c_pal.h.

16.48.2.3.4 bool is10bitAddr

Selects 7-bit or 10-bit slave address

Definition at line 127 of file i2c_pal.h.

16.48.2.3.5 i2c_operating_mode_t operatingMode

I2C Operating mode

Definition at line 129 of file i2c_pal.h.

16.48.2.3.6 uint16_t slaveAddress

Slave address, 7-bit or 10-bit

Definition at line 126 of file i2c_pal.h.

16.48.2.3.7 bool slaveListening

Slave mode (always listening or on demand only)

Definition at line 128 of file i2c_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

538 CONTENTS

16.48.2.3.8 i2c_pal_transfer_type_t transferType

Type of the I2C transfer

Definition at line 130 of file i2c_pal.h.

16.48.3 Enumeration Type Documentation

16.48.3.1 enum i2c_operating_mode_t

Defines the operation mode of the i2c pal Implements : i2c_operating_mode_t_Class.

Enumerator

I2C_PAL_STANDARD_MODE Standard-mode (Sm), bidirectional data transfers up to 100 kbit/s

I2C_PAL_FAST_MODE Fast-mode (Fm), bidirectional data transfers up to 400 kbit/s

I2C_PAL_FASTPLUS_MODE Fast-mode Plus (Fm+), bidirectional data transfers up to 1 Mbit/s

I2C_PAL_HIGHSPEED_MODE High-speed Mode (Hs-mode), bidirectional data transfers up to 3.4 Mbit/s

I2C_PAL_ULTRAFAST_MODE Ultra Fast Mode (UFm), unidirectional data transfers up to 5 Mbit/s

Definition at line 87 of file i2c_pal.h.

16.48.3.2 enum i2c_pal_transfer_type_t

Defines the mechanism to update the rx or tx buffers Implements : i2c_pal_transfer_type_t_Class.

Enumerator

I2C_PAL_USING_DMA The driver will use DMA to perform I2C transfer

I2C_PAL_USING_INTERRUPTS The driver will use interrupts to perform I2C transfer

Definition at line 52 of file i2c_pal.h.

16.48.4 Function Documentation

16.48.4.1 status_t I2C_GetDefaultMasterConfig (i2c_master_t ∗ config)

Gets the default configuration structure for master.

The default configuration structure is:

Parameters

out config Pointer to configuration structure

Returns

Error or success status returned by API

Definition at line 876 of file i2c_pal.c.

16.48.4.2 status_t I2C_GetDefaultSlaveConfig (i2c_slave_t ∗ config)

Gets the default configuration structure for slave.

The default configuration structure is:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.48 Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 539

Parameters

out config Pointer to configuration structure

Returns

Error or success status returned by API

16.48.4.3 status_t I2C_MasterAbortTransfer (const i2c_instance_t ∗const instance)

Abort a non-blocking I2C Master transmission or reception.

Parameters

instance I2C peripheral instance number

Returns

Error or success status returned by API

Definition at line 1372 of file i2c_pal.c.

16.48.4.4 status_t I2C_MasterDeinit (const i2c_instance_t ∗const instance)

De-initializes the I2C master module.

This function de-initialized the I2C master module.

Parameters

in instance The name of the instance

Returns

Error or success status returned by API

Definition at line 635 of file i2c_pal.c.

16.48.4.5 status_t I2C_MasterGetBaudRate (const i2c_instance_t ∗const instance, uint32_t ∗ baudRate)

Get the master baud rate for the I2C communication.

This function returns the master baud rate of the I2C master module.

Parameters

instance I2C peripheral instance number

Returns

the baud rate in Hz

Definition at line 821 of file i2c_pal.c.

16.48.4.6 status_t I2C_MasterGetTransferStatus (const i2c_instance_t ∗const instance, uint32_t ∗ bytesRemaining)

Return the current status of the I2C master transfer.

This function can be called during a non-blocking transmission to check the status of the transfer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

540 CONTENTS

Parameters

instance I2C peripheral instance number
bytesRemaining the number of remaining bytes in the active I2C transfer

Returns

Error or success status returned by API

Definition at line 1267 of file i2c_pal.c.

16.48.4.7 status_t I2C_MasterInit (const i2c_instance_t ∗const instance, const i2c_master_t ∗ config)

Initializes the I2C module in master mode.

This function initializes and enables the requested I2C module in master mode, configuring the bus parameters.

Parameters

in instance The name of the instance
in config The configuration structure

Returns

Error or success status returned by API

Definition at line 210 of file i2c_pal.c.

16.48.4.8 status_t I2C_MasterReceiveData (const i2c_instance_t ∗const instance, uint8_t ∗ rxBuff, uint32_t rxSize, bool
sendStop)

Perform a non-blocking receive transaction on the I2C bus.

This function starts the reception of a block of data from the currently configured slave address and returns imme-
diately. The rest of the reception is handled by the interrupt service routine.

Parameters

instance The name of the instance
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the reception

Returns

Error or success status returned by API

Definition at line 533 of file i2c_pal.c.

16.48.4.9 status_t I2C_MasterReceiveDataBlocking (const i2c_instance_t ∗const instance, uint8_t ∗ rxBuff, uint32_t
rxSize, bool sendStop, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

This function receives a block of data from the currently configured slave address, and only returns when the
transmission is complete.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.48 Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 541

instance The name of the instance
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the reception
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 585 of file i2c_pal.c.

16.48.4.10 status_t I2C_MasterSendData (const i2c_instance_t ∗const instance, const uint8_t ∗ txBuff, uint32_t txSize,
bool sendStop)

Perform a non-blocking send transaction on the I2C bus.

This function starts the transmission of a block of data to the currently configured slave address and returns imme-
diately. The rest of the transmission is handled by the interrupt service routine.

Parameters

instance The name of the instance
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the transmission

Returns

Error or success status returned by API

Definition at line 422 of file i2c_pal.c.

16.48.4.11 status_t I2C_MasterSendDataBlocking (const i2c_instance_t ∗const instance, const uint8_t ∗ txBuff, uint32_t
txSize, bool sendStop, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

This function sends a block of data to the currently configured slave address, and only returns when the transmission
is complete.

Parameters

instance The name of the instance
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the transmission
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 479 of file i2c_pal.c.

16.48.4.12 status_t I2C_MasterSetBaudRate (const i2c_instance_t ∗const instance, const i2c_master_t ∗ config,
uint32_t baudRate)

Set the master baud rate for the I2C communication.

This function sets the master baud rate of the I2C master module.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

542 CONTENTS

Parameters

instance I2C peripheral instance number
baudRate the desired baud rate in Hz

Definition at line 742 of file i2c_pal.c.

16.48.4.13 status_t I2C_MasterSetSlaveAddress (const i2c_instance_t ∗const instance, const uint16_t address, const bool
is10bitAddr)

Set the slave address for the I2C communication.

This function sets the slave address which will be used for any future transfer initiated by the I2C master.

Parameters

instance I2C peripheral instance number
address slave 7-bit or 10-bit address

Definition at line 689 of file i2c_pal.c.

16.48.4.14 status_t I2C_SlaveAbortTransfer (const i2c_instance_t ∗const instance)

Abort a non-blocking I2C slave transmission or reception.

Parameters

instance I2C peripheral instance number

Returns

Error or success status returned by API

Definition at line 1425 of file i2c_pal.c.

16.48.4.15 status_t I2C_SlaveDeinit (const i2c_instance_t ∗const instance)

De-initializes the i2c slave module.

This function de-initialized the i2c slave module.

Parameters

in instance The name of the instance

Returns

Error or success status returned by API

Definition at line 1224 of file i2c_pal.c.

16.48.4.16 status_t I2C_SlaveGetTransferStatus (const i2c_instance_t ∗const instance, uint32_t ∗ bytesRemaining)

Return the current status of the I2C slave transfer.

This function can be called during a non-blocking transmission to check the status of the transfer.

Parameters

instance I2C peripheral instance number
bytesRemaining the number of remaining bytes in the active I2C transfer

Returns

Error or success status returned by API

Definition at line 1324 of file i2c_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.48 Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 543

16.48.4.17 status_t I2C_SlaveInit (const i2c_instance_t ∗const instance, const i2c_slave_t ∗ config)

Initializes the I2C module in slave mode.

This function initializes and enables the requested I2C module in slave mode, configuring the bus parameters.

Parameters

in instance The name of the instance
in config The configuration structure

Returns

Error or success status returned by API

Definition at line 350 of file i2c_pal.c.

16.48.4.18 status_t I2C_SlaveReceiveData (const i2c_instance_t ∗const instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Perform a non-blocking receive transaction on the I2C bus.

Performs a non-blocking receive transaction on the I2C bus when the slave is not in listening mode (initialized with
slaveListening = false). It starts the reception and returns immediately. The rest of the reception is handled by the
interrupt service routine.

Parameters

instance The name of the instance
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1024 of file i2c_pal.c.

16.48.4.19 status_t I2C_SlaveReceiveDataBlocking (const i2c_instance_t ∗const instance, uint8_t ∗ rxBuff, uint32_t
rxSize, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

Performs a blocking receive transaction on the I2C bus when the slave is not in listening mode (initialized with
slaveListening = false). It sets up the reception and then waits for the transfer to complete before returning.

Parameters

instance The name of the instance
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1074 of file i2c_pal.c.

16.48.4.20 status_t I2C_SlaveSendData (const i2c_instance_t ∗const instance, const uint8_t ∗ txBuff, uint32_t txSize)

Perform a non-blocking send transaction on the I2C bus.

Performs a non-blocking send transaction on the I2C bus when the slave is not in listening mode (initialized with
slaveListening = false). It starts the transmission and returns immediately. The rest of the transmission is handled
by the interrupt service routine.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

544 CONTENTS

Parameters

instance The name of the instance
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 924 of file i2c_pal.c.

16.48.4.21 status_t I2C_SlaveSendDataBlocking (const i2c_instance_t ∗const instance, const uint8_t ∗ txBuff, uint32_t
txSize, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

Performs a blocking send transaction on the I2C bus when the slave is not in listening mode (initialized with slave←↩

Listening = false). It sets up the transmission and then waits for the transfer to complete before returning.

Parameters

instance The name of the instance
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 973 of file i2c_pal.c.

16.48.4.22 status_t I2C_SlaveSetRxBuffer (const i2c_instance_t ∗const instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.

This function provides a buffer in which the I2C slave-mode driver can store received data. It can be called for
example from the user callback provided at initialization time, when the driver reports events I2C_SLAVE_EVEN←↩

T_RX_REQ or I2C_SLAVE_EVENT_RX_FULL.

Parameters

instance I2C peripheral instance number
rxBuff pointer to the data to be transferred
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1126 of file i2c_pal.c.

16.48.4.23 status_t I2C_SlaveSetTxBuffer (const i2c_instance_t ∗const instance, const uint8_t ∗ txBuff, uint32_t txSize)

Provide a buffer for transmitting data.

This function provides a buffer from which the I2C slave-mode driver can transmit data. It can be called for example
from the user callback provided at initialization time, when the driver reports events I2C_SLAVE_EVENT_TX_REQ
or I2C_SLAVE_EVENT_TX_EMPTY.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.48 Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 545

Parameters

instance I2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 1174 of file i2c_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

546 CONTENTS

16.49 Interface management

16.49.1 Detailed Description

This group contains APIs that help users manage interface(s) in LIN node.

Functions

• l_bool l_ifc_init (l_ifc_handle iii)

Initialize the controller specified by name, i.e. sets up internal functions such as the baud rate. The default schedule
set by the l_ifc_init call will be the L_NULL_SCHEDULE where no frames will be sent and received. This is the first
call a user must perform, before using any other interface related LIN API functions. The function returns zero if the
initialization was successful and non-zero if failed.

• void l_ifc_goto_sleep (l_ifc_handle iii)

Request slave nodes on the cluster connected to the interface to enter bus sleep mode by issuing one go to sleep
command. This API is available only for Master nodes.

• void l_ifc_wake_up (l_ifc_handle iii)

Transmit the wake up signal.

• l_u16 l_ifc_read_status (l_ifc_handle iii)

This function will return the status of the previous communication.

16.49.2 Function Documentation

16.49.2.1 void l_ifc_goto_sleep (l_ifc_handle iii)

Request slave nodes on the cluster connected to the interface to enter bus sleep mode by issuing one go to sleep
command. This API is available only for Master nodes.

Note

After sending go to sleep command successfully, the master node sets go to sleep flag to 1 and goes to
sleep mode. At the end of Go to sleep schedule table, at the end of frame slot of go to sleep command, in
l_sch_tick() the master node actually switches its active schedule table to Null to stop all communication. To
start LIN communication, the master node shall call l_ifc_wake_up() to wake up LIN cluster and l_sch_set() to
activate normal schedule table.

Parameters

in iii Interface name

Returns

void

Definition at line 376 of file lin_common_api.c.

16.49.2.2 l_bool l_ifc_init (l_ifc_handle iii)

Initialize the controller specified by name, i.e. sets up internal functions such as the baud rate. The default schedule
set by the l_ifc_init call will be the L_NULL_SCHEDULE where no frames will be sent and received. This is the first
call a user must perform, before using any other interface related LIN API functions. The function returns zero if the
initialization was successful and non-zero if failed.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.49 Interface management 547

Parameters

in iii Interface name

Returns

Operation status

• Zero: Initialization was successful.

• Non-zero: Initialization failed.

Definition at line 405 of file lin_common_api.c.

16.49.2.3 l_u16 l_ifc_read_status (l_ifc_handle iii)

This function will return the status of the previous communication.

Parameters

in iii Interface name

Returns

l_u16

Definition at line 469 of file lin_common_api.c.

16.49.2.4 void l_ifc_wake_up (l_ifc_handle iii)

Transmit the wake up signal.

Parameters

in iii Interface name

Returns

void

Definition at line 455 of file lin_common_api.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

548 CONTENTS

16.50 Interrupt Manager (Interrupt)

16.50.1 Detailed Description

The S32 SDK Interrupt Manager provides a set of API/services to configure the Interrupt Controller (NVIC).

The Nested-Vectored Interrupt Controller (NVIC) module implements a relocatable vector table supporting many
external interrupts, a single non-maskable interrupt (NMI), and priority levels. The NVIC contains the address of
the function to execute for a particular handler. The address is fetched via the instruction port allowing parallel
register stacking and look-up. The first sixteen entries are allocated to internal sources with the others mapping to
MCU-defined interrupts.

Overview

The Interrupt Manager provides a set of APIs so that the application can enable or disable an interrupt for a specific
device and also set priority, and other features. Additionally, it provides a way to update the vector table for a specific
device interrupt handler.

Interrupt Names

Each chip has its own set of supported interrupt names defined in the chip-specific header file (see IRQn_Type).

This is an example to enable/disable an interrupt for the ADC0_IRQn:

#include "interrupt_manager.h"

INT_SYS_EnableIRQ(ADC0_IRQn);

INT_SYS_DisableIRQ(ADC0_IRQn);

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\interrupt\interrupt_manager.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

This component does not have any dependencies.

Note

1. When the vector table is not in ram (flash_vector_table = 1):

• INT_SYS_InstallHandler shall check if the function pointer provided as parameter for the new handler is
already present in the vector table for the given IRQ number.

• The user will be required to manually add the correct handlers in the startup files

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.50 Interrupt Manager (Interrupt) 549

Typedefs

• typedef void(∗ isr_t) (void)

Interrupt handler type.

Functions

• void DefaultISR (void)

Default ISR.

Interrupt manager APIs

• void INT_SYS_InstallHandler (IRQn_Type irqNumber, const isr_t newHandler, isr_t ∗const oldHandler)

Installs an interrupt handler routine for a given IRQ number.

• void INT_SYS_EnableIRQ (IRQn_Type irqNumber)

Enables an interrupt for a given IRQ number.

• void INT_SYS_DisableIRQ (IRQn_Type irqNumber)

Disables an interrupt for a given IRQ number.

• void INT_SYS_EnableIRQGlobal (void)

Enables system interrupt.

• void INT_SYS_DisableIRQGlobal (void)

Disable system interrupt.

• void INT_SYS_SetPriority (IRQn_Type irqNumber, uint8_t priority)

Set Interrupt Priority.

• uint8_t INT_SYS_GetPriority (IRQn_Type irqNumber)

Get Interrupt Priority.

16.50.2 Typedef Documentation

16.50.2.1 typedef void(∗ isr_t) (void)

Interrupt handler type.

Definition at line 76 of file interrupt_manager.h.

16.50.3 Function Documentation

16.50.3.1 void DefaultISR (void)

Default ISR.

16.50.3.2 void INT_SYS_DisableIRQ (IRQn_Type irqNumber)

Disables an interrupt for a given IRQ number.

This function disables the individual interrupt for a specified IRQ number.

Parameters

irqNumber IRQ number

Definition at line 219 of file interrupt_manager.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

550 CONTENTS

16.50.3.3 void INT_SYS_DisableIRQGlobal (void)

Disable system interrupt.

This function disables the global interrupt by calling the core API.

Definition at line 271 of file interrupt_manager.c.

16.50.3.4 void INT_SYS_EnableIRQ (IRQn_Type irqNumber)

Enables an interrupt for a given IRQ number.

This function enables the individual interrupt for a specified IRQ number.

Parameters

irqNumber IRQ number

Definition at line 190 of file interrupt_manager.c.

16.50.3.5 void INT_SYS_EnableIRQGlobal (void)

Enables system interrupt.

This function enables the global interrupt by calling the core API.

Definition at line 248 of file interrupt_manager.c.

16.50.3.6 uint8_t INT_SYS_GetPriority (IRQn_Type irqNumber)

Get Interrupt Priority.

The function gets the priority of an interrupt.

Parameters

irqNumber Interrupt number.

Returns

priority Priority of the interrupt.

Definition at line 354 of file interrupt_manager.c.

16.50.3.7 void INT_SYS_InstallHandler (IRQn_Type irqNumber, const isr_t newHandler, isr_t ∗const oldHandler)

Installs an interrupt handler routine for a given IRQ number.

This function lets the application register/replace the interrupt handler for a specified IRQ number. See a chip-
specific reference manual for details and the startup_<SoC>.s file for each chip family to find out the default
interrupt handler for each device.

Note

This method is applicable only if interrupt vector is copied in RAM.

Parameters

irqNumber IRQ number
newHandler New interrupt handler routine address pointer
oldHandler Pointer to a location to store current interrupt handler

Definition at line 114 of file interrupt_manager.c.

16.50.3.8 void INT_SYS_SetPriority (IRQn_Type irqNumber, uint8_t priority)

Set Interrupt Priority.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.50 Interrupt Manager (Interrupt) 551

The function sets the priority of an interrupt.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

552 CONTENTS

Parameters

irqNumber Interrupt number.
priority Priority to set.

Definition at line 289 of file interrupt_manager.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.51 Interrupt vector numbers for S32K144 553

16.51 Interrupt vector numbers for S32K144

This module covers interrupt number allocation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

554 CONTENTS

16.52 J2602 Specific API

J2602 protocol is LIN 2.0 based. It contains LIN 2.0's modules to support Signal management, network manage-
ment, scheduler and J2602 status management. The goal of J2602 is to improve the interoperability and inter-
changeability of LIN devices within a network by resolving those LIN2.0 requirements that are ambiguous, conflict-
ing, or optional. Moreover, J2602 provides additional requirements that are not present in LIN2.0. For example:
fault tolerant, operation, network topology, etc. Different to LIN2.1 protocol, J2602 does not support sporadic and
event trigger frames in communication.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.53 J2602 Transport Layer specific API 555

16.53 J2602 Transport Layer specific API

16.53.1 Detailed Description

Contains Transport Layer APIs that only used for J2602 protocol.

Modules

• Node configuration

This group contains APIs that used for node configuration purpose.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

556 CONTENTS

16.54 LIN 2.1 Specific API

16.54.1 Detailed Description

LIN 2.1 is extended from in LIN 2.0 specification through diagnostic services and few functions were removed as
obsolete.

1. LIN 2.1 is compatible with LIN 2.0:

• A LIN 2.1 master node may handle a LIN 2.0 slave node if the master node also contains all functionality
of a LIN 2.0 master node, e.g. obsolete functions like Assign frame Id.

• A LIN 2.1 slave node can be used in a cluster with a LIN 2.0 master node if the LIN 2.1 slave node is
pre-configured, i.e. the LIN 2.1 slave node has a valid configuration after reset.

2. Changes between LIN 2.0 and LIN 2.1:

• LIN2.1 enhance the capacity of LIN2.0 on event-triggered frame collision handling and diagnostic ser-
vices supported. Besides, several features are added to fulfill powerful capacity of LIN network such as
configuration service, assign frame ID range configuration, etc.

Functions

• void lin_collision_resolve (l_ifc_handle iii, l_u8 pid)

Switch to collision resolve table.

• void lin_update_word_status_lin21 (l_ifc_handle iii, lin_lld_event_id_t event_id)

Update node status flags.

• void lin_update_err_signal (l_ifc_handle iii, l_u8 frm_id)

Update error signal.

• void lin_make_res_evnt_frame (l_ifc_handle iii, l_u8 pid)

This function packs signals associated with event trigger frame into buffer.

• void lin_update_rx_evnt_frame (l_ifc_handle iii, l_u8 pid)

The function updates the receive flags associated with signals/frames in case receive an event trigger frame.

16.54.2 Function Documentation

16.54.2.1 void lin_collision_resolve (l_ifc_handle iii, l_u8 pid)

Switch to collision resolve table.

Parameters

in iii Interface name
in pid PID to process

Returns

void

Definition at line 32 of file lin_lin21_proto.c.

16.54.2.2 void lin_make_res_evnt_frame (l_ifc_handle iii, l_u8 pid)

This function packs signals associated with event trigger frame into buffer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.54 LIN 2.1 Specific API 557

Parameters

in iii Interface name
in pid PID to process

Returns

void

Definition at line 221 of file lin_lin21_proto.c.

16.54.2.3 void lin_update_err_signal (l_ifc_handle iii, l_u8 frm_id)

Update error signal.

Parameters

in iii Interface name
in frm_id Frame index

Returns

void

Definition at line 147 of file lin_lin21_proto.c.

16.54.2.4 void lin_update_rx_evnt_frame (l_ifc_handle iii, l_u8 pid)

The function updates the receive flags associated with signals/frames in case receive an event trigger frame.

Parameters

in iii Interface name
in pid PID to process

Returns

void

Definition at line 184 of file lin_lin21_proto.c.

16.54.2.5 void lin_update_word_status_lin21 (l_ifc_handle iii, lin_lld_event_id_t event_id)

Update node status flags.

Parameters

in iii Interface name
in event_id Event id

Returns

void

Definition at line 67 of file lin_lin21_proto.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

558 CONTENTS

16.55 LIN Core API

16.55.1 Detailed Description

The LIN core API handles initialization, processing and a signal based interaction between the application and the
LIN core. Refer to chapter 7, LIN 2.2A specification.

• Core API layer consists of API functions as defined by the LIN2.1/J2602 specifications.

• Enabling the user to utilize the LIN2.1/J2602 communication within the user application.

• Both the static and dynamic modes for calling the API functions are supported.

• The core API layer interacts with the low level layer and can be called by such upper layers as LIN2.1 TL API,
LIN TL J2602 or application for diagnostic implementation.

Modules

• Common Core API.
• J2602 Specific API
• LIN 2.1 Specific API

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.56 LIN Driver 559

16.56 LIN Driver

16.56.1 Detailed Description

This section describes the programming interface of the Peripheral driver for LIN.

16.56.2 LIN Driver Overview

The LIN (Local Interconnect Network) Driver is an use-case driven High Level Peripheral Driver. The driver provides
users important key features. NXP provides LIN Stack as a middleware software package that is developed on LIN
driver. Users also can create their own LIN applications and LIN stack that are compatible with LIN Specification.
In this release package, LIN Driver is built on LPUART interface.

16.56.3 LIN Driver Device structures

The driver uses instantiations of the lin_state_t to maintain the current state of a particular LIN Hardware instance
module driver.
The user is required to provide memory for the driver state structures during the initialization. The driver itself does
not statically allocate memory.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\lin\lin_common.c
${S32SDK_PATH}\platform\drivers\src\lin\lin_driver.c
${S32SDK_PATH}\platform\drivers\src\lin\lin_irq.c
${S32SDK_PATH}\platform\drivers\src\lpuart\lin_lpuart_driver.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\
${S32SDK_PATH}\platform\drivers\src\lpuart\

Compile symbols

No special symbols are required for this component

Dependencies

• Clock Manager

• Interrupt Manager (Interrupt)

• OS Interface (OSIF)

• Low Power Universal Asynchronous Receiver-Transmitter (LPUART)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

560 CONTENTS

16.56.4 LIN Driver Initialization

1. To initialize the LIN driver, call the LIN_DRV_Init() function and pass the instance number of the relevant LIN
hardware interface instance which is LPUART instance in this release.
For example: to use LPUART0 pass value 0 to the initialization function.

2. Pass a user configuration structure lin_user_config_t as shown here:

/* LIN Driver configuration structure */
typedef struct {

uint32_t baudRate;
bool nodeFunction;
bool autobaudEnable;
lin_timer_get_time_interval_t timerGetTimeIntervalCallback;

} lin_user_config_t;

3. For LIN, typically the user configures the lin_user_config_t instantiation with a baudrate from 1000bps to
20000bps.
-E.g. 19200 bps linUserConfig.baudRate = 19200U.

4. Node function can be MASTER or SLAVE.
-E.g. linUserConfig.nodeFunction = MASTER

5. If users do not want to use Autobaud feature, then just configure linUserConfig.autobaudEnable = FALSE.

6. Users shall assign measurement callback function pointer that is timerGetTimeIntervalCallback. This function
must return time period between two consecutive calls in nano seconds with accuracy at least 0.1 microsec-
ond and if this function is called for the first time, it will start the timer to measure time. When an event
(such as detecting a falling edge of a dominant signal while node is in sleep mode) occurs, LIN driver will
call timerGetTimeIntervalCallback to start time measurement. Then on rising edge of that signal, LIN driver
will call timerGetTimeIntervalCallback function to get time interval of that dominant signal in nano seconds.
If Autobaud feature is enabled, LIN driver uses timerGetTimeIntervalCallback to measure two bit time length
between two consecutive falling edges of the sync byte in order to evaluate Master's baudrate. Users can
implement this function in their applications. -E.g. linUserConfig.timerGetTimeIntervalCallback = timerGet←↩

TimeIntervalCallback0; This is a code example to set up a FTM0 for LIN Driver:

/* Global variables */
uint16_t timerCounterValue[2] = {0u};
uint16_t timerOverflowInterruptCount = 0u;

/* Callback function to get time interval in nano seconds */
uint32_t timerGetTimeIntervalCallback0(uint32_t *ns)
{

timerCounterValue[1] = (uint16_t)(ftmBase->CNT);

*ns = ((uint32_t)(timerCounterValue[1] + timerOverflowInterruptCount*65536u - timerCounterValue[0]))*10
00 / TIMER_1US;

timerOverflowInterruptCount = 0U;
timerCounterValue[0] = timerCounterValue[1];
return 0U;

}

7. This is a code example to set up a user LIN Driver configuration instantiation:

/* Device instance number as LPUART instance*/
#define LI0 (0U)

lin_state_t linState;
lin_user_config_t linUserConfig;
/* Set baudrate 19200 bps */
linUserConfig.baudRate = 19200U;
/* Node is MASTER */
linUserConfig.nodeFunction = MASTER;
/* Disable autobaud feature */
linUserConfig.autobaudEnable = FALSE;
/* Callback function to get time interval in nano seconds */
linUserConfig.timerGetTimeIntervalCallback = (lin_timer_get_time_t)

timerGetTimeIntervalCallback0;

/* Initialize LIN Hardware interface */
LIN_DRV_Init(LI0, (lin_user_config_t *) &linUserConfig, (

lin_state_t *) &linState);

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.56 LIN Driver 561

8. The users are required to initialize a timer for LIN.
E.g. a Flex Timer (FTM). FTM instance should be initialized in Output Compare mode with an interrupt(E.g.
FTM0_Ch0_Ch1_IRQHandler) period of about 500 us. Users can choose a different interrupt period that
is appropriate to their applications. In timer interrupt handler, users shall call LIN_DRV_TimeoutService to
handle linCurrentState->timeoutCounter while sending or receiving data.

16.56.5 LIN Data Transfers

The driver implements transmit and receive functions to transfer buffers of data by blocking and non-blocking modes.

The blocking transmit and receive functions include LIN_DRV_SendFrameDataBlocking() and the LIN_DRV_←↩

ReceiveFrameDataBlocking() functions.

The non-blocking (async) transmit and receive functions include the LIN_DRV_SendFrameData() and the LIN_D←↩

RV_ReceiveFrameData() functions.

The LIN_DRV_ReceiveFrameData() function is recommended to be called in an interrupt event of receiving PID as
implemented in LIN Stack middleware.

The LIN_DRV_ReceiveFrameData() function should be called before data is transferring on the LIN bus. The LIN_←↩

DRV_ReceiveFrameDataBlocking() function should be called before frame is transferring on the LIN bus. Otherwise,
some data may be lost.

Master nodes can transmit frame headers in non-blocking mode using LIN_DRV_MasterSendHeader().

In all these cases, the functions are interrupt-driven.

16.56.6 Autobaud feature

AUTOBAUD is an extensive feature in LIN Driver which allows a slave node to automatically detect baudrate of LIN
bus and adapt its original baudrate to bus value. Auto Baud is applied when the baudrate of the incoming data is
unknown. Currently autobaud feature is supported to detect LIN bus baudrates 2400, 4800, 9600, 14400, 19200
bps.

1. If autobaud feature is enabled, at LIN driver initialization slave's baudrate is set to 19200bps. The application
should use a timer interrupt in input capture mode of both rising and falling edges(E.g FTM), call LIN_DR←↩

V_AutoBaudCapture(uint32_t instance) function to calculate and set Slave's baudrate like Master's baudrate.
When receiving a frame header, the slave detect LIN bus's baudrate based on the synchronization byte and
adapts its baudrate accordingly. On changing baudrate, the slave set current event ID to LIN_BAUDRATE_←↩

ADJUSTED and call the callback function. In that callback function users might change the frame data count
timeout. Users can look at CallbackHandler() in lin.c of lin middleware for a reference.

Note: Lin driver should be initiated before initiating a timer interrupt(E.g FTM).

2. Baudrate evaluation process is executed until autobaud successfully. During run-time if LIN bus's baudrate
is changed suddenly to a value other than the slave's current baudrate, users shall reset MCU to execute
baudrate evaluation process.

Note

1. When the vector table is not in ram (flash_vector_table = 1):

• INT_SYS_InstallHandler shall check if the function pointer provided as parameter for the new handler is
already present in the vector table for the given IRQ number.

• The user will be required to manually add the correct handlers in the startup files

Data Structures

• struct lin_user_config_t

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

562 CONTENTS

LIN hardware configuration structure Implements : lin_user_config_t_Class. More...

• struct lin_state_t

Runtime state of the LIN driver. More...

Macros

• #define SLAVE 0U
• #define MASTER 1U
• #define MAKE_PARITY 0U
• #define CHECK_PARITY 1U

Typedefs

• typedef uint32_t(∗ lin_timer_get_time_interval_t) (uint32_t ∗nanoSeconds)

Callback function to get time interval in nanoseconds Implements : lin_timer_get_time_interval_t_Class.

• typedef void(∗ lin_callback_t) (uint32_t instance, void ∗linState)

LIN Driver callback function type Implements : lin_callback_t_Class.

Enumerations

• enum lin_event_id_t {
LIN_NO_EVENT = 0x00U, LIN_WAKEUP_SIGNAL = 0x01U, LIN_BAUDRATE_ADJUSTED = 0x02U, LIN←↩

_RECV_BREAK_FIELD_OK = 0x03U,
LIN_SYNC_OK = 0x04U, LIN_SYNC_ERROR = 0x05U, LIN_PID_OK = 0x06U, LIN_PID_ERROR = 0x07U,
LIN_FRAME_ERROR = 0x08U, LIN_READBACK_ERROR = 0x09U, LIN_CHECKSUM_ERROR = 0x0AU,
LIN_TX_COMPLETED = 0x0BU,
LIN_RX_COMPLETED = 0x0CU, LIN_RX_OVERRUN = 0x0DU }

Defines types for an enumerating event related to an Identifier. Implements : lin_event_id_t_Class.

• enum lin_node_state_t {
LIN_NODE_STATE_UNINIT = 0x00U, LIN_NODE_STATE_SLEEP_MODE = 0x01U, LIN_NODE_STATE←↩

_IDLE = 0x02U, LIN_NODE_STATE_SEND_BREAK_FIELD = 0x03U,
LIN_NODE_STATE_RECV_SYNC = 0x04U, LIN_NODE_STATE_SEND_PID = 0x05U, LIN_NODE_STA←↩

TE_RECV_PID = 0x06U, LIN_NODE_STATE_RECV_DATA = 0x07U,
LIN_NODE_STATE_RECV_DATA_COMPLETED = 0x08U, LIN_NODE_STATE_SEND_DATA = 0x09U, L←↩

IN_NODE_STATE_SEND_DATA_COMPLETED = 0x0AU }

Define type for an enumerating LIN Node state. Implements : lin_node_state_t_Class.

Variables

• isr_t g_linLpuartIsrs [LPUART_INSTANCE_COUNT]

LIN DRIVER

• status_t LIN_DRV_Init (uint32_t instance, lin_user_config_t ∗linUserConfig, lin_state_t ∗linCurrentState)

Initializes an instance LIN Hardware Interface for LIN Network.

• void LIN_DRV_Deinit (uint32_t instance)

Shuts down the LIN Hardware Interface by disabling interrupts and transmitter/receiver.

• void LIN_DRV_GetDefaultConfig (bool isMaster, lin_user_config_t ∗linUserConfig)

Initializes the LIN user configuration structure with default values.

• lin_callback_t LIN_DRV_InstallCallback (uint32_t instance, lin_callback_t function)

Installs callback function that is used for LIN_DRV_IRQHandler.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.56 LIN Driver 563

• status_t LIN_DRV_SendFrameDataBlocking (uint32_t instance, const uint8_t ∗txBuff, uint8_t txSize, uint32←↩

_t timeoutMSec)

Sends Frame data out through the LIN Hardware Interface using blocking method. This function will calculate the
checksum byte and send it with the frame data. Blocking means that the function does not return until the transmission
is complete. This function checks if txSize is in range from 1 to 8. If not, it will return STATUS_ERROR. This function
also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks if the isBusBusy is
false, if not it will return LIN_BUS_BUSY. The function does not return until the transmission is complete. If the
transmission is successful, it will return STATUS_SUCCESS. If not, it will return STATUS_TIMEOUT.

• status_t LIN_DRV_SendFrameData (uint32_t instance, const uint8_t ∗txBuff, uint8_t txSize)

Sends frame data out through the LIN Hardware Interface using non-blocking method. This enables an a-sync method
for transmitting data. Non-blocking means that the function returns immediately. The application has to get the
transmit status to know when the transmit is complete. This function will calculate the checksum byte and send it with
the frame data. The function will return immediately after calling this function. If txSize is equal to 0 or greater than
8 or node's current state is in SLEEP mode then the function will return STATUS_ERROR. If isBusBusy is currently
true then the function will return LIN_BUS_BUSY.

• status_t LIN_DRV_GetTransmitStatus (uint32_t instance, uint8_t ∗bytesRemaining)

Get status of an on-going non-blocking transmission While sending frame data using non-blocking method, users can
use this function to get status of that transmission. The bytesRemaining shows number of bytes that still needed to
transmit.

• status_t LIN_DRV_ReceiveFrameDataBlocking (uint32_t instance, uint8_t ∗rxBuff, uint8_t rxSize, uint32_t
timeoutMSec)

Receives frame data through the LIN Hardware Interface using blocking method. This function receives data from
LPUART module using blocking method, the function does not return until the receive is complete. The interrupt
handler LIN_LPUART_DRV_IRQHandler will check the checksum byte. If the checksum is correct, it will receive the
frame data. If the checksum is incorrect, this function will return STATUS_TIMEOUT and data in rxBuff might be
wrong. This function also check if rxSize is in range from 1 to 8. If not, it will return STATUS_ERROR. This function
also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks if the isBusBusy is
false, if not it will return LIN_BUS_BUSY.

• status_t LIN_DRV_ReceiveFrameData (uint32_t instance, uint8_t ∗rxBuff, uint8_t rxSize)

Receives frame data through the LIN Hardware Interface using non-blocking method. This function will check the
checksum byte. If the checksum is correct, it will receive it with the frame data. Non-blocking means that the function
returns immediately. The application has to get the receive status to know when the reception is complete. The
interrupt handler LIN_LPUART_DRV_IRQHandler will check the checksum byte. If the checksum is correct, it will
receive the frame data. If the checksum is incorrect, this function will return STATUS_TIMEOUT and data in rxBuff
might be wrong. This function also check if rxSize is in range from 1 to 8. If not, it will return STATUS_ERROR.
This function also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks if the
isBusBusy is false, if not it will return LIN_BUS_BUSY.

• status_t LIN_DRV_AbortTransferData (uint32_t instance)

Aborts an on-going non-blocking transmission/reception. While performing a non-blocking transferring data, users
can call this function to terminate immediately the transferring.

• status_t LIN_DRV_GetReceiveStatus (uint32_t instance, uint8_t ∗bytesRemaining)

Get status of an on-going non-blocking reception. This function returns whether the data reception is complete. When
performing non-blocking transmit, the user can call this function to ascertain the state of the current receive progress:
in progress (STATUS_BUSY) or timeout (STATUS_TIMEOUT) or complete (STATUS_SUCCESS). In addition, if the
reception is still in progress, the user can obtain the number of bytes that still needed to receive.

• status_t LIN_DRV_GoToSleepMode (uint32_t instance)

Puts current LIN node to sleep mode This function changes current node state to LIN_NODE_STATE_SLEEP_M←↩

ODE.

• status_t LIN_DRV_GotoIdleState (uint32_t instance)

Puts current LIN node to Idle state This function changes current node state to LIN_NODE_STATE_IDLE.

• status_t LIN_DRV_SendWakeupSignal (uint32_t instance)

Sends a wakeup signal through the LIN Hardware Interface.

• lin_node_state_t LIN_DRV_GetCurrentNodeState (uint32_t instance)

Get the current LIN node state.

• void LIN_DRV_TimeoutService (uint32_t instance)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

564 CONTENTS

Callback function for Timer Interrupt Handler Users may use (optional, not required) LIN_DRV_TimeoutService to
check if timeout has occurred during non-blocking frame data transmission and reception. User may initialize a timer
(for example FTM) in Output Compare Mode with period of 500 micro seconds (recommended). In timer IRQ handler,
call this function.

• void LIN_DRV_SetTimeoutCounter (uint32_t instance, uint32_t timeoutValue)

Set Value for Timeout Counter that is used in LIN_DRV_TimeoutService.

• status_t LIN_DRV_MasterSendHeader (uint32_t instance, uint8_t id)

Sends frame header out through the LIN Hardware Interface using a non-blocking method. This function sends LIN
Break field, sync field then the ID with correct parity. This function checks if the interface is Master, if not, it will return
STATUS_ERROR.This function checks if id is in range from 0 to 0x3F, if not it will return STATUS_ERROR.

• status_t LIN_DRV_EnableIRQ (uint32_t instance)

Enables LIN hardware interrupts.

• status_t LIN_DRV_DisableIRQ (uint32_t instance)

Disables LIN hardware interrupts.

• void LIN_DRV_IRQHandler (uint32_t instance)

Interrupt handler for LIN Hardware Interface.

• uint8_t LIN_DRV_ProcessParity (uint8_t PID, uint8_t typeAction)

Makes or checks parity bits. If action is checking parity, the function returns ID value if parity bits are correct or 0xFF
if parity bits are incorrect. If action is making parity bits, then from input value of ID, the function returns PID. This is
not a public API as it is called by other API functions.

• uint8_t LIN_DRV_MakeChecksumByte (const uint8_t ∗buffer, uint8_t sizeBuffer, uint8_t PID)

Makes the checksum byte for a frame. For PID of identifiers, if PID is 0x3C (ID 0x3C) or 0x7D (ID 0x3D) or 0xFE (ID
0x3E) or 0xBF (ID 0x3F) apply classic checksum and apply enhanced checksum for other PID. In case user want to
calculate classic checksum please set PID to zero.

• status_t LIN_DRV_AutoBaudCapture (uint32_t instance)

Captures time interval to capture baudrate automatically when enable autobaud feature. This function should only be
used in Slave. The timer should be in input capture mode of both rising and falling edges. The timer input capture pin
should be externally connected to RXD pin.

16.56.7 Data Structure Documentation

16.56.7.1 struct lin_user_config_t

LIN hardware configuration structure Implements : lin_user_config_t_Class.

Definition at line 70 of file lin_driver.h.

Data Fields

• uint32_t baudRate
• bool nodeFunction
• bool autobaudEnable
• lin_timer_get_time_interval_t timerGetTimeIntervalCallback
• uint8_t ∗ classicPID
• uint8_t numOfClassicPID

Field Documentation

16.56.7.1.1 bool autobaudEnable

Enable Autobaud feature

Definition at line 73 of file lin_driver.h.

16.56.7.1.2 uint32_t baudRate

baudrate of LIN Hardware Interface to configure

Definition at line 71 of file lin_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.56 LIN Driver 565

16.56.7.1.3 uint8_t∗ classicPID

List of PIDs use classic checksum

Definition at line 75 of file lin_driver.h.

16.56.7.1.4 bool nodeFunction

Node function as Master or Slave

Definition at line 72 of file lin_driver.h.

16.56.7.1.5 uint8_t numOfClassicPID

Number of PIDs use classic checksum

Definition at line 76 of file lin_driver.h.

16.56.7.1.6 lin_timer_get_time_interval_t timerGetTimeIntervalCallback

Callback function to get time interval in nanoseconds

Definition at line 74 of file lin_driver.h.

16.56.7.2 struct lin_state_t

Runtime state of the LIN driver.

Note that the caller provides memory for the driver state structures during initialization because the driver does not
statically allocate memory. Implements : lin_state_t_Class

Definition at line 131 of file lin_driver.h.

Data Fields

• const uint8_t ∗ txBuff

• uint8_t ∗ rxBuff

• uint8_t cntByte

• volatile uint8_t txSize

• volatile uint8_t rxSize

• uint8_t checkSum

• volatile bool isTxBusy

• volatile bool isRxBusy

• volatile bool isBusBusy

• volatile bool isTxBlocking

• volatile bool isRxBlocking

• lin_callback_t Callback

• uint8_t currentId

• uint8_t currentPid

• volatile lin_event_id_t currentEventId

• volatile lin_node_state_t currentNodeState

• volatile uint32_t timeoutCounter

• volatile bool timeoutCounterFlag

• volatile bool baudrateEvalEnable

• volatile uint8_t fallingEdgeInterruptCount

• uint32_t linSourceClockFreq

• semaphore_t txCompleted

• semaphore_t rxCompleted

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

566 CONTENTS

Field Documentation

16.56.7.2.1 volatile bool baudrateEvalEnable

Baudrate Evaluation Process Enable

Definition at line 150 of file lin_driver.h.

16.56.7.2.2 lin_callback_t Callback

Callback function to invoke after receiving a byte or transmitting a byte.

Definition at line 143 of file lin_driver.h.

16.56.7.2.3 uint8_t checkSum

Checksum byte.

Definition at line 137 of file lin_driver.h.

16.56.7.2.4 uint8_t cntByte

To count number of bytes already transmitted or received.

Definition at line 134 of file lin_driver.h.

16.56.7.2.5 volatile lin_event_id_t currentEventId

Current ID Event

Definition at line 146 of file lin_driver.h.

16.56.7.2.6 uint8_t currentId

Current ID

Definition at line 144 of file lin_driver.h.

16.56.7.2.7 volatile lin_node_state_t currentNodeState

Current Node state

Definition at line 147 of file lin_driver.h.

16.56.7.2.8 uint8_t currentPid

Current PID

Definition at line 145 of file lin_driver.h.

16.56.7.2.9 volatile uint8_t fallingEdgeInterruptCount

Falling Edge count of a sync byte

Definition at line 151 of file lin_driver.h.

16.56.7.2.10 volatile bool isBusBusy

True if there are data, frame headers being transferred on bus

Definition at line 140 of file lin_driver.h.

16.56.7.2.11 volatile bool isRxBlocking

True if receive is blocking transaction.

Definition at line 142 of file lin_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.56 LIN Driver 567

16.56.7.2.12 volatile bool isRxBusy

True if the LIN interface is receiving frame data.

Definition at line 139 of file lin_driver.h.

16.56.7.2.13 volatile bool isTxBlocking

True if transmit is blocking transaction.

Definition at line 141 of file lin_driver.h.

16.56.7.2.14 volatile bool isTxBusy

True if the LIN interface is transmitting frame data.

Definition at line 138 of file lin_driver.h.

16.56.7.2.15 uint32_t linSourceClockFreq

Frequency of the source clock for LIN

Definition at line 152 of file lin_driver.h.

16.56.7.2.16 uint8_t∗ rxBuff

The buffer of received data.

Definition at line 133 of file lin_driver.h.

16.56.7.2.17 semaphore_t rxCompleted

Used to wait for LIN interface ISR to complete reception

Definition at line 154 of file lin_driver.h.

16.56.7.2.18 volatile uint8_t rxSize

The remaining number of bytes to be received.

Definition at line 136 of file lin_driver.h.

16.56.7.2.19 volatile uint32_t timeoutCounter

Value of the timeout counter

Definition at line 148 of file lin_driver.h.

16.56.7.2.20 volatile bool timeoutCounterFlag

Timeout counter flag

Definition at line 149 of file lin_driver.h.

16.56.7.2.21 const uint8_t∗ txBuff

The buffer of data being sent.

Definition at line 132 of file lin_driver.h.

16.56.7.2.22 semaphore_t txCompleted

Used to wait for LIN interface ISR to complete transmission.

Definition at line 153 of file lin_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

568 CONTENTS

16.56.7.2.23 volatile uint8_t txSize

The remaining number of bytes to be transmitted.

Definition at line 135 of file lin_driver.h.

16.56.8 Macro Definition Documentation

16.56.8.1 #define CHECK_PARITY 1U

Definition at line 50 of file lin_driver.h.

16.56.8.2 #define MAKE_PARITY 0U

Definition at line 49 of file lin_driver.h.

16.56.8.3 #define MASTER 1U

Definition at line 48 of file lin_driver.h.

16.56.8.4 #define SLAVE 0U

Definition at line 47 of file lin_driver.h.

16.56.9 Typedef Documentation

16.56.9.1 typedef void(∗ lin_callback_t) (uint32_t instance, void ∗linState)

LIN Driver callback function type Implements : lin_callback_t_Class.

Definition at line 122 of file lin_driver.h.

16.56.9.2 typedef uint32_t(∗ lin_timer_get_time_interval_t) (uint32_t ∗nanoSeconds)

Callback function to get time interval in nanoseconds Implements : lin_timer_get_time_interval_t_Class.

Definition at line 64 of file lin_driver.h.

16.56.10 Enumeration Type Documentation

16.56.10.1 enum lin_event_id_t

Defines types for an enumerating event related to an Identifier. Implements : lin_event_id_t_Class.

Enumerator

LIN_NO_EVENT No event yet

LIN_WAKEUP_SIGNAL Received a wakeup signal

LIN_BAUDRATE_ADJUSTED Indicate that baudrate was adjusted to Master's baudrate

LIN_RECV_BREAK_FIELD_OK Indicate that correct Break Field was received

LIN_SYNC_OK Sync byte is correct

LIN_SYNC_ERROR Sync byte is incorrect

LIN_PID_OK PID correct

LIN_PID_ERROR PID incorrect

LIN_FRAME_ERROR Framing Error

LIN_READBACK_ERROR Readback data is incorrect

LIN_CHECKSUM_ERROR Checksum byte is incorrect

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.56 LIN Driver 569

LIN_TX_COMPLETED Sending data completed

LIN_RX_COMPLETED Receiving data completed

LIN_RX_OVERRUN RX overrun flag

Definition at line 83 of file lin_driver.h.

16.56.10.2 enum lin_node_state_t

Define type for an enumerating LIN Node state. Implements : lin_node_state_t_Class.

Enumerator

LIN_NODE_STATE_UNINIT Uninitialized state

LIN_NODE_STATE_SLEEP_MODE Sleep mode state

LIN_NODE_STATE_IDLE Idle state

LIN_NODE_STATE_SEND_BREAK_FIELD Send break field state

LIN_NODE_STATE_RECV_SYNC Receive the synchronization byte state

LIN_NODE_STATE_SEND_PID Send PID state

LIN_NODE_STATE_RECV_PID Receive PID state

LIN_NODE_STATE_RECV_DATA Receive data state

LIN_NODE_STATE_RECV_DATA_COMPLETED Receive data completed state

LIN_NODE_STATE_SEND_DATA Send data state

LIN_NODE_STATE_SEND_DATA_COMPLETED Send data completed state

Definition at line 104 of file lin_driver.h.

16.56.11 Function Documentation

16.56.11.1 status_t LIN_DRV_AbortTransferData (uint32_t instance)

Aborts an on-going non-blocking transmission/reception. While performing a non-blocking transferring data, users
can call this function to terminate immediately the transferring.

Parameters

instance LIN Hardware Interface instance number

Returns

function always return STATUS_SUCCESS

Definition at line 266 of file lin_driver.c.

16.56.11.2 status_t LIN_DRV_AutoBaudCapture (uint32_t instance)

Captures time interval to capture baudrate automatically when enable autobaud feature. This function should only
be used in Slave. The timer should be in input capture mode of both rising and falling edges. The timer input capture
pin should be externally connected to RXD pin.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

570 CONTENTS

instance LIN Hardware Interface instance number

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_BUSY: Operation is running.

• STATUS_ERROR: Operation failed due to break char incorrect, wakeup signal incorrect or calculate
baudrate failed.

Definition at line 493 of file lin_driver.c.

16.56.11.3 void LIN_DRV_Deinit (uint32_t instance)

Shuts down the LIN Hardware Interface by disabling interrupts and transmitter/receiver.

Parameters

instance LIN Hardware Interface instance number

Returns

void

Definition at line 80 of file lin_driver.c.

16.56.11.4 status_t LIN_DRV_DisableIRQ (uint32_t instance)

Disables LIN hardware interrupts.

Parameters

instance LIN Hardware Interface instance number

Returns

function always return STATUS_SUCCESS.

Definition at line 455 of file lin_driver.c.

16.56.11.5 status_t LIN_DRV_EnableIRQ (uint32_t instance)

Enables LIN hardware interrupts.

Parameters

instance LIN Hardware Interface instance number.

Returns

function always return STATUS_SUCCESS.

Definition at line 437 of file lin_driver.c.

16.56.11.6 lin_node_state_t LIN_DRV_GetCurrentNodeState (uint32_t instance)

Get the current LIN node state.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.56 LIN Driver 571

Parameters

instance LIN Hardware Interface instance number

Returns

current LIN node state

Definition at line 363 of file lin_driver.c.

16.56.11.7 void LIN_DRV_GetDefaultConfig (bool isMaster, lin_user_config_t ∗ linUserConfig)

Initializes the LIN user configuration structure with default values.

This function initializes a configuration structure received from the application with default values. Note: Users shall
assign measurement callback function pointer that is timerGetTimeIntervalCallback for linUserConfig. Users can
see detail in doxygen.

Parameters

in isMaster Node function:

• true if node is MASTER

• false if node is SLAVE

out linUserConfig the default configuration

Returns

void

Definition at line 95 of file lin_driver.c.

16.56.11.8 status_t LIN_DRV_GetReceiveStatus (uint32_t instance, uint8_t ∗ bytesRemaining)

Get status of an on-going non-blocking reception. This function returns whether the data reception is complete.
When performing non-blocking transmit, the user can call this function to ascertain the state of the current receive
progress: in progress (STATUS_BUSY) or timeout (STATUS_TIMEOUT) or complete (STATUS_SUCCESS). In
addition, if the reception is still in progress, the user can obtain the number of bytes that still needed to receive.

Parameters

instance LIN Hardware Interface instance number
bytesRemaining Number of bytes still needed to receive

Returns

operation status:

• STATUS_SUCCESS : The reception is complete.

• STATUS_TIMEOUT : The reception isn't complete.

• STATUS_BUSY : The reception is on going

Definition at line 289 of file lin_driver.c.

16.56.11.9 status_t LIN_DRV_GetTransmitStatus (uint32_t instance, uint8_t ∗ bytesRemaining)

Get status of an on-going non-blocking transmission While sending frame data using non-blocking method, users
can use this function to get status of that transmission. The bytesRemaining shows number of bytes that still needed
to transmit.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

572 CONTENTS

Parameters

instance LIN Hardware Interface instance number
bytesRemaining Number of bytes still needed to transmit

Returns

operation status:

• STATUS_SUCCESS : The transmission is successful.

• STATUS_BUSY : The transmission is sending

• STATUS_TIMEOUT : Operation failed due to timeout has occurred.

Definition at line 187 of file lin_driver.c.

16.56.11.10 status_t LIN_DRV_GotoIdleState (uint32_t instance)

Puts current LIN node to Idle state This function changes current node state to LIN_NODE_STATE_IDLE.

Parameters

instance LIN Hardware Interface instance number

Returns

function always return STATUS_SUCCESS

Definition at line 327 of file lin_driver.c.

16.56.11.11 status_t LIN_DRV_GoToSleepMode (uint32_t instance)

Puts current LIN node to sleep mode This function changes current node state to LIN_NODE_STATE_SLEEP_←↩

MODE.

Parameters

instance LIN Hardware Interface instance number

Returns

function always return STATUS_SUCCESS

Definition at line 309 of file lin_driver.c.

16.56.11.12 status_t LIN_DRV_Init (uint32_t instance, lin_user_config_t ∗ linUserConfig, lin_state_t ∗ linCurrentState)

Initializes an instance LIN Hardware Interface for LIN Network.

The caller provides memory for the driver state structures during initialization. The user must select the LIN Hard-
ware Interface clock source in the application to initialize the LIN Hardware Interface.

Parameters

instance LIN Hardware Interface instance number
linUserConfig user configuration structure of type lin_user_config_t

linCurrentState pointer to the LIN Hardware Interface driver state structure

Returns

operation status:

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed due to semaphores initialize error.

Definition at line 59 of file lin_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.56 LIN Driver 573

16.56.11.13 lin_callback_t LIN_DRV_InstallCallback (uint32_t instance, lin_callback_t function)

Installs callback function that is used for LIN_DRV_IRQHandler.

Note

After a callback is installed, it bypasses part of the LIN Hardware Interface IRQHandler logic. Therefore, the
callback needs to handle the indexes of txBuff and txSize.

Parameters

instance LIN Hardware Interface instance number.
function the LIN receive callback function.

Returns

Former LIN callback function pointer.

Definition at line 111 of file lin_driver.c.

16.56.11.14 void LIN_DRV_IRQHandler (uint32_t instance)

Interrupt handler for LIN Hardware Interface.

Parameters

instance LIN Hardware Interface instance number

Returns

void

Definition at line 475 of file lin_driver.c.

16.56.11.15 uint8_t LIN_DRV_MakeChecksumByte (const uint8_t ∗ buffer, uint8_t sizeBuffer, uint8_t PID)

Makes the checksum byte for a frame. For PID of identifiers, if PID is 0x3C (ID 0x3C) or 0x7D (ID 0x3D) or 0xFE (ID
0x3E) or 0xBF (ID 0x3F) apply classic checksum and apply enhanced checksum for other PID. In case user want to
calculate classic checksum please set PID to zero.

Parameters

buffer Pointer to Tx buffer
sizeBuffer Number of bytes that are contained in the buffer.

PID Protected Identifier byte.

Returns

the checksum byte.

Definition at line 100 of file lin_common.c.

16.56.11.16 status_t LIN_DRV_MasterSendHeader (uint32_t instance, uint8_t id)

Sends frame header out through the LIN Hardware Interface using a non-blocking method. This function sends LIN
Break field, sync field then the ID with correct parity. This function checks if the interface is Master, if not, it will
return STATUS_ERROR.This function checks if id is in range from 0 to 0x3F, if not it will return STATUS_ERROR.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

574 CONTENTS

Parameters

instance LIN Hardware Interface instance number
id Frame Identifier

Returns

operation status:

• STATUS_SUCCESS : The transmission is successful.

• STATUS_BUSY : Bus busy flag is true.

• STATUS_ERROR : The interface isn't Master or id isn't in range from 0 to 0x3F or node's current state
is in SLEEP mode.

Definition at line 418 of file lin_driver.c.

16.56.11.17 uint8_t LIN_DRV_ProcessParity (uint8_t PID, uint8_t typeAction)

Makes or checks parity bits. If action is checking parity, the function returns ID value if parity bits are correct or 0xFF
if parity bits are incorrect. If action is making parity bits, then from input value of ID, the function returns PID. This is
not a public API as it is called by other API functions.

Parameters

PID PID byte in case of checking parity bits or ID byte in case of making parity bits.
typeAction 1 for Checking parity bits, 0 for making parity bits

Returns

Value has 8 bit:

• 0xFF : Parity bits are incorrect,

• ID : Checking parity bits are correct.

• PID : typeAction is making parity bits.

Definition at line 55 of file lin_common.c.

16.56.11.18 status_t LIN_DRV_ReceiveFrameData (uint32_t instance, uint8_t ∗ rxBuff, uint8_t rxSize)

Receives frame data through the LIN Hardware Interface using non-blocking method. This function will check the
checksum byte. If the checksum is correct, it will receive it with the frame data. Non-blocking means that the function
returns immediately. The application has to get the receive status to know when the reception is complete. The
interrupt handler LIN_LPUART_DRV_IRQHandler will check the checksum byte. If the checksum is correct, it will
receive the frame data. If the checksum is incorrect, this function will return STATUS_TIMEOUT and data in rxBuff
might be wrong. This function also check if rxSize is in range from 1 to 8. If not, it will return STATUS_ERROR.
This function also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks if the
isBusBusy is false, if not it will return LIN_BUS_BUSY.

Note

If users use LIN_DRV_TimeoutService in a timer interrupt handler, then before using this function, users have
to set timeout counter to an appropriate value by using LIN_DRV_SetTimeoutCounter(instance, timeout←↩

Value). The timeout value should be big enough to complete the reception. Timeout in real time is (timeout←↩

Value) ∗ (time period that LIN_DRV_TimeoutService is called). For example, if LIN_DRV_TimeoutService is
called in an timer interrupt with period of 500 micro seconds, then timeout in real time is timeoutValue ∗ 500
micro seconds.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.56 LIN Driver 575

Parameters

instance LIN Hardware Interface instance number
rxBuff buffer containing 8-bit received data
rxSize the number of bytes to receive

Returns

operation status:

• STATUS_SUCCESS : The receives frame data is successful.

• STATUS_TIMEOUT : The checksum is incorrect.

• STATUS_BUSY : Bus busy flag is true.

• STATUS_ERROR : Operation failed due is equal to 0 or greater than 8 or node's current state is in
SLEEP mode

Definition at line 244 of file lin_driver.c.

16.56.11.19 status_t LIN_DRV_ReceiveFrameDataBlocking (uint32_t instance, uint8_t ∗ rxBuff, uint8_t rxSize, uint32_t
timeoutMSec)

Receives frame data through the LIN Hardware Interface using blocking method. This function receives data from
LPUART module using blocking method, the function does not return until the receive is complete. The interrupt
handler LIN_LPUART_DRV_IRQHandler will check the checksum byte. If the checksum is correct, it will receive the
frame data. If the checksum is incorrect, this function will return STATUS_TIMEOUT and data in rxBuff might be
wrong. This function also check if rxSize is in range from 1 to 8. If not, it will return STATUS_ERROR. This function
also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks if the isBusBusy is
false, if not it will return LIN_BUS_BUSY.

Parameters

instance LIN Hardware Interface instance number
rxBuff buffer containing 8-bit received data
rxSize the number of bytes to receive

timeoutMSec timeout value in milliseconds

Returns

operation status:

• STATUS_SUCCESS : The receives frame data is successful.

• STATUS_TIMEOUT : The checksum is incorrect.

• STATUS_BUSY : Bus busy flag is true.

• STATUS_ERROR : Operation failed due is equal to 0 or greater than 8 or node's current state is in
SLEEP mode

Definition at line 214 of file lin_driver.c.

16.56.11.20 status_t LIN_DRV_SendFrameData (uint32_t instance, const uint8_t ∗ txBuff, uint8_t txSize)

Sends frame data out through the LIN Hardware Interface using non-blocking method. This enables an a-sync
method for transmitting data. Non-blocking means that the function returns immediately. The application has to get
the transmit status to know when the transmit is complete. This function will calculate the checksum byte and send
it with the frame data. The function will return immediately after calling this function. If txSize is equal to 0 or greater
than 8 or node's current state is in SLEEP mode then the function will return STATUS_ERROR. If isBusBusy is
currently true then the function will return LIN_BUS_BUSY.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

576 CONTENTS

Note

If users use LIN_DRV_TimeoutService in a timer interrupt handler, then before using this function, users have
to set timeout counter to an appropriate value by using LIN_DRV_SetTimeoutCounter(instance, timeout←↩

Value). The timeout value should be big enough to complete the transmission. Timeout in real time is
(timeoutValue) ∗ (time period that LIN_DRV_TimeoutService is called). For example, if LIN_DRV_Timeout←↩

Service is called in an timer interrupt with period of 500 micro seconds, then timeout in real time is timeout←↩

Value ∗ 500 micro seconds.

Parameters

instance LIN Hardware Interface instance number
txBuff source buffer containing 8-bit data chars to send
txSize the number of bytes to send

Returns

operation status:

• STATUS_SUCCESS : The transmission is successful.

• STATUS_BUSY : Operation failed due to isBusBusy is currently true.

• STATUS_ERROR : Operation failed due to txSize is equal to 0 or greater than 8 or node's current state
is in SLEEP mode

Definition at line 162 of file lin_driver.c.

16.56.11.21 status_t LIN_DRV_SendFrameDataBlocking (uint32_t instance, const uint8_t ∗ txBuff, uint8_t txSize, uint32_t
timeoutMSec)

Sends Frame data out through the LIN Hardware Interface using blocking method. This function will calculate
the checksum byte and send it with the frame data. Blocking means that the function does not return until the
transmission is complete. This function checks if txSize is in range from 1 to 8. If not, it will return STATUS_ER←↩

ROR. This function also returns STATUS_ERROR if node's current state is in SLEEP mode. This function checks
if the isBusBusy is false, if not it will return LIN_BUS_BUSY. The function does not return until the transmission is
complete. If the transmission is successful, it will return STATUS_SUCCESS. If not, it will return STATUS_TIME←↩

OUT.

Parameters

instance LIN Hardware Interface instance number
txBuff source buffer containing 8-bit data chars to send
txSize the number of bytes to send

timeoutMSec timeout value in milliseconds

Returns

operation status:

• STATUS_SUCCESS : The transmission is successful.

• STATUS_TIMEOUT : The transmission isn't successful.

Definition at line 137 of file lin_driver.c.

16.56.11.22 status_t LIN_DRV_SendWakeupSignal (uint32_t instance)

Sends a wakeup signal through the LIN Hardware Interface.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.56 LIN Driver 577

Parameters

instance LIN Hardware Interface instance number

Returns

operation status:

• STATUS_SUCCESS : Bus busy flag is false.

• STATUS_BUSY : Bus busy flag is true.

Definition at line 345 of file lin_driver.c.

16.56.11.23 void LIN_DRV_SetTimeoutCounter (uint32_t instance, uint32_t timeoutValue)

Set Value for Timeout Counter that is used in LIN_DRV_TimeoutService.

Parameters

instance LIN Hardware Interface instance number
timeoutValue Timeout Value to be set

Returns

void

Definition at line 398 of file lin_driver.c.

16.56.11.24 void LIN_DRV_TimeoutService (uint32_t instance)

Callback function for Timer Interrupt Handler Users may use (optional, not required) LIN_DRV_TimeoutService to
check if timeout has occurred during non-blocking frame data transmission and reception. User may initialize a
timer (for example FTM) in Output Compare Mode with period of 500 micro seconds (recommended). In timer IRQ
handler, call this function.

Parameters

instance LIN Hardware Interface instance number

Returns

void

Definition at line 383 of file lin_driver.c.

16.56.12 Variable Documentation

16.56.12.1 isr_t g_linLpuartIsrs[LPUART_INSTANCE_COUNT]

Definition at line 88 of file lin_irq.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

578 CONTENTS

16.57 LIN Stack

16.57.1 Detailed Description

This section covers the functionality of the LIN Stack middleware layer in S32 SDK.

Introduction

LIN Stack Package Components

LIN Stack is a Middleware package that supports the LIN 1.3, 2.0, 2.1 and above, LIN2.1 and J2602
specifications. In LIN Stack, LIN 2.1 covers all LIN 2.1, LIN 2.2 and LIN 2.2A specifications, as the
changes following LIN 2.1 are only spelling corrections and clarifications.

• 1. LIN Stack:

The layered architecture of the LIN Stack is shown on Figure 1. Such architecture aims maximum
reusability of common code base for LIN2.1 and J2602 specifications for S32 Freescale automotive
MCU portfolio.

The core API layer of LIN2.1/ J2602 handles initialization, processing and signal based interaction
between applications and LIN Core.

The LIN2.1 TL (Transport Layer) provides methods for diagnostic services.

The low level layer offers methods for handling signal transmission between user applications and hard-
ware such as interface initialization and deinitialization, frame header sending, response receiving, etc.
The low level layer is builded on top of LIN Driver which is builded on top of LPUART HAL layer in
the current release.

Figure 1. LIN Stack Architecture diagram

2. Node Configuration Tool:

To generate configuration files, users can use the Node Configuration Tool that is LIN Stack PE←↩

X component which allows to parse existed LDF files and reflect their contents to LIN Stack component
GUI, to create new LDF files, to configure LIN cluster definitions and Node definitions. Using LIN Stack
PEX component, users can easily generate the node configuration files (lin_cfg.h and lin_cfg.c) that are
needed for LIN Stack to work properly.

Figure 2. Shows the diagram of configuration data flow.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

group___l_i_n21__core__api__group.html
group___j2602__core__api__group.html
group___l_i_n21__core__api__group.html
group___j2602__core__api__group.html
group___l_i_n21__core__api__group.html
group___j2602__core__api__group.html
group___l_i_n21__core__api__group.html
group__lin__driver.html

16.57 LIN Stack 579

Figure 2. Configuration data

The LDF files describe complete LIN cluster definition including Master/slave mode definition, signals,
frames, schedules, timing, etc.

Integration guideline

Compilation units

The following files need to be compiled in the project:

* ${S32SDK_PATH}\middleware\lin\coreapi\lin_common_api.c

* ${S32SDK_PATH}\middleware\lin\coreapi\lin_common_proto.c

* ${S32SDK_PATH}\middleware\lin\coreapi\lin_j2602_proto.c

* ${S32SDK_PATH}\middleware\lin\coreapi\lin_lin21_proto.c

* ${S32SDK_PATH}\middleware\lin\diagnostic\lin_diagnostic_service.c

* ${S32SDK_PATH}\middleware\lin\lowlevel\lin.c

* ${S32SDK_PATH}\middleware\lin\transport\lin_commontl_api.c

* ${S32SDK_PATH}\middleware\lin\transport\lin_commontl_proto.c

*

Include path

The following paths need to be added to the include path of the toolchain:

* ${S32SDK_PATH}\rtos\osif

* ${S32SDK_PATH}\platform\drivers\inc

* ${S32SDK_PATH}\platform\drivers\src\lin

* ${S32SDK_PATH}\platform\drivers\src\lpuart

* ${S32SDK_PATH}\middleware\lin\include

* ${S32SDK_PATH}\middleware\lin\lowlevel

* ${S32SDK_PATH}\middleware\lin\coreapi

* ${S32SDK_PATH}\middleware\lin\transport

*

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Pins Driver (PINS) LIN Driver Low Power Universal Asynchronous Receiver-Transmitter (L←↩

PUART)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

580 CONTENTS

Modules

• Diagnostic services

Diagnostic services defines methods to implement diagnostic data transfer between a master node connected with a
diagnostic tester and the slave nodes.

• LIN Core API

The LIN core API handles initialization, processing and a signal based interaction between the application and the
LIN core. Refer to chapter 7, LIN 2.2A specification.

• Low level API

Low level layer consists of functions that call LIN driver API.

• Transport layer API

Transport layer stands between the application layer and the core API layer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.58 LPI2C Driver 581

16.58 LPI2C Driver

16.58.1 Detailed Description

Low Power Inter-Integrated Circuit (LPI2C) Peripheral Driver.

Low Power Inter-Integrated Circuit Driver.

The LPI2C driver allows communication on an I2C bus using the LPI2C module in the S32144K processor.

Features

• Interrupt based

• Master or slave operation

• Provides blocking and non-blocking transmit and receive functions

• 7-bit or 10-bit addressing

• Configurable baud rate

• Provides support for all operating modes supported by the hardware

– Standard-mode (Sm): bidirectional data transfers up to 100 kbit/s

– Fast-mode (Fm): bidirectional data transfers up to 400 kbit/s

Functionality

In order to use the LPI2C driver it must be first initialized in either master of slave mode, using functions LPI2←↩

C_DRV_MasterInit() or LPI2C_DRV_SlaveInit(). Once initialized, it cannot be initialized again for the same LPI2C
module instance until it is de-initialized, using LPI2C_DRV_MasterDeinit() or LPI2C_DRV_SlaveDeinit(). Different
LPI2C module instances can function independently of each other.

Master Mode

Master Mode provides functions for transmitting or receiving data to/from any I2C slave. Slave address and baud
rate are provided at initialization time through the master configuration structure, but they can be changed at run-
time by using LPI2C_DRV_MasterSetBaudRate() or LPI2C_DRV_MasterSetSlaveAddr(). Note that due to module
limitation not any baud rate can be achieved. The driver will set a baud rate as close as possible to the requested
baud rate, but there may still be substantial differences, for example if requesting a high baud rate while using a
low-frequency protocol clock for the LPI2C module. The application should call LPI2C_DRV_MasterGetBaudRate()
after LPI2C_DRV_MasterSetBaudRate() to check what baud rate was actually set.

To send or receive data to/from the currently configured slave address, use functions LPI2C_DRV_MasterSend←↩

Data() or LPI2C_DRV_MasterReceiveData() (or their blocking counterparts). Parameter sendStop can be used
to chain multiple transfers with repeated START condition between them, for example when sending a command
and then immediately receiving a response. The application should ensure that any send or receive transfer with
sendStop set to false is followed by another transfer, otherwise the LPI2C master will hold the SCL line low
indefinitely and block the I2C bus. The last transfer from a chain should always have sendStop set to true.

Blocking operations will return only when the transfer is completed, either successfully or with error. Non-blocking
operations will initiate the transfer and return STATUS_SUCCESS, but the module is still busy with the transfer and
another transfer can't be initiated until the current transfer is complete. The application can check the status of the
current transfer by calling LPI2C_DRV_MasterGetTransferStatus(). If the transfer is completed, the functions will
return either STATUS_SUCCESS or an error code, depending on the outcome of the last transfer.

The driver supports any operating mode supported by the module. The operating mode is set together with the baud
rate, by LPI2C_DRV_MasterSetBaudRate(). For High-Speed mode a second baud rate is required, for high-speed
communication. Note that due to module limitation (common prescaler setting for normal and fast baud rate) there
is a limit on the maximum difference between the two baud rates. LPI2C_DRV_MasterGetBaudRate() can be used
to check the baud rate setting for both modes.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

582 CONTENTS

Slave Mode

Slave Mode provides functions for transmitting or receiving data to/from any I2C master. There are two slave
operating modes, selected by the field slaveListening in the slave configuration structure:

• Slave always listening: the slave interrupt is enabled at initialization time and the slave always listens to
the line for a master addressing it. Any events are reported to the application through the callback function
provided at initialization time. The callback can use LPI2C_DRV_SlaveSetRxBuffer() or LPI2C_DRV_Slave←↩

SetTxBuffer() to provide the appropriate buffers for transmit or receive, as needed.

• On-demand operation: the slave is commanded to transmit or receive data through the call of LPI2C_←↩

DRV_SlaveSendData() and LPI2C_DRV_SlaveReceiveData() (or their blocking counterparts). The actual
moment of the transfer depends on the I2C master. The use of callbacks optional in this case, for example
to treat events like LPI2C_SLAVE_EVENT_TX_EMPTY or LPI2C_SLAVE_EVENT_RX_FULL. Outside the
commanded receive / transmit operations the LPI2C interrupts are disabled and the module will not react to
master transfer requests.

Important Notes

• Before using the LPI2C driver in master mode the protocol clock of the module must be configured. Refer to
SCG HAL and PCC HAL for clock configuration.

• Before using the LPI2C driver the pins must be routed to the LPI2C module. Refer to PORT HAL for pin
routing configuration.

• The driver enables the interrupts for the corresponding LPI2C module, but any interrupt priority setting must
be done by the application.

• Fast+, high-speed and ultra-fast mode aren't supported.

• Aborting a master reception is not currently supported due to hardware behavior (the module will continue a
started reception even if the FIFO is reset).

• In listening mode, the init function must be called before the master starts the transfer. In non-listening mode,
the init function and the appropriate send/receive function must be called before the master starts the transfer.

• Aborting a transfer with the function LPI2C_DRV_MasterAbortTransferData() can't be done safely due to
device limitation; the user must ensure that the address is sent before aborting the transfer.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\lpi2c\lpi2c_irq.c
${S32SDK_PATH}\platform\drivers\src\lpi2c\lpi2c_hw_access.c
${S32SDK_PATH}\platform\drivers\src\lpi2c\lpi2c_driver.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc
${S32SDK_PATH}\platform\drivers\src\lpi2c

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager OS Interface (OSIF) Interrupt Manager (Interrupt) Enhanced Direct Memory Access (eDMA)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.58 LPI2C Driver 583

Data Structures

• struct lpi2c_master_user_config_t

Defines the example structure. More...

• struct lpi2c_slave_user_config_t

Slave configuration structure. More...

• struct lpi2c_baud_rate_params_t

Baud rate structure. More...

• struct lpi2c_master_state_t

Master internal context structure. More...

• struct lpi2c_slave_state_t

Slave internal context structure. More...

Enumerations

• enum lpi2c_mode_t { LPI2C_STANDARD_MODE = 0x0U, LPI2C_FAST_MODE = 0x1U }

I2C operating modes Implements : lpi2c_mode_t_Class.

• enum lpi2c_transfer_type_t { LPI2C_USING_DMA = 0, LPI2C_USING_INTERRUPTS = 1 }

Type of LPI2C transfer (based on interrupts or DMA). Implements : lpi2c_transfer_type_t_Class.

LPI2C Driver

• status_t LPI2C_DRV_MasterInit (uint32_t instance, const lpi2c_master_user_config_t ∗userConfigPtr,
lpi2c_master_state_t ∗master)

Initialize the LPI2C master mode driver.

• status_t LPI2C_DRV_MasterDeinit (uint32_t instance)

De-initialize the LPI2C master mode driver.

• void LPI2C_DRV_MasterGetBaudRate (uint32_t instance, lpi2c_baud_rate_params_t ∗baudRate)

Get the currently configured baud rate.

• status_t LPI2C_DRV_MasterSetBaudRate (uint32_t instance, const lpi2c_mode_t operatingMode, const
lpi2c_baud_rate_params_t baudRate)

Set the baud rate for any subsequent I2C communication.

• void LPI2C_DRV_MasterSetSlaveAddr (uint32_t instance, const uint16_t address, const bool is10bitAddr)

Set the slave address for any subsequent I2C communication.

• status_t LPI2C_DRV_MasterSendData (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize, bool send←↩

Stop)

Perform a non-blocking send transaction on the I2C bus.

• status_t LPI2C_DRV_MasterSendDataBlocking (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize, bool
sendStop, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

• status_t LPI2C_DRV_MasterAbortTransferData (uint32_t instance)

Abort a non-blocking I2C Master transmission or reception.

• status_t LPI2C_DRV_MasterReceiveData (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize, bool sendStop)

Perform a non-blocking receive transaction on the I2C bus.

• status_t LPI2C_DRV_MasterReceiveDataBlocking (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize, bool
sendStop, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

• status_t LPI2C_DRV_MasterGetTransferStatus (uint32_t instance, uint32_t ∗bytesRemaining)

Return the current status of the I2C master transfer.

• void LPI2C_DRV_MasterIRQHandler (uint32_t instance)

Handle master operation when I2C interrupt occurs.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

584 CONTENTS

• status_t LPI2C_DRV_SlaveInit (uint32_t instance, const lpi2c_slave_user_config_t ∗userConfigPtr, lpi2c_←↩

slave_state_t ∗slave)

Initialize the I2C slave mode driver.
• status_t LPI2C_DRV_SlaveDeinit (uint32_t instance)

De-initialize the I2C slave mode driver.
• status_t LPI2C_DRV_SlaveSetTxBuffer (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize)

Provide a buffer for transmitting data.
• status_t LPI2C_DRV_SlaveSetRxBuffer (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.
• status_t LPI2C_DRV_SlaveSendData (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize)

Perform a non-blocking send transaction on the I2C bus.
• status_t LPI2C_DRV_SlaveSendDataBlocking (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize,

uint32_t timeout)

Perform a blocking send transaction on the I2C bus.
• status_t LPI2C_DRV_SlaveReceiveData (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize)

Perform a non-blocking receive transaction on the I2C bus.
• status_t LPI2C_DRV_SlaveReceiveDataBlocking (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize, uint32←↩

_t timeout)

Perform a blocking receive transaction on the I2C bus.
• status_t LPI2C_DRV_SlaveGetTransferStatus (uint32_t instance, uint32_t ∗bytesRemaining)

Return the current status of the I2C slave transfer.
• status_t LPI2C_DRV_SlaveAbortTransferData (uint32_t instance)

Abort a non-blocking I2C Master transmission or reception.
• void LPI2C_DRV_SlaveIRQHandler (uint32_t instance)

Handle slave operation when I2C interrupt occurs.
• void LPI2C_DRV_MasterGetDefaultConfig (lpi2c_master_user_config_t ∗config)

Gets the default configuration structure for master.
• void LPI2C_DRV_SlaveGetDefaultConfig (lpi2c_slave_user_config_t ∗config)

Gets the default configuration structure for slave.
• void LPI2C_DRV_SetMasterBusIdleTimeout (uint32_t instance, uint16_t timeout)

Set bus idle timeout for LPI2C.

16.58.2 Data Structure Documentation

16.58.2.1 struct lpi2c_master_user_config_t

Defines the example structure.

This structure is used as an example.

Master configuration structure

This structure is used to provide configuration parameters for the LPI2C master at initialization time. Implements :
lpi2c_master_user_config_t_Class

Definition at line 111 of file lpi2c_driver.h.

Data Fields

• uint16_t slaveAddress
• bool is10bitAddr
• lpi2c_mode_t operatingMode
• uint32_t baudRate
• lpi2c_transfer_type_t transferType
• uint8_t dmaChannel
• i2c_master_callback_t masterCallback
• void ∗ callbackParam

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.58 LPI2C Driver 585

Field Documentation

16.58.2.1.1 uint32_t baudRate

The baud rate in hertz to use with current slave device

Definition at line 116 of file lpi2c_driver.h.

16.58.2.1.2 void∗ callbackParam

Parameter for the master callback function

Definition at line 127 of file lpi2c_driver.h.

16.58.2.1.3 uint8_t dmaChannel

Channel number for DMA channel. If DMA mode isn't used this field will be ignored.

Definition at line 122 of file lpi2c_driver.h.

16.58.2.1.4 bool is10bitAddr

Selects 7-bit or 10-bit slave address

Definition at line 114 of file lpi2c_driver.h.

16.58.2.1.5 i2c_master_callback_t masterCallback

Master callback function. Note that this function will be called from the interrupt service routine at the end of a
transfer, so its execution time should be as small as possible. It can be NULL if you want to check manually the
status of the transfer.

Definition at line 123 of file lpi2c_driver.h.

16.58.2.1.6 lpi2c_mode_t operatingMode

I2C Operating mode

Definition at line 115 of file lpi2c_driver.h.

16.58.2.1.7 uint16_t slaveAddress

Slave address, 7-bit or 10-bit

Definition at line 113 of file lpi2c_driver.h.

16.58.2.1.8 lpi2c_transfer_type_t transferType

Type of LPI2C transfer

Definition at line 121 of file lpi2c_driver.h.

16.58.2.2 struct lpi2c_slave_user_config_t

Slave configuration structure.

This structure is used to provide configuration parameters for the LPI2C slave at initialization time. Implements :
lpi2c_slave_user_config_t_Class

Definition at line 136 of file lpi2c_driver.h.

Data Fields

• uint16_t slaveAddress

• bool is10bitAddr

• lpi2c_mode_t operatingMode

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

586 CONTENTS

• bool slaveListening

• lpi2c_transfer_type_t transferType

• uint8_t dmaChannel

• i2c_slave_callback_t slaveCallback

• void ∗ callbackParam

Field Documentation

16.58.2.2.1 void∗ callbackParam

Parameter for the slave callback function

Definition at line 149 of file lpi2c_driver.h.

16.58.2.2.2 uint8_t dmaChannel

Channel number for DMA rx channel. If DMA mode isn't used this field will be ignored.

Definition at line 143 of file lpi2c_driver.h.

16.58.2.2.3 bool is10bitAddr

Selects 7-bit or 10-bit slave address

Definition at line 139 of file lpi2c_driver.h.

16.58.2.2.4 lpi2c_mode_t operatingMode

I2C Operating mode

Definition at line 140 of file lpi2c_driver.h.

16.58.2.2.5 uint16_t slaveAddress

Slave address, 7-bit or 10-bit

Definition at line 138 of file lpi2c_driver.h.

16.58.2.2.6 i2c_slave_callback_t slaveCallback

Slave callback function. Note that this function will be called from the interrupt service routine, so its execution time
should be as small as possible. It can be NULL if the slave is not in listening mode (slaveListening = false)

Definition at line 144 of file lpi2c_driver.h.

16.58.2.2.7 bool slaveListening

Slave mode (always listening or on demand only)

Definition at line 141 of file lpi2c_driver.h.

16.58.2.2.8 lpi2c_transfer_type_t transferType

Type of LPI2C transfer

Definition at line 142 of file lpi2c_driver.h.

16.58.2.3 struct lpi2c_baud_rate_params_t

Baud rate structure.

This structure is used for setting or getting the baud rate. Implements : lpi2c_baud_rate_params_t_Class

Definition at line 158 of file lpi2c_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.58 LPI2C Driver 587

Data Fields

• uint32_t baudRate

Field Documentation

16.58.2.3.1 uint32_t baudRate

Definition at line 160 of file lpi2c_driver.h.

16.58.2.4 struct lpi2c_master_state_t

Master internal context structure.

This structure is used by the master-mode driver for its internal logic. It must be provided by the application through
the LPI2C_DRV_MasterInit() function, then it cannot be freed until the driver is de-initialized using LPI2C_DRV_←↩

MasterDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 200 of file lpi2c_driver.h.

16.58.2.5 struct lpi2c_slave_state_t

Slave internal context structure.

This structure is used by the slave-mode driver for its internal logic. It must be provided by the application through
the LPI2C_DRV_SlaveInit() function, then it cannot be freed until the driver is de-initialized using LPI2C_DRV_←↩

SlaveDeinit(). The application should make no assumptions about the content of this structure.

Definition at line 238 of file lpi2c_driver.h.

16.58.3 Enumeration Type Documentation

16.58.3.1 enum lpi2c_mode_t

I2C operating modes Implements : lpi2c_mode_t_Class.

Enumerator

LPI2C_STANDARD_MODE Standard-mode (Sm), bidirectional data transfers up to 100 kbit/s

LPI2C_FAST_MODE Fast-mode (Fm), bidirectional data transfers up to 400 kbit/s

Definition at line 71 of file lpi2c_driver.h.

16.58.3.2 enum lpi2c_transfer_type_t

Type of LPI2C transfer (based on interrupts or DMA). Implements : lpi2c_transfer_type_t_Class.

Enumerator

LPI2C_USING_DMA The driver will use DMA to perform I2C transfer

LPI2C_USING_INTERRUPTS The driver will use interrupts to perform I2C transfer

Definition at line 89 of file lpi2c_driver.h.

16.58.4 Function Documentation

16.58.4.1 status_t LPI2C_DRV_MasterAbortTransferData (uint32_t instance)

Abort a non-blocking I2C Master transmission or reception.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

588 CONTENTS

Parameters

instance LPI2C peripheral instance number

Returns

Error or success status returned by API

Definition at line 1653 of file lpi2c_driver.c.

16.58.4.2 status_t LPI2C_DRV_MasterDeinit (uint32_t instance)

De-initialize the LPI2C master mode driver.

This function de-initializes the LPI2C driver in master mode. The driver can't be used again until reinitialized. The
context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

instance LPI2C peripheral instance number

Returns

Error or success status returned by API

Definition at line 1221 of file lpi2c_driver.c.

16.58.4.3 void LPI2C_DRV_MasterGetBaudRate (uint32_t instance, lpi2c_baud_rate_params_t ∗ baudRate)

Get the currently configured baud rate.

This function returns the currently configured baud rate.

Parameters

instance LPI2C peripheral instance number
baudRate structure that contains the current baud rate in hertz and the baud rate in hertz for High-speed

mode (unused in other modes, can be NULL)

Definition at line 1285 of file lpi2c_driver.c.

16.58.4.4 void LPI2C_DRV_MasterGetDefaultConfig (lpi2c_master_user_config_t ∗ config)

Gets the default configuration structure for master.

The default configuration structure is:

Parameters

config Pointer to configuration structure

Definition at line 1879 of file lpi2c_driver.c.

16.58.4.5 status_t LPI2C_DRV_MasterGetTransferStatus (uint32_t instance, uint32_t ∗ bytesRemaining)

Return the current status of the I2C master transfer.

This function can be called during a non-blocking transmission to check the status of the transfer.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.58 LPI2C Driver 589

instance LPI2C peripheral instance number
bytesRemaining the number of remaining bytes in the active I2C transfer

Returns

Error or success status returned by API

Definition at line 1837 of file lpi2c_driver.c.

16.58.4.6 status_t LPI2C_DRV_MasterInit (uint32_t instance, const lpi2c_master_user_config_t ∗ userConfigPtr,
lpi2c_master_state_t ∗ master)

Initialize the LPI2C master mode driver.

This function initializes the LPI2C driver in master mode.

Parameters

instance LPI2C peripheral instance number
userConfigPtr Pointer to the LPI2C master user configuration structure. The function reads configuration

data from this structure and initializes the driver accordingly. The application may free this
structure after the function returns.

master Pointer to the LPI2C master driver context structure. The driver uses this memory area for its
internal logic. The application must make no assumptions about the content of this structure,
and must not free this memory until the driver is de-initialized using LPI2C_DRV_Master←↩

Deinit().

Returns

Error or success status returned by API

Definition at line 1136 of file lpi2c_driver.c.

16.58.4.7 void LPI2C_DRV_MasterIRQHandler (uint32_t instance)

Handle master operation when I2C interrupt occurs.

This is the interrupt service routine for the LPI2C master mode driver. It handles the rest of the transfer started by
one of the send/receive functions.

Parameters

instance LPI2C peripheral instance number

Definition at line 1897 of file lpi2c_driver.c.

16.58.4.8 status_t LPI2C_DRV_MasterReceiveData (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize, bool sendStop)

Perform a non-blocking receive transaction on the I2C bus.

This function starts the reception of a block of data from the currently configured slave address and returns imme-
diately. The rest of the reception is handled by the interrupt service routine. Use LPI2C_DRV_MasterGetReceive←↩

Status() to check the progress of the reception.

Parameters

instance LPI2C peripheral instance number
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

590 CONTENTS

sendStop specifies whether or not to generate stop condition after the reception

Returns

Error or success status returned by API

Definition at line 1686 of file lpi2c_driver.c.

16.58.4.9 status_t LPI2C_DRV_MasterReceiveDataBlocking (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize, bool
sendStop, uint32_t timeout)

Perform a blocking receive transaction on the I2C bus.

This function receives a block of data from the currently configured slave address, and only returns when the
transmission is complete.

Parameters

instance LPI2C peripheral instance number
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the reception
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1782 of file lpi2c_driver.c.

16.58.4.10 status_t LPI2C_DRV_MasterSendData (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize, bool sendStop)

Perform a non-blocking send transaction on the I2C bus.

This function starts the transmission of a block of data to the currently configured slave address and returns imme-
diately. The rest of the transmission is handled by the interrupt service routine. Use LPI2C_DRV_MasterGetSend←↩

Status() to check the progress of the transmission.

Parameters

instance LPI2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the transmission

Returns

Error or success status returned by API

Definition at line 1532 of file lpi2c_driver.c.

16.58.4.11 status_t LPI2C_DRV_MasterSendDataBlocking (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize, bool
sendStop, uint32_t timeout)

Perform a blocking send transaction on the I2C bus.

This function sends a block of data to the currently configured slave address, and only returns when the transmission
is complete.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.58 LPI2C Driver 591

Parameters

instance LPI2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

sendStop specifies whether or not to generate stop condition after the transmission
timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 1613 of file lpi2c_driver.c.

16.58.4.12 status_t LPI2C_DRV_MasterSetBaudRate (uint32_t instance, const lpi2c_mode_t operatingMode, const
lpi2c_baud_rate_params_t baudRate)

Set the baud rate for any subsequent I2C communication.

This function sets the baud rate (SCL frequency) for the I2C master. It can also change the operating mode. If the
operating mode is High-Speed, a second baud rate must be provided for high-speed communication. Note that due
to module limitation not any baud rate can be achieved. The driver will set a baud rate as close as possible to the
requested baud rate, but there may still be substantial differences, for example if requesting a high baud rate while
using a low-frequency protocol clock for the LPI2C module. The application should call LPI2C_DRV_MasterGet←↩

BaudRate() after LPI2C_DRV_MasterSetBaudRate() to check what baud rate was actually set.

Parameters

instance LPI2C peripheral instance number
operatingMode I2C operating mode

baudRate structure that contains the baud rate in hertz to use by current slave device and also the baud
rate in hertz for High-speed mode (unused in other modes)

Returns

Error or success status returned by API

Definition at line 1337 of file lpi2c_driver.c.

16.58.4.13 void LPI2C_DRV_MasterSetSlaveAddr (uint32_t instance, const uint16_t address, const bool is10bitAddr)

Set the slave address for any subsequent I2C communication.

This function sets the slave address which will be used for any future transfer initiated by the LPI2C master.

Parameters

instance LPI2C peripheral instance number
address slave address, 7-bit or 10-bit

is10bitAddr specifies if provided address is 10-bit

Definition at line 1511 of file lpi2c_driver.c.

16.58.4.14 void LPI2C_DRV_SetMasterBusIdleTimeout (uint32_t instance, uint16_t timeout)

Set bus idle timeout for LPI2C.

This function sets time out for bus idle for Master.If both SCL and SDA are high for longer than Timeout cycles, then
the I2C bus is assumed to be idle and the master can generate a START condition

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

592 CONTENTS

Parameters

baseAddr base address of the LPI2C module
timeout bus idle timeout period in clock cycle. Zero means no bus idle timeout

Definition at line 1253 of file lpi2c_driver.c.

16.58.4.15 status_t LPI2C_DRV_SlaveAbortTransferData (uint32_t instance)

Abort a non-blocking I2C Master transmission or reception.

Parameters

instance LPI2C peripheral instance number

Returns

Error or success status returned by API

Definition at line 2524 of file lpi2c_driver.c.

16.58.4.16 status_t LPI2C_DRV_SlaveDeinit (uint32_t instance)

De-initialize the I2C slave mode driver.

This function de-initializes the LPI2C driver in slave mode. The driver can't be used again until reinitialized. The
context structure is no longer needed by the driver and can be freed after calling this function.

Parameters

instance LPI2C peripheral instance number

Returns

Error or success status returned by API

Definition at line 2153 of file lpi2c_driver.c.

16.58.4.17 void LPI2C_DRV_SlaveGetDefaultConfig (lpi2c_slave_user_config_t ∗ config)

Gets the default configuration structure for slave.

The default configuration structure is:

Parameters

config Pointer to configuration structure

Definition at line 2551 of file lpi2c_driver.c.

16.58.4.18 status_t LPI2C_DRV_SlaveGetTransferStatus (uint32_t instance, uint32_t ∗ bytesRemaining)

Return the current status of the I2C slave transfer.

This function can be called during a non-blocking transmission to check the status of the transfer.

Parameters

instance LPI2C peripheral instance number
bytesRemaining the number of remaining bytes in the active I2C transfer

Returns

Error or success status returned by API

Definition at line 2485 of file lpi2c_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.58 LPI2C Driver 593

16.58.4.19 status_t LPI2C_DRV_SlaveInit (uint32_t instance, const lpi2c_slave_user_config_t ∗ userConfigPtr,
lpi2c_slave_state_t ∗ slave)

Initialize the I2C slave mode driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

594 CONTENTS

Parameters

instance LPI2C peripheral instance number
userConfigPtr Pointer to the LPI2C slave user configuration structure. The function reads configuration

data from this structure and initializes the driver accordingly. The application may free this
structure after the function returns.

slave Pointer to the LPI2C slave driver context structure. The driver uses this memory area for its
internal logic. The application must make no assumptions about the content of this structure,
and must not free this memory until the driver is de-initialized using LPI2C_DRV_Slave←↩

Deinit().

Returns

Error or success status returned by API

Definition at line 2032 of file lpi2c_driver.c.

16.58.4.20 void LPI2C_DRV_SlaveIRQHandler (uint32_t instance)

Handle slave operation when I2C interrupt occurs.

This is the interrupt service routine for the LPI2C slave mode driver. It handles any transfer initiated by an I2C
master and notifies the application via the provided callback when relevant events occur.

Parameters

instance LPI2C peripheral instance number

Definition at line 2606 of file lpi2c_driver.c.

16.58.4.21 status_t LPI2C_DRV_SlaveReceiveData (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Perform a non-blocking receive transaction on the I2C bus.

Performs a non-blocking receive transaction on the I2C bus when the slave is not in listening mode (initialized with
slaveListening = false). It starts the reception and returns immediately. The rest of the reception is handled by the
interrupt service routine. Use LPI2C_DRV_SlaveGetReceiveStatus() to check the progress of the reception.

Parameters

instance LPI2C peripheral instance number
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 2370 of file lpi2c_driver.c.

16.58.4.22 status_t LPI2C_DRV_SlaveReceiveDataBlocking (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize, uint32_t
timeout)

Perform a blocking receive transaction on the I2C bus.

Performs a blocking receive transaction on the I2C bus when the slave is not in listening mode (initialized with
slaveListening = false). It sets up the reception and then waits for the transfer to complete before returning.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.58 LPI2C Driver 595

instance LPI2C peripheral instance number
rxBuff pointer to the buffer where to store received data
rxSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 2443 of file lpi2c_driver.c.

16.58.4.23 status_t LPI2C_DRV_SlaveSendData (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize)

Perform a non-blocking send transaction on the I2C bus.

Performs a non-blocking send transaction on the I2C bus when the slave is not in listening mode (initialized with
slaveListening = false). It starts the transmission and returns immediately. The rest of the transmission is handled by
the interrupt service routine. Use LPI2C_DRV_SlaveGetTransmitStatus() to check the progress of the transmission.

Parameters

instance LPI2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 2246 of file lpi2c_driver.c.

16.58.4.24 status_t LPI2C_DRV_SlaveSendDataBlocking (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize, uint32_t
timeout)

Perform a blocking send transaction on the I2C bus.

Performs a blocking send transaction on the I2C bus when the slave is not in listening mode (initialized with slave←↩

Listening = false). It sets up the transmission and then waits for the transfer to complete before returning.

Parameters

instance LPI2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

timeout timeout for the transfer in milliseconds

Returns

Error or success status returned by API

Definition at line 2332 of file lpi2c_driver.c.

16.58.4.25 status_t LPI2C_DRV_SlaveSetRxBuffer (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.

This function provides a buffer in which the LPI2C slave-mode driver can store received data. It can be called for
example from the user callback provided at initialization time, when the driver reports events LPI2C_SLAVE_EV←↩

ENT_RX_REQ or LPI2C_SLAVE_EVENT_RX_FULL.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

596 CONTENTS

Parameters

instance LPI2C peripheral instance number
rxBuff pointer to the data to be transferred
rxSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 2219 of file lpi2c_driver.c.

16.58.4.26 status_t LPI2C_DRV_SlaveSetTxBuffer (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize)

Provide a buffer for transmitting data.

This function provides a buffer from which the LPI2C slave-mode driver can transmit data. It can be called for
example from the user callback provided at initialization time, when the driver reports events LPI2C_SLAVE_EV←↩

ENT_TX_REQ or LPI2C_SLAVE_EVENT_TX_EMPTY.

Parameters

instance LPI2C peripheral instance number
txBuff pointer to the data to be transferred
txSize length in bytes of the data to be transferred

Returns

Error or success status returned by API

Definition at line 2192 of file lpi2c_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.59 LPIT Driver 597

16.59 LPIT Driver

16.59.1 Detailed Description

Low Power Interrupt Timer Peripheral Driver.

Hardware background

Each LPIT timer channel can be configured to run in one of 4 modes:
32-bit Periodic Counter: In this mode the counter will load and then decrement down to zero. It will then set the
timer interrupt flag and assert the output pre-trigger.
Dual 16-bit Periodic Counter: In this mode, the counter will load and then the lower 16-bits will decrement down to
zero, which will assert the output pre-trigger. The upper 16-bits will then decrement down to zero, which will negate
the output pre-trigger and set the timer interrupt flag.
32-bit Trigger Accumulator: In this mode, the counter will load on the first trigger rising edge and then decrement
down to zero on each trigger rising edge. It will then set the timer interrupt flag and assert the output pre-trigger.
32-bit Trigger Input Capture: In this mode, the counter will load with 0xFFFF_FFFF and then decrement down
to zero. If a trigger rising edge is detected, it will store the inverse of the current counter value in the load value
register, set the timer interrupt flag and assert the output pre-trigger.
In these modes, the timer channel operation is further controlled by Trigger Control bits (TSOT, TSOI, TROT) which
control the load, reload, start and restart of the timer channels.

Driver consideration

The Driver uses structures for configuration. Each structure contains members that are specific to its respective
functionality. There are lpit_user_config_t and lpit_user_channel_config_t.

Interrupt handling

Each LPIT timer channel has a corresponding interrupt handler. The LPIT Driver does not define interrupt handler
internally. These interrupt handler methods can be defined by the user application. There are two ways to add an
LPIT interrupt handler:

1. Using the weak symbols defined by start-up code. if the methods LPITx_Handler(void) (x denotes
instance number) are not defined, the linker use a default ISR. An error will be generated if methods with the
same name are defined multiple times. This method works regardless of the placement of the interrupt vector
table (Flash or RAM).

2. Using the Interrupt Manager's INT_SYS_InstallHandler() method. This can be used to dynamically
change the ISR at run-time. This method works only if the interrupt vector table is located in RAM.

Clocking configuration

The LPIT Driver does not handle clock setup (from PCC) configuration. This is handled by the Clock Manager. The
driver assumes that clock configurations have been made, so it is the user's responsibility to set up clocking and pin
configurations correctly.

Basic operations

1. Pre-Initialization information of LPIT module

• Before using the LPIT driver, the protocol clock of the module must be configured by the application
using PCC module.

• Configures Trigger MUX Control (TRGMUX) if want to use external trigger for LPIT module.

• Configures different peripherals if want to use them in LPIT interrupt routine.

• Provides configuration data structure to LPIT initialization API.

2. To initialize the LPIT module, just call the LPIT_DRV_Init() function with the user configuration data structure.
This function configures LPIT module operation when MCU enters DEBUG and DOZE (Low power mode)
modes and enables LPIT module. This function must be called firstly.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

598 CONTENTS

In the following code, LPIT module is initialized to continue to run when MCU enters both Debug and DOZE
modes.

#define BOARD_LPIT_INSTANCE 0U
/* LPIT module configuration stucture */
lpit_user_config_t lpitconfig =
{

.enableRunInDebug = true,

.enableRunInDoze = true
};
/* Initializes the LPIT module. */
LPIT_DRV_Init(BOARD_LPIT_INSTANCE, &lpitconfig);

3. After calling the LPIT_DRV_Init() function, call LPIT_DRV_InitChannel() function with user channel configu-
ration structure to initialize timer channel.
This function configures timer channel chaining, timer channel mode, timer channel period, interrupt gener-
ation, trigger source, trigger select, reload on trigger, stop on interrupt and start on trigger. In the following
code, timer channel is initialized with the channel chaining is disabled, interrupt generation is enabled,
operation mode is 32 bit periodic counter mode, trigger source is external, reload on trigger is disabled, stop
on interrupt is disabled, start on trigger is disabled and timer period is 1 second. Note that:

• Trigger select is not effective if trigger source is external.

• Timer channel period must be suitable for operation mode.

• The timer channel 0 can not be chained.

/* Channel 0 configuration structure */
lpit_user_channel_config_t chnlconfig =
{

.timerMode = LPIT_PERIODIC_COUNTER,

.periodUnits = LPIT_PERIOD_UNITS_MICROSECONDS,

.period = 1000000U,

.triggerSource = LPIT_TRIGGER_SOURCE_INTERNAL,

.triggerSelect = 1U,

.enableReloadOnTrigger = false,

.enableStopOnInterrupt = false,

.enableStartOnTrigger = false,

.chainChannel = false,

.isInterruptEnabled = true
};
/* Initializes the channel 0 */
LPIT_DRV_InitChannel(BOARD_LPIT_INSTANCE, 0, &chnlconfig);

4. To reconfigure timer channel period , just call LPIT_DRV_SetTimerPeriodByUs() or LPIT_DRV_SetTimer←↩

PeriodByCount() with corresponding new period. In the following code, the timer channel period is reconfig-
ured with new period in count unit.

/* Reconfigures timer channel period with new period of 10000 count*/
LPIT_DRV_SetTimerPeriodByCount(BOARD_LPIT_INSTANCE, 0, 10000);

5. To start timer channel counting, just call LPIT_DRV_StartTimerChannels() with timer channels starting mask.
In the following code, the timer channel 0 is started with the mask of 0x1U.

/* Starts channel 0 counting*/
LPIT_DRV_StartTimerChannels(BOARD_LPIT_INSTANCE, 0x1U);

6. To stop timer channel counting, just call LPIT_DRV_StopTimerChannels() with timer channels stopping mask.
In the following code, the timer channel 0 is stopped with the mask of 0x1U.

/* Stops channel 0 counting*/
LPIT_DRV_StopTimerChannels(BOARD_LPIT_INSTANCE, 0x1U);

7. To disable LPIT module, just call LPIT_DRV_Deinit().

/* Disables LPIT module*/
LPIT_DRV_Deinit(BOARD_LPIT_INSTANCE);

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.59 LPIT Driver 599

API

Some of the features exposed by the API are targeted specifically for timer channel mode. For example, set/get
timer period in dual 16 mode function makes sense if timer channel mode is dual 16 mode, so therefor it is restricted
for use in other modes.

For any invalid configuration the functions will either return an error code or trigger DEV_ASSERT (if enabled). For
more details, please refer to each function description.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\lpit_driver.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt)

Data Structures

• struct lpit_user_config_t

LPIT configuration structure. More...
• struct lpit_user_channel_config_t

Structure to configure the channel timer. More...

Macros

• #define MAX_PERIOD_COUNT (0xFFFFFFFFU)

Max period in count of all operation mode except for dual 16 bit periodic counter mode.
• #define MAX_PERIOD_COUNT_IN_DUAL_16BIT_MODE (0x1FFFEU)

Max period in count of dual 16 bit periodic counter mode.
• #define MAX_PERIOD_COUNT_16_BIT (0xFFFFU)

Max count of 16 bit.

Enumerations

• enum lpit_timer_modes_t { LPIT_PERIODIC_COUNTER = 0x00U, LPIT_DUAL_PERIODIC_COUNTER =
0x01U, LPIT_TRIGGER_ACCUMULATOR = 0x02U, LPIT_INPUT_CAPTURE = 0x03U }

Mode options available for the LPIT timer Implements : lpit_timer_modes_t_Class.
• enum lpit_trigger_source_t { LPIT_TRIGGER_SOURCE_EXTERNAL = 0x00U, LPIT_TRIGGER_SOURC←↩

E_INTERNAL = 0x01U }

Trigger source options.
• enum lpit_period_units_t { LPIT_PERIOD_UNITS_COUNTS = 0x00U, LPIT_PERIOD_UNITS_MICROSE←↩

CONDS = 0x01U }

Unit options for LPIT period.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

600 CONTENTS

Initialization and De-initialization

• void LPIT_DRV_GetDefaultConfig (lpit_user_config_t ∗const config)

Gets the default LPIT configuration.

• void LPIT_DRV_GetDefaultChanConfig (lpit_user_channel_config_t ∗const config)

Gets the default timer channel configuration.

• void LPIT_DRV_Init (uint32_t instance, const lpit_user_config_t ∗userConfig)

Initializes the LPIT module.

• void LPIT_DRV_Deinit (uint32_t instance)

De-Initializes the LPIT module.

• status_t LPIT_DRV_InitChannel (uint32_t instance, uint32_t channel, const lpit_user_channel_config_←↩

t ∗userChannelConfig)

Initializes the LPIT channel.

Timer Start and Stop

• void LPIT_DRV_StartTimerChannels (uint32_t instance, uint32_t mask)

Starts the timer channel counting.

• void LPIT_DRV_StopTimerChannels (uint32_t instance, uint32_t mask)

Stops the timer channel counting.

Timer Period

• status_t LPIT_DRV_SetTimerPeriodByUs (uint32_t instance, uint32_t channel, uint32_t periodUs)

Sets the timer channel period in microseconds.

• status_t LPIT_DRV_SetTimerPeriodInDual16ModeByUs (uint32_t instance, uint32_t channel, uint16_←↩

t periodHigh, uint16_t periodLow)

Sets the timer channel period in microseconds.

• uint64_t LPIT_DRV_GetTimerPeriodByUs (uint32_t instance, uint32_t channel)

Gets the timer channel period in microseconds.

• uint64_t LPIT_DRV_GetCurrentTimerUs (uint32_t instance, uint32_t channel)

Gets the current timer channel counting value in microseconds.

• void LPIT_DRV_SetTimerPeriodByCount (uint32_t instance, uint32_t channel, uint32_t count)

Sets the timer channel period in count unit.

• void LPIT_DRV_SetTimerPeriodInDual16ModeByCount (uint32_t instance, uint32_t channel, uint16_←↩

t periodHigh, uint16_t periodLow)

Sets the timer channel period in count unit.

• uint32_t LPIT_DRV_GetTimerPeriodByCount (uint32_t instance, uint32_t channel)

Gets the current timer channel period in count unit.

• uint32_t LPIT_DRV_GetCurrentTimerCount (uint32_t instance, uint32_t channel)

Gets the current timer channel counting value in count.

Interrupt

• void LPIT_DRV_EnableTimerChannelInterrupt (uint32_t instance, uint32_t mask)

Enables the interrupt generation of timer channel.

• void LPIT_DRV_DisableTimerChannelInterrupt (uint32_t instance, uint32_t mask)

Disables the interrupt generation of timer channel.

• uint32_t LPIT_DRV_GetInterruptFlagTimerChannels (uint32_t instance, uint32_t mask)

Gets the current interrupt flag of timer channels.

• void LPIT_DRV_ClearInterruptFlagTimerChannels (uint32_t instance, uint32_t mask)

Clears the interrupt flag of timer channels.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.59 LPIT Driver 601

16.59.2 Data Structure Documentation

16.59.2.1 struct lpit_user_config_t

LPIT configuration structure.

This structure holds the configuration settings for the LPIT peripheral to enable or disable LPIT module in DEBUG
and DOZE mode Implements : lpit_user_config_t_Class

Definition at line 108 of file lpit_driver.h.

Data Fields

• bool enableRunInDebug
• bool enableRunInDoze

Field Documentation

16.59.2.1.1 bool enableRunInDebug

True: Timer channels continue to run in debug mode False: Timer channels stop in debug mode

Definition at line 110 of file lpit_driver.h.

16.59.2.1.2 bool enableRunInDoze

True: Timer channels continue to run in doze mode False: Timer channels stop in doze mode

Definition at line 112 of file lpit_driver.h.

16.59.2.2 struct lpit_user_channel_config_t

Structure to configure the channel timer.

This structure holds the configuration settings for the LPIT timer channel Implements : lpit_user_channel_config←↩

_t_Class

Definition at line 121 of file lpit_driver.h.

Data Fields

• lpit_timer_modes_t timerMode
• lpit_period_units_t periodUnits
• uint32_t period
• lpit_trigger_source_t triggerSource
• uint32_t triggerSelect
• bool enableReloadOnTrigger
• bool enableStopOnInterrupt
• bool enableStartOnTrigger
• bool chainChannel
• bool isInterruptEnabled

Field Documentation

16.59.2.2.1 bool chainChannel

Channel chaining enable

Definition at line 137 of file lpit_driver.h.

16.59.2.2.2 bool enableReloadOnTrigger

True: Timer channel will reload on selected trigger False: Timer channel will not reload on selected trigger

Definition at line 129 of file lpit_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

602 CONTENTS

16.59.2.2.3 bool enableStartOnTrigger

True: Timer channel starts to decrement when rising edge on selected trigger is detected. False: Timer starts to
decrement immediately based on restart condition

Definition at line 133 of file lpit_driver.h.

16.59.2.2.4 bool enableStopOnInterrupt

True: Timer will stop after timeout False: Timer channel does not stop after timeout

Definition at line 131 of file lpit_driver.h.

16.59.2.2.5 bool isInterruptEnabled

Timer channel interrupt generation enable

Definition at line 138 of file lpit_driver.h.

16.59.2.2.6 uint32_t period

Period of timer channel

Definition at line 125 of file lpit_driver.h.

16.59.2.2.7 lpit_period_units_t periodUnits

Timer period value units

Definition at line 124 of file lpit_driver.h.

16.59.2.2.8 lpit_timer_modes_t timerMode

Operation mode of timer channel

Definition at line 123 of file lpit_driver.h.

16.59.2.2.9 uint32_t triggerSelect

Selects one trigger from the internal trigger sources this field makes sense if trigger source is internal

Definition at line 127 of file lpit_driver.h.

16.59.2.2.10 lpit_trigger_source_t triggerSource

Selects between internal and external trigger sources

Definition at line 126 of file lpit_driver.h.

16.59.3 Macro Definition Documentation

16.59.3.1 #define MAX_PERIOD_COUNT (0xFFFFFFFFU)

Max period in count of all operation mode except for dual 16 bit periodic counter mode.

Definition at line 58 of file lpit_driver.h.

16.59.3.2 #define MAX_PERIOD_COUNT_16_BIT (0xFFFFU)

Max count of 16 bit.

Definition at line 62 of file lpit_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.59 LPIT Driver 603

16.59.3.3 #define MAX_PERIOD_COUNT_IN_DUAL_16BIT_MODE (0x1FFFEU)

Max period in count of dual 16 bit periodic counter mode.

Definition at line 60 of file lpit_driver.h.

16.59.4 Enumeration Type Documentation

16.59.4.1 enum lpit_period_units_t

Unit options for LPIT period.

This is used to determine unit of timer period Implements : lpit_period_units_t_Class

Enumerator

LPIT_PERIOD_UNITS_COUNTS Period value unit is count

LPIT_PERIOD_UNITS_MICROSECONDS Period value unit is microsecond

Definition at line 95 of file lpit_driver.h.

16.59.4.2 enum lpit_timer_modes_t

Mode options available for the LPIT timer Implements : lpit_timer_modes_t_Class.

Enumerator

LPIT_PERIODIC_COUNTER 32-bit Periodic Counter

LPIT_DUAL_PERIODIC_COUNTER Dual 16-bit Periodic Counter

LPIT_TRIGGER_ACCUMULATOR 32-bit Trigger Accumulator

LPIT_INPUT_CAPTURE 32-bit Trigger Input Capture

Definition at line 68 of file lpit_driver.h.

16.59.4.3 enum lpit_trigger_source_t

Trigger source options.

This is used for both internal and external trigger sources. The actual trigger options available is SoC specific, user
should refer to the reference manual. Implements : lpit_trigger_source_t_Class

Enumerator

LPIT_TRIGGER_SOURCE_EXTERNAL Use external trigger

LPIT_TRIGGER_SOURCE_INTERNAL Use internal trigger

Definition at line 83 of file lpit_driver.h.

16.59.5 Function Documentation

16.59.5.1 void LPIT_DRV_ClearInterruptFlagTimerChannels (uint32_t instance, uint32_t mask)

Clears the interrupt flag of timer channels.

This function clears the interrupt flag of timer channels after their interrupt event occurred.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

604 CONTENTS

Parameters

in instance LPIT module instance number
in mask The interrupt flag clearing mask that decides which channels will be cleared

interrupt flag

• For example:

– with mask = 0x01u then the interrupt flag of channel 0 only will be
cleared

– with mask = 0x02u then the interrupt flag of channel 1 only will be
cleared

– with mask = 0x03u then the interrupt flags of channel 0 and chan-
nel 1 will be cleared

Definition at line 744 of file lpit_driver.c.

16.59.5.2 void LPIT_DRV_Deinit (uint32_t instance)

De-Initializes the LPIT module.

This function disables LPIT module. In order to use the LPIT module again, LPIT_DRV_Init must be called.

Parameters

in instance LPIT module instance number

Definition at line 177 of file lpit_driver.c.

16.59.5.3 void LPIT_DRV_DisableTimerChannelInterrupt (uint32_t instance, uint32_t mask)

Disables the interrupt generation of timer channel.

This function allows disabling interrupt generation of timer channel when timeout occurs or input trigger occurs.

Parameters

in instance LPIT module instance number
in mask The mask that decides which channels will be disable interrupt.

• For example:

– with mask = 0x01u then the interrupt of channel 0 will be disable

– with mask = 0x02u then the interrupt of channel 1 will be disable

– with mask = 0x03u then the interrupt of channel 0 and channel 1
will be disable

Definition at line 701 of file lpit_driver.c.

16.59.5.4 void LPIT_DRV_EnableTimerChannelInterrupt (uint32_t instance, uint32_t mask)

Enables the interrupt generation of timer channel.

This function allows enabling interrupt generation of timer channel when timeout occurs or input trigger occurs.

Parameters

in instance LPIT module instance number.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.59 LPIT Driver 605

in mask The mask that decides which channels will be enabled interrupt.

• For example:

– with mask = 0x01u then the interrupt of channel 0 will be enabled

– with mask = 0x02u then the interrupt of channel 1 will be enabled

– with mask = 0x03u then the interrupt of channel 0 and channel 1
will be enabled

Definition at line 680 of file lpit_driver.c.

16.59.5.5 uint32_t LPIT_DRV_GetCurrentTimerCount (uint32_t instance, uint32_t channel)

Gets the current timer channel counting value in count.

This function returns the real-time timer channel counting value, the value in a range from 0 to timer channel period.
Need to make sure the running time does not exceed the timer channel period.

Parameters

in instance LPIT module instance number
in channel Timer channel number

Returns

Current timer channel counting value in count

Definition at line 648 of file lpit_driver.c.

16.59.5.6 uint64_t LPIT_DRV_GetCurrentTimerUs (uint32_t instance, uint32_t channel)

Gets the current timer channel counting value in microseconds.

This function returns an absolute time stamp in microseconds. One common use of this function is to measure the
running time of a part of code. Call this function at both the beginning and end of code. The time difference between
these two time stamps is the running time. The return counting value here makes sense if the operation mode of
timer channel is 32 bit periodic counter or dual 16 bit periodic counter or 32-bit trigger input capture. Need to make
sure the running time will not exceed the timer channel period.

Parameters

in instance LPIT module instance number
in channel Timer channel number

Returns

Current timer channel counting value in microseconds

Definition at line 512 of file lpit_driver.c.

16.59.5.7 void LPIT_DRV_GetDefaultChanConfig (lpit_user_channel_config_t ∗const config)

Gets the default timer channel configuration.

This function gets the default timer channel configuration structure, with the following settings:

• Timer mode: 32-bit Periodic Counter

• Period unit: Period value unit is microsecond

• Period: 1000000 microseconds(1 second)

• Trigger sources: External trigger

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

606 CONTENTS

• Trigger select: Trigger from channel 0

• Reload on trigger: Disable

• Stop on interrupt : Disable

• Start on trigger: Disable

• Channel chaining: Disable

• Interrupt generating: Enable

Parameters

out config The channel configuration structure

Definition at line 102 of file lpit_driver.c.

16.59.5.8 void LPIT_DRV_GetDefaultConfig (lpit_user_config_t ∗const config)

Gets the default LPIT configuration.

This function gets default LPIT module configuration structure, with the following settings:

• PIT runs in debug mode: Disable

• PIT runs in doze mode: Disable

Parameters

out config The configuration structure

Definition at line 87 of file lpit_driver.c.

16.59.5.9 uint32_t LPIT_DRV_GetInterruptFlagTimerChannels (uint32_t instance, uint32_t mask)

Gets the current interrupt flag of timer channels.

This function gets the current interrupt flag of timer channels. In compare modes, the flag sets to 1 at the end of the
timer period. In capture modes, the flag sets to 1 when the trigger asserts.

Parameters

in instance LPIT module instance number.
in mask The interrupt flag getting mask that decides which channels will be got interrupt

flag.

• For example:

– with mask = 0x01u then the interrupt flag of channel 0 only will be
got

– with mask = 0x02u then the interrupt flag of channel 1 only will be
got

– with mask = 0x03u then the interrupt flags of channel 0 and chan-
nel 1 will be got

Returns

Current the interrupt flag of timer channels

Definition at line 723 of file lpit_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.59 LPIT Driver 607

16.59.5.10 uint32_t LPIT_DRV_GetTimerPeriodByCount (uint32_t instance, uint32_t channel)

Gets the current timer channel period in count unit.

This function returns current period of timer channel given as argument.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

608 CONTENTS

Parameters

in instance LPIT module instance number
in channel Timer channel number

Returns

Timer channel period in count unit

Definition at line 614 of file lpit_driver.c.

16.59.5.11 uint64_t LPIT_DRV_GetTimerPeriodByUs (uint32_t instance, uint32_t channel)

Gets the timer channel period in microseconds.

This function gets the timer channel period in microseconds. The returned period here makes sense if the operation
mode of timer channel is 32 bit periodic counter or dual 16 bit periodic counter.

Parameters

in instance LPIT module instance number
in channel Timer channel number

Returns

Timer channel period in microseconds

Definition at line 453 of file lpit_driver.c.

16.59.5.12 void LPIT_DRV_Init (uint32_t instance, const lpit_user_config_t ∗ userConfig)

Initializes the LPIT module.

This function resets LPIT module, enables the LPIT module, configures LPIT module operation in Debug and DOZE
mode. The LPIT configuration structure shall be passed as arguments. This configuration structure affects all timer
channels. This function should be called before calling any other LPIT driver function.

This is an example demonstrating how to define a LPIT configuration structure:

1 lpit_user_config_t lpitInit =
2 {
3 .enableRunInDebug = false,
4 .enableRunInDoze = true
5 };

Parameters

in instance LPIT module instance number.
in userConfig Pointer to LPIT configuration structure.

Definition at line 130 of file lpit_driver.c.

16.59.5.13 status_t LPIT_DRV_InitChannel (uint32_t instance, uint32_t channel, const lpit_user_channel_config_t ∗
userChannelConfig)

Initializes the LPIT channel.

This function initializes the LPIT timers by using a channel, this function configures timer channel chaining, timer
channel mode, timer channel period, interrupt generation, trigger source, trigger select, reload on trigger, stop
on interrupt and start on trigger. The timer channel number and its configuration structure shall be passed as
arguments. Timer channels do not start counting by default after calling this function. The function LPIT_DRV_←↩

StartTimerChannels must be called to start the timer channel counting. In order to re-configures the period, call the
LPIT_DRV_SetTimerPeriodByUs or LPIT_DRV_SetTimerPeriodByCount.

This is an example demonstrating how to define a LPIT channel configuration structure:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.59 LPIT Driver 609

1 lpit_user_channel_config_t lpitTestInit =
2 {
3 .timerMode = LPIT_PERIODIC_COUNTER,
4 .periodUnits = LPTT_PERIOD_UNITS_MICROSECONDS,
5 .period = 1000000U,
6 .triggerSource = LPIT_TRIGGER_SOURCE_INTERNAL,
7 .triggerSelect = 1U,
8 .enableReloadOnTrigger = false,
9 .enableStopOnInterrupt = false,
10 .enableStartOnTrigger = false,
11 .chainChannel = false,
12 .isInterruptEnabled = true
13 };

Parameters

in instance LPIT module instance number
in channel Timer channel number
in userChannel←↩

Config
Pointer to LPIT channel configuration structure

Returns

Operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: The channel 0 is chained.

• STATUS_ERROR: The input period is invalid.

Definition at line 204 of file lpit_driver.c.

16.59.5.14 void LPIT_DRV_SetTimerPeriodByCount (uint32_t instance, uint32_t channel, uint32_t count)

Sets the timer channel period in count unit.

This function sets the timer channel period in count unit. The counter period of a running timer channel can be
modified by first setting a new load value, the value will be loaded after the timer channel expires. To abort the
current cycle and start a timer channel period with the new value, the timer channel must be disabled and enabled
again.

Parameters

in instance LPIT module instance number
in channel Timer channel number
in count Timer channel period in count unit

Definition at line 560 of file lpit_driver.c.

16.59.5.15 status_t LPIT_DRV_SetTimerPeriodByUs (uint32_t instance, uint32_t channel, uint32_t periodUs)

Sets the timer channel period in microseconds.

This function sets the timer channel period in microseconds when timer channel mode is 32 bit periodic or dual 16
bit counter mode. The period range depends on the frequency of the LPIT functional clock and operation mode of
timer channel. If the required period is out of range, use the suitable mode if applicable. This function is only valid
for one single channel.

Parameters

in instance LPIT module instance number
in channel Timer channel number

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

610 CONTENTS

in periodUs Timer channel period in microseconds

Returns

Operation status

• STATUS_SUCCESS: Input period of timer channel is valid.

• STATUS_ERROR: Input period of timer channel is invalid.

Definition at line 329 of file lpit_driver.c.

16.59.5.16 void LPIT_DRV_SetTimerPeriodInDual16ModeByCount (uint32_t instance, uint32_t channel, uint16_t periodHigh,
uint16_t periodLow)

Sets the timer channel period in count unit.

This function sets the timer channel period in count unit when timer channel mode is dual 16 periodic counter mode.
The counter period of a running timer channel can be modified by first setting a new load value, the value will be
loaded after the timer channel expires. To abort the current cycle and start a timer channel period with the new
value, the timer channel must be disabled and enabled again.

Parameters

in instance LPIT module instance number
in channel Timer channel number
in periodHigh Period of higher 16 bit in count unit
in periodLow Period of lower 16 bit in count unit

Definition at line 588 of file lpit_driver.c.

16.59.5.17 status_t LPIT_DRV_SetTimerPeriodInDual16ModeByUs (uint32_t instance, uint32_t channel, uint16_t periodHigh,
uint16_t periodLow)

Sets the timer channel period in microseconds.

This function sets the timer channel period in microseconds when timer channel mode is dual 16 bit periodic counter
mode. The period range depends on the frequency of the LPIT functional clock and operation mode of timer channel.
If the required period is out of range, use the suitable mode if applicable. This function is only valid for one single
channel.

Parameters

in instance LPIT module instance number
in channel Timer channel number
in periodHigh Period of higher 16 bit in microseconds
in periodLow Period of lower 16 bit in microseconds

Returns

Operation status

• STATUS_SUCCESS: Input period of timer channel is valid.

• STATUS_ERROR: Input period of timer channel is invalid.

Definition at line 400 of file lpit_driver.c.

16.59.5.18 void LPIT_DRV_StartTimerChannels (uint32_t instance, uint32_t mask)

Starts the timer channel counting.

This function allows starting timer channels simultaneously . After calling this function, timer channels are going
operate depend on mode and control bits which controls timer channel start, reload and restart.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.59 LPIT Driver 611

Parameters

in instance LPIT module instance number
in mask Timer channels starting mask that decides which channels will be started

• For example:

– with mask = 0x01U then channel 0 will be started

– with mask = 0x02U then channel 1 will be started

– with mask = 0x03U then channel 0 and channel 1 will be started

Definition at line 279 of file lpit_driver.c.

16.59.5.19 void LPIT_DRV_StopTimerChannels (uint32_t instance, uint32_t mask)

Stops the timer channel counting.

This function allows stop timer channels simultaneously from counting. Timer channels reload their periods respec-
tively after the next time they call the LPIT_DRV_StartTimerChannels. Note that: In 32-bit Trigger Accumulator
mode, the counter will load on the first trigger rising edge.

Parameters

in instance LPIT module instance number
in mask Timer channels stopping mask that decides which channels will be stopped

• For example:

– with mask = 0x01U then channel 0 will be stopped

– with mask = 0x02U then channel 1 will be stopped

– with mask = 0x03U then channel 0 and channel 1 will be stopped

Definition at line 303 of file lpit_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

612 CONTENTS

16.60 LPSPI Driver

16.60.1 Detailed Description

Low Power Serial Peripheral Interface Peripheral Driver.

Data Structures

• struct lpspi_master_config_t

Data structure containing information about a device on the SPI bus. More...

• struct lpspi_state_t

Runtime state structure for the LPSPI master driver. More...

• struct lpspi_slave_config_t

User configuration structure for the SPI slave driver. Implements : lpspi_slave_config_t_Class. More...

Enumerations

• enum lpspi_which_pcs_t { LPSPI_PCS0 = 0U, LPSPI_PCS1 = 1U, LPSPI_PCS2 = 2U, LPSPI_PCS3 = 3U }

LPSPI Peripheral Chip Select (PCS) configuration (which PCS to configure). Implements : lpspi_which_pcs_t_Class.

• enum lpspi_signal_polarity_t { LPSPI_ACTIVE_HIGH = 1U, LPSPI_ACTIVE_LOW = 0U }

LPSPI Signal (PCS and Host Request) Polarity configuration. Implements : lpspi_signal_polarity_t_Class.

• enum lpspi_clock_phase_t { LPSPI_CLOCK_PHASE_1ST_EDGE = 0U, LPSPI_CLOCK_PHASE_2ND_E←↩

DGE = 1U }

LPSPI clock phase configuration. Implements : lpspi_clock_phase_t_Class.

• enum lpspi_sck_polarity_t { LPSPI_SCK_ACTIVE_HIGH = 0U, LPSPI_SCK_ACTIVE_LOW = 1U }

LPSPI Clock Signal (SCK) Polarity configuration. Implements : lpspi_sck_polarity_t_Class.

• enum lpspi_transfer_type { LPSPI_USING_DMA = 0, LPSPI_USING_INTERRUPTS }

Type of LPSPI transfer (based on interrupts or DMA). Implements : lpspi_transfer_type_Class.

• enum transfer_status_t { LPSPI_TRANSFER_OK = 0U, LPSPI_TRANSMIT_FAIL, LPSPI_RECEIVE_FAIL }

Type of error reported by LPSPI.

Functions

• void LPSPI_DRV_SlaveIRQHandler (uint32_t instance)

Interrupt handler for LPSPI slave mode. This handler uses the buffers stored in the lpspi_master_state_t structs to
transfer data.

• void LPSPI_DRV_IRQHandler (uint32_t instance)

The function LPSPI_DRV_IRQHandler passes IRQ control to either the master or slave driver.

• void LPSPI_DRV_FillupTxBuffer (uint32_t instance)

The function LPSPI_DRV_FillupTxBuffer writes data in TX hardware buffer depending on driver state and number of
bytes remained to send.

• void LPSPI_DRV_ReadRXBuffer (uint32_t instance)

The function LPSPI_DRV_ReadRXBuffer reads data from RX hardware buffer and writes this data in RX software
buffer.

• void LPSPI_DRV_DisableTEIEInterrupts (uint32_t instance)

Disable the TEIE interrupts at the end of a transfer. Disable the interrupts and clear the status for transmit/receive
errors.

• void LPSPI_DRV_SlaveGetDefaultConfig (lpspi_slave_config_t ∗spiConfig)

Return default configuration for SPI master.

• status_t LPSPI_DRV_SlaveInit (uint32_t instance, lpspi_state_t ∗lpspiState, const lpspi_slave_config_←↩

t ∗slaveConfig)

Initializes a LPSPI instance for a slave mode operation, using interrupt mechanism.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.60 LPSPI Driver 613

• status_t LPSPI_DRV_SlaveDeinit (uint32_t instance)

Shuts down an LPSPI instance interrupt mechanism.

• status_t LPSPI_DRV_SlaveTransferBlocking (uint32_t instance, const uint8_t ∗sendBuffer, uint8_t ∗receive←↩

Buffer, uint16_t transferByteCount, uint32_t timeout)

Transfers data on LPSPI bus using a blocking call.

• status_t LPSPI_DRV_SlaveTransfer (uint32_t instance, const uint8_t ∗sendBuffer, uint8_t ∗receiveBuffer,
uint16_t transferByteCount)

Starts the transfer data on LPSPI bus using a non-blocking call.

• status_t LPSPI_DRV_SlaveAbortTransfer (uint32_t instance)

Aborts the transfer that started by a non-blocking call transfer function.

• status_t LPSPI_DRV_SlaveGetTransferStatus (uint32_t instance, uint32_t ∗bytesRemained)

Returns whether the previous transfer is finished.

• void LPSPI0_IRQHandler (void)

This function is the implementation of LPSPI0 handler named in startup code.

• void LPSPI1_IRQHandler (void)

This function is the implementation of LPSPI1 handler named in startup code.

• void LPSPI2_IRQHandler (void)

This function is the implementation of LPSPI2 handler named in startup code.

Variables

• LPSPI_Type ∗ g_lpspiBase [LPSPI_INSTANCE_COUNT]

Table of base pointers for SPI instances.

• IRQn_Type g_lpspiIrqId [LPSPI_INSTANCE_COUNT]

Table to save LPSPI IRQ enumeration numbers defined in the CMSIS header file.

• lpspi_state_t ∗ g_lpspiStatePtr [LPSPI_INSTANCE_COUNT]

Initialization and shutdown

• void LPSPI_DRV_MasterGetDefaultConfig (lpspi_master_config_t ∗spiConfig)

Return default configuration for SPI master.

• status_t LPSPI_DRV_MasterInit (uint32_t instance, lpspi_state_t ∗lpspiState, const lpspi_master_config_t
∗spiConfig)

Initializes a LPSPI instance for interrupt driven master mode operation.

• status_t LPSPI_DRV_MasterDeinit (uint32_t instance)

Shuts down a LPSPI instance.

• status_t LPSPI_DRV_MasterSetDelay (uint32_t instance, uint32_t delayBetwenTransfers, uint32_t delayS←↩

CKtoPCS, uint32_t delayPCStoSCK)

Configures the LPSPI master mode bus timing delay options.

Bus configuration

• status_t LPSPI_DRV_MasterConfigureBus (uint32_t instance, const lpspi_master_config_t ∗spiConfig,
uint32_t ∗calculatedBaudRate)

Configures the LPSPI port physical parameters to access a device on the bus when the LSPI instance is configured
for interrupt operation.

• status_t LPSPI_DRV_SetPcs (uint32_t instance, lpspi_which_pcs_t whichPcs, lpspi_signal_polarity_t polari-
ty)

Select the chip to communicate with.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

614 CONTENTS

Blocking transfers

• status_t LPSPI_DRV_MasterTransferBlocking (uint32_t instance, const uint8_t ∗sendBuffer, uint8_←↩

t ∗receiveBuffer, uint16_t transferByteCount, uint32_t timeout)

Performs an interrupt driven blocking SPI master mode transfer.

Non-blocking transfers

• status_t LPSPI_DRV_MasterTransfer (uint32_t instance, const uint8_t ∗sendBuffer, uint8_t ∗receiveBuffer,
uint16_t transferByteCount)

Performs an interrupt driven non-blocking SPI master mode transfer.

• status_t LPSPI_DRV_MasterGetTransferStatus (uint32_t instance, uint32_t ∗bytesRemained)

Returns whether the previous interrupt driven transfer is completed.

• status_t LPSPI_DRV_MasterAbortTransfer (uint32_t instance)

Terminates an interrupt driven asynchronous transfer early.

• void LPSPI_DRV_MasterIRQHandler (uint32_t instance)

Interrupt handler for LPSPI master mode. This handler uses the buffers stored in the lpspi_master_state_t structs to
transfer data.

16.60.2 Data Structure Documentation

16.60.2.1 struct lpspi_master_config_t

Data structure containing information about a device on the SPI bus.

The user must populate these members to set up the LPSPI master and properly communicate with the SPI device.
Implements : lpspi_master_config_t_Class

Definition at line 49 of file lpspi_master_driver.h.

Data Fields

• uint32_t bitsPerSec

• lpspi_which_pcs_t whichPcs

• lpspi_signal_polarity_t pcsPolarity

• bool isPcsContinuous

• uint16_t bitcount

• uint32_t lpspiSrcClk

• lpspi_clock_phase_t clkPhase

• lpspi_sck_polarity_t clkPolarity

• bool lsbFirst

• lpspi_transfer_type transferType

• uint8_t rxDMAChannel

• uint8_t txDMAChannel

• spi_callback_t callback

• void ∗ callbackParam

Field Documentation

16.60.2.1.1 uint16_t bitcount

Number of bits/frame, minimum is 8-bits

Definition at line 55 of file lpspi_master_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.60 LPSPI Driver 615

16.60.2.1.2 uint32_t bitsPerSec

Baud rate in bits per second

Definition at line 51 of file lpspi_master_driver.h.

16.60.2.1.3 spi_callback_t callback

Select the callback to transfer complete

Definition at line 63 of file lpspi_master_driver.h.

16.60.2.1.4 void∗ callbackParam

Select additional callback parameters if it's necessary

Definition at line 64 of file lpspi_master_driver.h.

16.60.2.1.5 lpspi_clock_phase_t clkPhase

Selects which phase of clock to capture data

Definition at line 57 of file lpspi_master_driver.h.

16.60.2.1.6 lpspi_sck_polarity_t clkPolarity

Selects clock polarity

Definition at line 58 of file lpspi_master_driver.h.

16.60.2.1.7 bool isPcsContinuous

Keeps PCS asserted until transfer complete

Definition at line 54 of file lpspi_master_driver.h.

16.60.2.1.8 uint32_t lpspiSrcClk

Module source clock

Definition at line 56 of file lpspi_master_driver.h.

16.60.2.1.9 bool lsbFirst

Option to transmit LSB first

Definition at line 59 of file lpspi_master_driver.h.

16.60.2.1.10 lpspi_signal_polarity_t pcsPolarity

PCS polarity

Definition at line 53 of file lpspi_master_driver.h.

16.60.2.1.11 uint8_t rxDMAChannel

Channel number for DMA rx channel. If DMA mode isn't used this field will be ignored.

Definition at line 61 of file lpspi_master_driver.h.

16.60.2.1.12 lpspi_transfer_type transferType

Type of LPSPI transfer

Definition at line 60 of file lpspi_master_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

616 CONTENTS

16.60.2.1.13 uint8_t txDMAChannel

Channel number for DMA tx channel. If DMA mode isn't used this field will be ignored.

Definition at line 62 of file lpspi_master_driver.h.

16.60.2.1.14 lpspi_which_pcs_t whichPcs

Selects which PCS to use

Definition at line 52 of file lpspi_master_driver.h.

16.60.2.2 struct lpspi_state_t

Runtime state structure for the LPSPI master driver.

This structure holds data that is used by the LPSPI peripheral driver to communicate between the transfer function
and the interrupt handler. The interrupt handler also uses this information to keep track of its progress. The
user must pass the memory for this run-time state structure. The LPSPI master driver populates the members.
Implements : lpspi_state_t_Class

Definition at line 124 of file lpspi_shared_function.h.

Data Fields

• uint16_t bitsPerFrame
• uint16_t bytesPerFrame
• bool isPcsContinuous
• bool isBlocking
• uint32_t lpspiSrcClk
• volatile bool isTransferInProgress
• const uint8_t ∗ txBuff
• uint8_t ∗ rxBuff
• volatile uint16_t txCount
• volatile uint16_t rxCount
• volatile uint16_t txFrameCnt
• volatile uint16_t rxFrameCnt
• volatile bool lsb
• uint8_t fifoSize
• uint8_t rxDMAChannel
• uint8_t txDMAChannel
• lpspi_transfer_type transferType
• semaphore_t lpspiSemaphore
• transfer_status_t status
• spi_callback_t callback
• void ∗ callbackParam
• uint32_t dummy

Field Documentation

16.60.2.2.1 uint16_t bitsPerFrame

Number of bits per frame: 8- to 4096-bits; needed for TCR programming

Definition at line 126 of file lpspi_shared_function.h.

16.60.2.2.2 uint16_t bytesPerFrame

Number of bytes per frame: 1- to 512-bytes

Definition at line 128 of file lpspi_shared_function.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.60 LPSPI Driver 617

16.60.2.2.3 spi_callback_t callback

Select the callback to transfer complete

Definition at line 147 of file lpspi_shared_function.h.

16.60.2.2.4 void∗ callbackParam

Select additional callback parameters if it's necessary

Definition at line 148 of file lpspi_shared_function.h.

16.60.2.2.5 uint32_t dummy

This field is used for the cases when TX is NULL and LPSPI is in DMA mode

Definition at line 149 of file lpspi_shared_function.h.

16.60.2.2.6 uint8_t fifoSize

RX/TX fifo size

Definition at line 141 of file lpspi_shared_function.h.

16.60.2.2.7 bool isBlocking

Save the transfer type

Definition at line 131 of file lpspi_shared_function.h.

16.60.2.2.8 bool isPcsContinuous

Option to keep chip select asserted until transfer complete; needed for TCR programming

Definition at line 129 of file lpspi_shared_function.h.

16.60.2.2.9 volatile bool isTransferInProgress

True if there is an active transfer

Definition at line 133 of file lpspi_shared_function.h.

16.60.2.2.10 semaphore_t lpspiSemaphore

The semaphore used for blocking transfers

Definition at line 145 of file lpspi_shared_function.h.

16.60.2.2.11 uint32_t lpspiSrcClk

Module source clock

Definition at line 132 of file lpspi_shared_function.h.

16.60.2.2.12 volatile bool lsb

True if first bit is LSB and false if first bit is MSB

Definition at line 140 of file lpspi_shared_function.h.

16.60.2.2.13 uint8_t∗ rxBuff

The buffer into which received bytes are placed

Definition at line 135 of file lpspi_shared_function.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

618 CONTENTS

16.60.2.2.14 volatile uint16_t rxCount

Number of bytes remaining to receive

Definition at line 137 of file lpspi_shared_function.h.

16.60.2.2.15 uint8_t rxDMAChannel

Channel number for DMA rx channel

Definition at line 142 of file lpspi_shared_function.h.

16.60.2.2.16 volatile uint16_t rxFrameCnt

Number of bytes from current frame which were already received

Definition at line 139 of file lpspi_shared_function.h.

16.60.2.2.17 transfer_status_t status

The status of the current

Definition at line 146 of file lpspi_shared_function.h.

16.60.2.2.18 lpspi_transfer_type transferType

Type of LPSPI transfer

Definition at line 144 of file lpspi_shared_function.h.

16.60.2.2.19 const uint8_t∗ txBuff

The buffer from which transmitted bytes are taken

Definition at line 134 of file lpspi_shared_function.h.

16.60.2.2.20 volatile uint16_t txCount

Number of bytes remaining to send

Definition at line 136 of file lpspi_shared_function.h.

16.60.2.2.21 uint8_t txDMAChannel

Channel number for DMA tx channel

Definition at line 143 of file lpspi_shared_function.h.

16.60.2.2.22 volatile uint16_t txFrameCnt

Number of bytes from current frame which were already sent

Definition at line 138 of file lpspi_shared_function.h.

16.60.2.3 struct lpspi_slave_config_t

User configuration structure for the SPI slave driver. Implements : lpspi_slave_config_t_Class.

Definition at line 47 of file lpspi_slave_driver.h.

Data Fields

• lpspi_signal_polarity_t pcsPolarity
• uint16_t bitcount
• lpspi_clock_phase_t clkPhase
• lpspi_which_pcs_t whichPcs
• lpspi_sck_polarity_t clkPolarity

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.60 LPSPI Driver 619

• bool lsbFirst
• lpspi_transfer_type transferType
• uint8_t rxDMAChannel
• uint8_t txDMAChannel
• spi_callback_t callback
• void ∗ callbackParam

Field Documentation

16.60.2.3.1 uint16_t bitcount

Number of bits/frame, minimum is 8-bits

Definition at line 50 of file lpspi_slave_driver.h.

16.60.2.3.2 spi_callback_t callback

Select the callback to transfer complete

Definition at line 58 of file lpspi_slave_driver.h.

16.60.2.3.3 void∗ callbackParam

Select additional callback parameters if it's necessary

Definition at line 59 of file lpspi_slave_driver.h.

16.60.2.3.4 lpspi_clock_phase_t clkPhase

Selects which phase of clock to capture data

Definition at line 51 of file lpspi_slave_driver.h.

16.60.2.3.5 lpspi_sck_polarity_t clkPolarity

Selects clock polarity

Definition at line 53 of file lpspi_slave_driver.h.

16.60.2.3.6 bool lsbFirst

Option to transmit LSB first

Definition at line 54 of file lpspi_slave_driver.h.

16.60.2.3.7 lpspi_signal_polarity_t pcsPolarity

PCS polarity

Definition at line 49 of file lpspi_slave_driver.h.

16.60.2.3.8 uint8_t rxDMAChannel

Channel number for DMA rx channel. If DMA mode isn't used this field will be ignored.

Definition at line 56 of file lpspi_slave_driver.h.

16.60.2.3.9 lpspi_transfer_type transferType

Type of LPSPI transfer

Definition at line 55 of file lpspi_slave_driver.h.

16.60.2.3.10 uint8_t txDMAChannel

Channel number for DMA tx channel. If DMA mode isn't used this field will be ignored.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

620 CONTENTS

Definition at line 57 of file lpspi_slave_driver.h.

16.60.2.3.11 lpspi_which_pcs_t whichPcs

Definition at line 52 of file lpspi_slave_driver.h.

16.60.3 Enumeration Type Documentation

16.60.3.1 enum lpspi_clock_phase_t

LPSPI clock phase configuration. Implements : lpspi_clock_phase_t_Class.

Enumerator

LPSPI_CLOCK_PHASE_1ST_EDGE Data captured on SCK 1st edge, changed on 2nd.

LPSPI_CLOCK_PHASE_2ND_EDGE Data changed on SCK 1st edge, captured on 2nd.

Definition at line 80 of file lpspi_shared_function.h.

16.60.3.2 enum lpspi_sck_polarity_t

LPSPI Clock Signal (SCK) Polarity configuration. Implements : lpspi_sck_polarity_t_Class.

Enumerator

LPSPI_SCK_ACTIVE_HIGH Signal is Active High (idles low).

LPSPI_SCK_ACTIVE_LOW Signal is Active Low (idles high).

Definition at line 89 of file lpspi_shared_function.h.

16.60.3.3 enum lpspi_signal_polarity_t

LPSPI Signal (PCS and Host Request) Polarity configuration. Implements : lpspi_signal_polarity_t_Class.

Enumerator

LPSPI_ACTIVE_HIGH Signal is Active High (idles low).

LPSPI_ACTIVE_LOW Signal is Active Low (idles high).

Definition at line 71 of file lpspi_shared_function.h.

16.60.3.4 enum lpspi_transfer_type

Type of LPSPI transfer (based on interrupts or DMA). Implements : lpspi_transfer_type_Class.

Enumerator

LPSPI_USING_DMA The driver will use DMA to perform SPI transfer

LPSPI_USING_INTERRUPTS The driver will use interrupts to perform SPI transfer

Definition at line 99 of file lpspi_shared_function.h.

16.60.3.5 enum lpspi_which_pcs_t

LPSPI Peripheral Chip Select (PCS) configuration (which PCS to configure). Implements : lpspi_which_pcs_t_←↩

Class.

Enumerator

LPSPI_PCS0 PCS[0]

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.60 LPSPI Driver 621

LPSPI_PCS1 PCS[1]

LPSPI_PCS2 PCS[2]

LPSPI_PCS3 PCS[3]

Definition at line 60 of file lpspi_shared_function.h.

16.60.3.6 enum transfer_status_t

Type of error reported by LPSPI.

Enumerator

LPSPI_TRANSFER_OK Transfer OK

LPSPI_TRANSMIT_FAIL Error during transmission

LPSPI_RECEIVE_FAIL Error during reception

Definition at line 107 of file lpspi_shared_function.h.

16.60.4 Function Documentation

16.60.4.1 void LPSPI0_IRQHandler (void)

This function is the implementation of LPSPI0 handler named in startup code.

It passes the instance to the shared LPSPI IRQ handler.

Definition at line 115 of file lpspi_irq.c.

16.60.4.2 void LPSPI1_IRQHandler (void)

This function is the implementation of LPSPI1 handler named in startup code.

It passes the instance to the shared LPSPI IRQ handler.

Definition at line 127 of file lpspi_irq.c.

16.60.4.3 void LPSPI2_IRQHandler (void)

This function is the implementation of LPSPI2 handler named in startup code.

It passes the instance to the shared LPSPI IRQ handler.

Definition at line 139 of file lpspi_irq.c.

16.60.4.4 void LPSPI_DRV_DisableTEIEInterrupts (uint32_t instance)

Disable the TEIE interrupts at the end of a transfer. Disable the interrupts and clear the status for transmit/receive
errors.

Definition at line 235 of file lpspi_shared_function.c.

16.60.4.5 void LPSPI_DRV_FillupTxBuffer (uint32_t instance)

The function LPSPI_DRV_FillupTxBuffer writes data in TX hardware buffer depending on driver state and number
of bytes remained to send.

The function LPSPI_DRV_FillupTxBuffer writes data in TX hardware buffer depending on driver state and number
of bytes remained to send.

Definition at line 123 of file lpspi_shared_function.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

622 CONTENTS

16.60.4.6 void LPSPI_DRV_IRQHandler (uint32_t instance)

The function LPSPI_DRV_IRQHandler passes IRQ control to either the master or slave driver.

The address of the IRQ handlers are checked to make sure they are non-zero before they are called. If the IRQ
handler's address is zero, it means that driver was not present in the link (because the IRQ handlers are marked
as weak). This would actually be a program error, because it means the master/slave config for the IRQ was set
incorrectly.

Definition at line 100 of file lpspi_shared_function.c.

16.60.4.7 status_t LPSPI_DRV_MasterAbortTransfer (uint32_t instance)

Terminates an interrupt driven asynchronous transfer early.

During an a-sync (non-blocking) transfer, the user has the option to terminate the transfer early if the transfer is still
in progress.

Parameters

instance The instance number of the LPSPI peripheral.

Returns

STATUS_SUCCESS The transfer was successful, or LPSPI_STATUS_NO_TRANSFER_IN_PROGRESS No
transfer is currently in progress.

Definition at line 578 of file lpspi_master_driver.c.

16.60.4.8 status_t LPSPI_DRV_MasterConfigureBus (uint32_t instance, const lpspi_master_config_t ∗ spiConfig,
uint32_t ∗ calculatedBaudRate)

Configures the LPSPI port physical parameters to access a device on the bus when the LSPI instance is configured
for interrupt operation.

In this function, the term "spiConfig" is used to indicate the SPI device for which the LPSPI master is communicating.
This is an optional function as the spiConfig parameters are normally configured in the initialization function or the
transfer functions, where these various functions would call the configure bus function. This is an example to set
up the lpspi_master_config_t structure to call the LPSPI_DRV_MasterConfigureBus function by passing in these
parameters:

1 lpspi_master_config_t spiConfig1; You can also declare spiConfig2, spiConfig3, etc
2 spiConfig1.bitsPerSec = 500000;
3 spiConfig1.whichPcs = LPSPI_PCS0;
4 spiConfig1.pcsPolarity = LPSPI_ACTIVE_LOW;
5 spiConfig1.isPcsContinuous = false;
6 spiConfig1.bitCount = 16;
7 spiConfig1.clkPhase = LPSPI_CLOCK_PHASE_1ST_EDGE;
8 spiConfig1.clkPolarity = LPSPI_ACTIVE_HIGH;
9 spiConfig1.lsbFirst= false;
10 spiConfig.transferType = LPSPI_USING_INTERRUPTS;

Parameters

instance The instance number of the LPSPI peripheral.
spiConfig Pointer to the spiConfig structure. This structure contains the settings for the SPI bus configu-

ration. The SPI device parameters are the desired baud rate (in bits-per-sec), bits-per-frame,
chip select attributes, clock attributes, and data shift direction.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.60 LPSPI Driver 623

calculated←↩

BaudRate
The calculated baud rate passed back to the user to determine if the calculated baud rate is
close enough to meet the needs. The baud rate never exceeds the desired baud rate.

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_ERROR if driver is error and need-
s to clean error.

Definition at line 309 of file lpspi_master_driver.c.

16.60.4.9 status_t LPSPI_DRV_MasterDeinit (uint32_t instance)

Shuts down a LPSPI instance.

This function resets the LPSPI peripheral, gates its clock, and disables the interrupt to the core. It first checks to
see if a transfer is in progress and if so returns an error status.

Parameters

instance The instance number of the LPSPI peripheral.

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_BUSY The transfer is still in
progress. STATUS_ERROR if driver is error and needs to clean error.

Definition at line 219 of file lpspi_master_driver.c.

16.60.4.10 void LPSPI_DRV_MasterGetDefaultConfig (lpspi_master_config_t ∗ spiConfig)

Return default configuration for SPI master.

Initializes a structured provided by user with the configuration of an interrupt based LPSPI transfer. Source clock for
LPSPI is configured to 8MHz. If the applications uses other frequency is necessary to update lpspiSrcClk field.

Parameters

spiConfig Pointer to configuration structure which is filled with default configuration

Definition at line 131 of file lpspi_master_driver.c.

16.60.4.11 status_t LPSPI_DRV_MasterGetTransferStatus (uint32_t instance, uint32_t ∗ bytesRemained)

Returns whether the previous interrupt driven transfer is completed.

When performing an a-sync (non-blocking) transfer, the user can call this function to ascertain the state of the
current transfer: in progress (or busy) or complete (success). In addition, if the transfer is still in progress, the user
can get the number of words that have been transferred up to now.

Parameters

instance The instance number of the LPSPI peripheral.
bytesRemained Pointer to a value that is filled in with the number of bytes that must be received.

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_BUSY The transfer is still in
progress. framesTransferred is filled with the number of words that have been transferred so far.

Definition at line 549 of file lpspi_master_driver.c.

16.60.4.12 status_t LPSPI_DRV_MasterInit (uint32_t instance, lpspi_state_t ∗ lpspiState, const lpspi_master_config_t
∗ spiConfig)

Initializes a LPSPI instance for interrupt driven master mode operation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

624 CONTENTS

This function uses an interrupt-driven method for transferring data. In this function, the term "spiConfig" is used
to indicate the SPI device for which the LPSPI master is communicating. This function initializes the run-time
state structure to track the ongoing transfers, un-gates the clock to the LPSPI module, resets the LPSPI module,
configures the IRQ state structure, enables the module-level interrupt to the core, and enables the LPSPI module.
This is an example to set up the lpspi_master_state_t and call the LPSPI_DRV_MasterInit function by passing in
these parameters:

1 lpspi_master_state_t lpspiMasterState; <- the user allocates memory for this structure
2 lpspi_master_config_t spiConfig; Can declare more configs for use in transfer functions
3 spiConfig.bitsPerSec = 500000;
4 spiConfig.whichPcs = LPSPI_PCS0;
5 spiConfig.pcsPolarity = LPSPI_ACTIVE_LOW;
6 spiConfig.isPcsContinuous = false;
7 spiConfig.bitCount = 16;
8 spiConfig.clkPhase = LPSPI_CLOCK_PHASE_1ST_EDGE;
9 spiConfig.clkPolarity = LPSPI_ACTIVE_HIGH;
10 spiConfig.lsbFirst= false;
11 spiConfig.transferType = LPSPI_USING_INTERRUPTS;
12 LPSPI_DRV_MasterInit(masterInstance, &lpspiMasterState, &spiConfig);

Parameters

instance The instance number of the LPSPI peripheral.
lpspiState The pointer to the LPSPI master driver state structure. The user passes the memory for this

run-time state structure. The LPSPI master driver populates the members. This run-time
state structure keeps track of the transfer in progress.

spiConfig The data structure containing information about a device on the SPI bus

Returns

An error code or STATUS_SUCCESS.

Definition at line 166 of file lpspi_master_driver.c.

16.60.4.13 void LPSPI_DRV_MasterIRQHandler (uint32_t instance)

Interrupt handler for LPSPI master mode. This handler uses the buffers stored in the lpspi_master_state_t structs
to transfer data.

Parameters

instance The instance number of the LPSPI peripheral.

Interrupt handler for LPSPI master mode. This handler uses the buffers stored in the lpspi_master_state_t structs
to transfer data.

Definition at line 867 of file lpspi_master_driver.c.

16.60.4.14 status_t LPSPI_DRV_MasterSetDelay (uint32_t instance, uint32_t delayBetwenTransfers, uint32_t delaySCKtoPCS,
uint32_t delayPCStoSCK)

Configures the LPSPI master mode bus timing delay options.

This function involves the LPSPI module's delay options to "fine tune" some of the signal timings and match the
timing needs of a slower peripheral device. This is an optional function that can be called after the LPSPI module
has been initialized for master mode. The timings are adjusted in terms of cycles of the baud rate clock. The bus
timing delays that can be adjusted are listed below:

SCK to PCS Delay: Adjustable delay option between the last edge of SCK to the de-assertion of the PCS signal.

PCS to SCK Delay: Adjustable delay option between the assertion of the PCS signal to the first SCK edge.

Delay between Transfers: Adjustable delay option between the de-assertion of the PCS signal for a frame to the
assertion of the PCS signal for the next frame.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.60 LPSPI Driver 625

Parameters

instance The instance number of the LPSPI peripheral.
delayBetwen←↩

Transfers
Minimum delay between 2 transfers in clock cycles

delaySCKtoP←↩

CS
Minimum delay between SCK and PCS in clock cycles

delayPCStoS←↩

CK
Minimum delay between PCS and SCK in clock cycles

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_ERROR if driver is error and need-
s to clean error.

Definition at line 266 of file lpspi_master_driver.c.

16.60.4.15 status_t LPSPI_DRV_MasterTransfer (uint32_t instance, const uint8_t ∗ sendBuffer, uint8_t ∗ receiveBuffer,
uint16_t transferByteCount)

Performs an interrupt driven non-blocking SPI master mode transfer.

This function simultaneously sends and receives data on the SPI bus, as SPI is naturally a full-duplex bus. The
function returns immediately after initiating the transfer. The user needs to check whether the transfer is complete
using the LPSPI_DRV_MasterGetTransferStatus function. This function allows the user to optionally pass in a SPI
configuration structure which allows the user to change the SPI bus attributes in conjunction with initiating a SPI
transfer. The difference between passing in the SPI configuration structure here as opposed to the configure bus
function is that the configure bus function returns the calculated baud rate where this function does not. The user
can also call the configure bus function prior to the transfer in which case the user would simply pass in a NULL to
the transfer function's device structure parameter. Depending on frame size sendBuffer and receiveBuffer must be
aligned like this: -1 byte if frame size <= 8 bits -2 bytes if 8 bits < frame size <= 16 bits -4 bytes if 16 bits < frame
size

Parameters

instance The instance number of the LPSPI peripheral.
spiConfig Pointer to the SPI configuration structure. This structure contains the settings for the SPI

bus configuration in this transfer. You may pass NULL for this parameter, in which case the
current bus configuration is used unmodified. The device can be configured separately by
calling the LPSPI_DRV_MasterConfigureBus function.

sendBuffer The pointer to the data buffer of the data to send. You may pass NULL for this parameter and
bytes with a value of 0 (zero) is sent.

receiveBuffer Pointer to the buffer where the received bytes are stored. If you pass NULL for this parameter,
the received bytes are ignored.

transferByte←↩

Count
The number of bytes to send and receive which is equal to size of send or receive buffers

Returns

STATUS_SUCCESS The transfer was successful, or STATUS_BUSY Cannot perform transfer because a
transfer is already in progress

Definition at line 511 of file lpspi_master_driver.c.

16.60.4.16 status_t LPSPI_DRV_MasterTransferBlocking (uint32_t instance, const uint8_t ∗ sendBuffer, uint8_t ∗
receiveBuffer, uint16_t transferByteCount, uint32_t timeout)

Performs an interrupt driven blocking SPI master mode transfer.

This function simultaneously sends and receives data on the SPI bus, as SPI is naturally a full-duplex bus. The
function does not return until the transfer is complete. This function allows the user to optionally pass in a SPI

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

626 CONTENTS

configuration structure which allows the user to change the SPI bus attributes in conjunction with initiating a SPI
transfer. The difference between passing in the SPI configuration structure here as opposed to the configure bus
function is that the configure bus function returns the calculated baud rate where this function does not. The user
can also call the configure bus function prior to the transfer in which case the user would simply pass in a NULL to
the transfer function's device structure parameter. Depending on frame size sendBuffer and receiveBuffer must be
aligned like this: -1 byte if frame size <= 8 bits -2 bytes if 8 bits < frame size <= 16 bits -4 bytes if 16 bits < frame
size

Parameters

instance The instance number of the LPSPI peripheral.
sendBuffer The pointer to the data buffer of the data to send. You may pass NULL for this parameter and

bytes with a value of 0 (zero) is sent.
receiveBuffer Pointer to the buffer where the received bytes are stored. If you pass NULL for this parameter,

the received bytes are ignored.
transferByte←↩

Count
The number of bytes to send and receive which is equal to size of send or receive buffers

timeout A timeout for the transfer in milliseconds. If the transfer takes longer than this amount of time,
the transfer is aborted and a STATUS_TIMEOUT error returned.

Returns

STATUS_SUCCESS The transfer was successful, or STATUS_BUSY Cannot perform transfer because a
transfer is already in progress, or STATUS_TIMEOUT The transfer timed out and was aborted.

Definition at line 424 of file lpspi_master_driver.c.

16.60.4.17 void LPSPI_DRV_ReadRXBuffer (uint32_t instance)

The function LPSPI_DRV_ReadRXBuffer reads data from RX hardware buffer and writes this data in RX software
buffer.

The function LPSPI_DRV_ReadRXBuffer reads data from RX hardware buffer and writes this data in RX software
buffer.

Definition at line 192 of file lpspi_shared_function.c.

16.60.4.18 status_t LPSPI_DRV_SetPcs (uint32_t instance, lpspi_which_pcs_t whichPcs, lpspi_signal_polarity_t
polarity)

Select the chip to communicate with.

The main purpose of this function is to set the PCS and the appropriate polarity.

Parameters

instance LPSPI instance
whichPcs selected chip

polarity chip select line polarity

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_ERROR if driver is error and need-
s to clean error.

Definition at line 600 of file lpspi_master_driver.c.

16.60.4.19 status_t LPSPI_DRV_SlaveAbortTransfer (uint32_t instance)

Aborts the transfer that started by a non-blocking call transfer function.

This function stops the transfer which was started by the calling the SPI_DRV_SlaveTransfer() function.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.60 LPSPI Driver 627

Parameters

instance The instance number of SPI peripheral

Returns

STATUS_SUCCESS if everything is OK.

Definition at line 512 of file lpspi_slave_driver.c.

16.60.4.20 status_t LPSPI_DRV_SlaveDeinit (uint32_t instance)

Shuts down an LPSPI instance interrupt mechanism.

Disables the LPSPI module, gates its clock, and changes the LPSPI slave driver state to NonInit for the LPSPI slave
module which is initialized with interrupt mechanism. After de-initialization, the user can re-initialize the LPSPI slave
module with other mechanisms.

Parameters

instance The instance number of the LPSPI peripheral.

Returns

STATUS_SUCCESS if driver starts to send/receive data successfully. STATUS_ERROR if driver is error and
needs to clean error. STATUS_BUSY if a transfer is in progress

Definition at line 201 of file lpspi_slave_driver.c.

16.60.4.21 void LPSPI_DRV_SlaveGetDefaultConfig (lpspi_slave_config_t ∗ spiConfig)

Return default configuration for SPI master.

Initializes a structured provided by user with the configuration of an interrupt based LPSPI transfer.

Definition at line 105 of file lpspi_slave_driver.c.

16.60.4.22 status_t LPSPI_DRV_SlaveGetTransferStatus (uint32_t instance, uint32_t ∗ bytesRemained)

Returns whether the previous transfer is finished.

When performing an a-sync transfer, the user can call this function to ascertain the state of the current transfer: in
progress (or busy) or complete (success). In addition, if the transfer is still in progress, the user can get the number
of bytes that have been transferred up to now.

Parameters

instance The instance number of the LPSPI peripheral.
bytesRemained Pointer to value that is filled in with the number of frames that have been sent in the active

transfer. A frame is defined as the number of bits per frame.

Returns

STATUS_SUCCESS The transfer has completed successfully, or STATUS_BUSY The transfer is still in
progress. STATUS_ERROR if driver is error and needs to clean error.

Definition at line 550 of file lpspi_slave_driver.c.

16.60.4.23 status_t LPSPI_DRV_SlaveInit (uint32_t instance, lpspi_state_t ∗ lpspiState, const lpspi_slave_config_t ∗
slaveConfig)

Initializes a LPSPI instance for a slave mode operation, using interrupt mechanism.

This function un-gates the clock to the LPSPI module, initializes the LPSPI for slave mode. After it is initialized, the
LPSPI module is configured in slave mode and the user can start transmitting and receiving data by calling send,
receive, and transfer functions. This function indicates LPSPI slave uses an interrupt mechanism.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

628 CONTENTS

Parameters

instance The instance number of the LPSPI peripheral.
lpspiState The pointer to the LPSPI slave driver state structure.

slaveConfig The configuration structure lpspi_slave_user_config_t which configures the data bus format.

Returns

An error code or STATUS_SUCCESS.

Definition at line 125 of file lpspi_slave_driver.c.

16.60.4.24 void LPSPI_DRV_SlaveIRQHandler (uint32_t instance)

Interrupt handler for LPSPI slave mode. This handler uses the buffers stored in the lpspi_master_state_t structs to
transfer data.

Parameters

instance The instance number of the LPSPI peripheral.

Definition at line 437 of file lpspi_slave_driver.c.

16.60.4.25 status_t LPSPI_DRV_SlaveTransfer (uint32_t instance, const uint8_t ∗ sendBuffer, uint8_t ∗ receiveBuffer,
uint16_t transferByteCount)

Starts the transfer data on LPSPI bus using a non-blocking call.

This function checks the driver status and mechanism and transmits/receives data through the LPSPI bus. If the
sendBuffer is NULL, the transmit process is ignored. If the receiveBuffer is NULL, the receive process is ignored. If
both the receiveBuffer and the sendBuffer are available, the transmit and the receive progress is processed. If only
the receiveBuffer is available, the receive is processed. Otherwise, the transmit is processed. This function only
returns when the processes are completed. This function uses an interrupt mechanism. Depending on frame size
sendBuffer and receiveBuffer must be aligned like this: -1 byte if frame size <= 8 bits -2 bytes if 8 bits < frame size
<= 16 bits -4 bytes if 16 bits < frame size

Parameters

instance The instance number of LPSPI peripheral
sendBuffer The pointer to data that user wants to transmit.

receiveBuffer The pointer to data that user wants to store received data.
transferByte←↩

Count
The number of bytes to send and receive which is equal to size of send or receive buffers

Returns

STATUS_SUCCESS if driver starts to send/receive data successfully. STATUS_ERROR if driver is error and
needs to clean error. STATUS_BUSY if a transfer is in progress

Definition at line 280 of file lpspi_slave_driver.c.

16.60.4.26 status_t LPSPI_DRV_SlaveTransferBlocking (uint32_t instance, const uint8_t ∗ sendBuffer, uint8_t ∗ receiveBuffer,
uint16_t transferByteCount, uint32_t timeout)

Transfers data on LPSPI bus using a blocking call.

This function checks the driver status and mechanism and transmits/receives data through the LPSPI bus. If the
sendBuffer is NULL, the transmit process is ignored. If the receiveBuffer is NULL, the receive process is ignored. If
both the receiveBuffer and the sendBuffer are available, the transmit and the receive progress is processed. If only
the receiveBuffer is available, the receive is processed. Otherwise, the transmit is processed. This function only
returns when the processes are completed. This function uses an interrupt mechanism. Depending on frame size
sendBuffer and receiveBuffer must be aligned like this: -1 byte if frame size <= 8 bits -2 bytes if 8 bits < frame size
<= 16 bits -4 bytes if 16 bits < frame size

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.60 LPSPI Driver 629

Parameters

instance The instance number of LPSPI peripheral
sendBuffer The pointer to data that user wants to transmit.

receiveBuffer The pointer to data that user wants to store received data.
transferByte←↩

Count
The number of bytes to send and receive which is equal to size of send or receive buffers

timeout The maximum number of milliseconds that function waits before timed out reached.

Returns

STATUS_SUCCESS if driver starts to send/receive data successfully. STATUS_ERROR if driver is error and
needs to clean error. STATUS_BUSY if a transfer is in progress STATUS_TIMEOUT if time out reached while
transferring is in progress.

Definition at line 230 of file lpspi_slave_driver.c.

16.60.5 Variable Documentation

16.60.5.1 LPSPI_Type∗ g_lpspiBase[LPSPI_INSTANCE_COUNT]

Table of base pointers for SPI instances.

Definition at line 78 of file lpspi_shared_function.c.

16.60.5.2 IRQn_Type g_lpspiIrqId[LPSPI_INSTANCE_COUNT]

Table to save LPSPI IRQ enumeration numbers defined in the CMSIS header file.

Definition at line 81 of file lpspi_shared_function.c.

16.60.5.3 lpspi_state_t∗ g_lpspiStatePtr[LPSPI_INSTANCE_COUNT]

Definition at line 84 of file lpspi_shared_function.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

630 CONTENTS

16.61 LPTMR Driver

16.61.1 Detailed Description

Low Power Timer Peripheral Driver.

The LPTMR is a configurable general-purpose 16-bit counter that has two operational modes: Timer and Pulse-←↩

Counter.

Depending on the configured operational mode, the counter in the LPTMR can be incremented using a clock input
(Timer mode) or an event counter (external events like button presses or internal events from different trigger
sources).

Timer Mode

In Timer mode, the LPTMR increments the internal counter from a selectable clock source. An optional 16-bit
prescaler can be configured.

Pulse-Counter Mode

In Pulse-Counter Mode, the LPTMR counter increments from a selectable trigger source, input pin, which can be
an external event (like a button press) or internal events (like triggers from TRGMUX).

An optional 16-bit glitch-filter can be configured to reject events that have a duration below a set period.

Initialization prerequisites

Before configuring the LPTMR, the peripheral clock must be enabled from the PCC module.

The peripheral clock must not be confused with the counter clock, which is selectable within the LPTMR.

Driver configuration

The LPTMR driver allows configuring the LPTMR for Pulse-Counter Mode or Timer Mode via the general configu-
ration structure.

Configurable options:

• work mode (timer or pulse-counter)

• enable interrupts and DMA requests

• free running mode (overflow mode of the counter)

• compare value (interrupt generation on counter value)

• compare value measurement units (counter ticks or microseconds)

• input clock selection

• prescaler/glitch filter configuration

• enable bypass prescaler

• pin select (for pulse-counter mode)

• input pin and polarity (for pulse-counter mode)

/* LPTMR initialization of config structure */
lptmr_config_t config = {
.workMode = LPTMR_WORKMODE_TIMER,
.dmaRequest = false,
.interruptEnable = false,
.freeRun = false,
.compareValue = 1000U,
.counterUnits = LPTMR_COUNTER_UNITS_TICKS,
.clockSelect = LPTMR_CLOCKSOURCE_SIRCDIV2,
.prescaler = LPTMR_PRESCALE_2,
.bypassPrescaler = false,

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.61 LPTMR Driver 631

.pinSelect = LPTMR_PINSELECT_TRGMUX,

.pinPolarity = LPTMR_PINPOLARITY_RISING,
};

/* Initialize the LPTMR and start the counter in a separate operation */
status = LPTMR_DRV_Init(0, &config, false);
/* Start timer counting */
LPTMR_DRV_StartCounter(0);

API

Some of the features exposed by the API are targeted specifically for Timer Mode or Pulse-Counter Mode. For
example, configuring the Compare Value in microseconds makes sense only for Timer Mode, so therefor it is
restricted for use in Pulse-Counter mode.

For any invalid configuration the functions will either return an error code or trigger DEV_ASSERT (if enabled). For
more details, please refer to each function description.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\lptmr_driver.c
${S32SDK_PATH}\platform\drivers\src\lptmr_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager

Data Structures

• struct lptmr_config_t

Defines the configuration structure for LPTMR. More...

Enumerations

• enum lptmr_pinselect_t { LPTMR_PINSELECT_TRGMUX = 0x00u, LPTMR_PINSELECT_ALT2 = 0x02u,
LPTMR_PINSELECT_ALT3 = 0x03u }

Pulse Counter Input selection Implements : lptmr_pinselect_t_Class.

• enum lptmr_pinpolarity_t { LPTMR_PINPOLARITY_RISING = 0u, LPTMR_PINPOLARITY_FALLING = 1u }

Pulse Counter input polarity Implements : lptmr_pinpolarity_t_Class.

• enum lptmr_workmode_t { LPTMR_WORKMODE_TIMER = 0u, LPTMR_WORKMODE_PULSECOUNTER
= 1u }

Work Mode Implements : lptmr_workmode_t_Class.

• enum lptmr_prescaler_t {
LPTMR_PRESCALE_2 = 0x00u, LPTMR_PRESCALE_4_GLITCHFILTER_2 = 0x01u, LPTMR_PRESCA←↩

LE_8_GLITCHFILTER_4 = 0x02u, LPTMR_PRESCALE_16_GLITCHFILTER_8 = 0x03u,
LPTMR_PRESCALE_32_GLITCHFILTER_16 = 0x04u, LPTMR_PRESCALE_64_GLITCHFILTER_32 =

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

632 CONTENTS

0x05u, LPTMR_PRESCALE_128_GLITCHFILTER_64 = 0x06u, LPTMR_PRESCALE_256_GLITCHFILT←↩

ER_128 = 0x07u,
LPTMR_PRESCALE_512_GLITCHFILTER_256 = 0x08u, LPTMR_PRESCALE_1024_GLITCHFILTER_512
= 0x09u, LPTMR_PRESCALE_2048_GLITCHFILTER_1024 = 0x0Au, LPTMR_PRESCALE_4096_GLITC←↩

HFILTER_2048 = 0x0Bu,
LPTMR_PRESCALE_8192_GLITCHFILTER_4096 = 0x0Cu, LPTMR_PRESCALE_16384_GLITCHFILTE←↩

R_8192 = 0x0Du, LPTMR_PRESCALE_32768_GLITCHFILTER_16384 = 0x0Eu, LPTMR_PRESCALE_←↩

65536_GLITCHFILTER_32768 = 0x0Fu }

Prescaler Selection Implements : lptmr_prescaler_t_Class.

• enum lptmr_clocksource_t { LPTMR_CLOCKSOURCE_SIRCDIV2 = 0x00u, LPTMR_CLOCKSOURCE_1←↩

KHZ_LPO = 0x01u, LPTMR_CLOCKSOURCE_RTC = 0x02u, LPTMR_CLOCKSOURCE_PCC = 0x03u }

Clock Source selection Implements : lptmr_clocksource_t_Class.

• enum lptmr_counter_units_t { LPTMR_COUNTER_UNITS_TICKS = 0x00U, LPTMR_COUNTER_UNITS_←↩

MICROSECONDS = 0x01U }

Defines the LPTMR counter units available for configuring or reading the timer compare value.

LPTMR Driver Functions

• void LPTMR_DRV_InitConfigStruct (lptmr_config_t ∗const config)

Initialize a configuration structure with default values.

• void LPTMR_DRV_Init (const uint32_t instance, const lptmr_config_t ∗const config, const bool startCounter)

Initialize a LPTMR instance with values from an input configuration structure.

• void LPTMR_DRV_SetConfig (const uint32_t instance, const lptmr_config_t ∗const config)

Configure a LPTMR instance.

• void LPTMR_DRV_GetConfig (const uint32_t instance, lptmr_config_t ∗const config)

Get the current configuration of a LPTMR instance.

• void LPTMR_DRV_Deinit (const uint32_t instance)

De-initialize a LPTMR instance.

• status_t LPTMR_DRV_SetCompareValueByCount (const uint32_t instance, const uint16_t compareValue←↩

ByCount)

Set the compare value in counter tick units, for a LPTMR instance.

• void LPTMR_DRV_GetCompareValueByCount (const uint32_t instance, uint16_t ∗const compareValueBy←↩

Count)

Get the compare value in counter tick units, of a LPTMR instance.

• status_t LPTMR_DRV_SetCompareValueByUs (const uint32_t instance, const uint32_t compareValueUs)

Set the compare value for Timer Mode in microseconds, for a LPTMR instance.

• void LPTMR_DRV_GetCompareValueByUs (const uint32_t instance, uint32_t ∗const compareValueUs)

Get the compare value in microseconds, of a LPTMR instance.

• bool LPTMR_DRV_GetCompareFlag (const uint32_t instance)

Get the current state of the Compare Flag of a LPTMR instance.

• void LPTMR_DRV_ClearCompareFlag (const uint32_t instance)

Clear the Compare Flag of a LPTMR instance.

• bool LPTMR_DRV_IsRunning (const uint32_t instance)

Get the run state of a LPTMR instance.

• void LPTMR_DRV_SetInterrupt (const uint32_t instance, const bool enableInterrupt)

Enable/disable the LPTMR interrupt.

• uint16_t LPTMR_DRV_GetCounterValueByCount (const uint32_t instance)

Get the current counter value in counter tick units.

• void LPTMR_DRV_StartCounter (const uint32_t instance)

Enable the LPTMR / Start the counter.

• void LPTMR_DRV_StopCounter (const uint32_t instance)

Disable the LPTMR / Stop the counter.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.61 LPTMR Driver 633

• void LPTMR_DRV_SetPinConfiguration (const uint32_t instance, const lptmr_pinselect_t pinSelect, const
lptmr_pinpolarity_t pinPolarity)

Set the Input Pin configuration for Pulse Counter mode.

16.61.2 Data Structure Documentation

16.61.2.1 struct lptmr_config_t

Defines the configuration structure for LPTMR.

Implements : lptmr_config_t_Class

Definition at line 110 of file lptmr_driver.h.

Data Fields

• bool dmaRequest

• bool interruptEnable

• bool freeRun

• lptmr_workmode_t workMode

• lptmr_clocksource_t clockSelect

• lptmr_prescaler_t prescaler

• bool bypassPrescaler

• uint32_t compareValue

• lptmr_counter_units_t counterUnits

• lptmr_pinselect_t pinSelect

• lptmr_pinpolarity_t pinPolarity

Field Documentation

16.61.2.1.1 bool bypassPrescaler

Enable/Disable prescaler bypass

Definition at line 120 of file lptmr_driver.h.

16.61.2.1.2 lptmr_clocksource_t clockSelect

Clock selection for Timer/Glitch filter

Definition at line 118 of file lptmr_driver.h.

16.61.2.1.3 uint32_t compareValue

Compare value

Definition at line 121 of file lptmr_driver.h.

16.61.2.1.4 lptmr_counter_units_t counterUnits

Compare value units

Definition at line 122 of file lptmr_driver.h.

16.61.2.1.5 bool dmaRequest

Enable/Disable DMA requests

Definition at line 113 of file lptmr_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

634 CONTENTS

16.61.2.1.6 bool freeRun

Enable/Disable Free Running Mode

Definition at line 115 of file lptmr_driver.h.

16.61.2.1.7 bool interruptEnable

Enable/Disable Interrupt

Definition at line 114 of file lptmr_driver.h.

16.61.2.1.8 lptmr_pinpolarity_t pinPolarity

Pin Polarity for Pulse-Counter

Definition at line 125 of file lptmr_driver.h.

16.61.2.1.9 lptmr_pinselect_t pinSelect

Pin selection for Pulse-Counter

Definition at line 124 of file lptmr_driver.h.

16.61.2.1.10 lptmr_prescaler_t prescaler

Prescaler Selection

Definition at line 119 of file lptmr_driver.h.

16.61.2.1.11 lptmr_workmode_t workMode

Time/Pulse Counter Mode

Definition at line 116 of file lptmr_driver.h.

16.61.3 Enumeration Type Documentation

16.61.3.1 enum lptmr_clocksource_t

Clock Source selection Implements : lptmr_clocksource_t_Class.

Enumerator

LPTMR_CLOCKSOURCE_SIRCDIV2 SIRC clock

LPTMR_CLOCKSOURCE_1KHZ_LPO 1kHz LPO clock

LPTMR_CLOCKSOURCE_RTC RTC clock

LPTMR_CLOCKSOURCE_PCC PCC configured clock

Definition at line 87 of file lptmr_driver.h.

16.61.3.2 enum lptmr_counter_units_t

Defines the LPTMR counter units available for configuring or reading the timer compare value.

Implements : lptmr_counter_units_t_Class

Enumerator

LPTMR_COUNTER_UNITS_TICKS

LPTMR_COUNTER_UNITS_MICROSECONDS

Definition at line 99 of file lptmr_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.61 LPTMR Driver 635

16.61.3.3 enum lptmr_pinpolarity_t

Pulse Counter input polarity Implements : lptmr_pinpolarity_t_Class.

Enumerator

LPTMR_PINPOLARITY_RISING Count pulse on rising edge

LPTMR_PINPOLARITY_FALLING Count pulse on falling edge

Definition at line 49 of file lptmr_driver.h.

16.61.3.4 enum lptmr_pinselect_t

Pulse Counter Input selection Implements : lptmr_pinselect_t_Class.

Enumerator

LPTMR_PINSELECT_TRGMUX Count pulses from TRGMUX trigger

LPTMR_PINSELECT_ALT2 Count pulses from pin alternative 2

LPTMR_PINSELECT_ALT3 Count pulses from pin alternative 3

Definition at line 37 of file lptmr_driver.h.

16.61.3.5 enum lptmr_prescaler_t

Prescaler Selection Implements : lptmr_prescaler_t_Class.

Enumerator

LPTMR_PRESCALE_2 Timer mode: prescaler 2, Glitch filter mode: invalid

LPTMR_PRESCALE_4_GLITCHFILTER_2 Timer mode: prescaler 4, Glitch filter mode: 2 clocks

LPTMR_PRESCALE_8_GLITCHFILTER_4 Timer mode: prescaler 8, Glitch filter mode: 4 clocks

LPTMR_PRESCALE_16_GLITCHFILTER_8 Timer mode: prescaler 16, Glitch filter mode: 8 clocks

LPTMR_PRESCALE_32_GLITCHFILTER_16 Timer mode: prescaler 32, Glitch filter mode: 16 clocks

LPTMR_PRESCALE_64_GLITCHFILTER_32 Timer mode: prescaler 64, Glitch filter mode: 32 clocks

LPTMR_PRESCALE_128_GLITCHFILTER_64 Timer mode: prescaler 128, Glitch filter mode: 64 clocks

LPTMR_PRESCALE_256_GLITCHFILTER_128 Timer mode: prescaler 256, Glitch filter mode: 128 clocks

LPTMR_PRESCALE_512_GLITCHFILTER_256 Timer mode: prescaler 512, Glitch filter mode: 256 clocks

LPTMR_PRESCALE_1024_GLITCHFILTER_512 Timer mode: prescaler 1024, Glitch filter mode: 512 clocks

LPTMR_PRESCALE_2048_GLITCHFILTER_1024 Timer mode: prescaler 2048, Glitch filter mode: 1024
clocks

LPTMR_PRESCALE_4096_GLITCHFILTER_2048 Timer mode: prescaler 4096, Glitch filter mode: 2048
clocks

LPTMR_PRESCALE_8192_GLITCHFILTER_4096 Timer mode: prescaler 8192, Glitch filter mode: 4096
clocks

LPTMR_PRESCALE_16384_GLITCHFILTER_8192 Timer mode: prescaler 16384, Glitch filter mode: 8192
clocks

LPTMR_PRESCALE_32768_GLITCHFILTER_16384 Timer mode: prescaler 32768, Glitch filter mode←↩

: 16384 clocks

LPTMR_PRESCALE_65536_GLITCHFILTER_32768 Timer mode: prescaler 65536, Glitch filter mode←↩

: 32768 clocks

Definition at line 65 of file lptmr_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

636 CONTENTS

16.61.3.6 enum lptmr_workmode_t

Work Mode Implements : lptmr_workmode_t_Class.

Enumerator

LPTMR_WORKMODE_TIMER Timer

LPTMR_WORKMODE_PULSECOUNTER Pulse counter

Definition at line 57 of file lptmr_driver.h.

16.61.4 Function Documentation

16.61.4.1 void LPTMR_DRV_ClearCompareFlag (const uint32_t instance)

Clear the Compare Flag of a LPTMR instance.

Parameters

in instance - LPTMR instance number

16.61.4.2 void LPTMR_DRV_Deinit (const uint32_t instance)

De-initialize a LPTMR instance.

Parameters

in instance - LPTMR instance number

16.61.4.3 bool LPTMR_DRV_GetCompareFlag (const uint32_t instance)

Get the current state of the Compare Flag of a LPTMR instance.

Parameters

in instance - LPTMR instance number

Returns

The state of the Compare Flag

16.61.4.4 void LPTMR_DRV_GetCompareValueByCount (const uint32_t instance, uint16_t ∗const compareValueByCount)

Get the compare value in counter tick units, of a LPTMR instance.

Parameters

in instance - LPTMR instance number
out compareValue←↩

ByCount
- Pointer to current compare value, in counter ticks

16.61.4.5 void LPTMR_DRV_GetCompareValueByUs (const uint32_t instance, uint32_t ∗const compareValueUs)

Get the compare value in microseconds, of a LPTMR instance.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.61 LPTMR Driver 637

in instance - LPTMR instance number
out compareValue←↩

Us
- Pointer to current compare value, in microseconds

16.61.4.6 void LPTMR_DRV_GetConfig (const uint32_t instance, lptmr_config_t ∗const config)

Get the current configuration of a LPTMR instance.

Parameters

in instance - LPTMR instance number
out config - Pointer to the output configuration structure

16.61.4.7 uint16_t LPTMR_DRV_GetCounterValueByCount (const uint32_t instance)

Get the current counter value in counter tick units.

Parameters

in instance - LPTMR instance number

Returns

The current counter value

16.61.4.8 void LPTMR_DRV_Init (const uint32_t instance, const lptmr_config_t ∗const config, const bool startCounter)

Initialize a LPTMR instance with values from an input configuration structure.

When (counterUnits == LPTMR_COUNTER_UNITS_MICROSECONDS) the function will automatically configure
the timer for the input compareValue in microseconds. The input parameters for 'prescaler' and 'bypassPrescaler'
will be ignored - their values will be adapted by the function, to best fit the input compareValue (in microseconds)
for the operating clock frequency.

LPTMR_COUNTER_UNITS_MICROSECONDS may only be used for LPTMR_WORKMODE_TIMER mode. Oth-
erwise the function shall not convert 'compareValue' in ticks and this is likely to cause erroneous behavior.

When (counterUnits == LPTMR_COUNTER_UNITS_TICKS) the function will use the 'prescaler' and 'bypass←↩

Prescaler' provided in the input configuration structure.

Parameters

in instance - LPTMR instance number
in config - Pointer to the input configuration structure
in startCounter - Flag for starting the counter immediately after configuration

16.61.4.9 void LPTMR_DRV_InitConfigStruct (lptmr_config_t ∗const config)

Initialize a configuration structure with default values.

Parameters

out config - Pointer to the configuration structure to be initialized

16.61.4.10 bool LPTMR_DRV_IsRunning (const uint32_t instance)

Get the run state of a LPTMR instance.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

638 CONTENTS

Parameters

in instance - LPTMR instance number

Returns

The run state of the LPTMR instance:

• true: Timer/Counter started

• false: Timer/Counter stopped

16.61.4.11 status_t LPTMR_DRV_SetCompareValueByCount (const uint32_t instance, const uint16_t compareValueByCount)

Set the compare value in counter tick units, for a LPTMR instance.

Parameters

in instance - LPTMR instance number
in compareValue←↩

ByCount
- The compare value in counter ticks, to be written

Returns

Operation status:

• STATUS_SUCCESS: completed successfully

• STATUS_ERROR: cannot reconfigure compare value (TCF not set)

• STATUS_TIMEOUT: compare value greater then current counter value

16.61.4.12 status_t LPTMR_DRV_SetCompareValueByUs (const uint32_t instance, const uint32_t compareValueUs)

Set the compare value for Timer Mode in microseconds, for a LPTMR instance.

Parameters

in instance - LPTMR peripheral instance number
in compareValue←↩

Us
- Compare value in microseconds

Returns

Operation status:

• STATUS_SUCCESS: completed successfully

• STATUS_ERROR: cannot reconfigure compare value

• STATUS_TIMEOUT: compare value greater then current counter value

16.61.4.13 void LPTMR_DRV_SetConfig (const uint32_t instance, const lptmr_config_t ∗const config)

Configure a LPTMR instance.

When (counterUnits == LPTMR_COUNTER_UNITS_MICROSECONDS) the function will automatically configure
the timer for the input compareValue in microseconds. The input parameters for 'prescaler' and 'bypassPrescaler'
will be ignored - their values will be adapted by the function, to best fit the input compareValue (in microseconds)
for the operating clock frequency.

LPTMR_COUNTER_UNITS_MICROSECONDS may only be used for LPTMR_WORKMODE_TIMER mode. Oth-
erwise the function shall not convert 'compareValue' in ticks and this is likely to cause erroneous behavior.

When (counterUnits == LPTMR_COUNTER_UNITS_TICKS) the function will use the 'prescaler' and 'bypass←↩

Prescaler' provided in the input configuration structure.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.61 LPTMR Driver 639

Parameters

in instance - LPTMR instance number
in config - Pointer to the input configuration structure

16.61.4.14 void LPTMR_DRV_SetInterrupt (const uint32_t instance, const bool enableInterrupt)

Enable/disable the LPTMR interrupt.

Parameters

in instance - LPTMR instance number
in enableInterrupt - The new state of the LPTMR interrupt enable flag.

16.61.4.15 void LPTMR_DRV_SetPinConfiguration (const uint32_t instance, const lptmr_pinselect_t pinSelect, const
lptmr_pinpolarity_t pinPolarity)

Set the Input Pin configuration for Pulse Counter mode.

Parameters

in instance - LPTMR instance number
in pinSelect - LPTMR pin selection
in pinPolarity - Polarity on which to increment counter (rising/falling edge)

16.61.4.16 void LPTMR_DRV_StartCounter (const uint32_t instance)

Enable the LPTMR / Start the counter.

Parameters

in instance - LPTMR instance number

16.61.4.17 void LPTMR_DRV_StopCounter (const uint32_t instance)

Disable the LPTMR / Stop the counter.

Parameters

in instance - LPTMR instance number

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

640 CONTENTS

16.62 LPUART Driver

16.62.1 Detailed Description

This module covers the functionality of the Low Power Universal Asynchronous Receiver-Transmitter (LPUART)
peripheral driver.

The LPUART driver implements serial communication using the LPUART module in the S32K1xx platforms.

Features

• Interrupt based, DMA based and polling communication

• Provides blocking and non-blocking transmit and receive functions

• Configurable baud rate

• 8/9/10 bits per char

Functionality

In order to use the LPUART driver it must be first initialized, using LPUART_DRV_Init() function. Once initialized, it
cannot be initialized again for the same LPUART module instance until it is de-initialized, using LPUART_DRV_←↩

Deinit(). The initialization function does the following operations:

• sets the baud rate

• sets parity/bit count/stop bits count

• initializes the state structure for the current instance Different LPUART module instances can function inde-
pendently of each other.

Interrupt-based communication

After initialization, a serial communication can be triggered by calling LPUART_DRV_SendData() function; this will
save the reference of the data buffer received as parameter in the internal tx buffer pointer, then copy the first byte
to the data register. The transmitter then automatically shifts the data and triggers a 'Transmit buffer empty' interrupt
when all bits are shifted. The drivers interrupt handler takes care of transmitting the next byte in the buffer, by
increasing the data pointer and decreasing the data size. The same sequence of operations is executed until all
bytes in the tx buffer have been transmitted.

Similarly, data reception is triggered by calling LPUART_DRV_ReceiveData() function, passing the rx buffer as
parameter. When the receiver copies the received bits in the data register, the 'Receive buffer full' interrupt is
triggered; the driver irq handler clears the flag by reading the received byte, saves it in the rx buffer, then increments
the data pointer and decrements the data size. This is repeated until all bytes are received.

The workflow applies to send/receive operations using blocking method (triggered by LPUART_DRV_SendData←↩

Blocking() and LPUART_DRV_ReceiveDataBlocking()), with the single difference that the send/receive function will
not return until the send/receive operation is complete (all bytes are successfully transferred or a timeout occurred).
The timeout for the blocking method is passed as parameter by the user.

DMA-based communication

In DMA operation, both blocking and non-blocking transmission methods configure a DMA channel to copy data
from the buffer to the data register (for tx), or viceversa (for rx). The driver assumes the DMA channel is already
allocated and the proper requests are routed to it via DMAMUX. After configuring the DMA channel, the driver
enables DMA requests for rx/tx, then the DMA engine takes care of moving data to/from the data buffer.

Polling mode

The driver also provides polling methods for send and receive (LPUART_DRV_SendDataPolling() and LPUART←↩

_DRV_ReceiveDataPolling()). These functions are blocking (return only when the transfer is complete) and do not
use interrupt or DMA services. The tx buffer empty and rx buffer full flags are polled by software in order to copy
data to/from the data register.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.62 LPUART Driver 641

Error handling

The driver treats the following errors on reception:

• rx overrun

• parity error

• framing error

• noise error
In case any of these error events occur on the rx line during an ongoing reception, the transfer is aborted and
rx status is updated accordingly. LPUART_DRV_GetReceiveStatus() function can be called to retrieve the
status of the last reception. If a receive callback is installed, it is called right after aborting the current transfer
(with UART_EVENT_ERROR parameter).

Callbacks

The driver provides callback notifications for asynchronous transfers. LPUART_DRV_InstallTxCallback() function
can be used for installing a callback routine to be called when the transmission is finished. The tx callback is called
twice: first when the tx buffer becomes empty (no more data to be transmitted) - at this point the application can call
LPUART_DRV_SetTxBuffer() inside the callback in order to provide more data, resulting in a continuous transmis-
sion; if there is no more data to be transmitted, the callback is called again when the transmission is complete (all
the bytes have been shifted out on the line). The event parameter in the callback signature differentiates these two
calls - the values are UART_EVENT_TX_EMPTY and UART_EVENT_END_TRANSFER, respectively.
Similarly, LPUART_DRV_InstallRxCallback() installs a callback routine for reception. This callback is called twice
(UART_EVENT_RX_FULL and UART_EVENT_END_TRANSFER); if a new buffer is provided within the first
callback call (LPUART_DRV_SetRxBuffer()), the reception will continue without interruption. In case of an error de-
tected during an ongoing reception, the transfer is aborted and the callback is called with UART_EVENT_ERROR
parameter. The driver treats rx overrun, parity, framing and noise errors.

Important Notes

• Before using the LPUART driver the module clock must be configured

• The driver enables the interrupts for the corresponding LPUART module, but any interrupt priority must be
done by the application

• The board specific configurations must be done prior to driver calls; the driver has no influence on the func-
tionality of the rx/tx pins - they must be configured by application

• DMA module has to be initialized prior to LPUART usage in DMA mode; also, DMA channels need to be
allocated for LPUART usage by the application (the driver only takes care of configuring the DMA channels
received in the configuration structure)

• For 9/10 bits characters, the application must provide the appropriate buffers; the size of the tx/rx buffers in
this scenario needs to be an even number, as the transferred characters will be split in two bytes (bit 8 for
9-bits chars and bits 8 & 9 for 10-bits chars will be stored in the subsequent byte). 9/10 bits chars are only
supported in interrupt-based and polling communications

• For 10-bits word length, parity cannot be enabled.

• When the vector table is not in ram (flash_vector_table = 1):

– INT_SYS_InstallHandler shall check if the function pointer provided as parameter for the new handler is
already present in the vector table for the given IRQ number.

– The user will be required to manually add the correct handlers in the startup files

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

642 CONTENTS

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\lpuart\lpuart_driver.c
${S32SDK_PATH}\platform\drivers\src\lpuart\lpuart_hw_access.c
${S32SDK_PATH}\platform\drivers\src\lpuart\lpuart_irq.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt) Enhanced Direct Memory Access (eDMA)

Data Structures

• struct lpuart_state_t

Runtime state of the LPUART driver. More...

• struct lpuart_user_config_t

LPUART configuration structure. More...

Enumerations

• enum lpuart_transfer_type_t { LPUART_USING_DMA = 0, LPUART_USING_INTERRUPTS }

Type of LPUART transfer (based on interrupts or DMA).

• enum lpuart_bit_count_per_char_t { LPUART_8_BITS_PER_CHAR = 0x0U, LPUART_9_BITS_PER_CHAR
= 0x1U, LPUART_10_BITS_PER_CHAR = 0x2U }

LPUART number of bits in a character.

• enum lpuart_parity_mode_t { LPUART_PARITY_DISABLED = 0x0U, LPUART_PARITY_EVEN = 0x2U, L←↩

PUART_PARITY_ODD = 0x3U }

LPUART parity mode.

• enum lpuart_stop_bit_count_t { LPUART_ONE_STOP_BIT = 0x0U, LPUART_TWO_STOP_BIT = 0x1U }

LPUART number of stop bits.

LPUART Driver

• void LPUART_DRV_GetDefaultConfig (lpuart_user_config_t ∗lpuartUserConfig)

Initializes the LPUART configuration structure with default values.

• status_t LPUART_DRV_Init (uint32_t instance, lpuart_state_t ∗lpuartStatePtr, const lpuart_user_config_←↩

t ∗lpuartUserConfig)

Initializes an LPUART operation instance.

• status_t LPUART_DRV_Deinit (uint32_t instance)

Shuts down the LPUART by disabling interrupts and transmitter/receiver.

• uart_callback_t LPUART_DRV_InstallRxCallback (uint32_t instance, uart_callback_t function, void
∗callbackParam)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.62 LPUART Driver 643

Installs callback function for the LPUART receive.

• uart_callback_t LPUART_DRV_InstallTxCallback (uint32_t instance, uart_callback_t function, void
∗callbackParam)

Installs callback function for the LPUART transmit.

• status_t LPUART_DRV_SendDataBlocking (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize, uint32←↩

_t timeout)

Sends data out through the LPUART module using a blocking method.

• status_t LPUART_DRV_SendDataPolling (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize)

Send out multiple bytes of data using polling method.

• status_t LPUART_DRV_SendData (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize)

Sends data out through the LPUART module using a non-blocking method. This enables an a-sync method for
transmitting data. When used with a non-blocking receive, the LPUART can perform a full duplex operation. Non-
blocking means that the function returns immediately. The application has to get the transmit status to know when the
transmit is complete.

• status_t LPUART_DRV_GetTransmitStatus (uint32_t instance, uint32_t ∗bytesRemaining)

Returns whether the previous transmit is complete.

• status_t LPUART_DRV_AbortSendingData (uint32_t instance)

Terminates a non-blocking transmission early.

• status_t LPUART_DRV_ReceiveDataBlocking (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize, uint32_t
timeout)

Gets data from the LPUART module by using a blocking method. Blocking means that the function does not return
until the receive is complete.

• status_t LPUART_DRV_ReceiveDataPolling (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize)

Receive multiple bytes of data using polling method.

• status_t LPUART_DRV_ReceiveData (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize)

Gets data from the LPUART module by using a non-blocking method. This enables an a-sync method for receiving
data. When used with a non-blocking transmission, the LPUART can perform a full duplex operation. Non-blocking
means that the function returns immediately. The application has to get the receive status to know when the receive
is complete.

• status_t LPUART_DRV_GetReceiveStatus (uint32_t instance, uint32_t ∗bytesRemaining)

Returns whether the previous receive is complete.

• status_t LPUART_DRV_AbortReceivingData (uint32_t instance)

Terminates a non-blocking receive early.

• status_t LPUART_DRV_SetBaudRate (uint32_t instance, uint32_t desiredBaudRate)

Configures the LPUART baud rate.

• void LPUART_DRV_GetBaudRate (uint32_t instance, uint32_t ∗configuredBaudRate)

Returns the LPUART baud rate.

• status_t LPUART_DRV_SetTxBuffer (uint32_t instance, const uint8_t ∗txBuff, uint32_t txSize)

Sets the internal driver reference to the tx buffer.

• status_t LPUART_DRV_SetRxBuffer (uint32_t instance, uint8_t ∗rxBuff, uint32_t rxSize)

Sets the internal driver reference to the rx buffer.

16.62.2 Data Structure Documentation

16.62.2.1 struct lpuart_state_t

Runtime state of the LPUART driver.

Note that the caller provides memory for the driver state structures during initialization because the driver does not
statically allocate memory.

Implements : lpuart_state_t_Class

Definition at line 89 of file lpuart_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

644 CONTENTS

Data Fields

• const uint8_t ∗ txBuff
• uint8_t ∗ rxBuff
• volatile uint32_t txSize
• volatile uint32_t rxSize
• volatile bool isTxBusy
• volatile bool isRxBusy
• volatile bool isTxBlocking
• volatile bool isRxBlocking
• lpuart_bit_count_per_char_t bitCountPerChar
• uart_callback_t rxCallback
• void ∗ rxCallbackParam
• uart_callback_t txCallback
• void ∗ txCallbackParam
• lpuart_transfer_type_t transferType
• semaphore_t rxComplete
• semaphore_t txComplete
• volatile status_t transmitStatus
• volatile status_t receiveStatus

Field Documentation

16.62.2.1.1 lpuart_bit_count_per_char_t bitCountPerChar

number of bits in a char (8/9/10)

Definition at line 99 of file lpuart_driver.h.

16.62.2.1.2 volatile bool isRxBlocking

True if receive is blocking transaction.

Definition at line 98 of file lpuart_driver.h.

16.62.2.1.3 volatile bool isRxBusy

True if there is an active receive.

Definition at line 96 of file lpuart_driver.h.

16.62.2.1.4 volatile bool isTxBlocking

True if transmit is blocking transaction.

Definition at line 97 of file lpuart_driver.h.

16.62.2.1.5 volatile bool isTxBusy

True if there is an active transmit.

Definition at line 95 of file lpuart_driver.h.

16.62.2.1.6 volatile status_t receiveStatus

Status of last driver receive operation

Definition at line 120 of file lpuart_driver.h.

16.62.2.1.7 uint8_t∗ rxBuff

The buffer of received data.

Definition at line 92 of file lpuart_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.62 LPUART Driver 645

16.62.2.1.8 uart_callback_t rxCallback

Callback to invoke for data receive Note: when the transmission is interrupt based, the callback is being called upon
receiving a byte; when DMA transmission is used, the bytes are copied to the rx buffer by the DMA engine and the
callback is called when all the bytes have been transferred.

Definition at line 100 of file lpuart_driver.h.

16.62.2.1.9 void∗ rxCallbackParam

Receive callback parameter pointer.

Definition at line 105 of file lpuart_driver.h.

16.62.2.1.10 semaphore_t rxComplete

Synchronization object for blocking Rx timeout condition

Definition at line 117 of file lpuart_driver.h.

16.62.2.1.11 volatile uint32_t rxSize

The remaining number of bytes to be received.

Definition at line 94 of file lpuart_driver.h.

16.62.2.1.12 lpuart_transfer_type_t transferType

Type of LPUART transfer (interrupt/dma based)

Definition at line 112 of file lpuart_driver.h.

16.62.2.1.13 volatile status_t transmitStatus

Status of last driver transmit operation

Definition at line 119 of file lpuart_driver.h.

16.62.2.1.14 const uint8_t∗ txBuff

The buffer of data being sent.

Definition at line 91 of file lpuart_driver.h.

16.62.2.1.15 uart_callback_t txCallback

Callback to invoke for data send Note: when the transmission is interrupt based, the callback is being called upon
sending a byte; when DMA transmission is used, the bytes are copied to the tx buffer by the DMA engine and the
callback is called when all the bytes have been transferred.

Definition at line 106 of file lpuart_driver.h.

16.62.2.1.16 void∗ txCallbackParam

Transmit callback parameter pointer.

Definition at line 111 of file lpuart_driver.h.

16.62.2.1.17 semaphore_t txComplete

Synchronization object for blocking Tx timeout condition

Definition at line 118 of file lpuart_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

646 CONTENTS

16.62.2.1.18 volatile uint32_t txSize

The remaining number of bytes to be transmitted.

Definition at line 93 of file lpuart_driver.h.

16.62.2.2 struct lpuart_user_config_t

LPUART configuration structure.

Implements : lpuart_user_config_t_Class

Definition at line 127 of file lpuart_driver.h.

Data Fields

• uint32_t baudRate
• lpuart_parity_mode_t parityMode
• lpuart_stop_bit_count_t stopBitCount
• lpuart_bit_count_per_char_t bitCountPerChar
• lpuart_transfer_type_t transferType
• uint8_t rxDMAChannel
• uint8_t txDMAChannel

Field Documentation

16.62.2.2.1 uint32_t baudRate

LPUART baud rate

Definition at line 129 of file lpuart_driver.h.

16.62.2.2.2 lpuart_bit_count_per_char_t bitCountPerChar

number of bits in a character (8-default, 9 or 10); for 9/10 bits chars, users must provide appropriate buffers to the
send/receive functions (bits 8/9 in subsequent bytes); for DMA transmission only 8-bit char is supported.

Definition at line 132 of file lpuart_driver.h.

16.62.2.2.3 lpuart_parity_mode_t parityMode

parity mode, disabled (default), even, odd

Definition at line 130 of file lpuart_driver.h.

16.62.2.2.4 uint8_t rxDMAChannel

Channel number for DMA rx channel. If DMA mode isn't used this field will be ignored.

Definition at line 137 of file lpuart_driver.h.

16.62.2.2.5 lpuart_stop_bit_count_t stopBitCount

number of stop bits, 1 stop bit (default) or 2 stop bits

Definition at line 131 of file lpuart_driver.h.

16.62.2.2.6 lpuart_transfer_type_t transferType

Type of LPUART transfer (interrupt/dma based)

Definition at line 136 of file lpuart_driver.h.

16.62.2.2.7 uint8_t txDMAChannel

Channel number for DMA tx channel. If DMA mode isn't used this field will be ignored.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.62 LPUART Driver 647

Definition at line 139 of file lpuart_driver.h.

16.62.3 Enumeration Type Documentation

16.62.3.1 enum lpuart_bit_count_per_char_t

LPUART number of bits in a character.

Implements : lpuart_bit_count_per_char_t_Class

Enumerator

LPUART_8_BITS_PER_CHAR 8-bit data characters

LPUART_9_BITS_PER_CHAR 9-bit data characters

LPUART_10_BITS_PER_CHAR 10-bit data characters

Definition at line 53 of file lpuart_driver.h.

16.62.3.2 enum lpuart_parity_mode_t

LPUART parity mode.

Implements : lpuart_parity_mode_t_Class

Enumerator

LPUART_PARITY_DISABLED parity disabled

LPUART_PARITY_EVEN parity enabled, type even, bit setting: PE|PT = 10

LPUART_PARITY_ODD parity enabled, type odd, bit setting: PE|PT = 11

Definition at line 64 of file lpuart_driver.h.

16.62.3.3 enum lpuart_stop_bit_count_t

LPUART number of stop bits.

Implements : lpuart_stop_bit_count_t_Class

Enumerator

LPUART_ONE_STOP_BIT one stop bit

LPUART_TWO_STOP_BIT two stop bits

Definition at line 75 of file lpuart_driver.h.

16.62.3.4 enum lpuart_transfer_type_t

Type of LPUART transfer (based on interrupts or DMA).

Implements : lpuart_transfer_type_t_Class

Enumerator

LPUART_USING_DMA The driver will use DMA to perform UART transfer

LPUART_USING_INTERRUPTS The driver will use interrupts to perform UART transfer

Definition at line 43 of file lpuart_driver.h.

16.62.4 Function Documentation

16.62.4.1 status_t LPUART_DRV_AbortReceivingData (uint32_t instance)

Terminates a non-blocking receive early.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

648 CONTENTS

Parameters

instance LPUART instance number

Returns

Whether the receiving was successful or not.

Definition at line 891 of file lpuart_driver.c.

16.62.4.2 status_t LPUART_DRV_AbortSendingData (uint32_t instance)

Terminates a non-blocking transmission early.

Parameters

instance LPUART instance number

Returns

Whether the aborting is successful or not.

Definition at line 580 of file lpuart_driver.c.

16.62.4.3 status_t LPUART_DRV_Deinit (uint32_t instance)

Shuts down the LPUART by disabling interrupts and transmitter/receiver.

Parameters

instance LPUART instance number

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if an error occurred

Definition at line 278 of file lpuart_driver.c.

16.62.4.4 void LPUART_DRV_GetBaudRate (uint32_t instance, uint32_t ∗ configuredBaudRate)

Returns the LPUART baud rate.

This function returns the LPUART configured baud rate.

Parameters

instance LPUART instance number.
out configured←↩

BaudRate
LPUART configured baud rate.

Definition at line 1036 of file lpuart_driver.c.

16.62.4.5 void LPUART_DRV_GetDefaultConfig (lpuart_user_config_t ∗ lpuartUserConfig)

Initializes the LPUART configuration structure with default values.

This function initializes a configuration structure received from the application with default values.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.62 LPUART Driver 649

lpuartUserConfig user configuration structure of type lpuart_user_config_t

Definition at line 145 of file lpuart_driver.c.

16.62.4.6 status_t LPUART_DRV_GetReceiveStatus (uint32_t instance, uint32_t ∗ bytesRemaining)

Returns whether the previous receive is complete.

Parameters

instance LPUART instance number
bytesRemaining pointer to value that is filled with the number of bytes that still need to be received in the active

transfer.

Note

In DMA mode, this parameter may not be accurate, in case the transfer completes right after calling this
function; in this edge-case, the parameter will reflect the initial transfer size, due to automatic reloading of the
major loop count in the DMA transfer descriptor.

Returns

The receive status.

Return values

STATUS_SUCCESS the receive has completed successfully.
STATUS_BUSY the receive is still in progress. bytesReceived will be filled with the number of

bytes that have been received so far.
STATUS_UART_ABORT←↩

ED
The receive was aborted.

STATUS_TIMEOUT A timeout was reached.
STATUS_UART_RX_OV←↩

ERRUN,STATUS_UART_←↩

FRAMING_ERROR,STAT←↩

US_UART_PARITY_ERR←↩

OR,or

STATUS_UART_NOISE_ERROR, STATUS_ERROR An error occurred during
reception.

Definition at line 846 of file lpuart_driver.c.

16.62.4.7 status_t LPUART_DRV_GetTransmitStatus (uint32_t instance, uint32_t ∗ bytesRemaining)

Returns whether the previous transmit is complete.

Parameters

instance LPUART instance number
bytesRemaining Pointer to value that is populated with the number of bytes that have been sent in the active

transfer

Note

In DMA mode, this parameter may not be accurate, in case the transfer completes right after calling this
function; in this edge-case, the parameter will reflect the initial transfer size, due to automatic reloading of the
major loop count in the DMA transfer descriptor.

Returns

The transmit status.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

650 CONTENTS

Return values

STATUS_SUCCESS The transmit has completed successfully.
STATUS_BUSY The transmit is still in progress. bytesRemaining will be filled with the number of

bytes that are yet to be transmitted.
STATUS_UART_ABORT←↩

ED
The transmit was aborted.

STATUS_TIMEOUT A timeout was reached.
STATUS_ERROR An error occurred.

Definition at line 534 of file lpuart_driver.c.

16.62.4.8 status_t LPUART_DRV_Init (uint32_t instance, lpuart_state_t ∗ lpuartStatePtr, const lpuart_user_config_t ∗
lpuartUserConfig)

Initializes an LPUART operation instance.

The caller provides memory for the driver state structures during initialization. The user must select the LPUART
clock source in the application to initialize the LPUART.

Parameters

instance LPUART instance number
lpuartUserConfig user configuration structure of type lpuart_user_config_t

lpuartStatePtr pointer to the LPUART driver state structure

Returns

STATUS_SUCCESS if successful; STATUS_ERROR if an error occurred

Definition at line 181 of file lpuart_driver.c.

16.62.4.9 uart_callback_t LPUART_DRV_InstallRxCallback (uint32_t instance, uart_callback_t function, void ∗ callbackParam
)

Installs callback function for the LPUART receive.

Note

After a callback is installed, it bypasses part of the LPUART IRQHandler logic. Therefore, the callback needs
to handle the indexes of txBuff and txSize.

Parameters

instance The LPUART instance number.
function The LPUART receive callback function.

rxBuff The receive buffer used inside IRQHandler. This buffer must be kept as long as the callback
is alive.

callbackParam The LPUART receive callback parameter pointer.

Returns

Former LPUART receive callback function pointer.

Definition at line 319 of file lpuart_driver.c.

16.62.4.10 uart_callback_t LPUART_DRV_InstallTxCallback (uint32_t instance, uart_callback_t function, void ∗ callbackParam
)

Installs callback function for the LPUART transmit.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.62 LPUART Driver 651

Note

After a callback is installed, it bypasses part of the LPUART IRQHandler logic. Therefore, the callback needs
to handle the indexes of txBuff and txSize.

Parameters

instance The LPUART instance number.
function The LPUART transmit callback function.

txBuff The transmit buffer used inside IRQHandler. This buffer must be kept as long as the callback
is alive.

callbackParam The LPUART transmit callback parameter pointer.

Returns

Former LPUART transmit callback function pointer.

Definition at line 342 of file lpuart_driver.c.

16.62.4.11 status_t LPUART_DRV_ReceiveData (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Gets data from the LPUART module by using a non-blocking method. This enables an a-sync method for receiving
data. When used with a non-blocking transmission, the LPUART can perform a full duplex operation. Non-blocking
means that the function returns immediately. The application has to get the receive status to know when the receive
is complete.

Parameters

instance LPUART instance number
rxBuff buffer containing 8-bit read data chars received
rxSize the number of bytes to receive

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if the resource is busy

Definition at line 803 of file lpuart_driver.c.

16.62.4.12 status_t LPUART_DRV_ReceiveDataBlocking (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize, uint32_t timeout
)

Gets data from the LPUART module by using a blocking method. Blocking means that the function does not return
until the receive is complete.

Parameters

instance LPUART instance number
rxBuff buffer containing 8-bit read data chars received
rxSize the number of bytes to receive

timeout timeout value in milliseconds

Returns

STATUS_SUCCESS if successful; STATUS_TIMEOUT if the timeout was reached; STATUS_BUSY if the
resource is busy; STATUS_UART_FRAMING_ERROR if a framing error occurred; STATUS_UART_NOIS←↩

E_ERROR if a noise error occurred; STATUS_UART_PARITY_ERROR if a parity error occurred; STATUS←↩

_UART_RX_OVERRUN if an overrun error occurred; STATUS_ERROR if a DMA error occurred;

Definition at line 618 of file lpuart_driver.c.

16.62.4.13 status_t LPUART_DRV_ReceiveDataPolling (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Receive multiple bytes of data using polling method.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

652 CONTENTS

Parameters

instance LPUART instance number.
rxBuff The buffer pointer which saves the data to be received.
rxSize Size of data need to be received in unit of byte.

Returns

STATUS_SUCCESS if the transaction is successful; STATUS_BUSY if the resource is busy; STATUS_UA←↩

RT_RX_OVERRUN if an overrun error occurred.

Definition at line 683 of file lpuart_driver.c.

16.62.4.14 status_t LPUART_DRV_SendData (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize)

Sends data out through the LPUART module using a non-blocking method. This enables an a-sync method for
transmitting data. When used with a non-blocking receive, the LPUART can perform a full duplex operation. Non-
blocking means that the function returns immediately. The application has to get the transmit status to know when
the transmit is complete.

Parameters

instance LPUART instance number
txBuff source buffer containing 8-bit data chars to send
txSize the number of bytes to send

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if the resource is busy;

Definition at line 490 of file lpuart_driver.c.

16.62.4.15 status_t LPUART_DRV_SendDataBlocking (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize, uint32_t
timeout)

Sends data out through the LPUART module using a blocking method.

Blocking means that the function does not return until the transmission is complete.

Parameters

instance LPUART instance number
txBuff source buffer containing 8-bit data chars to send
txSize the number of bytes to send

timeout timeout value in milliseconds

Returns

STATUS_SUCCESS if successful; STATUS_TIMEOUT if the timeout was reached; STATUS_BUSY if the
resource is busy; STATUS_ERROR if an error occurred

Definition at line 365 of file lpuart_driver.c.

16.62.4.16 status_t LPUART_DRV_SendDataPolling (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize)

Send out multiple bytes of data using polling method.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.62 LPUART Driver 653

Parameters

instance LPUART instance number.
txBuff The buffer pointer which saves the data to be sent.
txSize Size of data to be sent in unit of byte.

Returns

STATUS_SUCCESS if successful; STATUS_BUSY if the resource is busy;

Definition at line 430 of file lpuart_driver.c.

16.62.4.17 status_t LPUART_DRV_SetBaudRate (uint32_t instance, uint32_t desiredBaudRate)

Configures the LPUART baud rate.

This function configures the LPUART baud rate. In some LPUART instances the user must disable the transmit-
ter/receiver before calling this function. Generally, this may be applied to all LPUARTs to ensure safe operation.

Parameters

instance LPUART instance number.
desiredBaud←↩

Rate
LPUART desired baud rate.

Returns

STATUS_BUSY if called during an on-going transfer, STATUS_SUCCESS otherwise

Definition at line 931 of file lpuart_driver.c.

16.62.4.18 status_t LPUART_DRV_SetRxBuffer (uint32_t instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Sets the internal driver reference to the rx buffer.

This function can be called from the rx callback to provide the driver with a new buffer, for continuous reception.

Parameters

instance LPUART instance number
rxBuff destination buffer containing 8-bit data chars to receive
rxSize the number of bytes to receive

Returns

STATUS_SUCCESS

Definition at line 1089 of file lpuart_driver.c.

16.62.4.19 status_t LPUART_DRV_SetTxBuffer (uint32_t instance, const uint8_t ∗ txBuff, uint32_t txSize)

Sets the internal driver reference to the tx buffer.

This function can be called from the tx callback to provide the driver with a new buffer, for continuous transmission.

Parameters

instance LPUART instance number

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

654 CONTENTS

txBuff source buffer containing 8-bit data chars to send
txSize the number of bytes to send

Returns

STATUS_SUCCESS

Definition at line 1065 of file lpuart_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.63 Local Interconnect Network (LIN) 655

16.63 Local Interconnect Network (LIN)

16.63.1 Detailed Description

The S32 SDK provides both driver and middleware layers for the Local Interconnect Network (LIN) protocol, emu-
lated on top of LPUART serial communication IP.

Modules

• LIN Driver

This section describes the programming interface of the Peripheral driver for LIN.

• LIN Stack

This section covers the functionality of the LIN Stack middleware layer in S32 SDK.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

656 CONTENTS

16.64 Low Power Inter-Integrated Circuit (LPI2C)

16.64.1 Detailed Description

The LPI2C is a low power Inter-Integrated Circuit (I2C) module that supports an efficient interface to an I2C bus as
a master and/or a slave.

Modules

• LPI2C Driver

Low Power Inter-Integrated Circuit (LPI2C) Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.65 Low Power Interrupt Timer (LPIT) 657

16.65 Low Power Interrupt Timer (LPIT)

16.65.1 Detailed Description

The Low Power Periodic Interrupt Timer (LPIT) is a multi-channel timer module generating independent pre-trigger
and trigger outputs. These timer channels can operate individually or can be chained together. The LPIT can
operate in low power modes if configured to do so. The pre-trigger and trigger outputs can be used to trigger other
modules on the device.

The S32 SDK provides Peripheral Drivers for the Low Power Interrupt Timer (LPIT) module of S32 devices.

Modules

• LPIT Driver

Low Power Interrupt Timer Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

658 CONTENTS

16.66 Low Power Serial Peripheral Interface (LPSPI)

16.66.1 Detailed Description

Low Power Serial Peripheral Interface (LPSPI) Peripheral Driver.

The LPSPI driver allows communication on an SPI bus using the LPSPI module in the S32K1xx processors.

Features

• Interrupt based

• Master or slave operation

• Provides blocking and non-blocking transmit and receive functions

• RX and TX hardware buffers (4 words)

• 4 configurable chip select

• Configurable baud rate

How to integrate LPSPI in your application

In order to use the LPSPI driver it must be first initialized in either master or slave mode, using functions LPSP←↩

I_DRV_MasterInit() or LPSPI_DRV_SlaveInit(). Once initialized, it cannot be initialized again for the same LPSPI
module instance until it is de-initialized, using LPSPI_DRV_MasterDeinit() or LPSPI_DRV_SlaveDeinit(). Different
LPSPI module instances can function independently of each other.

In each mode (master/slave) are available two types of transfers: blocking and non-blocking. The functions which ini-
tiate blocking transfers will configure the time out for transmission. If time expires LPSPI_MasterTransferBlocking/←↩

LPSPI_SlaveTransferBlocking will return error and the transmission will be aborted.

Depending on frame size receive and transmit buffers must be aligned as is presented in the next table:

Bits/frame less or equal with 8 between 9 and 16 more than 16
Alignment 1 byte 2 bytes 4 bytes

This alignment requirements should be taken into consideration when "transferByteCount" is configured. For a
better understanding these are some examples of how to calculate the right value to "transferByteCount":

Bits/frame number of frames bytes per frame transferByteCount
8 10 1 10

10 10 2 20
24 10 4 40
32 10 4 40
40 10 8 80
64 10 8 80

If frame size is bigger than 32 bits MSB/LSB option is applicable for each uint32_t, not for the entire frame. The
application should enssure the uint32_t order in buffers, depending on MSB/LSB configuration.

Important Notes

• The driver enables the interrupts for the corresponding LPSPI module,
but any interrupt priority setting must be done by the application.

• The watermarks will be set by the application.

• The driver will configure SCK to PCS delay, PCS to SCK delay, delay between transfers with default values. If
your application needs other values for this parameters LPSPI_DRV_MasterSetDelay function can be used.

• The driver cannot be used in the case SPI transfer in slave mode over DMA with invalid address of tx buffer,
the driver will never finish the transfer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.66 Low Power Serial Peripheral Interface (LPSPI) 659

• The driver cannot be used with a configuration with bit/frame greater than 32 bits and MSB endianness in
either slave or master mode.

• LPSPI2 instance is only available on 64-pin variant of S32K14xW and not available on 48-pin variant.
If you need a frame larger than 32 bits with MSB the application must handle the data positioning.

Example code

const lpspi_master_config_t Send_MasterConfig0 = {
.bitsPerSec = 50000U,
.whichPcs = LPSPI_PCS0,
.pcsPolarity = LPSPI_ACTIVE_HIGH,
.isPcsContinuous = false,
.bitcount = 8U,
.lpspiSrcClk = 8000000U,
.clkPhase = LPSPI_CLOCK_PHASE_1ST_EDGE,
.clkPolarity = LPSPI_SCK_ACTIVE_HIGH,
.lsbFirst = false,
.transferType = LPSPI_USING_INTERRUPTS,

};
const lpspi_slave_config_t Receive_SlaveConfig0 = {

.pcsPolarity = LPSPI_ACTIVE_HIGH,

.bitcount = 8U,

.clkPhase = LPSPI_CLOCK_PHASE_1ST_EDGE,

.whichPcs = LPSPI_PCS0,

.clkPolarity = LPSPI_SCK_ACTIVE_HIGH,

.lsbFirst = false,

.transferType = LPSPI_USING_INTERRUPTS,
};
/* Initialize clock and pins */
LPSPI_DRV_MasterInit(0U, &masterState, &Send_MasterConfig0);
/* Set delay between transfer, PCStoSCK and SCKtoPCS to 10 microseconds. */
LPSPI_DRV_MasterSetDelay(0U, 10U, 10U, 10u);
/* Initialize LPSPI1 (Slave)*/
LPSPI_DRV_SlaveInit(1U, &slaveState, &Receive_SlaveConfig0);
/* Allocate memory */
masterDataSend = (uint8_t*)calloc(100, sizeof(uint8_t));
masterDataReceive = (uint8_t*)calloc(100, sizeof(uint8_t));
slaveDataSend = (uint8_t*)calloc(100, sizeof(uint8_t));
slaveDataReceive = (uint8_t*)calloc(100, sizeof(uint8_t));
bufferSize = 100U;
testStatus[0] = true;
LPSPI_DRV_SlaveTransfer(0U, slaveDataSend,

slaveDataReceive, bufferSize);
LPSPI_DRV_MasterTransferBlocking(1U, &Send_MasterConfig0, masterDataSend,

masterDataReceive, bufferSize, TIMEOUT);

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\lpspi\lpspi_irq.c
${S32SDK_PATH}\platform\drivers\src\lpspi\lpspi_master_driver.c
${S32SDK_PATH}\platform\drivers\src\lpspi\lpspi_shared_function.c
${S32SDK_PATH}\platform\drivers\src\lpspi\lpspi_slave_driver.c
${S32SDK_PATH}\platform\drivers\src\lpspi\lpspi_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc
${S32SDK_PATH}\platform\drivers\src\lpspi

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager OS Interface (OSIF) Interrupt Manager (Interrupt) Enhanced Direct Memory Access (eDMA)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

660 CONTENTS

Modules

• LPSPI Driver

Low Power Serial Peripheral Interface Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.67 Low Power Timer (LPTMR) 661

16.67 Low Power Timer (LPTMR)

16.67.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the Low Power Timer (LPTMR) module of S32 SDK devices.

The LPTMR is a configurable 16-bit counter that can operate in two functional modes:

• Timer mode with selectable prescaler and clock source (periodic or free-running).

• Pulse-Counter mode, with configurable glitch filter, that can count events (internal or external)

Modules

• LPTMR Driver

Low Power Timer Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

662 CONTENTS

16.68 Low Power Universal Asynchronous Receiver-Transmitter (LPUART)

16.68.1 Detailed Description

The S32 SDK provides a Peripheral Driver for the Low Power Universal Asynchronous Receiver-Transmitter (LP←↩

UART) module of S32 SDK devices.
The LPUART module is used for serial communication, supporting LIN master and slave operation. These sections
describe the S32 SDK software modules API that can be used for initializing and configuring the module, as well as
initiating serial communications using the interrupt-based method.

Modules

• LPUART Driver

This module covers the functionality of the Low Power Universal Asynchronous Receiver-Transmitter (LPUART) pe-
ripheral driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 663

16.69 Low level API

16.69.1 Detailed Description

Low level layer consists of functions that call LIN driver API.

This layer contains the implementation of LIN hardware initialization and deinitialization, getting LIN node's current
state, sending wakeup signals, enabling and disabling interrupts, sending frame data from a buffer, receiving frame
data into a buffer, handling timeout and callbacks from LIN driver.

Data Structures

• struct lin_word_status_str_t

status of LIN bus Implements : lin_word_status_str_t_Class More...

• struct lin_serial_number_t

Serial number Implements : lin_serial_number_t_Class. More...

• struct lin_node_attribute_t

Attributes of LIN node Implements : lin_node_attribute_t_Class. More...

• struct lin_associate_frame_t

Informations of associated frame Implements : lin_associate_frame_t_Class. More...

• struct lin_frame_t

Frame description structure Implements : lin_frame_t_Class. More...

• struct lin_schedule_data_t

LIN schedule structure Implements : lin_schedule_data_t_Class. More...

• struct lin_schedule_t

Schedule table description Implements : lin_schedule_t_Class. More...

• struct lin_transport_layer_queue_t

Transport layer queue Implements : lin_transport_layer_queue_t_Class. More...

• struct lin_tl_descriptor_t

Transport layer description Implements : lin_tl_descriptor_t_Class. More...

• struct lin_protocol_user_config_t

Configuration structure Implements : lin_protocol_user_config_t_Class. More...

• struct lin_master_data_t

LIN master configuration structure Implements : lin_master_data_t_Class. More...

• struct lin_protocol_state_t

LIN protocol status structure Implements : lin_protocol_state_t_Class. More...

Macros

• #define SERVICE_ASSIGN_NAD 0xB0U
• #define SERVICE_ASSIGN_FRAME_ID 0xB1U
• #define SERVICE_READ_BY_IDENTIFY 0xB2U
• #define SERVICE_CONDITIONAL_CHANGE_NAD 0xB3U
• #define SERVICE_SAVE_CONFIGURATION 0xB6U
• #define SERVICE_ASSIGN_FRAME_ID_RANGE 0xB7U
• #define SERVICE_READ_DATA_BY_IDENTIFY 0x22U
• #define SERVICE_WRITE_DATA_BY_IDENTIFY 0x2EU
• #define SERVICE_SESSION_CONTROL 0x10U
• #define SERVICE_IO_CONTROL_BY_IDENTIFY 0x2FU
• #define SERVICE_FAULT_MEMORY_READ 0x19U
• #define SERIVCE_FAULT_MEMORY_CLEAR 0x14U
• #define PCI_SAVE_CONFIGURATION 0x01U
• #define PCI_RES_READ_BY_IDENTIFY 0x06U

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

664 CONTENTS

• #define PCI_RES_SAVE_CONFIGURATION 0x01U
• #define PCI_RES_ASSIGN_FRAME_ID_RANGE 0x01U
• #define LIN_READ_USR_DEF_MIN 32U
• #define LIN_READ_USR_DEF_MAX 63U
• #define LD_NEGATIVE_RESPONSE 0x53U
• #define LD_POSITIVE_RESPONSE 0x54U
• #define LIN_LLD_OK 0x00U
• #define LIN_LLD_ERROR 0xFFU
• #define LIN_SLAVE 0

Mode of LIN node (master or slave)

• #define LIN_MASTER 1
• #define LIN_TL_CALLBACK_HANDLER(iii, tl_event_id, id) lin_tl_callback_handler((iii), (tl_event_id), (id))
• #define CALLBACK_HANDLER(iii, event_id, id) lin_pid_resp_callback_handler((iii), (event_id), (id))

CALLBACK_HANDLER.

Typedefs

• typedef l_u8 lin_tl_pdu_data_t[8]

PDU data. Implements : lin_tl_pdu_data_t_Class.

• typedef l_u8 lin_tl_queue_t[8]

LIN transport layer queue Implements : lin_tl_queue_t_Class.

Enumerations

• enum lin_lld_event_id_t {
LIN_LLD_PID_OK = 0x00U, LIN_LLD_TX_COMPLETED = 0x01U, LIN_LLD_RX_COMPLETED = 0x02U,
LIN_LLD_PID_ERR = 0x03U,
LIN_LLD_FRAME_ERR = 0x04U, LIN_LLD_CHECKSUM_ERR = 0x05U, LIN_LLD_READBACK_ERR =
0x06U, LIN_LLD_NODATA_TIMEOUT = 0x07U,
LIN_LLD_BUS_ACTIVITY_TIMEOUT = 0x08U }

Event id Implements : lin_lld_event_id_t_Class.

• enum lin_protocol_handle_t { LIN_PROTOCOL_21 = 0x00U, LIN_PROTOCOL_J2602 = 0x01U, LIN_PRO←↩

TOCOL_13 = 0x02U, LIN_PROTOCOL_20 = 0x03U }

List of protocols Implements : lin_protocol_handle_t_Class.

• enum lin_diagnostic_class_t { LIN_DIAGNOSTIC_CLASS_I = 0x01U, LIN_DIAGNOSTIC_CLASS_II =
0x02U, LIN_DIAGNOSTIC_CLASS_III = 0x03U }

List of diagnostic classes Implements : lin_diagnostic_class_t_Class.

• enum lin_frame_type_t { LIN_FRM_UNCD = 0x00U, LIN_FRM_EVNT = 0x01U, LIN_FRM_SPRDC = 0x10U,
LIN_FRM_DIAG = 0x11U }

Types of frame Implements : lin_frame_type_t_Class.

• enum lin_frame_response_t { LIN_RES_PUB = 0x00U, LIN_RES_SUB = 0x01U }

LIN frame response Implements : lin_frame_response_t_Class.

• enum lin_sch_tbl_type_t {
LIN_SCH_TBL_NULL = 0x00U, LIN_SCH_TBL_NORM = 0x01U, LIN_SCH_TBL_DIAG = 0x02U, LIN_SC←↩

H_TBL_GO_TO_SLEEP = 0x03U,
LIN_SCH_TBL_COLL_RESOLV = 0x04U }

Types of schedule tables Implements : lin_sch_tbl_type_t_Class.

• enum l_diagnostic_mode_t { DIAG_NONE = 0x00U, DIAG_INTERLEAVE_MODE = 0x01U, DIAG_ONLY_←↩

MODE = 0x02U }

Diagnostic mode Implements : l_diagnostic_mode_t_Class.

• enum lin_service_status_t { LD_SERVICE_BUSY = 0x00U, LD_REQUEST_FINISHED = 0x01U, LD_SER←↩

VICE_IDLE = 0x02U, LD_SERVICE_ERROR = 0x03U }

Status of the last configuration call for LIN 2.1 Implements : lin_service_status_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 665

• enum lin_last_cfg_result_t { LD_SUCCESS = 0x00U, LD_NEGATIVE = 0x01U, LD_NO_RESPONSE =
0x02U, LD_OVERWRITTEN = 0x03U }

Status of the last configuration call completed Implements : lin_last_cfg_result_t_Class.

• enum lin_tl_event_id_t {
TL_MAKE_RES_DATA = 0x00U, TL_SLAVE_GET_ACTION = 0x01U, TL_TX_COMPLETED = 0x02U, TL←↩

_RX_COMPLETED = 0x03U,
TL_ERROR = 0x04U, TL_TIMEOUT_SERVICE = 0x05U, TL_HANDLER_INTERLEAVE_MODE = 0x06U,
TL_RECEIVE_MESSAGE = 0x07U }

Transport layer event IDs Implements : lin_tl_event_id_t_Class.

• enum lin_tl_callback_return_t { TL_ACTION_NONE = 0x00U, TL_ACTION_ID_IGNORE = 0x01U }

Transport layer event IDs Implements : lin_tl_callback_return_t_Class.

• enum ld_queue_status_t {
LD_NO_DATA = 0x00U, LD_DATA_AVAILABLE = 0x01U, LD_RECEIVE_ERROR = 0x02U, LD_QUEUE_←↩

FULL = 0x03U,
LD_QUEUE_AVAILABLE = 0x04U, LD_QUEUE_EMPTY = 0x05U, LD_TRANSMIT_ERROR = 0x06U, LD←↩

_TRANSFER_ERROR = 0x07U }

Status of queue Implements : ld_queue_status_t_Class.

• enum lin_message_status_t {
LD_NO_MSG = 0x00U, LD_IN_PROGRESS = 0x01U, LD_COMPLETED = 0x02U, LD_FAILED = 0x03U,
LD_N_AS_TIMEOUT = 0x04U, LD_N_CR_TIMEOUT = 0x05U, LD_WRONG_SN = 0x06U }

Status of LIN message Implements : lin_message_status_t_Class.

• enum lin_diagnostic_state_t {
LD_DIAG_IDLE = 0x01U, LD_DIAG_TX_PHY = 0x02U, LD_DIAG_TX_FUNCTIONAL = 0x03U, LD_DIAG←↩

_TX_INTERLEAVED = 0x04U,
LD_DIAG_RX_PHY = 0x05U, LD_DIAG_RX_FUNCTIONAL = 0x06U, LD_DIAG_RX_INTERLEAVED =
0x07U }

LIN diagnostic state Implements : lin_diagnostic_state_t_Class.

• enum lin_message_timeout_type_t { LD_NO_CHECK_TIMEOUT = 0x00U, LD_CHECK_N_AS_TIMEOUT =
0x01U, LD_CHECK_N_CR_TIMEOUT = 0x02U }

Types of message timeout Implements : lin_message_timeout_type_t_Class.

• enum diag_interleaved_state_t { DIAG_NOT_START = 0x00U, DIAG_NO_RESPONSE = 0x01U, DIAG_R←↩

ESPONSE = 0x02U }

State of diagnostic interleaved mode Implements : diag_interleaved_state_t_Class.

Functions

• lin_tl_callback_return_t lin_tl_callback_handler (l_ifc_handle iii, lin_tl_event_id_t tl_event_id, l_u8 id)
• l_u8 ld_read_by_id_callout (l_ifc_handle iii, l_u8 id, l_u8 ∗data)
• static l_u16 lin_calc_max_header_timeout_cnt (l_u32 baudRate)

Computes maximum header timeout.

• static l_u16 lin_calc_max_res_timeout_cnt (l_u32 baudRate, l_u8 size)

Computes the maximum response timeout.

• l_u8 lin_process_parity (l_u8 pid, l_u8 typeAction)

Makes or checks parity bits. If action is checking parity, the function returns ID value if parity bits are correct or 0xFF
if parity bits are incorrect. If action is making parity bits, then from input value of ID, the function returns PID.

• void lin_pid_resp_callback_handler (l_ifc_handle iii, const lin_lld_event_id_t event_id, l_u8 id)

Callback handler for low level events.

• l_bool lin_lld_init (l_ifc_handle iii)

This function initializes a LIN hardware instance for operation. This function will initialize the run-time state structure
to keep track of the on-going transfers, initialize the module to user defined settings and default settings, configure the
IRQ state structure and enable the module-level interrupt to the core, and enable the LIN hardware module transmitter
and receiver.

• void lin_lld_deinit (l_ifc_handle iii)

This function disconnect the node from the cluster and free all hardware used.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

666 CONTENTS

• l_u8 lin_lld_int_enable (l_ifc_handle iii)

Enable the interrupt related to the interface.

• l_u8 lin_lld_int_disable (l_ifc_handle iii)

Disable the interrupt related to the interface.

• lin_node_state_t lin_lld_get_state (l_ifc_handle iii)

This function gets current state of an interface.

• l_u8 lin_lld_tx_header (l_ifc_handle iii, l_u8 id)

This function sends frame header for the input PID.

• l_u8 lin_lld_tx_wake_up (l_ifc_handle iii)

This function send a wakeup signal.

• l_u8 lin_lld_ignore_response (l_ifc_handle iii)

This function terminates an on-going data transmission/reception.

• l_u8 lin_lld_set_low_power_mode (l_ifc_handle iii)

Let the low level driver go to low power mode.

• l_u8 lin_lld_set_response (l_ifc_handle iii, l_u8 response_length)

This function sends frame data that is contained in LIN_lld_response_buffer[iii].

• l_u8 lin_lld_rx_response (l_ifc_handle iii, l_u8 response_length)

This function receives frame data into the LIN_lld_response_buffer[iii] buffer.

• void lin_lld_timeout_service (l_ifc_handle iii)

Callback function for Timer Interrupt Handler In timer IRQ handler, call this function. Used to check if frame timeout
has occurred during frame data transmission and reception, to check for N_As and N_Cr timeout for LIN 2.1 and
above. This function also check if there is no LIN bus communication (no headers and no frame data transferring)
for Idle timeout (s), then put LIN node to Sleep mode. Users may initialize a timer (for example FTM)with period
of Timeout unit (default: 500 micro seconds) to call lin_lld_timeout_service(). For an interface iii, Idle timeout (s) =
max_idle_timeout_cnt ∗ Timeout unit (us) frame timeout (us) = frame_timeout_cnt ∗ Timeout unit (us) N_As timeout
(us) = N_As_timeout ∗ Timeout unit (us) N_Cr timeout (us) = N_Cr_timeout ∗ Timeout unit (us)

Variables

• const lin_node_attribute_t g_lin_node_attribute_array [LIN_NUM_OF_SLAVE_IFCS]

• lin_master_data_t g_lin_master_data_array [LIN_NUM_OF_MASTER_IFCS]

• lin_tl_descriptor_t g_lin_tl_descriptor_array [LIN_NUM_OF_IFCS]

• const lin_protocol_user_config_t g_lin_protocol_user_cfg_array [LIN_NUM_OF_IFCS]

• lin_protocol_state_t g_lin_protocol_state_array [LIN_NUM_OF_IFCS]

• volatile l_u8 g_lin_frame_data_buffer [LIN_FRAME_BUF_SIZE]

• volatile l_u8 g_lin_flag_handle_tbl [LIN_FLAG_BUF_SIZE]

• volatile l_bool g_lin_frame_flag_handle_tbl [LIN_NUM_OF_FRMS]

• const l_u32 g_lin_virtual_ifc [LIN_NUM_OF_IFCS]

• const l_ifc_handle g_lin_hardware_ifc [HARDWARE_INSTANCE_COUNT]

• const lin_timer_get_time_interval_t timerGetTimeIntervalCallbackArr [LIN_NUM_OF_IFCS]

• volatile l_u8 g_buffer_backup_data [8]

• volatile l_u8 g_lin_frame_updating_flag_tbl [LIN_NUM_OF_FRMS]

16.69.2 Data Structure Documentation

16.69.2.1 struct lin_word_status_str_t

status of LIN bus Implements : lin_word_status_str_t_Class

Definition at line 148 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 667

Data Fields

• unsigned int error_in_res: 1
• unsigned int successful_transfer: 1
• unsigned int overrun: 1
• unsigned int go_to_sleep_flg: 1
• unsigned int bus_activity: 1
• unsigned int event_trigger_collision_flg: 1
• unsigned int save_config_flg: 1
• unsigned int reserved: 1
• unsigned int last_pid: 8

Field Documentation

16.69.2.1.1 unsigned int bus_activity

Bus activity

Definition at line 154 of file lin.h.

16.69.2.1.2 unsigned int error_in_res

Error in response

Definition at line 150 of file lin.h.

16.69.2.1.3 unsigned int event_trigger_collision_flg

Event trigger collision

Definition at line 155 of file lin.h.

16.69.2.1.4 unsigned int go_to_sleep_flg

Goto sleep

Definition at line 153 of file lin.h.

16.69.2.1.5 unsigned int last_pid

Last PID

Definition at line 158 of file lin.h.

16.69.2.1.6 unsigned int overrun

Overrun

Definition at line 152 of file lin.h.

16.69.2.1.7 unsigned int reserved

Dummy

Definition at line 157 of file lin.h.

16.69.2.1.8 unsigned int save_config_flg

Save configuration

Definition at line 156 of file lin.h.

16.69.2.1.9 unsigned int successful_transfer

Successful transfer

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

668 CONTENTS

Definition at line 151 of file lin.h.

16.69.2.2 struct lin_serial_number_t

Serial number Implements : lin_serial_number_t_Class.

Definition at line 175 of file lin.h.

Data Fields

• l_u8 serial_0
• l_u8 serial_1
• l_u8 serial_2
• l_u8 serial_3

Field Documentation

16.69.2.2.1 l_u8 serial_0

Serial 0

Definition at line 177 of file lin.h.

16.69.2.2.2 l_u8 serial_1

Serial 1

Definition at line 178 of file lin.h.

16.69.2.2.3 l_u8 serial_2

Serial 2

Definition at line 179 of file lin.h.

16.69.2.2.4 l_u8 serial_3

Serial 3

Definition at line 180 of file lin.h.

16.69.2.3 struct lin_node_attribute_t

Attributes of LIN node Implements : lin_node_attribute_t_Class.

Definition at line 187 of file lin.h.

Data Fields

• l_u8 ∗ configured_NAD_ptr
• l_u8 initial_NAD
• lin_product_id_t product_id
• lin_serial_number_t serial_number
• l_u8 ∗ resp_err_frm_id_ptr
• l_u8 num_frame_have_esignal
• l_signal_handle response_error
• l_u16 ∗ response_error_byte_offset_ptr
• l_u8 ∗ response_error_bit_offset_ptr
• l_u8 num_of_fault_state_signal
• const l_signal_handle ∗ fault_state_signal_ptr
• l_u16 P2_min
• l_u16 ST_min
• l_u16 N_As_timeout

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 669

• l_u16 N_Cr_timeout
• l_u8 number_support_sid
• const l_u8 ∗ service_supported_ptr
• l_u8 ∗ service_flags_ptr

Field Documentation

16.69.2.3.1 l_u8∗ configured_NAD_ptr

NAD value used in configuration command

Definition at line 189 of file lin.h.

16.69.2.3.2 const l_signal_handle∗ fault_state_signal_ptr

List of fault state signal

Definition at line 199 of file lin.h.

16.69.2.3.3 l_u8 initial_NAD

Initial NAD

Definition at line 190 of file lin.h.

16.69.2.3.4 l_u16 N_As_timeout

N_As_timeout

Definition at line 202 of file lin.h.

16.69.2.3.5 l_u16 N_Cr_timeout

N_Cr_timeout

Definition at line 203 of file lin.h.

16.69.2.3.6 l_u8 num_frame_have_esignal

Number of frame contain error signal

Definition at line 194 of file lin.h.

16.69.2.3.7 l_u8 num_of_fault_state_signal

Number of Fault state signal

Definition at line 198 of file lin.h.

16.69.2.3.8 l_u8 number_support_sid

Number of supported diagnostic services

Definition at line 204 of file lin.h.

16.69.2.3.9 l_u16 P2_min

P2 min

Definition at line 200 of file lin.h.

16.69.2.3.10 lin_product_id_t product_id

Product ID

Definition at line 191 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

670 CONTENTS

16.69.2.3.11 l_u8∗ resp_err_frm_id_ptr

List index of frame contain response error signal

Definition at line 193 of file lin.h.

16.69.2.3.12 l_signal_handle response_error

Signal used to update response error

Definition at line 195 of file lin.h.

16.69.2.3.13 l_u8∗ response_error_bit_offset_ptr

Bit offset of response error signal

Definition at line 197 of file lin.h.

16.69.2.3.14 l_u16∗ response_error_byte_offset_ptr

Byte offset of response error signal

Definition at line 196 of file lin.h.

16.69.2.3.15 lin_serial_number_t serial_number

Serial number

Definition at line 192 of file lin.h.

16.69.2.3.16 l_u8∗ service_flags_ptr

List of associated flags with supported diagnostic services

Definition at line 206 of file lin.h.

16.69.2.3.17 const l_u8∗ service_supported_ptr

List of supported diagnostic service

Definition at line 205 of file lin.h.

16.69.2.3.18 l_u16 ST_min

ST min

Definition at line 201 of file lin.h.

16.69.2.4 struct lin_associate_frame_t

Informations of associated frame Implements : lin_associate_frame_t_Class.

Definition at line 238 of file lin.h.

Data Fields

• l_u8 num_of_associated_uncond_frames
• const l_frame_handle ∗ associated_uncond_frame_ptr
• l_u8 coll_resolv_schd

Field Documentation

16.69.2.4.1 const l_frame_handle∗ associated_uncond_frame_ptr

Associated unconditional frame ID

Definition at line 241 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 671

16.69.2.4.2 l_u8 coll_resolv_schd

Collision resolver index in the schedule table, used in event trigger frame case MASTER

Definition at line 242 of file lin.h.

16.69.2.4.3 l_u8 num_of_associated_uncond_frames

Number of associated unconditional frame ID

Definition at line 240 of file lin.h.

16.69.2.5 struct lin_frame_t

Frame description structure Implements : lin_frame_t_Class.

Definition at line 249 of file lin.h.

Data Fields

• lin_frame_type_t frm_type
• l_u8 frm_len
• lin_frame_response_t frm_response
• l_u16 frm_offset
• l_u16 flag_offset
• l_u8 flag_size
• const lin_associate_frame_t ∗ frame_data_ptr

Field Documentation

16.69.2.5.1 l_u16 flag_offset

Flag byte offset in flag buffer

Definition at line 255 of file lin.h.

16.69.2.5.2 l_u8 flag_size

Flag size in flag buffer

Definition at line 256 of file lin.h.

16.69.2.5.3 const lin_associate_frame_t∗ frame_data_ptr

List of Signal to which the frame is associated and its offset

Definition at line 257 of file lin.h.

16.69.2.5.4 l_u8 frm_len

Length of the frame

Definition at line 252 of file lin.h.

16.69.2.5.5 l_u16 frm_offset

Frame byte offset in frame buffer

Definition at line 254 of file lin.h.

16.69.2.5.6 lin_frame_response_t frm_response

Action response when received PID

Definition at line 253 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

672 CONTENTS

16.69.2.5.7 lin_frame_type_t frm_type

Frame information (unconditional or event triggered..)

Definition at line 251 of file lin.h.

16.69.2.6 struct lin_schedule_data_t

LIN schedule structure Implements : lin_schedule_data_t_Class.

Definition at line 286 of file lin.h.

Data Fields

• l_frame_handle frm_id

• l_u8 delay_integer

• lin_tl_queue_t tl_queue_data

Field Documentation

16.69.2.6.1 l_u8 delay_integer

Actual slot time in INTEGER for one frame

Definition at line 289 of file lin.h.

16.69.2.6.2 l_frame_handle frm_id

Frame ID, in case of unconditional or event triggered frame. For sporadic frame the value will be 0 (zero)

Definition at line 288 of file lin.h.

16.69.2.6.3 lin_tl_queue_t tl_queue_data

Data used in case of diagnostic or configuration frame

Definition at line 290 of file lin.h.

16.69.2.7 struct lin_schedule_t

Schedule table description Implements : lin_schedule_t_Class.

Definition at line 297 of file lin.h.

Data Fields

• l_u8 num_slots

• lin_sch_tbl_type_t sch_tbl_type

• const lin_schedule_data_t ∗ ptr_sch_data_ptr

Field Documentation

16.69.2.7.1 l_u8 num_slots

Number of frame slots in the schedule table

Definition at line 299 of file lin.h.

16.69.2.7.2 const lin_schedule_data_t∗ ptr_sch_data_ptr

Address of the schedule table

Definition at line 301 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 673

16.69.2.7.3 lin_sch_tbl_type_t sch_tbl_type

Schedule table type

Definition at line 300 of file lin.h.

16.69.2.8 struct lin_transport_layer_queue_t

Transport layer queue Implements : lin_transport_layer_queue_t_Class.

Definition at line 435 of file lin.h.

Data Fields

• l_u16 queue_header

• l_u16 queue_tail

• ld_queue_status_t queue_status

• l_u16 queue_current_size

• l_u16 queue_max_size

• lin_tl_pdu_data_t ∗ tl_pdu_ptr

Field Documentation

16.69.2.8.1 l_u16 queue_current_size

Current size

Definition at line 440 of file lin.h.

16.69.2.8.2 l_u16 queue_header

The first element of queue

Definition at line 437 of file lin.h.

16.69.2.8.3 l_u16 queue_max_size

Maximum size

Definition at line 441 of file lin.h.

16.69.2.8.4 ld_queue_status_t queue_status

Status of queue

Definition at line 439 of file lin.h.

16.69.2.8.5 l_u16 queue_tail

The last element of queue

Definition at line 438 of file lin.h.

16.69.2.8.6 lin_tl_pdu_data_t∗ tl_pdu_ptr

PDU data

Definition at line 442 of file lin.h.

16.69.2.9 struct lin_tl_descriptor_t

Transport layer description Implements : lin_tl_descriptor_t_Class.

Definition at line 461 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

674 CONTENTS

Data Fields

• lin_transport_layer_queue_t tl_tx_queue

• lin_transport_layer_queue_t tl_rx_queue

• lin_message_status_t rx_msg_status

• l_u16 rx_msg_size

• lin_message_status_t tx_msg_status

• l_u16 tx_msg_size

• lin_last_cfg_result_t last_cfg_result

• l_u8 last_RSID

• l_u8 ld_error_code

• lin_message_timeout_type_t check_timeout_type

• l_u16 check_timeout

• lin_product_id_t ∗ product_id_ptr

• l_u8 num_of_pdu

• l_u8 frame_counter

• lin_diagnostic_state_t diag_state

• diag_interleaved_state_t diag_interleave_state

• l_u16 interleave_timeout_counter

• l_u8 slave_resp_cnt

• lin_service_status_t service_status

• bool ld_return_data

• bool FF_pdu_received

• l_u8 ∗ receive_message_ptr

• l_u8 ∗ receive_NAD_ptr

• l_u16 ∗ receive_message_length_ptr

Field Documentation

16.69.2.9.1 l_u16 check_timeout

Timeout counter for N_As and N_Cr timeout

Definition at line 481 of file lin.h.

16.69.2.9.2 lin_message_timeout_type_t check_timeout_type

Timeout type

Definition at line 480 of file lin.h.

16.69.2.9.3 diag_interleaved_state_t diag_interleave_state

state of diagnostic interleaved mode

Definition at line 486 of file lin.h.

16.69.2.9.4 lin_diagnostic_state_t diag_state

Diagnostic state

Definition at line 485 of file lin.h.

16.69.2.9.5 bool FF_pdu_received

Status of FF pdu

Definition at line 492 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 675

16.69.2.9.6 l_u8 frame_counter

Frame counter in received message

Definition at line 484 of file lin.h.

16.69.2.9.7 l_u16 interleave_timeout_counter

Interleaved timeout counter

Definition at line 487 of file lin.h.

16.69.2.9.8 lin_last_cfg_result_t last_cfg_result

Status of the last configuration service

Definition at line 476 of file lin.h.

16.69.2.9.9 l_u8 last_RSID

RSID of the last node configuration service

Definition at line 477 of file lin.h.

16.69.2.9.10 l_u8 ld_error_code

Error code in case of positive response

Definition at line 478 of file lin.h.

16.69.2.9.11 bool ld_return_data

Decide return data of diagnostic frame to pointer of ld_receive_message function

Definition at line 491 of file lin.h.

16.69.2.9.12 l_u8 num_of_pdu

Number of received pdu

Definition at line 483 of file lin.h.

16.69.2.9.13 lin_product_id_t∗ product_id_ptr

To store address of RAM area contain response

Definition at line 482 of file lin.h.

16.69.2.9.14 l_u16∗ receive_message_length_ptr

Pointer to receive_message_length of user

Definition at line 497 of file lin.h.

16.69.2.9.15 l_u8∗ receive_message_ptr

Pointer to receive_message array of user

Definition at line 495 of file lin.h.

16.69.2.9.16 l_u8∗ receive_NAD_ptr

Pointer to receive_NAD of user

Definition at line 496 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

676 CONTENTS

16.69.2.9.17 l_u16 rx_msg_size

Size of message in queue

Definition at line 470 of file lin.h.

16.69.2.9.18 lin_message_status_t rx_msg_status

Cooked rx status

Definition at line 469 of file lin.h.

16.69.2.9.19 lin_service_status_t service_status

Status of the last configuration service

Definition at line 489 of file lin.h.

16.69.2.9.20 l_u8 slave_resp_cnt

Slave Response data counter

Definition at line 488 of file lin.h.

16.69.2.9.21 lin_transport_layer_queue_t tl_rx_queue

Pointer to receive queue on TL

Definition at line 465 of file lin.h.

16.69.2.9.22 lin_transport_layer_queue_t tl_tx_queue

Pointer to transmit queue on TL

Definition at line 464 of file lin.h.

16.69.2.9.23 l_u16 tx_msg_size

Size of message in queue

Definition at line 474 of file lin.h.

16.69.2.9.24 lin_message_status_t tx_msg_status

Cooked tx status

Definition at line 473 of file lin.h.

16.69.2.10 struct lin_protocol_user_config_t

Configuration structure Implements : lin_protocol_user_config_t_Class.

Definition at line 507 of file lin.h.

Data Fields

• lin_protocol_handle_t protocol_version
• lin_protocol_handle_t language_version
• lin_diagnostic_class_t diagnostic_class
• bool function
• l_u8 number_of_configurable_frames
• l_u8 frame_start
• const lin_frame_t ∗ frame_tbl_ptr
• const l_u16 ∗ list_identifiers_ROM_ptr
• l_u8 ∗ list_identifiers_RAM_ptr

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 677

• l_u16 max_idle_timeout_cnt
• l_u8 num_of_schedules
• l_u8 schedule_start
• const lin_schedule_t ∗ schedule_tbl
• l_ifc_slave_handle slave_ifc_handle
• l_ifc_master_handle master_ifc_handle
• lin_user_config_t ∗ lin_user_config_ptr
• lin_tl_pdu_data_t ∗ tl_tx_queue_data_ptr
• lin_tl_pdu_data_t ∗ tl_rx_queue_data_ptr
• l_u16 max_message_length

Field Documentation

16.69.2.10.1 lin_diagnostic_class_t diagnostic_class

Diagnostic class

Definition at line 511 of file lin.h.

16.69.2.10.2 l_u8 frame_start

Start index of frame list

Definition at line 515 of file lin.h.

16.69.2.10.3 const lin_frame_t∗ frame_tbl_ptr

Frame list except diagnostic frames

Definition at line 516 of file lin.h.

16.69.2.10.4 bool function

Function LIN_MASTER or LIN_SLAVE_)

Definition at line 512 of file lin.h.

16.69.2.10.5 lin_protocol_handle_t language_version

Language version

Definition at line 510 of file lin.h.

16.69.2.10.6 lin_user_config_t∗ lin_user_config_ptr

Pointer to LIN driver user configuration structure

Definition at line 526 of file lin.h.

16.69.2.10.7 l_u8∗ list_identifiers_RAM_ptr

Configuration in RAM

Definition at line 519 of file lin.h.

16.69.2.10.8 const l_u16∗ list_identifiers_ROM_ptr

Configuration in ROM

Definition at line 518 of file lin.h.

16.69.2.10.9 l_ifc_master_handle master_ifc_handle

Interface handler of master node

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

678 CONTENTS

Definition at line 525 of file lin.h.

16.69.2.10.10 l_u16 max_idle_timeout_cnt

Max Idle timeout counter

Definition at line 520 of file lin.h.

16.69.2.10.11 l_u16 max_message_length

Max message length

Definition at line 530 of file lin.h.

16.69.2.10.12 l_u8 num_of_schedules

Number of schedule table

Definition at line 521 of file lin.h.

16.69.2.10.13 l_u8 number_of_configurable_frames

Number of frame except diagnostic frames

Definition at line 514 of file lin.h.

16.69.2.10.14 lin_protocol_handle_t protocol_version

Protocol version

Definition at line 509 of file lin.h.

16.69.2.10.15 l_u8 schedule_start

Start index of schedule table list

Definition at line 522 of file lin.h.

16.69.2.10.16 const lin_schedule_t∗ schedule_tbl

Schedule table list

Definition at line 523 of file lin.h.

16.69.2.10.17 l_ifc_slave_handle slave_ifc_handle

Interface handler of slave node

Definition at line 524 of file lin.h.

16.69.2.10.18 lin_tl_pdu_data_t∗ tl_rx_queue_data_ptr

Rx queue data

Definition at line 529 of file lin.h.

16.69.2.10.19 lin_tl_pdu_data_t∗ tl_tx_queue_data_ptr

Tx queue data

Definition at line 528 of file lin.h.

16.69.2.11 struct lin_master_data_t

LIN master configuration structure Implements : lin_master_data_t_Class.

Definition at line 538 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 679

Data Fields

• l_u8 active_schedule_id

• l_u8 previous_schedule_id

• l_u8 ∗ schedule_start_entry_ptr

• l_bool event_trigger_collision_flg

• l_u8 master_data_buffer [8]

• l_u16 frm_offset

• l_u8 frm_size

• l_u16 flag_offset

• l_u8 flag_size

• l_bool send_slave_res_flg

• l_bool send_functional_request_flg

Field Documentation

16.69.2.11.1 l_u8 active_schedule_id

Active schedule table id

Definition at line 540 of file lin.h.

16.69.2.11.2 l_bool event_trigger_collision_flg

Flag trigger collision event

Definition at line 543 of file lin.h.

16.69.2.11.3 l_u16 flag_offset

Flag offset

Definition at line 547 of file lin.h.

16.69.2.11.4 l_u8 flag_size

Flag size

Definition at line 548 of file lin.h.

16.69.2.11.5 l_u16 frm_offset

Frame offset

Definition at line 545 of file lin.h.

16.69.2.11.6 l_u8 frm_size

Size of frame

Definition at line 546 of file lin.h.

16.69.2.11.7 l_u8 master_data_buffer[8]

Master data buffer

Definition at line 544 of file lin.h.

16.69.2.11.8 l_u8 previous_schedule_id

Previous schedule table id

Definition at line 541 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

680 CONTENTS

16.69.2.11.9 l_u8∗ schedule_start_entry_ptr

Start entry of each schedule table

Definition at line 542 of file lin.h.

16.69.2.11.10 l_bool send_functional_request_flg

Flag send Functional Request

Definition at line 550 of file lin.h.

16.69.2.11.11 l_bool send_slave_res_flg

Flag to send Slave Response Schedule

Definition at line 549 of file lin.h.

16.69.2.12 struct lin_protocol_state_t

LIN protocol status structure Implements : lin_protocol_state_t_Class.

Definition at line 557 of file lin.h.

Data Fields

• l_u16 baud_rate
• l_u8 ∗ response_buffer_ptr
• l_u8 response_length
• l_u8 successful_transfer
• l_u8 error_in_response
• l_bool go_to_sleep_flg
• l_u8 current_id
• l_u8 last_pid
• l_u8 num_of_processed_frame
• l_u8 overrun_flg
• lin_word_status_str_t word_status
• l_u8 next_transmit_tick
• l_bool save_config_flg
• l_diagnostic_mode_t diagnostic_mode
• l_u16 frame_timeout_cnt
• l_u16 idle_timeout_cnt
• l_bool transmit_error_resp_sig_flg

Field Documentation

16.69.2.12.1 l_u16 baud_rate

Adjusted baud rate

Definition at line 560 of file lin.h.

16.69.2.12.2 l_u8 current_id

Current PID

Definition at line 566 of file lin.h.

16.69.2.12.3 l_diagnostic_mode_t diagnostic_mode

Diagnostic mode

Definition at line 573 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 681

16.69.2.12.4 l_u8 error_in_response

Error response

Definition at line 564 of file lin.h.

16.69.2.12.5 l_u16 frame_timeout_cnt

Frame timeout counter for monitoring if timeout occurs during data transferring

Definition at line 574 of file lin.h.

16.69.2.12.6 l_bool go_to_sleep_flg

Go to sleep flag

Definition at line 565 of file lin.h.

16.69.2.12.7 l_u16 idle_timeout_cnt

Idle timeout counter

Definition at line 575 of file lin.h.

16.69.2.12.8 l_u8 last_pid

Last PID

Definition at line 567 of file lin.h.

16.69.2.12.9 l_u8 next_transmit_tick

Used to count the next transmit tick

Definition at line 571 of file lin.h.

16.69.2.12.10 l_u8 num_of_processed_frame

Number of processed frames

Definition at line 568 of file lin.h.

16.69.2.12.11 l_u8 overrun_flg

overrun flag

Definition at line 569 of file lin.h.

16.69.2.12.12 l_u8∗ response_buffer_ptr

Response buffer

Definition at line 561 of file lin.h.

16.69.2.12.13 l_u8 response_length

Response length

Definition at line 562 of file lin.h.

16.69.2.12.14 l_bool save_config_flg

Set when save configuration request has been received

Definition at line 572 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

682 CONTENTS

16.69.2.12.15 l_u8 successful_transfer

Transfer flag

Definition at line 563 of file lin.h.

16.69.2.12.16 l_bool transmit_error_resp_sig_flg

Flag indicates that the error response signal is going to be sent

Definition at line 576 of file lin.h.

16.69.2.12.17 lin_word_status_str_t word_status

Word status

Definition at line 570 of file lin.h.

16.69.3 Macro Definition Documentation

16.69.3.1 #define CALLBACK_HANDLER(iii, event_id, id) lin_pid_resp_callback_handler((iii), (event_id), (id))

CALLBACK_HANDLER.

Note

call lin_pid_resp_callback_handler() function in MASTER mode

Definition at line 684 of file lin.h.

16.69.3.2 #define LD_NEGATIVE_RESPONSE 0x53U

Negative response

Definition at line 84 of file lin.h.

16.69.3.3 #define LD_POSITIVE_RESPONSE 0x54U

Positive response

Definition at line 85 of file lin.h.

16.69.3.4 #define LIN_LLD_ERROR 0xFFU

Return value is ERROR

Definition at line 89 of file lin.h.

16.69.3.5 #define LIN_LLD_OK 0x00U

Return value is OK

Definition at line 88 of file lin.h.

16.69.3.6 #define LIN_MASTER 1

Master node

Definition at line 166 of file lin.h.

16.69.3.7 #define LIN_READ_USR_DEF_MAX 63U

Max user defined

Definition at line 81 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 683

16.69.3.8 #define LIN_READ_USR_DEF_MIN 32U

Min user defined

Definition at line 80 of file lin.h.

16.69.3.9 #define LIN_SLAVE 0

Mode of LIN node (master or slave)

Slave node

Definition at line 165 of file lin.h.

16.69.3.10 #define LIN_TL_CALLBACK_HANDLER(iii, tl_event_id, id) lin_tl_callback_handler((iii), (tl_event_id), (id))

Definition at line 372 of file lin.h.

16.69.3.11 #define PCI_RES_ASSIGN_FRAME_ID_RANGE 0x01U

PCI response value assign frame id range

Definition at line 77 of file lin.h.

16.69.3.12 #define PCI_RES_READ_BY_IDENTIFY 0x06U

PCI response value read by identify

Definition at line 75 of file lin.h.

16.69.3.13 #define PCI_RES_SAVE_CONFIGURATION 0x01U

PCI response value save configuration

Definition at line 76 of file lin.h.

16.69.3.14 #define PCI_SAVE_CONFIGURATION 0x01U

PCI value save configuration

Definition at line 72 of file lin.h.

16.69.3.15 #define SERIVCE_FAULT_MEMORY_CLEAR 0x14U

Service fault memory clear

Definition at line 69 of file lin.h.

16.69.3.16 #define SERVICE_ASSIGN_FRAME_ID 0xB1U

Assign frame id service

Definition at line 58 of file lin.h.

16.69.3.17 #define SERVICE_ASSIGN_FRAME_ID_RANGE 0xB7U

Assign frame id range service

Definition at line 62 of file lin.h.

16.69.3.18 #define SERVICE_ASSIGN_NAD 0xB0U

Assign NAD service

Definition at line 57 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

684 CONTENTS

16.69.3.19 #define SERVICE_CONDITIONAL_CHANGE_NAD 0xB3U

Conditional change NAD service

Definition at line 60 of file lin.h.

16.69.3.20 #define SERVICE_FAULT_MEMORY_READ 0x19U

Service fault memory read

Definition at line 68 of file lin.h.

16.69.3.21 #define SERVICE_IO_CONTROL_BY_IDENTIFY 0x2FU

Service I/O control

Definition at line 67 of file lin.h.

16.69.3.22 #define SERVICE_READ_BY_IDENTIFY 0xB2U

Read by identify service

Definition at line 59 of file lin.h.

16.69.3.23 #define SERVICE_READ_DATA_BY_IDENTIFY 0x22U

Service read data by identifier

Definition at line 64 of file lin.h.

16.69.3.24 #define SERVICE_SAVE_CONFIGURATION 0xB6U

Save configuration service

Definition at line 61 of file lin.h.

16.69.3.25 #define SERVICE_SESSION_CONTROL 0x10U

Service session control

Definition at line 66 of file lin.h.

16.69.3.26 #define SERVICE_WRITE_DATA_BY_IDENTIFY 0x2EU

Service write data by identifier

Definition at line 65 of file lin.h.

16.69.4 Typedef Documentation

16.69.4.1 typedef l_u8 lin_tl_pdu_data_t[8]

PDU data. Implements : lin_tl_pdu_data_t_Class.

Definition at line 95 of file lin.h.

16.69.4.2 typedef l_u8 lin_tl_queue_t[8]

LIN transport layer queue Implements : lin_tl_queue_t_Class.

Definition at line 267 of file lin.h.

16.69.5 Enumeration Type Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 685

16.69.5.1 enum diag_interleaved_state_t

State of diagnostic interleaved mode Implements : diag_interleaved_state_t_Class.

Enumerator

DIAG_NOT_START Not into slave response schedule with interleaved mode

DIAG_NO_RESPONSE Master send 0x3D but slave does not response

DIAG_RESPONSE Response receive

Definition at line 450 of file lin.h.

16.69.5.2 enum l_diagnostic_mode_t

Diagnostic mode Implements : l_diagnostic_mode_t_Class.

Enumerator

DIAG_NONE None

DIAG_INTERLEAVE_MODE Interleave mode

DIAG_ONLY_MODE Diagnostic only mode

Definition at line 311 of file lin.h.

16.69.5.3 enum ld_queue_status_t

Status of queue Implements : ld_queue_status_t_Class.

Enumerator

LD_NO_DATA Rx Queue is empty, has no data

LD_DATA_AVAILABLE Data in queue is available

LD_RECEIVE_ERROR Receive data is error for LIN21 and above

LD_QUEUE_FULL The queue is full

LD_QUEUE_AVAILABLE Queue is available for insert data for LIN21 and above

LD_QUEUE_EMPTY Tx Queue is empty

LD_TRANSMIT_ERROR Error while transmitting for LIN21 and above

LD_TRANSFER_ERROR Error while transmitting/receiving for LIN20 and J2602

Definition at line 378 of file lin.h.

16.69.5.4 enum lin_diagnostic_class_t

List of diagnostic classes Implements : lin_diagnostic_class_t_Class.

Enumerator

LIN_DIAGNOSTIC_CLASS_I LIN Diagnostic Class 1

LIN_DIAGNOSTIC_CLASS_II LIN Diagnostic Class 2

LIN_DIAGNOSTIC_CLASS_III LIN Diagnostic Class 3

Definition at line 137 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

686 CONTENTS

16.69.5.5 enum lin_diagnostic_state_t

LIN diagnostic state Implements : lin_diagnostic_state_t_Class.

Enumerator

LD_DIAG_IDLE IDLE

LD_DIAG_TX_PHY Diagnostic transmit physical

LD_DIAG_TX_FUNCTIONAL Diagnostic transmit active

LD_DIAG_TX_INTERLEAVED Diagnostic transmit in interleave mode

LD_DIAG_RX_PHY Diagnostic receive in physical

LD_DIAG_RX_FUNCTIONAL Diagnostic receive functional request

LD_DIAG_RX_INTERLEAVED Diagnostic receive in interleave mode

Definition at line 409 of file lin.h.

16.69.5.6 enum lin_frame_response_t

LIN frame response Implements : lin_frame_response_t_Class.

Enumerator

LIN_RES_PUB Publisher response

LIN_RES_SUB Subscriber response

Definition at line 228 of file lin.h.

16.69.5.7 enum lin_frame_type_t

Types of frame Implements : lin_frame_type_t_Class.

Enumerator

LIN_FRM_UNCD Unconditional frame

LIN_FRM_EVNT Event triggered frame

LIN_FRM_SPRDC Sporadic frame

LIN_FRM_DIAG Diagnostic frame

Definition at line 216 of file lin.h.

16.69.5.8 enum lin_last_cfg_result_t

Status of the last configuration call completed Implements : lin_last_cfg_result_t_Class.

Enumerator

LD_SUCCESS The service was successfully carried out

LD_NEGATIVE The service failed, more information can be found by parsing error_code

LD_NO_RESPONSE No response was received on the request

LD_OVERWRITTEN The slave response frame has been overwritten by another operation

Definition at line 334 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 687

16.69.5.9 enum lin_lld_event_id_t

Event id Implements : lin_lld_event_id_t_Class.

Enumerator

LIN_LLD_PID_OK LIN_LLD_PID_OK

LIN_LLD_TX_COMPLETED LIN_LLD_TX_COMPLETED

LIN_LLD_RX_COMPLETED LIN_LLD_RX_COMPLETED

LIN_LLD_PID_ERR LIN_LLD_PID_ERR

LIN_LLD_FRAME_ERR LIN_LLD_FRAME_ERR

LIN_LLD_CHECKSUM_ERR LIN_LLD_CHECKSUM_ERR

LIN_LLD_READBACK_ERR LIN_LLD_READBACK_ERR

LIN_LLD_NODATA_TIMEOUT No data timeout or received part of data but not completed

LIN_LLD_BUS_ACTIVITY_TIMEOUT LIN_LLD_BUS_ACTIVITY_TIMEOUT

Definition at line 105 of file lin.h.

16.69.5.10 enum lin_message_status_t

Status of LIN message Implements : lin_message_status_t_Class.

Enumerator

LD_NO_MSG No message

LD_IN_PROGRESS In progress

LD_COMPLETED Completed

LD_FAILED Failed

LD_N_AS_TIMEOUT N_As timeout

LD_N_CR_TIMEOUT N_Cr timeout

LD_WRONG_SN Wrong sequence number

Definition at line 394 of file lin.h.

16.69.5.11 enum lin_message_timeout_type_t

Types of message timeout Implements : lin_message_timeout_type_t_Class.

Enumerator

LD_NO_CHECK_TIMEOUT No check timeout

LD_CHECK_N_AS_TIMEOUT check N_As timeout

LD_CHECK_N_CR_TIMEOUT check N_Cr timeout

Definition at line 424 of file lin.h.

16.69.5.12 enum lin_protocol_handle_t

List of protocols Implements : lin_protocol_handle_t_Class.

Enumerator

LIN_PROTOCOL_21 LIN protocol version 2.1, 2.2

LIN_PROTOCOL_J2602 J2602 protocol

LIN_PROTOCOL_13 LIN protocol version 1.3

LIN_PROTOCOL_20 LIN protocol version 2.0

Definition at line 125 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

688 CONTENTS

16.69.5.13 enum lin_sch_tbl_type_t

Types of schedule tables Implements : lin_sch_tbl_type_t_Class.

Enumerator

LIN_SCH_TBL_NULL Run nothing

LIN_SCH_TBL_NORM Normal schedule table

LIN_SCH_TBL_DIAG Diagnostic schedule table

LIN_SCH_TBL_GO_TO_SLEEP Goto sleep schedule table

LIN_SCH_TBL_COLL_RESOLV Collision resolving schedule table

Definition at line 273 of file lin.h.

16.69.5.14 enum lin_service_status_t

Status of the last configuration call for LIN 2.1 Implements : lin_service_status_t_Class.

Enumerator

LD_SERVICE_BUSY Service is ongoing

LD_REQUEST_FINISHED The configuration request has been completed

LD_SERVICE_IDLE The configuration request/response combination has been completed

LD_SERVICE_ERROR The configuration request or response experienced an error

Definition at line 322 of file lin.h.

16.69.5.15 enum lin_tl_callback_return_t

Transport layer event IDs Implements : lin_tl_callback_return_t_Class.

Enumerator

TL_ACTION_NONE Default return value of call back function

TL_ACTION_ID_IGNORE Ignore this ID

Definition at line 362 of file lin.h.

16.69.5.16 enum lin_tl_event_id_t

Transport layer event IDs Implements : lin_tl_event_id_t_Class.

Enumerator

TL_MAKE_RES_DATA Make master request data

TL_SLAVE_GET_ACTION Get slave action

TL_TX_COMPLETED Transmit completed

TL_RX_COMPLETED Receive completed

TL_ERROR Transport error

TL_TIMEOUT_SERVICE Transmit timeout

TL_HANDLER_INTERLEAVE_MODE Interleave mode

TL_RECEIVE_MESSAGE Return data for ld_receive_message function

Definition at line 346 of file lin.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 689

16.69.6 Function Documentation

16.69.6.1 l_u8 ld_read_by_id_callout (l_ifc_handle iii, l_u8 id, l_u8 ∗ data)

16.69.6.2 static l_u16 lin_calc_max_header_timeout_cnt (l_u32 baudRate) [inline], [static]

Computes maximum header timeout.

Theader_Maximum = 1.4 ∗ THeader_Nominal, THeader_Nominal = 34 ∗ TBit, (13 nominal bits of break; 1 nominal
bit of break delimiter; 10 bits for SYNC and 10 bits of PID) TIME_OUT_UNIT_US is in micro second

Parameters

in baudRate LIN network baud rate

Returns

maximum timeout for the selected baud rate

Implements : lin_calc_max_header_timeout_cnt_Activity

Definition at line 626 of file lin.h.

16.69.6.3 static l_u16 lin_calc_max_res_timeout_cnt (l_u32 baudRate, l_u8 size) [inline], [static]

Computes the maximum response timeout.

TResponse_Maximum = 1.4 ∗ TResponse_Nominal, TResponse_Nominal = 10 ∗ (NData+ 1) ∗ TBit

Parameters

in baudRate LIN network baud rate
in size frame size in bytes

Returns

maximum response timeout for the given baud rate and frame size

Implements : lin_calc_max_res_timeout_cnt_Activity

Definition at line 642 of file lin.h.

16.69.6.4 void lin_lld_deinit (l_ifc_handle iii)

This function disconnect the node from the cluster and free all hardware used.

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
void

Definition at line 153 of file lin.c.

16.69.6.5 lin_node_state_t lin_lld_get_state (l_ifc_handle iii)

This function gets current state of an interface.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

690 CONTENTS

Parameters

in iii LIN interface that is being handled

Returns

current LIN node state

Definition at line 174 of file lin.c.

16.69.6.6 l_u8 lin_lld_ignore_response (l_ifc_handle iii)

This function terminates an on-going data transmission/reception.

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 294 of file lin.c.

16.69.6.7 l_bool lin_lld_init (l_ifc_handle iii)

This function initializes a LIN hardware instance for operation. This function will initialize the run-time state structure
to keep track of the on-going transfers, initialize the module to user defined settings and default settings, configure
the IRQ state structure and enable the module-level interrupt to the core, and enable the LIN hardware module
transmitter and receiver.

Parameters

in iii LIN interface that is being handled

Returns

zero if the initialization was successful and non-zero if failed

Definition at line 88 of file lin.c.

16.69.6.8 l_u8 lin_lld_int_disable (l_ifc_handle iii)

Disable the interrupt related to the interface.

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 271 of file lin.c.

16.69.6.9 l_u8 lin_lld_int_enable (l_ifc_handle iii)

Enable the interrupt related to the interface.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 691

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 248 of file lin.c.

16.69.6.10 l_u8 lin_lld_rx_response (l_ifc_handle iii, l_u8 response_length)

This function receives frame data into the LIN_lld_response_buffer[iii] buffer.

This function will prepare LIN interface to receive data and then return. Data bytes will be received to the buffer in
the interrupt handler of LIN interface. This function returns zero if preparation of receiving data was successful.

Parameters

in iii LIN interface that is being handled
in response_length Length of response

Returns

Zero for success
Non-zero for error

Definition at line 376 of file lin.c.

16.69.6.11 l_u8 lin_lld_set_low_power_mode (l_ifc_handle iii)

Let the low level driver go to low power mode.

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 317 of file lin.c.

16.69.6.12 l_u8 lin_lld_set_response (l_ifc_handle iii, l_u8 response_length)

This function sends frame data that is contained in LIN_lld_response_buffer[iii].

This function will send the first data byte in the buffer and then return. Next data bytes will be sent in the interrupt
handler of LIN interface. This function returns zero if sending of first data byte was successful.

Parameters

in iii LIN interface that is being handled
in response_length Length of response

Returns

Zero for success
Non-zero for error

Definition at line 340 of file lin.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

692 CONTENTS

16.69.6.13 void lin_lld_timeout_service (l_ifc_handle iii)

Callback function for Timer Interrupt Handler In timer IRQ handler, call this function. Used to check if frame timeout
has occurred during frame data transmission and reception, to check for N_As and N_Cr timeout for LIN 2.1 and
above. This function also check if there is no LIN bus communication (no headers and no frame data transferring)
for Idle timeout (s), then put LIN node to Sleep mode. Users may initialize a timer (for example FTM)with period
of Timeout unit (default: 500 micro seconds) to call lin_lld_timeout_service(). For an interface iii, Idle timeout (s) =
max_idle_timeout_cnt ∗ Timeout unit (us) frame timeout (us) = frame_timeout_cnt ∗ Timeout unit (us) N_As timeout
(us) = N_As_timeout ∗ Timeout unit (us) N_Cr timeout (us) = N_Cr_timeout ∗ Timeout unit (us)

Parameters

in iii LIN interface that is being handled

Returns

void

Definition at line 407 of file lin.c.

16.69.6.14 l_u8 lin_lld_tx_header (l_ifc_handle iii, l_u8 id)

This function sends frame header for the input PID.

This function only initializes the sending of break field and then return. Then the sync byte and PID will be sent in
the interrupt handler of LIN interface.

Parameters

in iii LIN interface that is being handled
in id ID of the header to be sent

Returns

Zero for success
Non-zero for error

Definition at line 197 of file lin.c.

16.69.6.15 l_u8 lin_lld_tx_wake_up (l_ifc_handle iii)

This function send a wakeup signal.

Parameters

in iii LIN interface that is being handled

Returns

Zero for success
Non-zero for error

Definition at line 225 of file lin.c.

16.69.6.16 void lin_pid_resp_callback_handler (l_ifc_handle iii, const lin_lld_event_id_t event_id, l_u8 id)

Callback handler for low level events.

This callback handler is being called from the LIN driver callback

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.69 Low level API 693

Parameters

in iii LIN interface that is being handled
in event_id Low level event id lin_lld_event_id_t
in id Current protected identifier under processing by driver

Definition at line 74 of file lin_common_proto.c.

16.69.6.17 l_u8 lin_process_parity (l_u8 pid, l_u8 typeAction)

Makes or checks parity bits. If action is checking parity, the function returns ID value if parity bits are correct or 0xFF
if parity bits are incorrect. If action is making parity bits, then from input value of ID, the function returns PID.

Parameters

pid PID byte in case of checking parity bits or ID byte in case of making parity bits.
typeAction TRUE for Checking parity bits, FALSE for making parity bits

Returns

0xFF if parity bits are incorrect, ID in case of checking parity bits and they are correct. Function returns PID in
case of making parity bits.

Definition at line 71 of file lin.c.

16.69.6.18 lin_tl_callback_return_t lin_tl_callback_handler (l_ifc_handle iii, lin_tl_event_id_t tl_event_id, l_u8 id)

Definition at line 81 of file lin_commontl_proto.c.

16.69.7 Variable Documentation

16.69.7.1 volatile l_u8 g_buffer_backup_data[8]

16.69.7.2 volatile l_u8 g_lin_flag_handle_tbl[LIN_FLAG_BUF_SIZE]

16.69.7.3 volatile l_u8 g_lin_frame_data_buffer[LIN_FRAME_BUF_SIZE]

16.69.7.4 volatile l_bool g_lin_frame_flag_handle_tbl[LIN_NUM_OF_FRMS]

16.69.7.5 volatile l_u8 g_lin_frame_updating_flag_tbl[LIN_NUM_OF_FRMS]

16.69.7.6 const l_ifc_handle g_lin_hardware_ifc[HARDWARE_INSTANCE_COUNT]

16.69.7.7 lin_master_data_t g_lin_master_data_array[LIN_NUM_OF_MASTER_IFCS]

Global array for storing the master interfaces configurations

Definition at line 49 of file lin.c.

16.69.7.8 const lin_node_attribute_t g_lin_node_attribute_array[LIN_NUM_OF_SLAVE_IFCS]

16.69.7.9 lin_protocol_state_t g_lin_protocol_state_array[LIN_NUM_OF_IFCS]

Global array for storing the protocol state for each interface

Definition at line 47 of file lin.c.

16.69.7.10 const lin_protocol_user_config_t g_lin_protocol_user_cfg_array[LIN_NUM_OF_IFCS]

16.69.7.11 lin_tl_descriptor_t g_lin_tl_descriptor_array[LIN_NUM_OF_IFCS]

Global array for storing transport configuration for each interface

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

694 CONTENTS

Definition at line 46 of file lin.c.

16.69.7.12 const l_u32 g_lin_virtual_ifc[LIN_NUM_OF_IFCS]

16.69.7.13 const lin_timer_get_time_interval_t timerGetTimeIntervalCallbackArr[LIN_NUM_OF_IFCS]

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.70 MPU Driver 695

16.70 MPU Driver

16.70.1 Detailed Description

Memory Protection Unit Peripheral Driver.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\mpu\mpu_driver.c
${S32SDK_PATH}\platform\drivers\src\mpu\mpu_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

No special dependencies are required for this component

Pre-Initialization information of MPU module

1. Before using the MPU driver the protocol clock of the module must be configured by the application using
clock module.

2. Bus fault or Hard fault exception must be configured to handle MPU access violation.

To initialize the MPU module, call the MPU_DRV_Init() function and provide the user configuration data structure.
This function sets the configuration of the MPU module automatically and enables the MPU module.
The default settings for the Region Descriptor 0 (RGD0):

• The access right for CORE, DMA,.. can be changed except DEBUGGER master.

• The start address, end address, process identifier and process identifier mask are ignored.

This is example code to configure the MPU driver:

1. Define MPU instance

/* MPU 0 */
#define INST_MPU 0U

/* Status variable */
status_t status;

2. Configuration
User configuration

/* Region count */
#define REGION_CNT (1U)

/* Master access configuration
FEATURE_MPU_MASTER_COUNT macro has been already defined (number of masters supported by hardware)

*/

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

696 CONTENTS

mpu_master_access_right_t masterAccRight[FEATURE_MPU_MASTER_COUNT] =
{

/* CORE */
{

.masterNum = FEATURE_MPU_MASTER_CORE, /* Master number */

.accessRight = MPU_SUPERVISOR_RWX_USER_RWX, /* Access right */

.processIdentifierEnable = false, /* Process identifier enable */
},
/* The rest masters should be defined here */
...

}
/* User configuration */
mpu_user_config_t userConfig[REGION_CNT] =
{

/* Region 0 */
{

.startAddr = 0x00000000U, /* Memory region start address */

.endAddr = 0xFFFFFFFFU, /* Memory region end address */

.masterAccRight = masterAccRight, /* Master access right */

.processIdEnable = false, /* Process identifier enable */

.processIdentifier = 0x00U, /* Process identifier */

.processIdMask = 0x00U /* Process identifier mask */
}

}

or get default configuration

/* Defines master access right structure */
mpu_master_access_right_t masterAccRight[FEATURE_MPU_MASTER_COUNT];

/* Gets default region configuration
Cover entire memory
Access right of all masters are allowed

*/
mpu_user_config_t regionConfig0 =

MPU_DRV_GetDefaultRegionConfig(masterAccRight);
mpu_user_config_t userConfig[REGION_CNT] =
{

regionConfig0
};

3. Initializes

/* Initializes the MPU instance */
status = MPU_DRV_Init(INST_MPU, REGION_CNT, userConfig);

4. De-initializes

/* De-initializes the MPU instance */
MPU_DRV_Deinit(INST_MPU);

After MPU initialization:

• The MPU_DRV_SetRegionConfig() can be used to add/update the new/existing region descriptor.

/* Add the new region descriptor.
Region 1 to be the same with region 0.

*/
status = MPU_DRV_SetRegionConfig(INST_MPU, 1U, &userConfig[0U]);

/* Updates the existing region descriptor.
Updates PID mask value on region 1.

*/
userConfig[0U].processIdMask = 0xFFU;
status = MPU_DRV_SetRegionConfig(INST_MPU, 1U, &userConfig[0U]);

• The MPU_DRV_SetRegionAddr() can be used to update the start and end address on an existing region
descriptor.

/* Updates region 1 location (0x20000000 - 0x2FFFFFFF) */
MPU_DRV_SetRegionAddr(INST_MPU, 1U, 0x20000000U, 0x2FFFFFFFU);

• The MPU_DRV_SetMasterAccessRights() can be used to update access permission of master in the region.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.70 MPU Driver 697

/* DMA can only operate on region 1 */
mpu_master_access_right_t DMA_AccRight;
DMA_AccRight.masterNum = FEATURE_MPU_MASTER_DMA;
/* Removes all access rights of DMA on region 0 */
DMA_AccRight.accessRight = MPU_SUPERVISOR_USER_NONE;
status = MPU_DRV_SetMasterAccessRights(INST_MPU, 0U, &DMA_AccRight);
/* Allows all access to region 1 from DMA */
DMA_AccRight.accessRight = MPU_SUPERVISOR_USER_RWX;
status = MPU_DRV_SetMasterAccessRights(INST_MPU, 1U, &DMA_AccRight);

• The MPU_DRV_GetDetailErrorAccessInfo() API can be used to get the status of a slave port and the detail
when an error occurred.

/* DMA access to SRAML
- Access type: read
- Address: 0x1FFEFF00 (region 0)

*/
...
/* Checks and gets error status on slave port 1 (SRAML backdoor) */
bool errStatus = false;
mpu_access_err_info_t errReport;
errStatus = MPU_DRV_GetDetailErrorAccessInfo(INST_MPU,

FEATURE_MPU_SLAVE_SRAM_BACKDOOR, &errReport);
/* Checks status:

- errStatus: true
- errReport:
- errReport.master: FEATURE_MPU_MASTER_DMA (DMA logical ID)
- errReport.attributes: MPU_DATA_ACCESS_IN_SUPERVISOR_MODE (Data access in supervisor mode)
- errReport.accessType: MPU_ERR_TYPE_READ (Read access)
- errReport.accessCtr: 0x8000 (Access violation occurs on region 0 - MSB is region 0 and so on)
- errReport.addr: 0x1FFEFF00 (Data access in supervisor mode)
- errReport.processorIdentification: 0U (Do not support for non-core processor)

*/
...

• The MPU_DRV_EnableRegion() can be used to enable or disable region descriptor.

/* Disables DMA - disable region 1 descriptor */
MPU_DRV_EnableRegion(INST_MPU, 1U, false);
/* Enables again */
MPU_DRV_EnableRegion(INST_MPU, 1U, true);

Power management:

• To minimizes power dissipation, disables MPU module or regions by using MPU_DRV_Deinit()/MPU_DRV←↩

_EnableRegion() when they are unused anymore.

Data Structures

• struct mpu_access_err_info_t

MPU detail error access info Implements : mpu_access_err_info_t_Class. More...

• struct mpu_master_access_right_t

MPU master access rights. Implements : mpu_master_access_right_t_Class. More...

• struct mpu_user_config_t

MPU user region configuration structure. This structure is used when calling the MPU_DRV_Init function. Implements
: mpu_user_config_t_Class. More...

Enumerations

• enum mpu_err_access_type_t { MPU_ERR_TYPE_READ = 0U, MPU_ERR_TYPE_WRITE = 1U }

MPU access error Implements : mpu_err_access_type_t_Class.

• enum mpu_err_attributes_t { MPU_INSTRUCTION_ACCESS_IN_USER_MODE = 0U, MPU_DATA_ACC←↩

ESS_IN_USER_MODE = 1U, MPU_INSTRUCTION_ACCESS_IN_SUPERVISOR_MODE = 2U, MPU_DA←↩

TA_ACCESS_IN_SUPERVISOR_MODE = 3U }

MPU access error attributes Implements : mpu_err_attributes_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

698 CONTENTS

• enum mpu_access_rights_t {
MPU_SUPERVISOR_RWX_USER_NONE = 0x00U, MPU_SUPERVISOR_RWX_USER_X = 0x01U, MP←↩

U_SUPERVISOR_RWX_USER_W = 0x02U, MPU_SUPERVISOR_RWX_USER_WX = 0x03U,
MPU_SUPERVISOR_RWX_USER_R = 0x04U, MPU_SUPERVISOR_RWX_USER_RX = 0x05U, MPU_S←↩

UPERVISOR_RWX_USER_RW = 0x06U, MPU_SUPERVISOR_RWX_USER_RWX = 0x07U,
MPU_SUPERVISOR_RX_USER_NONE = 0x08U, MPU_SUPERVISOR_RX_USER_X = 0x09U, MPU_S←↩

UPERVISOR_RX_USER_W = 0x0AU, MPU_SUPERVISOR_RX_USER_WX = 0x0BU,
MPU_SUPERVISOR_RX_USER_R = 0x0CU, MPU_SUPERVISOR_RX_USER_RX = 0x0DU, MPU_SUP←↩

ERVISOR_RX_USER_RW = 0x0EU, MPU_SUPERVISOR_RX_USER_RWX = 0x0FU,
MPU_SUPERVISOR_RW_USER_NONE = 0x10U, MPU_SUPERVISOR_RW_USER_X = 0x11U, MPU_S←↩

UPERVISOR_RW_USER_W = 0x12U, MPU_SUPERVISOR_RW_USER_WX = 0x13U,
MPU_SUPERVISOR_RW_USER_R = 0x14U, MPU_SUPERVISOR_RW_USER_RX = 0x15U, MPU_SUP←↩

ERVISOR_RW_USER_RW = 0x16U, MPU_SUPERVISOR_RW_USER_RWX = 0x17U,
MPU_SUPERVISOR_USER_NONE = 0x18U, MPU_SUPERVISOR_USER_X = 0x19U, MPU_SUPERVIS←↩

OR_USER_W = 0x1AU, MPU_SUPERVISOR_USER_WX = 0x1BU,
MPU_SUPERVISOR_USER_R = 0x1CU, MPU_SUPERVISOR_USER_RX = 0x1DU, MPU_SUPERVISO←↩

R_USER_RW = 0x1EU, MPU_SUPERVISOR_USER_RWX = 0x1FU,
MPU_NONE = 0x80U, MPU_W = 0xA0U, MPU_R = 0xC0U, MPU_RW = 0xE0U }

MPU access rights.
Code Supervisor User Description
MPU_SUPERVISOR_←↩

RWX_USER_NONE
r w x - - - Allow Read, write,

execute in supervisor
mode; no access in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_X
r w x - - x Allow Read, write,

execute in supervisor
mode; execute in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_W
r w x - w - Allow Read, write,

execute in supervisor
mode; write in user mode

MPU_SUPERVISOR_←↩

RWX_USER_WX
r w x - w x Allow Read, write,

execute in supervisor
mode; write and execute
in user mode

MPU_SUPERVISOR_←↩

RWX_USER_R
r w x r - - Allow Read, write,

execute in supervisor
mode; read in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RX
r w x r - x Allow Read, write,

execute in supervisor
mode; read and execute
in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RW
r w x r w - Allow Read, write,

execute in supervisor
mode; read and write in
user mode

MPU_SUPERVISOR_←↩

RWX_USER_RWX
r w x r w x Allow Read, write,

execute in supervisor
mode; read, write and
execute in user mode

MPU_SUPERVISOR_←↩

RX_USER_NONE
r - x - - - Allow Read, execute in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RX_USER_X
r - x - - x Allow Read, execute in

supervisor mode;
execute in user mode

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.70 MPU Driver 699

MPU_SUPERVISOR_←↩

RX_USER_W
r - x - w - Allow Read, execute in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RX_USER_WX
r - x - w x Allow Read, execute in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_R
r - x r - - Allow Read, execute in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RX_USER_RX
r - x r - x Allow Read, execute in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_RW
r - x r w - Allow Read, execute in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RX_USER_RWX
r - x r w x Allow Read, execute in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_NONE
r w - - - - Allow Read, write in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RW_USER_X
r w - - - x Allow Read, write in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RW_USER_W
r w - - w - Allow Read, write in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RW_USER_WX
r w - - w x Allow Read, write in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_R
r w - r - - Allow Read, write in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RW_USER_RX
r w - r - x Allow Read, write in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_RW
r w - r w - Allow Read, write in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RW_USER_RWX
r w - r w x Allow Read, write in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

USER_NONE
- - - - - - No access allowed in

user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_X
- - x - - x Execute operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_W
- w - - w - Write operation is

allowed in user and
supervisor modes

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

700 CONTENTS

MPU_SUPERVISOR_←↩

USER_WX
- w x - w x Write and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_R
r - - r - - Read operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_RX
r - x r - x Read and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RW
r w - r w - Read and write

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RWX
r w x r w x Read write and execute

operations are allowed in
user and supervisor
modes

MPU Driver API

• status_t MPU_DRV_Init (uint32_t instance, uint8_t regionCnt, const mpu_user_config_t ∗userConfigArr)

The function initializes the memory protection unit by setting the access configurations of all available masters, pro-
cess identifier and the memory location for the given regions; and activate module finally. Please note that access
rights for region 0 will always be configured and regionCnt takes values between 1 and the maximum region count
supported by the hardware. e.g. In S32K144 the number of supported regions is 8. The user must make sure that
the clock is enabled.

• void MPU_DRV_Deinit (uint32_t instance)

De-initializes the memory protection unit by reseting all regions to default and disable module.

• void MPU_DRV_SetRegionAddr (uint32_t instance, uint8_t regionNum, uint32_t startAddr, uint32_t endAddr)

Sets the region start and end address.

• status_t MPU_DRV_SetRegionConfig (uint32_t instance, uint8_t regionNum, const mpu_user_config_←↩

t ∗userConfigPtr)

Sets the region configuration. Updates the access configuration of all available masters, process identifier and mem-
ory location in a given region.

• status_t MPU_DRV_SetMasterAccessRights (uint32_t instance, uint8_t regionNum, const mpu_master_←↩

access_right_t ∗accessRightsPtr)

Configures access permission for bus master in region.

• bool MPU_DRV_GetDetailErrorAccessInfo (uint32_t instance, uint8_t slavePortNum, mpu_access_err_info←↩

_t ∗errInfoPtr)

Checks and gets the MPU access error detail information for a slave port. Clears bus error flag if an error occurs.

• mpu_user_config_t MPU_DRV_GetDefaultRegionConfig (mpu_master_access_right_t ∗masterAccRight)

Gets default region configuration. Grants all access rights for masters and disables PID on entire memory.

• void MPU_DRV_EnableRegion (uint32_t instance, uint8_t regionNum, bool enable)

Enables/Disables region descriptor. Please note that region 0 should not be disabled.

16.70.2 Data Structure Documentation

16.70.2.1 struct mpu_access_err_info_t

MPU detail error access info Implements : mpu_access_err_info_t_Class.

Definition at line 63 of file mpu_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.70 MPU Driver 701

Data Fields

• uint8_t master
• mpu_err_attributes_t attributes
• mpu_err_access_type_t accessType
• uint16_t accessCtr
• uint32_t addr

Field Documentation

16.70.2.1.1 uint16_t accessCtr

Access error control

Definition at line 68 of file mpu_driver.h.

16.70.2.1.2 mpu_err_access_type_t accessType

Access error type

Definition at line 67 of file mpu_driver.h.

16.70.2.1.3 uint32_t addr

Access error address

Definition at line 69 of file mpu_driver.h.

16.70.2.1.4 mpu_err_attributes_t attributes

Access error attributes

Definition at line 66 of file mpu_driver.h.

16.70.2.1.5 uint8_t master

Access error master

Definition at line 65 of file mpu_driver.h.

16.70.2.2 struct mpu_master_access_right_t

MPU master access rights. Implements : mpu_master_access_right_t_Class.

Definition at line 173 of file mpu_driver.h.

Data Fields

• uint8_t masterNum
• mpu_access_rights_t accessRight

Field Documentation

16.70.2.2.1 mpu_access_rights_t accessRight

Access right

Definition at line 176 of file mpu_driver.h.

16.70.2.2.2 uint8_t masterNum

Master number

Definition at line 175 of file mpu_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

702 CONTENTS

16.70.2.3 struct mpu_user_config_t

MPU user region configuration structure. This structure is used when calling the MPU_DRV_Init function. Imple-
ments : mpu_user_config_t_Class.

Definition at line 187 of file mpu_driver.h.

Data Fields

• uint32_t startAddr
• uint32_t endAddr
• const mpu_master_access_right_t ∗ masterAccRight

Field Documentation

16.70.2.3.1 uint32_t endAddr

Memory region end address

Definition at line 190 of file mpu_driver.h.

16.70.2.3.2 const mpu_master_access_right_t∗ masterAccRight

Access permission for masters

Definition at line 191 of file mpu_driver.h.

16.70.2.3.3 uint32_t startAddr

Memory region start address

Definition at line 189 of file mpu_driver.h.

16.70.3 Enumeration Type Documentation

16.70.3.1 enum mpu_access_rights_t

MPU access rights.

Code Supervisor User Description
MPU_SUPERVISOR_←↩

RWX_USER_NONE
r w x - - - Allow Read, write,

execute in supervisor
mode; no access in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_X
r w x - - x Allow Read, write,

execute in supervisor
mode; execute in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_W
r w x - w - Allow Read, write,

execute in supervisor
mode; write in user mode

MPU_SUPERVISOR_←↩

RWX_USER_WX
r w x - w x Allow Read, write,

execute in supervisor
mode; write and execute
in user mode

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.70 MPU Driver 703

MPU_SUPERVISOR_←↩

RWX_USER_R
r w x r - - Allow Read, write,

execute in supervisor
mode; read in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RX
r w x r - x Allow Read, write,

execute in supervisor
mode; read and execute
in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RW
r w x r w - Allow Read, write,

execute in supervisor
mode; read and write in
user mode

MPU_SUPERVISOR_←↩

RWX_USER_RWX
r w x r w x Allow Read, write,

execute in supervisor
mode; read, write and
execute in user mode

MPU_SUPERVISOR_←↩

RX_USER_NONE
r - x - - - Allow Read, execute in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RX_USER_X
r - x - - x Allow Read, execute in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RX_USER_W
r - x - w - Allow Read, execute in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RX_USER_WX
r - x - w x Allow Read, execute in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_R
r - x r - - Allow Read, execute in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RX_USER_RX
r - x r - x Allow Read, execute in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_RW
r - x r w - Allow Read, execute in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RX_USER_RWX
r - x r w x Allow Read, execute in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_NONE
r w - - - - Allow Read, write in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RW_USER_X
r w - - - x Allow Read, write in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RW_USER_W
r w - - w - Allow Read, write in

supervisor mode; write in
user mode

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

704 CONTENTS

MPU_SUPERVISOR_←↩

RW_USER_WX
r w - - w x Allow Read, write in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_R
r w - r - - Allow Read, write in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RW_USER_RX
r w - r - x Allow Read, write in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_RW
r w - r w - Allow Read, write in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RW_USER_RWX
r w - r w x Allow Read, write in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

USER_NONE
- - - - - - No access allowed in

user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_X
- - x - - x Execute operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_W
- w - - w - Write operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_WX
- w x - w x Write and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_R
r - - r - - Read operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_RX
r - x r - x Read and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RW
r w - r w - Read and write

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RWX
r w x r w x Read write and execute

operations are allowed in
user and supervisor
modes

Code Read/Write permission Description
MPU_NONE - - No Read/Write access permission
MPU_W - w Write access permission
MPU_R r - Read access permission
MPU_RW r w Read/Write access permission

Implements : mpu_access_rights_t_Class

Enumerator

MPU_SUPERVISOR_RWX_USER_NONE 0b00000000U : rwx|—
MPU_SUPERVISOR_RWX_USER_X 0b00000001U : rwx|–x

MPU_SUPERVISOR_RWX_USER_W 0b00000010U : rwx|-w-

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.70 MPU Driver 705

MPU_SUPERVISOR_RWX_USER_WX 0b00000011U : rwx|-wx

MPU_SUPERVISOR_RWX_USER_R 0b00000100U : rwx|r–
MPU_SUPERVISOR_RWX_USER_RX 0b00000101U : rwx|r-x
MPU_SUPERVISOR_RWX_USER_RW 0b00000110U : rwx|rw-

MPU_SUPERVISOR_RWX_USER_RWX 0b00000111U : rwx|rwx

MPU_SUPERVISOR_RX_USER_NONE 0b00001000U : r-x|—
MPU_SUPERVISOR_RX_USER_X 0b00001001U : r-x|–x

MPU_SUPERVISOR_RX_USER_W 0b00001010U : r-x|-w-

MPU_SUPERVISOR_RX_USER_WX 0b00001011U : r-x|-wx

MPU_SUPERVISOR_RX_USER_R 0b00001100U : r-x|r–
MPU_SUPERVISOR_RX_USER_RX 0b00001101U : r-x|r-x
MPU_SUPERVISOR_RX_USER_RW 0b00001110U : r-x|rw-

MPU_SUPERVISOR_RX_USER_RWX 0b00001111U : r-x|rwx

MPU_SUPERVISOR_RW_USER_NONE 0b00010000U : rw-|—
MPU_SUPERVISOR_RW_USER_X 0b00010001U : rw-|–x

MPU_SUPERVISOR_RW_USER_W 0b00010010U : rw-|-w-

MPU_SUPERVISOR_RW_USER_WX 0b00010011U : rw-|-wx

MPU_SUPERVISOR_RW_USER_R 0b00010100U : rw-|r–
MPU_SUPERVISOR_RW_USER_RX 0b00010101U : rw-|r-x
MPU_SUPERVISOR_RW_USER_RW 0b00010110U : rw-|rw-

MPU_SUPERVISOR_RW_USER_RWX 0b00010111U : rw-|rwx

MPU_SUPERVISOR_USER_NONE 0b00011000U : —|—
MPU_SUPERVISOR_USER_X 0b00011001U : –x|–x

MPU_SUPERVISOR_USER_W 0b00011010U : -w-|-w-

MPU_SUPERVISOR_USER_WX 0b00011011U : -wx|-wx

MPU_SUPERVISOR_USER_R 0b00011100U : r–|r–
MPU_SUPERVISOR_USER_RX 0b00011101U : r-x|r-x
MPU_SUPERVISOR_USER_RW 0b00011110U : rw-|rw-

MPU_SUPERVISOR_USER_RWX 0b00011111U : rwx|rwx

MPU_NONE 0b10000000U : –

MPU_W 0b10100000U : w-

MPU_R 0b11000000U : -r

MPU_RW 0b11100000U : wr

Definition at line 121 of file mpu_driver.h.

16.70.3.2 enum mpu_err_access_type_t

MPU access error Implements : mpu_err_access_type_t_Class.

Enumerator

MPU_ERR_TYPE_READ MPU error type: read

MPU_ERR_TYPE_WRITE MPU error type: write

Definition at line 41 of file mpu_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

706 CONTENTS

16.70.3.3 enum mpu_err_attributes_t

MPU access error attributes Implements : mpu_err_attributes_t_Class.

Enumerator

MPU_INSTRUCTION_ACCESS_IN_USER_MODE Access instruction error in user mode

MPU_DATA_ACCESS_IN_USER_MODE Access data error in user mode

MPU_INSTRUCTION_ACCESS_IN_SUPERVISOR_MODE Access instruction error in supervisor mode

MPU_DATA_ACCESS_IN_SUPERVISOR_MODE Access data error in supervisor mode

Definition at line 51 of file mpu_driver.h.

16.70.4 Function Documentation

16.70.4.1 void MPU_DRV_Deinit (uint32_t instance)

De-initializes the memory protection unit by reseting all regions to default and disable module.

Parameters

in instance The MPU peripheral instance number.

Definition at line 105 of file mpu_driver.c.

16.70.4.2 void MPU_DRV_EnableRegion (uint32_t instance, uint8_t regionNum, bool enable)

Enables/Disables region descriptor. Please note that region 0 should not be disabled.

Parameters

in instance The MPU peripheral instance number.
in regionNum The region number.
in enable Valid state

• true : Enable region.

• false : Disable region.

Definition at line 344 of file mpu_driver.c.

16.70.4.3 mpu_user_config_t MPU_DRV_GetDefaultRegionConfig (mpu_master_access_right_t ∗ masterAccRight)

Gets default region configuration. Grants all access rights for masters and disables PID on entire memory.

Parameters

out masterAccRight The pointer to master configuration structure, see mpu_master_access_←↩

right_t. The length of array should be defined by number of masters supported
by hardware.

Returns

The default region configuration, see mpu_user_config_t.

Definition at line 308 of file mpu_driver.c.

16.70.4.4 bool MPU_DRV_GetDetailErrorAccessInfo (uint32_t instance, uint8_t slavePortNum, mpu_access_err_info_t ∗
errInfoPtr)

Checks and gets the MPU access error detail information for a slave port. Clears bus error flag if an error occurs.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.70 MPU Driver 707

Parameters

in instance The MPU peripheral instance number.
in slavePortNum The slave port number to get Error Detail.
out errInfoPtr The pointer to access error info structure, #see mpu_access_err_info_t.

Returns

operation status

• true : An error has occurred.

• false : No error has occurred.

Definition at line 256 of file mpu_driver.c.

16.70.4.5 status_t MPU_DRV_Init (uint32_t instance, uint8_t regionCnt, const mpu_user_config_t ∗ userConfigArr)

The function initializes the memory protection unit by setting the access configurations of all available masters,
process identifier and the memory location for the given regions; and activate module finally. Please note that
access rights for region 0 will always be configured and regionCnt takes values between 1 and the maximum region
count supported by the hardware. e.g. In S32K144 the number of supported regions is 8. The user must make sure
that the clock is enabled.

Parameters

in instance The MPU peripheral instance number.
in regionCnt The number of configured regions.
in userConfigArr The pointer to the array of MPU user configure structure, see mpu_user_←↩

config_t.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed due to master number is out of range supported by hardware.

Definition at line 62 of file mpu_driver.c.

16.70.4.6 status_t MPU_DRV_SetMasterAccessRights (uint32_t instance, uint8_t regionNum, const
mpu_master_access_right_t ∗ accessRightsPtr)

Configures access permission for bus master in region.

Parameters

in instance The MPU peripheral instance number.
in regionNum The MPU region number.
in accessRightsPtr The pointer to access permission structure, #see mpu_master_access_right←↩

_t.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed due to master number is out of range supported by hardware.

Definition at line 224 of file mpu_driver.c.

16.70.4.7 void MPU_DRV_SetRegionAddr (uint32_t instance, uint8_t regionNum, uint32_t startAddr, uint32_t endAddr)

Sets the region start and end address.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

708 CONTENTS

Parameters

in instance The MPU peripheral instance number.
in regionNum The region number.
in startAddr The region start address.
in endAddr The region end address.

Definition at line 137 of file mpu_driver.c.

16.70.4.8 status_t MPU_DRV_SetRegionConfig (uint32_t instance, uint8_t regionNum, const mpu_user_config_t ∗
userConfigPtr)

Sets the region configuration. Updates the access configuration of all available masters, process identifier and
memory location in a given region.

Parameters

in instance The MPU peripheral instance number.
in regionNum The region number.
in userConfigPtr The region configuration structure pointer.

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed due to master number is out of range supported by hardware.

Definition at line 164 of file mpu_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.71 MPU PAL 709

16.71 MPU PAL

16.71.1 Detailed Description

Memory Protection Unit Peripheral Abstraction Layer.

Data Structures

• struct mpu_error_info_t

MPU detail error access info Implements : mpu_error_info_t_Class. More...

• struct mpu_master_access_permission_t

MPU master access permission. Implements : mpu_master_access_permission_t_Class. More...

• struct mpu_region_config_t

MPU region configuration structure. Implements : mpu_region_config_t_Class. More...

Typedefs

• typedef mpu_access_rights_t mpu_access_permission_t

MPU detail access permission For specific master:
Code Supervisor User Description
MPU_SUPERVISOR_←↩

RWX_USER_NONE
r w x - - - Allow Read, write,

execute in supervisor
mode; no access in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_X
r w x - - x Allow Read, write,

execute in supervisor
mode; execute in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_W
r w x - w - Allow Read, write,

execute in supervisor
mode; write in user mode

MPU_SUPERVISOR_←↩

RWX_USER_WX
r w x - w x Allow Read, write,

execute in supervisor
mode; write and execute
in user mode

MPU_SUPERVISOR_←↩

RWX_USER_R
r w x r - - Allow Read, write,

execute in supervisor
mode; read in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RX
r w x r - x Allow Read, write,

execute in supervisor
mode; read and execute
in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RW
r w x r w - Allow Read, write,

execute in supervisor
mode; read and write in
user mode

MPU_SUPERVISOR_←↩

RWX_USER_RWX
r w x r w x Allow Read, write,

execute in supervisor
mode; read, write and
execute in user mode

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

710 CONTENTS

MPU_SUPERVISOR_←↩

RX_USER_NONE
r - x - - - Allow Read, execute in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RX_USER_X
r - x - - x Allow Read, execute in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RX_USER_W
r - x - w - Allow Read, execute in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RX_USER_WX
r - x - w x Allow Read, execute in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_R
r - x r - - Allow Read, execute in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RX_USER_RX
r - x r - x Allow Read, execute in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_RW
r - x r w - Allow Read, execute in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RX_USER_RWX
r - x r w x Allow Read, execute in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_NONE
r w - - - - Allow Read, write in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RW_USER_X
r w - - - x Allow Read, write in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RW_USER_W
r w - - w - Allow Read, write in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RW_USER_WX
r w - - w x Allow Read, write in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_R
r w - r - - Allow Read, write in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RW_USER_RX
r w - r - x Allow Read, write in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_RW
r w - r w - Allow Read, write in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RW_USER_RWX
r w - r w x Allow Read, write in

supervisor mode; read,
write and execute in user
mode

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.71 MPU PAL 711

MPU_SUPERVISOR_←↩

USER_NONE
- - - - - - No access allowed in

user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_X
- - x - - x Execute operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_W
- w - - w - Write operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_WX
- w x - w x Write and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_R
r - - r - - Read operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_RX
r - x r - x Read and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RW
r w - r w - Read and write

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RWX
r w x r w x Read write and execute

operations are allowed in
user and supervisor
modes

Enumerations

• enum mpu_error_access_type_t { MPU_ERROR_TYPE_READ = 0U, MPU_ERROR_TYPE_WRITE = 1U }

MPU access error Implements : mpu_error_access_type_t_Class.

• enum mpu_error_attributes_t { MPU_ERROR_USER_MODE_INSTRUCTION_ACCESS = 0U, MPU_ERR←↩

OR_USER_MODE_DATA_ACCESS = 1U, MPU_ERROR_SUPERVISOR_MODE_INSTRUCTION_ACCE←↩

SS = 2U, MPU_ERROR_SUPERVISOR_MODE_DATA_ACCESS = 3U }

MPU access error attributes Implements : mpu_error_attributes_t_Class.

MPU PAL API

• status_t MPU_Init (const mpu_instance_t ∗const instance, uint8_t regionCnt, const mpu_region_config_←↩

t ∗configPtr)

Initializes memory protection unit by allocating regions and granting access rights for masters.

• status_t MPU_Deinit (const mpu_instance_t ∗const instance)

De-initializes memory protection unit by reseting all regions and masters to default and disable module.

• status_t MPU_GetDefautRegionConfig (const mpu_instance_t ∗const instance, mpu_master_access_←↩

permission_t ∗masterAccRight, mpu_region_config_t ∗regionConfig)

Gets default region configuration. Grants all access rights for masters; disable PID and cache; unlock region descrip-
tor.

• status_t MPU_UpdateRegion (const mpu_instance_t ∗const instance, uint8_t regionNum, const mpu_←↩

region_config_t ∗configPtr)

Updates region configuration.

• status_t MPU_EnableRegion (const mpu_instance_t ∗const instance, uint8_t regionNum, bool enable)

Enables or disables an exist region configuration.

• bool MPU_GetError (const mpu_instance_t ∗const instance, uint8_t channel, mpu_error_info_t ∗errPtr)

Checks and gets the access error detail information then clear error flag if the error caused by a master.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

712 CONTENTS

• enum mpu_inst_type_t

Enumeration with the types of peripherals supported by MPU PAL.

16.71.2 Data Structure Documentation

16.71.2.1 struct mpu_error_info_t

MPU detail error access info Implements : mpu_error_info_t_Class.

Definition at line 67 of file mpu_pal.h.

Data Fields

• uint8_t master
• bool overrun
• mpu_error_attributes_t attributes
• mpu_error_access_type_t accessType
• uint32_t accessCtr
• uint32_t addr
• uint8_t processId

Field Documentation

16.71.2.1.1 uint32_t accessCtr

Access error control

Definition at line 73 of file mpu_pal.h.

16.71.2.1.2 mpu_error_access_type_t accessType

Access error type

Definition at line 72 of file mpu_pal.h.

16.71.2.1.3 uint32_t addr

Access error address

Definition at line 74 of file mpu_pal.h.

16.71.2.1.4 mpu_error_attributes_t attributes

Access error attributes

Definition at line 71 of file mpu_pal.h.

16.71.2.1.5 uint8_t master

Access error master

Definition at line 69 of file mpu_pal.h.

16.71.2.1.6 bool overrun

Access error master overrun

Definition at line 70 of file mpu_pal.h.

16.71.2.1.7 uint8_t processId

Access error process identification

Definition at line 75 of file mpu_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.71 MPU PAL 713

16.71.2.2 struct mpu_master_access_permission_t

MPU master access permission. Implements : mpu_master_access_permission_t_Class.

Definition at line 141 of file mpu_pal.h.

Data Fields

• uint8_t masterNum
• mpu_access_permission_t accessRight

Field Documentation

16.71.2.2.1 mpu_access_permission_t accessRight

Privilege right

Definition at line 144 of file mpu_pal.h.

16.71.2.2.2 uint8_t masterNum

Master number

Definition at line 143 of file mpu_pal.h.

16.71.2.3 struct mpu_region_config_t

MPU region configuration structure. Implements : mpu_region_config_t_Class.

Definition at line 151 of file mpu_pal.h.

Data Fields

• uint32_t startAddr
• uint32_t endAddr
• const mpu_master_access_permission_t ∗ masterAccRight
• uint8_t processIdEnable
• uint8_t processIdentifier
• uint8_t processIdMask
• void ∗ extension

Field Documentation

16.71.2.3.1 uint32_t endAddr

Memory region end address

Definition at line 154 of file mpu_pal.h.

16.71.2.3.2 void∗ extension

This field will be used to add extra settings to the basic region configuration

Definition at line 162 of file mpu_pal.h.

16.71.2.3.3 const mpu_master_access_permission_t∗ masterAccRight

Access permission for masters

Definition at line 155 of file mpu_pal.h.

16.71.2.3.4 uint8_t processIdEnable

Process identifier enable For MPU: the bit index corresponding with masters For SMPU: disable if equal zero,
otherwise enable

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

714 CONTENTS

Definition at line 156 of file mpu_pal.h.

16.71.2.3.5 uint8_t processIdentifier

Process identifier

Definition at line 159 of file mpu_pal.h.

16.71.2.3.6 uint8_t processIdMask

Process identifier mask. The setting bit will ignore the same bit in process identifier

Definition at line 160 of file mpu_pal.h.

16.71.2.3.7 uint32_t startAddr

Memory region start address

Definition at line 153 of file mpu_pal.h.

16.71.3 Typedef Documentation

16.71.3.1 typedef mpu_access_rights_t mpu_access_permission_t

MPU detail access permission For specific master:

Code Supervisor User Description
MPU_SUPERVISOR_←↩

RWX_USER_NONE
r w x - - - Allow Read, write,

execute in supervisor
mode; no access in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_X
r w x - - x Allow Read, write,

execute in supervisor
mode; execute in user
mode

MPU_SUPERVISOR_←↩

RWX_USER_W
r w x - w - Allow Read, write,

execute in supervisor
mode; write in user mode

MPU_SUPERVISOR_←↩

RWX_USER_WX
r w x - w x Allow Read, write,

execute in supervisor
mode; write and execute
in user mode

MPU_SUPERVISOR_←↩

RWX_USER_R
r w x r - - Allow Read, write,

execute in supervisor
mode; read in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RX
r w x r - x Allow Read, write,

execute in supervisor
mode; read and execute
in user mode

MPU_SUPERVISOR_←↩

RWX_USER_RW
r w x r w - Allow Read, write,

execute in supervisor
mode; read and write in
user mode

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.71 MPU PAL 715

MPU_SUPERVISOR_←↩

RWX_USER_RWX
r w x r w x Allow Read, write,

execute in supervisor
mode; read, write and
execute in user mode

MPU_SUPERVISOR_←↩

RX_USER_NONE
r - x - - - Allow Read, execute in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RX_USER_X
r - x - - x Allow Read, execute in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RX_USER_W
r - x - w - Allow Read, execute in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RX_USER_WX
r - x - w x Allow Read, execute in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_R
r - x r - - Allow Read, execute in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RX_USER_RX
r - x r - x Allow Read, execute in

supervisor mode; read
and execute in user
mode

MPU_SUPERVISOR_←↩

RX_USER_RW
r - x r w - Allow Read, execute in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RX_USER_RWX
r - x r w x Allow Read, execute in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_NONE
r w - - - - Allow Read, write in

supervisor mode; no
access in user mode

MPU_SUPERVISOR_←↩

RW_USER_X
r w - - - x Allow Read, write in

supervisor mode;
execute in user mode

MPU_SUPERVISOR_←↩

RW_USER_W
r w - - w - Allow Read, write in

supervisor mode; write in
user mode

MPU_SUPERVISOR_←↩

RW_USER_WX
r w - - w x Allow Read, write in

supervisor mode; write
and execute in user
mode

MPU_SUPERVISOR_←↩

RW_USER_R
r w - r - - Allow Read, write in

supervisor mode; read in
user mode

MPU_SUPERVISOR_←↩

RW_USER_RX
r w - r - x Allow Read, write in

supervisor mode; read
and execute in user
mode

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

716 CONTENTS

MPU_SUPERVISOR_←↩

RW_USER_RW
r w - r w - Allow Read, write in

supervisor mode; read
and write in user mode

MPU_SUPERVISOR_←↩

RW_USER_RWX
r w - r w x Allow Read, write in

supervisor mode; read,
write and execute in user
mode

MPU_SUPERVISOR_←↩

USER_NONE
- - - - - - No access allowed in

user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_X
- - x - - x Execute operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_W
- w - - w - Write operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_WX
- w x - w x Write and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_R
r - - r - - Read operation is

allowed in user and
supervisor modes

MPU_SUPERVISOR_←↩

USER_RX
r - x r - x Read and execute

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RW
r w - r w - Read and write

operations are allowed in
user and supervisor
modes

MPU_SUPERVISOR_←↩

USER_RWX
r w x r w x Read write and execute

operations are allowed in
user and supervisor
modes

For normal master:

Code Read/Write permission Description
MPU_NONE - - No Read/Write access permission
MPU_W - w Write access permission
MPU_R r - Read access permission
MPU_RW r w Read/Write access permission

Implements : mpu_access_permission_t_Class

Definition at line 126 of file mpu_pal.h.

16.71.4 Enumeration Type Documentation

16.71.4.1 enum mpu_error_access_type_t

MPU access error Implements : mpu_error_access_type_t_Class.

Enumerator

MPU_ERROR_TYPE_READ Error type: read

MPU_ERROR_TYPE_WRITE Error type: write

Definition at line 45 of file mpu_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.71 MPU PAL 717

16.71.4.2 enum mpu_error_attributes_t

MPU access error attributes Implements : mpu_error_attributes_t_Class.

Enumerator

MPU_ERROR_USER_MODE_INSTRUCTION_ACCESS Instruction access error in user mode

MPU_ERROR_USER_MODE_DATA_ACCESS Data access error in user mode

MPU_ERROR_SUPERVISOR_MODE_INSTRUCTION_ACCESS Instruction access error in supervisor mod-
e

MPU_ERROR_SUPERVISOR_MODE_DATA_ACCESS Data access error in supervisor mode

Definition at line 55 of file mpu_pal.h.

16.71.4.3 enum mpu_inst_type_t

Enumeration with the types of peripherals supported by MPU PAL.

This enumeration contains the types of peripherals supported by MPU PAL. Implements : mpu_inst_type_t_Class

Definition at line 51 of file mpu_pal_mapping.h.

16.71.5 Function Documentation

16.71.5.1 status_t MPU_Deinit (const mpu_instance_t ∗const instance)

De-initializes memory protection unit by reseting all regions and masters to default and disable module.

Parameters

in instance The pointer to MPU instance number.

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed due to the region was locked by another master or all masters are
locked.

• STATUS_UNSUPPORTED : Operation was unsupported.

Definition at line 276 of file mpu_pal.c.

16.71.5.2 status_t MPU_EnableRegion (const mpu_instance_t ∗const instance, uint8_t regionNum, bool enable)

Enables or disables an exist region configuration.

Parameters

in instance The pointer to MPU instance number.
in regionNum The region number.
in enable Valid state

• true : Enable region.

• false : Disable region.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

718 CONTENTS

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed due to the region was locked by another master or all masters are
locked.

• STATUS_UNSUPPORTED : Operation was unsupported.

Definition at line 425 of file mpu_pal.c.

16.71.5.3 status_t MPU_GetDefautRegionConfig (const mpu_instance_t ∗const instance, mpu_←↩

master_access_permission_t ∗ masterAccRight, mpu_region_config_t ∗ regionConfig
)

Gets default region configuration. Grants all access rights for masters; disable PID and cache; unlock region
descriptor.

Parameters

in instance The pointer to MPU instance number.
out masterAccRight The pointer to master configuration structure, see mpu_master_access_←↩

permission_t. The length of array should be defined by number of masters
supported by hardware.

out regionConfig The pointer to default region configuration structure, see mpu_region_config←↩

_t.

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_UNSUPPORTED : Operation was unsupported.

Definition at line 311 of file mpu_pal.c.

16.71.5.4 bool MPU_GetError (const mpu_instance_t ∗const instance, uint8_t channel, mpu_error_info_t ∗ errPtr)

Checks and gets the access error detail information then clear error flag if the error caused by a master.

Parameters

in instance The pointer to MPU instance number.
in channel The error capture channel For MPU: corresponding with the slave port number

For SMPU: corresponding with the the master number
out errPtr The pointer to access error info structure, see mpu_error_info_t.

Returns

operation status

• true : An error has occurred.

• false : No error has occurred or the operation was unsupported.

Definition at line 462 of file mpu_pal.c.

16.71.5.5 status_t MPU_Init (const mpu_instance_t ∗const instance, uint8_t regionCnt, const mpu_region_config_t ∗
configPtr)

Initializes memory protection unit by allocating regions and granting access rights for masters.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.71 MPU PAL 719

Parameters

in instance The pointer to MPU instance number.
in regionCnt The number of regions configured.
in configPtr The pointer to regions configuration structure, see mpu_region_config_t.

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed due to invalid master number or the region was locked by another
master or all masters are locked.

• STATUS_UNSUPPORTED : Operation was unsupported.

Definition at line 213 of file mpu_pal.c.

16.71.5.6 status_t MPU_UpdateRegion (const mpu_instance_t ∗const instance, uint8_t regionNum, const
mpu_region_config_t ∗ configPtr)

Updates region configuration.

Parameters

in instance The pointer to MPU instance number.
in regionNum The region number.
in configPtr The pointer to region configuration structure, see mpu_region_config_t.

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed due to invalid master number or the region was locked by another
master or all masters are locked.

• STATUS_UNSUPPORTED : Operation was unsupported.

Definition at line 380 of file mpu_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

720 CONTENTS

16.72 Memory Protection Unit (MPU)

16.72.1 Detailed Description

The S32 SDK provides Peripheral Driver for the Memory Protection Unit (MPU) module of S32 SDK devices.

The memory protection unit (MPU) provides hardware access control for all memory references generated in the
device.

Hardware background

The MPU concurrently monitors all system bus transactions and evaluates their appropriateness using pre-
programmed region descriptors that define memory spaces and their access rights. Memory references that have
sufficient access control rights are allowed to complete, while references that are not mapped to any region descrip-
tor or have insufficient rights are terminated with a protection error response.

The MPU implements a two-dimensional hardware array of memory region descriptors and the crossbar slave ports
to continuously monitor the legality of every memory reference generated by each bus master in the system.

The feature set includes:

• 8(16 for S32K148) program-visible 128-bit region descriptors, accessible by four 32-bit words each

– Each region descriptor defines a modulo-32 byte space, aligned anywhere in memory

* Region sizes can vary from 32 bytes to 4 Gbytes

– Two access control permissions defined in a single descriptor word

* Masters 0–3: read, write, and execute attributes for supervisor and user accesses

* Masters 4–7: read and write attributes

– Hardware-assisted maintenance of the descriptor valid bit minimizes coherency issues

– Alternate programming model view of the access control permissions word

– Priority given to granting permission over denying access for overlapping region descriptors

• Detects access protection errors if a memory reference does not hit in any memory region, or if the reference
is illegal in all hit memory regions. If an access error occurs, the reference is terminated with an error
response, and the MPU inhibits the bus cycle being sent to the targeted slave device.

• Error registers, per slave port, capture the last faulting address, attributes, and other information

• Global MPU enable/disable control bit

Logical Bus Master Assignments and Possible Access Types

ID Master User Super-
visor

Data Instruc-
tion

Read Write Exe-
cute

PID

0 Core x x x x x x x x
1 Debug-

ger
x x x x x x x x

2 DMA x x x x
3 ENET x x x x

ID S32K1xx S32MTV S32K1xxW
0 x x x
1 x x x
2 x x x
3 x(1) x(1)

1: S32K148 only.

Logical Slave Port Assignments

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.72 Memory Protection Unit (MPU) 721

Port Source Destination
0 Crossbar slave port 0 Flash Controller
1 Crossbar slave port 1 SRAM backdoor
2 Code Bus SRAM_L frontdoor
3 System Bus SRAM_U frontdoor
4 Crossbar slave port 3 QuadSPI

Port S32K11x S32K14x S32MTV S32K1xxW
0 x x x x
1 x(1) x x x
2 x x x
3 x x x
4 x(2) x(2)

1: Destination: SRAM controller/MTB/DWT/MCM. 2: S32K148 only.

AHB-AP

AHB-AP provides the debugger access to all memory and registers in the system.
The MPU includes default settings and protections for the Region Descriptor 0 (RGD0) such that the Debugger
always has access to the entire address space and those rights cannot be changed by the core or any other bus
master.

ERRATA

• S32K148:

– E11109: The MPU requires a special programming sequence to protect the QSPI space as it is unable
to see the two MSB bits of the QSPI address on slave port 4.
This programming sequence requires 2 Region Descriptors [RGDx]:

* One will cover the region 0x280x_xxxx and the other one will cover region 0x680x_xxxx.

* When any master without permissions tries to access region 0x680x_xxxx, an error will be captured
in both, EDR3 and EDR4 registers. Moreover, the address of the failed access is captured on EAR3
and EAR4 registers. However, EAR3 will capture the address 0x680x_xxxx, which is the one that
belongs to the QSPI space. While EAR4 will capture the 0x280x_xxxx address.

Note

• S32K14x, S32K14xW:

– In order to protect cache data, AHB LMEM will distribute all transactions to MPU slave port 2 for any
access to the whole cacheable code bus memory domain.

* If there is a Pflash access protection error by CM4, both slave port 0 & slave port 2 will report the
same error.

Modules

• MPU Driver

Memory Protection Unit Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

722 CONTENTS

16.73 Memory Protection Unit Peripheral Abstraction Layer (MPU PAL)

16.73.1 Detailed Description

The S32 SDK provides a Peripheral Abstraction Layer for Memory Protection Unit (MPU) modules of S32 SDK
devices.

The MPU PAL driver provides memory protection functionality via allocate regions and restrict access rights of all
masters on the region. It was designed to be portable across all platforms and IPs which support Memory Protection
Unit.

Integration guideline

Unlike the other drivers, MPU PAL modules need to include a configuration file named mpu_pal_cfg.h, which allows
the user to specify which IPs are used and how many resources are allocated for each of them (state structures).
The following code example shows how to configure one instance for each available MPU IPs.

#ifndef MPU_PAL_CFG_H
#define MPU_PAL_CFG_H

/* Define which IP instance which supported on this device */
#define MPU_OVER_MPU
#define MPU_OVER_SMPU

#endif /* MPU_PAL_CFG_H */

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\mpu\mpu_pal.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc\

Compile symbols

No special symbols are required for this component

Dependencies

Memory Protection Unit (MPU) smpu

IPs specification

The following tables contains IPs specification on platforms:

• Available
IP/MCU S32K1xx MPC574x S32Rx7x

MPU x
SMPU x x

• Number of supported instances

IP/MCU S32K1xx MPC574x S32Rx7x
MPU 1 – –

SMPU – 1(1) 2

1: 2 instances with MPC5747C, MPC5748C, MPC5746G, MPC5747G and MPC5748G.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.73 Memory Protection Unit Peripheral Abstraction Layer (MPU PAL) 723

SMPU instance MPC574x S32Rx7x
0 Flash and peripherals Data XBAR (XBAR_0)
1 RAM instruction XBAR (XBAR_1)

MPC574x: The cores on the device treats the following memory region as guarded by default:

– Guarded Region0: Address 0xFC00_0000 to 0xFFFF_FFFF

– Guarded Region1: Address 0xF800_0000 to 0xFBFF_FFFF

• Number of supported regions

IP/MCU S32K1xx MPC574x S32Rx7x
MPU 8(1) – –

SMPU – 16 16

1: 16 regions with S32K148.

Note

• S32K14x, S32K14xW:

– In order to protect cache data, AHB LMEM will distribute all transactions to MPU slave port 2 for any
access to the whole cacheable code bus memory domain.

* If there is a Pflash access protection error by CM4, both slave port 0 & slave port 2 will report the
same error.

Initialization & De-initialization

• In order to use the MPU PAL driver it must be first initialized, using MPU_Init() function to initialize or re-
initialize module.

• Example:

1. Definitions for MPU IP (MPU_OVER_MPU)

/* Define MPU PAL instance */
mpu_instance_t mpu_pal_Instance =
{
.instType = MPU_INST_TYPE_MPU, /* MPU PAL over MPU */
.instIdx = 0U /* MPU instance 0 */

}

/* Define number of masters supported by platform */
#define MPU_PAL_MASTER_COUNT (16U)

/* Define number of used regions (should be in range supported by platform) */
#define MPU_PAL_REGION_COUNT (1U)

/* Status variable */
status_t status;

2. Region configuration

/* Master configuration */
mpu_master_access_permission_t mpu_pal_masterAccRight[MPU_PAL_MASTER_COUNT] =
{
/* Master */
{
.masterNum = FEATURE_MPU_MASTER_CORE, /* Core */
.accessRight = MPU_ACCESS_SUPERVISOR_RWX_USER_RWX /* Access right: read, write and execute

for both supervisor and user mode */
},
/* Define the rest masters here */
...

};

/* Region configuration */
mpu_region_config_t mpu_pal_regionConfigs[MPU_PAL_REGION_COUNT] =
{

/* Region 0 */
{
.startAddr = 0U, /* Start address */
.endAddr = 0xFFFFFFFFU, /* End address */

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

724 CONTENTS

.masterAccRight = mpu_pal_masterAccRight, /* Pointer to access right of all masters */
/* If support PID */
.processIdEnable = 0x01U, /* 8’b00000001 Enable PID for logical master 0 (Core) */
.processIdentifier = 0x00U, /* Process identifier */
.processIdMask = 0xFFU, /* Process identifier mask */

/* End if */
/* Extension */
.extension = NULL /* This field will be used to add extra settings

to the basic region configuration */
/* End extension */
}

};

Or using MPU_GetDefaultConfig()

/* Master configuration */
mpu_master_access_permission_t mpu_pal_masterAccRight[MPU_PAL_MASTER_COUNT];
/* Region configuration */
mpu_region_config_t regionConfig0;

/* Get default region configuration */
status = MPU_GetDefaultConfig(&mpu_pal_Instance, mpu_pal_masterAccRight, ®ionConfig0);
mpu_region_config_t mpu_pal_regionConfigs[MPU_PAL_REGION_COUNT] =
{
regionConfig0

};

3. Initialization

/* Initializes MPU PAL */
status = MPU_Init(&mpu_pal_Instance, MPU_PAL_REGION_COUNT, mpu_pal_regionConfigs);

4. De-initialization

/* De-initializes MPU PAL */
status = MPU_Deinit(&mpu_pal_Instance);

Updates region configuration

• The MPU PAL driver provides a function named MPU_UpdateRegion() to update a region configuration (ad-
dress, access rights of all masters, process identifier,...).

• In order to remove unused region or add again, MPU_EnableRegion() can be used.

• Please note the region will be unlocked if the update succeed.

• Example:

1. Modify (or add new) region after initialization

/* Disables process identifier functionality on region 0 */
regionConfig0.processIdEnable = 0x00U;

/* Updates region 0 */
status = MPU_UpdateRegion(&mpu_pal_Instance, 0U, ®ionConfig0);

2. Enables/Disables an exist region configuration

/* Enables region 1 */
status = MPU_EnableRegion(&mpu_pal_Instance, 1U, true);

/* Disables region 2 */
status = MPU_EnableRegion(&mpu_pal_Instance, 2U, false);

Detects access protection errors

• The MPU PAL driver provides a function named MPU_GetError() to detect an access protection error on error
capture channel. The channel can be different among IPs.

• Example:

/* Define error variable */
mpu_error_info_t mpu_pal_errVal;

/* Gets information on channel 0 */
bool errStatus = MPU_GetError(&mpu_pal_Instance, 0U, &mpu_pal_errVal)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.73 Memory Protection Unit Peripheral Abstraction Layer (MPU PAL) 725

Other IP specific details

• MPU (MPU_OVER_MPU)

– Support PID for specific masters corresponding with the processIdEnable bit index.

– Detects an access error on slave ports:
Source Slave port Destination S32K11x S32K14x S32MTV

Crossbar
slave port 0

0 Flash
Controller

x x x

Crossbar
slave port 1

1 SRAM
backdoor

x(1) x x

Code Bus 2 SRAM_L
frontdoor

x x

System Bus 3 SRAM_U
frontdoor

x x

Crossbar
slave port 2

4 QuadSPI x(2)

1: Destination: SRAM controller/MTB/DWT/MCM.
2: S32K148 only.

• SMPU (MPU_OVER_SMPU)

– Support PID for for all specific masters (processIdEnable same as bool)

– Detects an access error on bus masters.

– Supports lock and cache inhibit features in region extension.

* An address range specified in an MPU region descriptor for a cacheable space (that is, CI = 0)
must be defined with a starting address aligned on a 0-modulo-32 byte address and with a multiple
of the 32 byte cache line size factoring into the end address.

– MPU_UpdateRegionLock() can be used to update lock configuration on a region.

– MPU_GetRegionLockInfo() can be used to get lock status on a region.

– Example:

1. Extension

/* E.g. MPC5748G */
/* SMPU region extension with normal access rights */
mpu_over_smpu_extension mpu_pal_extension =
{
/* If specific access supported */
.specAccessEnable = false, /* Use normal access rights */
.specAccessSet = NULL, /* Specific access configuration

Only use when specific access enabled */
/* End if */
.cacheInhibitEnable = true, /* The region cannot be cached */
.lockConfig = MPU_UNLOCK /* The region is unlocked */

}

/* Use specific access rights */
#define MPU_PAL_REGION_ACCESS_SET_COUNT 3U /* Support 3 configurations on each region */
mpu_specific_access_permission_t mpu_pal_SpecificAccessConfig[MPU_PAL_REGION_ACCESS_SET_COUNT] =
{
/* Set 1 */
MPU_SUPERVISOR_RWX_USER_RWX, /* Allow read, write and execute for both

supervisor and user mode */
/* Set 2 */
MPU_SUPERVISOR_RWX_USER_RWX, /* Allow read, write and execute for both

supervisor and user mode */
/* Set 3 */
MPU_SUPERVISOR_RWX_USER_RWX /* Allow read, write and execute for both supervisor and user mode */

}

mpu_pal_extension.specAccessEnable = true;
mpu_pal_extension.specAccessSet = true;

/* SMPU Master configuration /
#define MPU_PAL_MASTER_COUNT 15U
mpu_master_access_permission_t mpu_pal_masterAccRight[MPU_PAL_MASTER_COUNT] =
{
/* Master */
{

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

../html/group__mpu.html
../html/group__smpu.html

726 CONTENTS

.masterNum = FEATURE_SMPU_MASTER_CORE_Z4A, /* Core Z4A */

.accessRight = MPU_RW_OR_SET_3 /* Normal access rights: read, write and execute for both
supervisor and user mode

Specific access: use set 3 in region configuration */
},
/* Define the rest masters here */
...

};

/* SMPU region configuration */
#define MPU_PAL_REGION_COUNT 1U
mpu_region_config_t mpu_pal_regionConfigs[MPU_PAL_REGION_COUNT] =
{
/* Region 0 */
{

.startAddr = 0U, /* Start address */

.endAddr = 0xFFFFFFFFU, /* End address */

.masterAccRight = mpu_pal_masterAccRight, /* Pointer to access right of all masters */
/* If support PID */
.processIdEnable = true, /* Enable process identifier for all masters */
.processIdentifier = 0x00U, /* Process identifier */
.processIdMask = 0xFFU, /* Process identifier mask */

/* End if */
/* Extension */
.extension = &mpu_pal_extension /* This field will be used to add extra settings

to the basic region configuration */
/* End extension */
}

}

/* Initialization */
...

2. Update lock configuration and get lock status on region

/* All masters cannot write to region descriptor 0 (cannot modify region 0 configuration) */
status = MPU_UpdateRegionLock(&mpu_pal_Instance, 0U, MPU_ALL_LOCK);

/* Gets lock status on region 0 */
mpu_region_lock_t lockStatus;
status = MPU_GetRegionLockInfo(&mpu_pal_Instance, 0U, &lockStatus);

Modules

• MPU PAL

Memory Protection Unit Peripheral Abstraction Layer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.74 Node configuration 727

16.74 Node configuration

16.74.1 Detailed Description

This group contains APIs that used for node configuration purpose.

Functions

• l_bool ld_is_ready_j2602 (l_ifc_handle iii)

Verifies a state of node setting (using for J2602 and LIN 2.0).
• l_u8 ld_check_response_j2602 (l_ifc_handle iii, l_u8 ∗const RSID, l_u8 ∗const error_code)

Verifies the state of response (using for J2602 and LIN 2.0) Master node only.
• l_bool ld_reconfig_msg_ID (l_ifc_handle iii, l_u8 dnn)

This function reconfigures frame identifiers of a J2602 slave node based on input dnn.
• l_bool ld_assign_NAD_j2602 (l_ifc_handle iii, l_u8 dnn)

This function assigns NAD of a J2602 slave device based on input DNN that is Device Node Number. NAD is (0x60+
DNN).

16.74.2 Function Documentation

16.74.2.1 l_bool ld_assign_NAD_j2602 (l_ifc_handle iii, l_u8 dnn)

This function assigns NAD of a J2602 slave device based on input DNN that is Device Node Number. NAD is (0x60+
DNN).

Parameters

in iii LIN interface handle
in dnn DNN of the device

Returns

l_bool: 0: successful: New Configured NAD is 0x60 + DNN
l_bool: 1: Unsuccesfull: for either one of the following reasons:

• The protocol of this interface is not J2602

• This device is a Master node in this interface

• The input DNN is greater than 0xD that is invalid

Definition at line 1740 of file lin_diagnostic_service.c.

16.74.2.2 l_u8 ld_check_response_j2602 (l_ifc_handle iii, l_u8 ∗const RSID, l_u8 ∗const error_code)

Verifies the state of response (using for J2602 and LIN 2.0) Master node only.

Parameters

in iii LIN interface handle
out RSID buffer for saving the response ID
out error_code buffer for saving the error code

Returns

l_u8 status of the last service

Definition at line 1528 of file lin_diagnostic_service.c.

16.74.2.3 l_bool ld_is_ready_j2602 (l_ifc_handle iii)

Verifies a state of node setting (using for J2602 and LIN 2.0).

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

728 CONTENTS

Parameters

in iii LIN interface handle

Returns

l_bool

Definition at line 1502 of file lin_diagnostic_service.c.

16.74.2.4 l_bool ld_reconfig_msg_ID (l_ifc_handle iii, l_u8 dnn)

This function reconfigures frame identifiers of a J2602 slave node based on input dnn.

Parameters

in iii LIN interface handle
in dnn DNN of the device

Returns

l_bool: 0: successful: Frame Identifiers were reconfigured based on input DNN according to NAD Message
ID mapping table.
l_bool: 1: Unsuccesfull: for either one of the following reasons:

• The protocol of this interface is not J2602

• This device is a Master node in this interface

• The input DNN is greater than 0xD that is invalid

• The slave has more than 16 configurable frames

• The slave has 9-16 configurable frames, and dnn is 0xC or 0xD

• The slave has 5-8 configurable frames, and dnn is not 0x00, 0x2, 0x4, 0x6, 0x8, 0xA, 0xC.

Definition at line 1622 of file lin_diagnostic_service.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.75 Node configuration 729

16.75 Node configuration

16.75.1 Detailed Description

This group contains APIs that used for node configuration purpose.

With protocol lin2.1 in slave node, some service like (Data dump, Conditional change nad with id from 2 to 255)
are not supported by LinStack but user can implement it in application by use function ld_receive_message and
ld_send_message in transport layer.

With protocol J2602 in slave node, some service like (Data dump, Assign NAD, Conditional change NAD) are
not supported by LinStack but user can implement it in application by choosing these services in supported_sid in
PEX GUI and use function ld_receive_message and ld_send_message in transport layer. When received target
reset master request slave node just update status_byte and send response positive message.

Functions

• l_u8 ld_is_ready (l_ifc_handle iii)

This call returns the status of the last requested configuration service.
• void ld_check_response (l_ifc_handle iii, l_u8 ∗const RSID, l_u8 ∗const error_code)

This call returns the result of the last node configuration service, in the parameters RSID and error_code. A value in
RSID is always returned but not always in the error_code. Default values for RSID and error_code is 0 (zero).

• void ld_assign_frame_id_range (l_ifc_handle iii, l_u8 NAD, l_u8 start_index, const l_u8 ∗const PIDs)

This function assigns the protected identifier of up to four frames.
• void ld_save_configuration (l_ifc_handle iii, l_u8 NAD)

This function to issue a save configuration request to a slave node.
• l_u8 ld_read_configuration (l_ifc_handle iii, l_u8 ∗const data, l_u8 ∗const length)

This function copies current configuration in a reserved area.
• l_u8 ld_set_configuration (l_ifc_handle iii, const l_u8 ∗const data, l_u16 length)

This function configures slave node according to data.
• void ld_assign_NAD (l_ifc_handle iii, l_u8 initial_NAD, l_u16 supplier_id, l_u16 function_id, l_u8 new_NAD)

This call assigns the NAD (node diagnostic address) of all slave nodes that matches the initial_NAD, the supplier ID
and the function ID. Master node only.

• void ld_conditional_change_NAD (l_ifc_handle iii, l_u8 NAD, l_u8 id, l_u8 byte_data, l_u8 mask, l_u8 invert,
l_u8 new_NAD)

This call changes the NAD if the node properties fulfill the test specified by id, byte, mask and invert. Master node
only.

16.75.2 Function Documentation

16.75.2.1 void ld_assign_frame_id_range (l_ifc_handle iii, l_u8 NAD, l_u8 start_index, const l_u8 ∗const PIDs)

This function assigns the protected identifier of up to four frames.

Parameters

in iii lin interface handle
in NAD Node address value of the target node
in start_index specifies which is the first frame to assign a PID
in PIDs list of protected identifier

Returns

void

This API is available for master interfaces only

Definition at line 149 of file lin_diagnostic_service.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

730 CONTENTS

16.75.2.2 void ld_assign_NAD (l_ifc_handle iii, l_u8 initial_NAD, l_u16 supplier_id, l_u16 function_id, l_u8 new_NAD)

This call assigns the NAD (node diagnostic address) of all slave nodes that matches the initial_NAD, the supplier ID
and the function ID. Master node only.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.75 Node configuration 731

Parameters

in iii LIN interface handle
in initial_NAD Initial node address of the target node
in supplier_id Supplier ID of the target node
in function_id Function identifier of the target node
in new_NAD New node address

Returns

void

This call assigns the NAD (node diagnostic address) of all slave nodes that matches the initial_NAD, the supplier ID
and the function ID. The new NAD of the slave node will be new_NAD. This function is used for master node only.

Definition at line 845 of file lin_diagnostic_service.c.

16.75.2.3 void ld_check_response (l_ifc_handle iii, l_u8 ∗const RSID, l_u8 ∗const error_code)

This call returns the result of the last node configuration service, in the parameters RSID and error_code. A value
in RSID is always returned but not always in the error_code. Default values for RSID and error_code is 0 (zero).

For slave interfaces ld_check_response shall do nothing

Parameters

in iii lin interface handle
out RSID buffer for saving the response ID
out error_code buffer for saving the error code

This API is available for master interfaces only

Definition at line 118 of file lin_diagnostic_service.c.

16.75.2.4 void ld_conditional_change_NAD (l_ifc_handle iii, l_u8 NAD, l_u8 id, l_u8 byte_data, l_u8 mask, l_u8 invert, l_u8
new_NAD)

This call changes the NAD if the node properties fulfill the test specified by id, byte, mask and invert. Master node
only.

Parameters

in iii :LIN interface handle
in NAD Current NAD value of the target node
in id Property ID of the target node
in byte Byte location of property value to be read from the target node
in mask Value for masking the read property byte
in invert Value for excluding the read property byte
in new_NAD New NAD value to be assigned when the condition is met

Returns

void

This call changes the NAD if the node properties fulfill the test specified by id, byte, mask and invert.

Definition at line 886 of file lin_diagnostic_service.c.

16.75.2.5 l_u8 ld_is_ready (l_ifc_handle iii)

This call returns the status of the last requested configuration service.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

732 CONTENTS

Parameters

in iii lin interface handle

Returns

LD_SERVICE_BUSY Service is ongoing.
LD_REQUEST_FINISHED The configuration request has been completed. This is a intermediate status be-
tween the configuration request and configuration response.
LD_SERVICE_IDLE The configuration request/response combination has been completed, i.e. the response
is valid and may be analyzed. Also, this value is returned if no request has yet been called.
LD_SERVICE_ERROR The configuration request or response experienced an error. Error here means error
on the bus, and not a negative configuration response from the slave node.

Definition at line 92 of file lin_diagnostic_service.c.

16.75.2.6 l_u8 ld_read_configuration (l_ifc_handle iii, l_u8 ∗const data, l_u8 ∗const length)

This function copies current configuration in a reserved area.

Parameters

in iii Lin interface handle
out data Data area to save configuration,
out length Length of data area (1 + n, NAD + PIDs)

Returns

LD_READ_OK If the service was successful.
LD_LENGTH_TOO_SHORT If the configuration size is greater than the length. It means that the data area
does not contain a valid configuration.

This function is implemented Slave Only. Set the expected length value to EXP = NN + NF, where : NN = the number
of NAD. NF = the number of configurable frames; Moreover: Not taken PID's diagnostics frame: 3C, 3D

Definition at line 446 of file lin_diagnostic_service.c.

16.75.2.7 void ld_save_configuration (l_ifc_handle iii, l_u8 NAD)

This function to issue a save configuration request to a slave node.

Parameters

in iii Interface name
in NAD Node address of target

Returns

void

This function is available for master nodes only. This function is available for all diagnostic classes and only for
LIN2.1 and above. This function is called to send a save configuration request to a specific slave node with the
given NAD, or to all slave nodes if NAD is set to broadcast This function is implemented for Master Only.

Definition at line 191 of file lin_diagnostic_service.c.

16.75.2.8 l_u8 ld_set_configuration (l_ifc_handle iii, const l_u8 ∗const data, l_u16 length)

This function configures slave node according to data.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.75 Node configuration 733

Parameters

in iii Lin interface handle
in data Structure containing the NAD and all the n PIDs for the frames of the specified

NAD,
in length Length of data area (1 + n, NAD + PIDs)

Returns

LD_SET_OK If the service was successful
LD_LENGTH_NOT_CORRECT If the required size of the configuration is not equal to the given length.
LD_DATA_ERROR The set of configuration could not be made.

This function is implemented Slave Only. Set the expected length value to EXP = NN + NF, where : NN = the number
of NAD. NF = the number of configurable frames; Moreover: Not taken PID's diagnostics frame: 3C, 3D

Definition at line 511 of file lin_diagnostic_service.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

734 CONTENTS

16.76 Node identification

16.76.1 Detailed Description

This group contains API that used for node identification purpose.

Read by identifier service just support id 0 and 1. User can implement for other id by modify function ld_read_by←↩

_id_callout in generated file lin_cfg.c.

Functions

• void ld_read_by_id (l_ifc_handle iii, l_u8 NAD, l_u16 supplier_id, l_u16 function_id, l_u8 id, lin_product_id_t
∗const data)

The call requests the slave node selected with the NAD to return the property associated with the id parameter.
Master node only.

16.76.2 Function Documentation

16.76.2.1 void ld_read_by_id (l_ifc_handle iii, l_u8 NAD, l_u16 supplier_id, l_u16 function_id, l_u8 id, lin_product_id_t
∗const data)

The call requests the slave node selected with the NAD to return the property associated with the id parameter.
Master node only.

Parameters

in iii LIN interface handle
in NAD Value of the target node
in supplier_id Supplier ID of the target node
in function_id Function ID of the target node
in id ID of the target node
out data Buffer for saving the data read from the node

Returns

void

The call requests the slave node selected with the NAD to return the property associated with the id parameter.

Definition at line 933 of file lin_diagnostic_service.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.77 Notification 735

16.77 Notification

This group contains APIs that let users know when a signal's value changed.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

736 CONTENTS

16.78 OS Interface (OSIF)

16.78.1 Detailed Description

OS Interface Layer (OSIF)

The OSIF layer is a minimal wrapper layer for common RTOS services, intended to be used by SDK drivers and
middlewares. It can be used by the user application, but it is not recommended. The operations supported by
OSIF:

• mutex lock/unlock

• semaphore post/wait

• time delay and get time elapsed

OSIF currently comes in two variants: bare-metal and FreeRTOS. Steps to use each one are described below.

FreeRTOS

To integrate the FreeRTOS OSIF variant, two steps are necessary:

• compile and link the osif_freertos.c file

• define a project-wide compile symbol:

USING_OS_FREERTOS

FreeRTOSConfig.h dependencies

FreeRTOS configuration file needs to have these options activated (set to 1 in FreeRTOSConfig.h):

• INCLUDE_xQueueGetMutexHolder

• INCLUDE_xTaskGetCurrentTaskHandle

Hardware resources

FreeRTOS OSIF uses the FreeRTOS API and services, does not use any additional hardware or software resources.

FreeRTOS supported platforms

The SDK platforms supported by FreeRTOS can be found in the following table. If a platform is supported by Free←↩

RTOS, both osif variants, bare-metal and freertos, are supported. If the platform is not supported by FreeRTOS,
only osif bare-metal variant is applicable:

Platform FreeRTOS support
S32K11x Yes
S32K14x Yes

S32K14xW Yes
MPC5746C Yes
MPC5748G Yes
MPC5744P Yes
S32R274 Yes
S32R372 Yes

FreeRTOS static vs dynamic memory allocation

OSIF objects will use static memory allocation schemes (FreeRTOS 9.0.0 and above) if the feature is enabled.

This should be transparent for the upper layer which uses OSIF.

The FreeRTOS configuration option is

configSUPPORT_STATIC_ALLOCATION

If it's set to 1, the OSIF will use static memory allocation.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.78 OS Interface (OSIF) 737

Bare-metal

To integrate the bare-metal OSIF variant:

• compile and link the osif_baremetal.c file

Mutex operations are dummy operations (always return success) and semaphore is implemented as a simple
counter.

Hardware resources

Bare-metal OSIF uses a hardware timer to accurately measure time. The timer and channel used are platform-
dependent, are chosen to be the same as the FreeRTOS implementation if possible.

The table below shows which timers and channels are used on each platform:

Platform Timer Channel
S32K11x Systick N/A
S32K14x Systick N/A
S32K14xW Systick N/A
MPC5746C PIT 15
MPC5748G PIT 15
MPC5744P PIT 3
S32R274 PIT0 3
S32R372 PIT0 3

Bare-metal timing limitations

For bare-metal OSIF, the timer is initialized at the first call in OSIF that needs timing. That is either OSIF_Time←↩

Delay, OSIF_MutexLock or OSIF_SemaWait (functions with timeout). The timer configuration, but not the counter,
is updated at each subsequent call to these functions.

Do not assume OSIF_GetMilliseconds will return a global value since system initialization. It will return the global
value since the very first timer initialization, mentioned above.

Integration guideline

Compilation units

The following files need to be compiled in the project:

• for baremetal variant:

${S32SDK_PATH}\rtos\osif\osif_baremetal.c

• for FreeRTOS variant:

${S32SDK_PATH}\rtos\osif\osif_freertos.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\rtos\osif\

Compile symbols

• for baremetal variant: No special symbols are required for this component

• for FreeRTOS variant: The following symbol must be added to the compile symbols of the toolchain:

USING_OS_FREERTOS

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

738 CONTENTS

Dependencies

• for baremetal variant:

Clock Manager

Interrupt Manager (Interrupt)

• for FreeRTOS variant:

FreeRTOS

Macros

• #define OSIF_WAIT_FOREVER 0xFFFFFFFFu

Functions

• void OSIF_TimeDelay (const uint32_t delay)

Delays execution for a number of milliseconds.
• uint32_t OSIF_GetMilliseconds (void)

Returns the number of miliseconds elapsed since starting the internal timer or starting the scheduler.
• status_t OSIF_MutexLock (const mutex_t ∗const pMutex, const uint32_t timeout)

Waits for a mutex and locks it.
• status_t OSIF_MutexUnlock (const mutex_t ∗const pMutex)

Unlocks a previously locked mutex.
• status_t OSIF_MutexCreate (mutex_t ∗const pMutex)

Create an unlocked mutex.
• status_t OSIF_MutexDestroy (const mutex_t ∗const pMutex)

Destroys a previously created mutex.
• status_t OSIF_SemaWait (semaphore_t ∗const pSem, const uint32_t timeout)

Decrement a semaphore with timeout.
• status_t OSIF_SemaPost (semaphore_t ∗const pSem)

Increment a semaphore.
• status_t OSIF_SemaCreate (semaphore_t ∗const pSem, const uint8_t initValue)

Creates a semaphore with a given value.
• status_t OSIF_SemaDestroy (const semaphore_t ∗const pSem)

Destroys a previously created semaphore.

16.78.2 Macro Definition Documentation

16.78.2.1 #define OSIF_WAIT_FOREVER 0xFFFFFFFFu

Definition at line 71 of file osif.h.

16.78.3 Function Documentation

16.78.3.1 uint32_t OSIF_GetMilliseconds (void)

Returns the number of miliseconds elapsed since starting the internal timer or starting the scheduler.

Returns

the number of miliseconds elapsed

Definition at line 233 of file osif_baremetal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.78 OS Interface (OSIF) 739

16.78.3.2 status_t OSIF_MutexCreate (mutex_t ∗const pMutex)

Create an unlocked mutex.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

740 CONTENTS

Parameters

in pMutex reference to the mutex object

Returns

One of the possible status codes:

• STATUS_SUCCESS: mutex created

• STATUS_ERROR: mutex could not be created

Definition at line 281 of file osif_baremetal.c.

16.78.3.3 status_t OSIF_MutexDestroy (const mutex_t ∗const pMutex)

Destroys a previously created mutex.

Parameters

in pMutex reference to the mutex object

Returns

One of the possible status codes:

• STATUS_SUCCESS: mutex destroyed

Definition at line 295 of file osif_baremetal.c.

16.78.3.4 status_t OSIF_MutexLock (const mutex_t ∗const pMutex, const uint32_t timeout)

Waits for a mutex and locks it.

Parameters

in pMutex reference to the mutex object
in timeout time-out value in milliseconds

Returns

One of the possible status codes:

• STATUS_SUCCESS: mutex lock operation success

• STATUS_ERROR: mutex already owned by current thread

• STATUS_TIMEOUT: mutex lock operation timed out

Definition at line 251 of file osif_baremetal.c.

16.78.3.5 status_t OSIF_MutexUnlock (const mutex_t ∗const pMutex)

Unlocks a previously locked mutex.

Parameters

in pMutex reference to the mutex object

Returns

One of the possible status codes:

• STATUS_SUCCESS: mutex unlock operation success

• STATUS_ERROR: mutex unlock failed

Definition at line 267 of file osif_baremetal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.78 OS Interface (OSIF) 741

16.78.3.6 status_t OSIF_SemaCreate (semaphore_t ∗const pSem, const uint8_t initValue)

Creates a semaphore with a given value.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

742 CONTENTS

Parameters

in pSem reference to the semaphore object
in initValue initial value of the semaphore

Returns

One of the possible status codes:

• STATUS_SUCCESS: semaphore created

• STATUS_ERROR: semaphore could not be created

Definition at line 402 of file osif_baremetal.c.

16.78.3.7 status_t OSIF_SemaDestroy (const semaphore_t ∗const pSem)

Destroys a previously created semaphore.

Parameters

in pSem reference to the semaphore object

Returns

One of the possible status codes:

• STATUS_SUCCESS: semaphore destroyed

Definition at line 420 of file osif_baremetal.c.

16.78.3.8 status_t OSIF_SemaPost (semaphore_t ∗const pSem)

Increment a semaphore.

Parameters

in pSem reference to the semaphore object

Returns

One of the possible status codes:

• STATUS_SUCCESS: semaphore post operation success

• STATUS_ERROR: semaphore could not be incremented

Definition at line 375 of file osif_baremetal.c.

16.78.3.9 status_t OSIF_SemaWait (semaphore_t ∗const pSem, const uint32_t timeout)

Decrement a semaphore with timeout.

Parameters

in pSem reference to the semaphore object
in timeout time-out value in milliseconds

Returns

One of the possible status codes:

• STATUS_SUCCESS: semaphore wait operation success

• STATUS_TIMEOUT: semaphore wait timed out

Definition at line 311 of file osif_baremetal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.78 OS Interface (OSIF) 743

16.78.3.10 void OSIF_TimeDelay (const uint32_t delay)

Delays execution for a number of milliseconds.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

744 CONTENTS

Parameters

in delay Time delay in milliseconds.

Definition at line 208 of file osif_baremetal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.79 Output Compare - Peripheral Abstraction Layer (OC PAL) 745

16.79 Output Compare - Peripheral Abstraction Layer (OC PAL)

16.79.1 Detailed Description

The S32 SDK provides a Peripheral Abstraction Layer for the output compare mode of S32 SDK devices.

The OC PAL driver allows to set pin, clear pin or toggle pin. It was designed to be portable across all platforms and
IPs which support FTM, eMIOS, FlexPWM and eTIMER.

How to integrate OC PAL in your application

Unlike the other drivers, OC PAL modules need to include a configuration file named oc_pal_cfg.h. This one allows
the user to specify which IPs are used. The following code example shows how to configure one instance for each
available OC IPs.

#ifndef OC_PAL_CFG_H
#define OC_PAL_CFG_H

/* Define which IP instance will be used in current project */
#define OC_PAL_OVER_EMIOS

#endif /* OC_PAL_CFG_H */

The following table contains the matching between platforms and available IPs

IP/←↩

M←↩

CU
S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K142←↩

W

S32←↩

K144
S32←↩

K144←↩

W

S32←↩

K146
S32←↩

K148

M←↩

P←↩

C5748←↩

G

M←↩

P←↩

C5746←↩

C

M←↩

P←↩

C5744←↩

P

S32←↩

R274
S32←↩

R372

FT←↩

M←↩

_←↩

OC

Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO NO

e←↩

MI←↩

O←↩

S_←↩

OC

NO NO NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
NO NO NO

eT←↩

IM←↩

ER

NO NO NO NO NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
Y←↩

ES

Flex←↩

P←↩

WM

NO NO NO NO NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
Y←↩

ES

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\oc\oc_pal.c
${S32SDK_PATH}\platform\pal\src\oc\oc_irq.c
${S32SDK_PATH}\platform\pal\src\oc\oc_irq.h

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc\

Compile symbols

No special symbols are required for this component

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

746 CONTENTS

Dependencies

Clock Manager Interrupt Manager (Interrupt) ftm_oc emios_oc etimer flexpwm

Features

• Set the output signal can be set, cleared, or toggled pin

• Start/stop the channel in the output compare mode

• Force the channel output to high or low level

Functionality

Initialization

In order to use the OC PAL driver it must be first initialized, using OC_Init() function. Once initialized, it should be
de-initialized before initialized again for the same OC module instance, using OC_Deinit(). The initialization function
does the following operations:

• sets the clock source, clock prescaler

• sets the number of channel output compare are used

• configures the channel output to set or clear or toggle pin

Example:

const oc_instance_t oc_pal1_instance = { OC_INST_TYPE_ETIMER, 0U };

channel_extension_etimer_for_oc_t oc_pal1_etimerChnExtension0 =
{

.primaryInput =
{

.source = ETIMER_IN_SRC_CLK_DIV_128,

.polarity = ETIMER_POLARITY_POSITIVE,
},
.outputPin =
{

.enable = true,

.polarity = ETIMER_POLARITY_POSITIVE,
},

};

oc_output_ch_param_t oc_pal1_ChnConfig[1] =
{

/* Channel configuration 0 */
{

.hwChannelId = 4U,

.chMode = OC_TOGGLE_ON_MATCH,

.comparedValue = 62500,

.channelExtension = &oc_pal1_etimerChnExtension0,

.channelCallbackParams = NULL,

.channelCallbacks = oc_pal1_channel_callBack0
}

};

oc_config_t oc_pal1_InitConfig =
{

.nNumChannels = 1U,

.outputChConfig = oc_pal1_ChnConfig,

.extension = NULL
};

/* Initialize output compare mode */
OC_Init(&oc_pal1_instance, &oc_pal1_InitConfig);

De-initialize a output compare instance

This function will disable the output compare mode. The driver can't be used again until reinitialized. All register are
reset to default value and counter is stopped.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.79 Output Compare - Peripheral Abstraction Layer (OC PAL) 747

Example:

/* De-initialize output compare mode */
OC_Deinit(&oc_pal1_instance);

Start the channel in the output compare mode

This function will set the channel is in the output compare mode.

Example:

uint8_t hwChannel = oc_pal1_InitConfig.outputChConfig->hwChannelId;

/* Start channel in the output compare mode */
OC_StartChannel(&oc_pal1_instance, hwChannel);

Stop the channel in the output compare mode

This function will set the channel is used in GPIO mode or other peripheral.

Example:

uint8_t hwChannel = oc_pal1_InitConfig.outputChConfig->hwChannelId;

/* Stop channel in the output compare mode */
OC_StopChannel(&oc_pal1_instance, hwChannel);

Control the channel output by software

This function is used to forces the output pin to a specified value. It can be used to control the output pin value when
the OC channel is disabled.

Example:

uint8_t hwChannel = oc_pal1_InitConfig.outputChConfig->hwChannelId;

/* Force the channel output by software */
OC_SetOutputState(&oc_pal1_instance, hwChannel, false);

Set the operation mode of channel output

This function will set the action executed on a compare match value to set output pin, clear output pin, toggle output
pin.

Example:

uint8_t hwChannel = oc_pal1_InitConfig.outputChConfig->hwChannelId;

/* Change the channel output to toggle pin */
OC_SetOutputAction(&oc_pal1_instance, hwChannel,

OC_TOGGLE_ON_MATCH);

Update the match value on the channel

This function will update the value of an output compare channel to the counter matches to this value.

Example:

uint8_t hwChannel = oc_pal1_InitConfig.outputChConfig->hwChannelId;

/* Set the match counter to new value */
OC_SetCompareValue(&oc_pal1_instance, hwChannel, 0x1000UL,

OC_RELATIVE_VALUE);

Important Notes

• Before using the OC PAL driver the module clock must be configured. Refer to Clock Manager for clock
configuration.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

748 CONTENTS

• The board specific configurations must be done prior to driver after that can call APIs.

• Some features are not available for all OC IPs and incorrect parameters will be handled by DEV_ASSERT.

Data Structures

• struct oc_output_ch_param_t

The configuration structure of output compare parameters for each channel. More...

• struct oc_config_t

Defines the configuration structures are used in the output compare mode. More...

• struct extension_ftm_for_oc_t

Defines the extension structure for the output compare mode over FTM. More...

Enumerations

• enum oc_option_mode_t { OC_DISABLE_OUTPUT = 0x00U, OC_TOGGLE_ON_MATCH = 0x01U, OC_←↩

CLEAR_ON_MATCH = 0x02U, OC_SET_ON_MATCH = 0x03U }

The type of comparison for output compare mode Implements : oc_option_mode_t_Class.

• enum oc_option_update_t { OC_RELATIVE_VALUE = 0x00U, OC_ABSOLUTE_VALUE = 0x01U }

The type of update on the channel match Implements : oc_option_update_t_Class.

Functions

• status_t OC_Init (const oc_instance_t ∗const instance, const oc_config_t ∗const configPtr)

Initializes the output compare mode.

• status_t OC_Deinit (const oc_instance_t ∗const instance)

De-initialize the output compare instance.

• void OC_StartChannel (const oc_instance_t ∗const instance, const uint8_t channel)

Start the counter.

• void OC_StopChannel (const oc_instance_t ∗const instance, const uint8_t channel)

Stop the counter.

• status_t OC_SetOutputState (const oc_instance_t ∗const instance, const uint8_t channel, bool outputValue)

Control the channel output by software.

• status_t OC_SetOutputAction (const oc_instance_t ∗const instance, const uint8_t channel, oc_option_←↩

mode_t channelMode)

Set the operation mode of channel output.

• status_t OC_SetCompareValue (const oc_instance_t ∗const instance, const uint8_t channel, uint32_t next←↩

CompareMatchValue, oc_option_update_t typeOfupdate)

Update the match value on the channel.

• void OC_EnableNotification (const oc_instance_t ∗const instance, const uint8_t channel)

Enable channel notifications.

• void OC_DisableNotification (const oc_instance_t ∗const instance, const uint8_t channel)

Disable channel notifications.

16.79.2 Data Structure Documentation

16.79.2.1 struct oc_output_ch_param_t

The configuration structure of output compare parameters for each channel.

Implements : oc_output_ch_param_t_Class

Definition at line 83 of file oc_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.79 Output Compare - Peripheral Abstraction Layer (OC PAL) 749

Data Fields

• uint8_t hwChannelId
• oc_option_mode_t chMode
• uint16_t comparedValue
• void ∗ channelExtension
• void ∗ channelCallbackParams
• oc_callback_t channelCallbacks

Field Documentation

16.79.2.1.1 void∗ channelCallbackParams

The parameter of callback application for channels event

Definition at line 89 of file oc_pal.h.

16.79.2.1.2 oc_callback_t channelCallbacks

The callback function for channels event

Definition at line 90 of file oc_pal.h.

16.79.2.1.3 void∗ channelExtension

The IP specific configuration structure for channel

Definition at line 88 of file oc_pal.h.

16.79.2.1.4 oc_option_mode_t chMode

Channel output mode

Definition at line 86 of file oc_pal.h.

16.79.2.1.5 uint16_t comparedValue

The compared value

Definition at line 87 of file oc_pal.h.

16.79.2.1.6 uint8_t hwChannelId

Physical hardware channel ID

Definition at line 85 of file oc_pal.h.

16.79.2.2 struct oc_config_t

Defines the configuration structures are used in the output compare mode.

Implements : oc_config_t_Class

Definition at line 98 of file oc_pal.h.

Data Fields

• uint8_t nNumChannels
• const oc_output_ch_param_t ∗ outputChConfig
• void ∗ extension

Field Documentation

16.79.2.2.1 void∗ extension

IP specific configuration structure

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

750 CONTENTS

Definition at line 102 of file oc_pal.h.

16.79.2.2.2 uint8_t nNumChannels

Number of output compare channel used

Definition at line 100 of file oc_pal.h.

16.79.2.2.3 const oc_output_ch_param_t∗ outputChConfig

Output compare channels configuration

Definition at line 101 of file oc_pal.h.

16.79.2.3 struct extension_ftm_for_oc_t

Defines the extension structure for the output compare mode over FTM.

Part of FTM configuration structure Implements : extension_ftm_for_oc_t_Class

Definition at line 112 of file oc_pal.h.

Data Fields

• uint16_t maxCountValue
• ftm_clock_source_t ftmClockSource
• ftm_clock_ps_t ftmPrescaler

Field Documentation

16.79.2.3.1 ftm_clock_source_t ftmClockSource

Select clock source for FTM

Definition at line 115 of file oc_pal.h.

16.79.2.3.2 ftm_clock_ps_t ftmPrescaler

Register pre-scaler options available in the ftm_clock_ps_t enumeration

Definition at line 116 of file oc_pal.h.

16.79.2.3.3 uint16_t maxCountValue

Maximum count value in ticks

Definition at line 114 of file oc_pal.h.

16.79.3 Enumeration Type Documentation

16.79.3.1 enum oc_option_mode_t

The type of comparison for output compare mode Implements : oc_option_mode_t_Class.

Enumerator

OC_DISABLE_OUTPUT No action on output pin

OC_TOGGLE_ON_MATCH Toggle on match

OC_CLEAR_ON_MATCH Clear on match

OC_SET_ON_MATCH Set on match

Definition at line 60 of file oc_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.79 Output Compare - Peripheral Abstraction Layer (OC PAL) 751

16.79.3.2 enum oc_option_update_t

The type of update on the channel match Implements : oc_option_update_t_Class.

Enumerator

OC_RELATIVE_VALUE Next compared value is relative to current value

OC_ABSOLUTE_VALUE Next compared value is absolute

Definition at line 72 of file oc_pal.h.

16.79.4 Function Documentation

16.79.4.1 status_t OC_Deinit (const oc_instance_t ∗const instance)

De-initialize the output compare instance.

This function will disable the output compare mode. The driver can't be used again until reinitialized. The context
structure is no longer needed by the driver and can be freed after calling this function.

Parameters

in instance The output compare instance number.

Returns

Operation status

• STATUS_SUCCESS: Operation was successful

Definition at line 1126 of file oc_pal.c.

16.79.4.2 void OC_DisableNotification (const oc_instance_t ∗const instance, const uint8_t channel)

Disable channel notifications.

This function disables channel notification.

Parameters

in instance The output compare instance number
in channel The channel number

Definition at line 1706 of file oc_pal.c.

16.79.4.3 void OC_EnableNotification (const oc_instance_t ∗const instance, const uint8_t channel)

Enable channel notifications.

This function enables channel notification.

Parameters

in instance The output compare instance number
in channel The channel number

Definition at line 1672 of file oc_pal.c.

16.79.4.4 status_t OC_Init (const oc_instance_t ∗const instance, const oc_config_t ∗const configPtr)

Initializes the output compare mode.

This function will initialize the OC PAL instance, including the other platform specific HW units used together in
the output compare mode. This function configures a group of channels in instance to set, clear toggle the output
signal.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

752 CONTENTS

Parameters

in instance The output compare instance number.
in configPtr The pointer to configuration structure.

Returns

Operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 1062 of file oc_pal.c.

16.79.4.5 status_t OC_SetCompareValue (const oc_instance_t ∗const instance, const uint8_t channel, uint32_t
nextCompareMatchValue, oc_option_update_t typeOfupdate)

Update the match value on the channel.

This function will update the value of an output compare channel to the counter matches to this value.

Parameters

in instance The output compare instance number.
in channel The channel number.
in nextCompare←↩

MatchValue
The timer value in ticks until the next compare match event should be ap-
peared.

in typeOfupdate The type of update:

• OC_RELATIVE_VALUE : nextCompareMatchValue will be added to cur-
rent counter value into the channel value register

• OC_ABSOLUTE_VALUE : nextCompareMatchValue will be written into
the channel value register

Returns

Operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 1556 of file oc_pal.c.

16.79.4.6 status_t OC_SetOutputAction (const oc_instance_t ∗const instance, const uint8_t channel,
oc_option_mode_t channelMode)

Set the operation mode of channel output.

This function will set the action executed on a compare match value to set output pin, clear output pin, toggle output
pin.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.79 Output Compare - Peripheral Abstraction Layer (OC PAL) 753

Parameters

in instance The output compare instance number.
in channel The channel number.
in channelMode The channel mode in output compare:

• OC_DISABLE_OUTPUT : No action on output pin

• OC_TOGGLE_ON_MATCH : Toggle on match

• OC_CLEAR_ON_MATCH : Clear on match

• OC_SET_ON_MATCH : Set on match

Returns

Operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 1463 of file oc_pal.c.

16.79.4.7 status_t OC_SetOutputState (const oc_instance_t ∗const instance, const uint8_t channel, bool outputValue)

Control the channel output by software.

This function is used to forces the output pin to a specified value.

Parameters

in instance The output compare instance number.
in channel The channel number.
in outputValue The output value:

• false : The software output control forces 0 to the channel output.

• true : The software output control forces 1 to the channel output.

Returns

Operation status

• STATUS_SUCCESS : Completed successfully.

• STATUS_ERROR : Error occurred.

Definition at line 1389 of file oc_pal.c.

16.79.4.8 void OC_StartChannel (const oc_instance_t ∗const instance, const uint8_t channel)

Start the counter.

This function start channel counting.

Parameters

in instance The output compare instance number.
in channel The channel number.

Definition at line 1240 of file oc_pal.c.

16.79.4.9 void OC_StopChannel (const oc_instance_t ∗const instance, const uint8_t channel)

Stop the counter.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

754 CONTENTS

This function stop channel output.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.79 Output Compare - Peripheral Abstraction Layer (OC PAL) 755

Parameters

in instance The output compare instance number.
in channel The channel number.

Definition at line 1323 of file oc_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

756 CONTENTS

16.80 PDB Driver

16.80.1 Detailed Description

Programmable Delay Block Peripheral Driver.

Overview

This section describes the programming interface of the PDB Peripheral driver. The PDB peripheral driver configures
the PDB (Programmable Delay Block). It handles the triggers for ADC and pulse out to the CMP and the PDB
counter.

The PDB contains a counter whose output is compared to several different digital values. If the PDB is enabled, then
a trigger input event will reset the counter and make it start to count. A trigger input event is defined as a rising edge
being detected on a selected trigger input source, or if software trigger is selected and a software trigger is issued.
Each PDB channel is associated with 1 ADC block, and each PDB channel contains 8 pre-triggers. A pre-trigger has
a delay associated and is mapped to an ADC channel; when the PDB counter is equal to the delay value configured
for a pre-trigger, the pre-trigger is activated and selects the ADC channel that starts the conversion. Inside a PDB
channel, the pre-triggers can be configured to work as chains, meaning that a pre-trigger is enabled automatically
when the ADC conversion selected by the previous pre-trigger, completes it's execution. The pre-trigger delays
and back-to-back operation must be configured, in such a way that at most one pre-trigger per PDB channel is
activated at any given point - otherwise a PDB sequence error occurs. This feature is called back-to-back mode,
and needs to be configured individually for each pre-trigger using PDB_DRV_ConfigAdcPreTrigger(). On some
devices (depending on availability), chains can be configured between different PDB channels or PDB instances -
this can be configured using interchannelBackToBackEnable or instanceBackToBackEnable.

PDB Initialization

For initializing the PDB counter, input triggers or general pre-trigger settings (instance or interchannel back-to-back
modes) call PDB_DRV_Init() Note that all pre-triggers share the same counter. ∗ The basic timing/counting step is
set when initializing the main PDB counter: The basic timing/counting step = F_BusClkHz / pdb_timer_config_t.←↩

clkPreDiv / pdb_timer_config_t.clkPreMultFactor

The F_BusClkHz is the frequency of bus clock in Hertz. The "clkPreDiv" and "clkPreMultFactor" are in the pdb_←↩

timer_config_t structure. All pre-triggering delayes use this frequency.

Integration guideline

Compilation units

The following files need to be compiled in the project:

* ${S32SDK_PATH}\platform\drivers\src\pdb\pdb_driver.c

* ${S32SDK_PATH}\platform\drivers\src\pdb\pdb_hw_access.c

*

Include path

The following paths need to be added to the include path of the toolchain:

* ${S32SDK_PATH}\platform\drivers\inc\

* ${S32SDK_PATH}\platform\drivers\src\pdb\

*

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.80 PDB Driver 757

PDB Call diagram

Three kinds of typical use cases are designed for the PDB module.

• Normal Timer/Counter - the basic use-case. The Timer/Counter starts after the PDB is initialized, when
the input trigger (hardware or software) is asserted. When the counter reaches the compare value (set via
modulus register), an interrupt or DMA transfer occur if enabled. In continuous mode, when the counter
reaches the modulus compare value, it resets to zero and starts counting again.

• Triggering for ADC module. Depending on the number of ADC channels that need to be used, each pre-
trigger must be configured using PDB_DRV_ConfigAdcPreTrigger(). The PDB counter starts counting whenn
the input trigger (hardware or software) is asserted. If the pre-trigger is enabled in normal mode (back-to-
back disabled), it will be activated (thus starting the corresponding ADC channel conversion) when the PDB
counter is equal with the configured pre-trigger delay. If the pre-trigger is enabled in back-to-back mode, it
will trigger the corresponding ADC channel conversion, when the ADC channel corresponding to the previous
pre-trigger in the chain, completes the conversion (ADC COCO flag set).

• Generate pulse outputs of configurable width. The Pulse-Out is set to high/low when the PDB counter reaches
the values set in POyDLY[DLY1/2], configured via PDB_DRV_SetCmpPulseOutDelayForHigh() or PDB_←↩

DRV_SetCmpPulseOutDelayForLow. The Pulse-Out signal is connected to TRGMUX, which can route it to
any other peripheral (e.g. can be used as a sample window for any CMP module).

These are the examples to initialize and configure the PDB driver for typical use cases.

Normal Timer/Counter:

#define PDB_INSTANCE 0UL

static volatile uint32_t gPdbIntCounter = 0U;
static volatile uint32_t gPdbInstance = 0U;
static void PDB_ISR_Counter(void);
void PDB_TEST_NormalTimer(uint32_t instance)
{

pdb_timer_config_t PdbTimerConfig;
PdbTimerConfig.loadValueMode =

PDB_LOAD_VAL_IMMEDIATELY;
PdbTimerConfig.seqErrIntEnable = false;
PdbTimerConfig.clkPreDiv = PDB_CLK_PREDIV_BY_8;
PdbTimerConfig.clkPreMultFactor =

PDB_CLK_PREMULT_FACT_AS_40;
PdbTimerConfig.triggerInput = PDB_SOFTWARE_TRIGGER;
PdbTimerConfig.continuousModeEnable = true;
PdbTimerConfig.dmaEnable = false;
PdbTimerConfig.intEnable = true;
PdbTimerConfig.instanceBackToBackEnable = false;
PdbTimerConfig.interchannelBackToBackEnable = false;
PDB_DRV_Init(instance, &PdbTimerConfig);
PDB_DRV_SetTimerModulusValue(instance, 0xFFFU);
PDB_DRV_SetValueForTimerInterrupt(instance, 0xFFU);
PDB_DRV_LoadValuesCmd(instance);
gPdbIntCounter = 0U;
gPdbInstance = instance;
PDB_DRV_SoftTriggerCmd(instance);
while (gPdbIntCounter < 20U) {}
PRINTF("PDB Timer’s delay interrupt generated.\r\n");
PDB_DRV_Deinit(instance);
PRINTF("OK.\r\n");

}

void PDB_IRQHandler()
{

PDB_DRV_ClearTimerIntFlag(PDB_INSTANCE);
if (gPdbIntCounter >= 0xFFFFU)
{

gPdbIntCounter = 0U;
}
else
{

gPdbIntCounter++;
}

}

#if PDB_INSTANCE < 1
void PDB0_IRQHandler(void)
{

PDB_IRQHandler();

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

758 CONTENTS

}
#elif PDB_INSTANCE < 2

void PDB1_IRQHandler(void)
{

PDB_IRQHandler();
}

#endif

Trigger for ADC module:

void PDB_TEST_AdcPreTrigger(uint32_t instance)
{

pdb_timer_config_t PdbTimerConfig;
pdb_adc_pretrigger_config_t PdbAdcPreTriggerConfig;
PdbTimerConfig.loadValueMode =

PDB_LOAD_VAL_IMMEDIATELY;
PdbTimerConfig.seqErrIntEnable = false;
PdbTimerConfig.clkPreDiv = PDB_CLK_PREDIV_BY_8;
PdbTimerConfig.clkPreMultFactor =

PDB_CLK_PREMULT_FACT_AS_40;
PdbTimerConfig.triggerInput = PDB_SOFTWARE_TRIGGER;
PdbTimerConfig.continuousModeEnable = false;
PdbTimerConfig.dmaEnable = false;
PdbTimerConfig.intEnable = false;
PdbTimerConfig.instanceBackToBackEnable = false;
PdbTimerConfig.interchannelBackToBackEnable = false;
PDB_DRV_Init(instance, &PdbTimerConfig);

PdbAdcPreTriggerConfig.adcPreTriggerIdx = 0U;
PdbAdcPreTriggerConfig.preTriggerEnable = true;
PdbAdcPreTriggerConfig.preTriggerOutputEnable = true;
PdbAdcPreTriggerConfig.preTriggerBackToBackEnable = false;
PDB_DRV_ConfigAdcPreTrigger(instance, 0U, &PdbAdcPreTriggerConfig);

PDB_DRV_SetTimerModulusValue(instance, 0xFFFU);
PDB_DRV_SetAdcPreTriggerDelayValue(instance, 0U, 0U, 0xFFU);
PDB_DRV_LoadValuesCmd(instance);
PDB_DRV_SoftTriggerCmd(instance);
while (1U != PDB_DRV_GetAdcPreTriggerFlags(instance, 0U, 1U)) {}
PDB_DRV_ClearAdcPreTriggerFlags(instance, 0U, 1U);
PRINTF("PDB ADC PreTrigger generated.\r\n");
PDB_DRV_Deinit(instance);
PRINTF("OK.\r\n");

}

Data Structures

• struct pdb_timer_config_t

Defines the type of structure for basic timer in PDB. More...
• struct pdb_adc_pretrigger_config_t

Defines the type of structure for configuring ADC's pre_trigger. More...

Enumerations

• enum pdb_load_value_mode_t { PDB_LOAD_VAL_IMMEDIATELY = 0U, PDB_LOAD_VAL_AT_MODUL←↩

O_COUNTER = 1U, PDB_LOAD_VAL_AT_NEXT_TRIGGER = 2U, PDB_LOAD_VAL_AT_MODULO_CO←↩

UNTER_OR_NEXT_TRIGGER = 3U }

Defines the type of value load mode for the PDB module.
• enum pdb_clk_prescaler_div_t {

PDB_CLK_PREDIV_BY_1 = 0U, PDB_CLK_PREDIV_BY_2 = 1U, PDB_CLK_PREDIV_BY_4 = 2U, PDB_←↩

CLK_PREDIV_BY_8 = 3U,
PDB_CLK_PREDIV_BY_16 = 4U, PDB_CLK_PREDIV_BY_32 = 5U, PDB_CLK_PREDIV_BY_64 = 6U, P←↩

DB_CLK_PREDIV_BY_128 = 7U }

Defines the type of prescaler divider for the PDB counter clock. Implements : pdb_clk_prescaler_div_t_Class.
• enum pdb_trigger_src_t { PDB_TRIGGER_IN0 = 0U, PDB_SOFTWARE_TRIGGER = 15U }

Defines the type of trigger source mode for the PDB.
• enum pdb_clk_prescaler_mult_factor_t { PDB_CLK_PREMULT_FACT_AS_1 = 0U, PDB_CLK_PREMUL←↩

T_FACT_AS_10 = 1U, PDB_CLK_PREMULT_FACT_AS_20 = 2U, PDB_CLK_PREMULT_FACT_AS_40 =
3U }

Defines the type of the multiplication source mode for PDB.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.80 PDB Driver 759

Functions

• void PDB_DRV_Init (const uint32_t instance, const pdb_timer_config_t ∗userConfigPtr)

Initializes the PDB counter and triggers input.

• void PDB_DRV_Deinit (const uint32_t instance)

De-initializes the PDB module.

• void PDB_DRV_GetDefaultConfig (pdb_timer_config_t ∗const config)

Gets the default configuration structure of PDB with default settings.

• void PDB_DRV_Enable (const uint32_t instance)

Enables the PDB module.

• void PDB_DRV_Disable (const uint32_t instance)

Disables the PDB module.

• void PDB_DRV_SoftTriggerCmd (const uint32_t instance)

Triggers the PDB with a software trigger.

• uint32_t PDB_DRV_GetTimerValue (const uint32_t instance)

Gets the current value of the PDB counter.

• bool PDB_DRV_GetTimerIntFlag (const uint32_t instance)

Gets the PDB interrupt flag.

• void PDB_DRV_ClearTimerIntFlag (const uint32_t instance)

Clears the interrupt flag.

• void PDB_DRV_LoadValuesCmd (const uint32_t instance)

Executes the command of loading values.

• void PDB_DRV_SetTimerModulusValue (const uint32_t instance, const uint16_t value)

Sets the value of timer modulus.

• void PDB_DRV_SetValueForTimerInterrupt (const uint32_t instance, const uint16_t value)

Sets the value for the timer interrupt.

• void PDB_DRV_ConfigAdcPreTrigger (const uint32_t instance, const uint32_t chn, const pdb_adc_←↩

pretrigger_config_t ∗configPtr)

Configures the ADC pre_trigger in the PDB module.

• uint32_t PDB_DRV_GetAdcPreTriggerFlags (const uint32_t instance, const uint32_t chn, const uint32_←↩

t preChnMask)

Gets the ADC pre_trigger flag in the PDB module.

• void PDB_DRV_ClearAdcPreTriggerFlags (const uint32_t instance, const uint32_t chn, const uint32_t pre←↩

ChnMask)

Clears the ADC pre_trigger flag in the PDB module.

• uint32_t PDB_DRV_GetAdcPreTriggerSeqErrFlags (const uint32_t instance, const uint32_t chn, const
uint32_t preChnMask)

Gets the ADC pre_trigger flag in the PDB module.

• void PDB_DRV_ClearAdcPreTriggerSeqErrFlags (const uint32_t instance, const uint32_t chn, const uint32←↩

_t preChnMask)

Clears the ADC pre_trigger flag in the PDB module.

• void PDB_DRV_SetAdcPreTriggerDelayValue (const uint32_t instance, const uint32_t chn, const uint32_t
preChn, const uint32_t value)

Sets the ADC pre_trigger delay value in the PDB module.

• void PDB_DRV_SetCmpPulseOutEnable (const uint32_t instance, const uint32_t pulseChnMask, bool en-
able)

Switches on/off the CMP pulse out in the PDB module.

• void PDB_DRV_SetCmpPulseOutDelayForHigh (const uint32_t instance, const uint32_t pulseChn, const
uint32_t value)

Sets the CMP pulse out delay value for high in the PDB module.

• void PDB_DRV_SetCmpPulseOutDelayForLow (const uint32_t instance, const uint32_t pulseChn, const
uint32_t value)

Sets the CMP pulse out delay value for low in the PDB module.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

760 CONTENTS

16.80.2 Data Structure Documentation

16.80.2.1 struct pdb_timer_config_t

Defines the type of structure for basic timer in PDB.

Definition at line 103 of file pdb_driver.h.

Data Fields

• pdb_load_value_mode_t loadValueMode

• bool seqErrIntEnable

• pdb_clk_prescaler_div_t clkPreDiv

• pdb_clk_prescaler_mult_factor_t clkPreMultFactor

• pdb_trigger_src_t triggerInput

• bool continuousModeEnable

• bool dmaEnable

• bool intEnable

Field Documentation

16.80.2.1.1 pdb_clk_prescaler_div_t clkPreDiv

Select the prescaler divider.

Definition at line 107 of file pdb_driver.h.

16.80.2.1.2 pdb_clk_prescaler_mult_factor_t clkPreMultFactor

Select multiplication factor for prescaler.

Definition at line 108 of file pdb_driver.h.

16.80.2.1.3 bool continuousModeEnable

Enable the continuous mode.

Definition at line 110 of file pdb_driver.h.

16.80.2.1.4 bool dmaEnable

Enable the dma for timer.

Definition at line 111 of file pdb_driver.h.

16.80.2.1.5 bool intEnable

Enable the interrupt for timer. : interrupt is generated only if DMA is disabled.

Definition at line 112 of file pdb_driver.h.

16.80.2.1.6 pdb_load_value_mode_t loadValueMode

Select the load mode.

Definition at line 105 of file pdb_driver.h.

16.80.2.1.7 bool seqErrIntEnable

Enable PDB Sequence Error Interrupt.

Definition at line 106 of file pdb_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.80 PDB Driver 761

16.80.2.1.8 pdb_trigger_src_t triggerInput

Select the trigger input source.

Definition at line 109 of file pdb_driver.h.

16.80.2.2 struct pdb_adc_pretrigger_config_t

Defines the type of structure for configuring ADC's pre_trigger.

Definition at line 132 of file pdb_driver.h.

Data Fields

• uint32_t adcPreTriggerIdx
• bool preTriggerEnable
• bool preTriggerOutputEnable
• bool preTriggerBackToBackEnable

Field Documentation

16.80.2.2.1 uint32_t adcPreTriggerIdx

Setting pre_trigger's index.

Definition at line 134 of file pdb_driver.h.

16.80.2.2.2 bool preTriggerBackToBackEnable

Enable the back to back mode for ADC pre_trigger. If enabled, the pretrigger will be activated automatically when the
ADC COCO flag corresponding to the previous pretrigger in the chain, is set. The previous pretrigger for pretriggers
with index 0, depend on features instanceBackToBackEnable and interchannelBackToBackEnable.

Definition at line 137 of file pdb_driver.h.

16.80.2.2.3 bool preTriggerEnable

Enable the pre_trigger.

Definition at line 135 of file pdb_driver.h.

16.80.2.2.4 bool preTriggerOutputEnable

Enable the pre_trigger output.

Definition at line 136 of file pdb_driver.h.

16.80.3 Enumeration Type Documentation

16.80.3.1 enum pdb_clk_prescaler_div_t

Defines the type of prescaler divider for the PDB counter clock. Implements : pdb_clk_prescaler_div_t_Class.

Enumerator

PDB_CLK_PREDIV_BY_1 Counting divided by 1 x prescaler multiplication factor (selected by MULT).

PDB_CLK_PREDIV_BY_2 Counting divided by 2 x prescaler multiplication factor (selected by MULT).

PDB_CLK_PREDIV_BY_4 Counting divided by 4 x prescaler multiplication factor (selected by MULT).

PDB_CLK_PREDIV_BY_8 Counting divided by 8 x prescaler multiplication factor (selected by MULT).

PDB_CLK_PREDIV_BY_16 Counting divided by 16 x prescaler multiplication factor (selected by MULT).

PDB_CLK_PREDIV_BY_32 Counting divided by 32 x prescaler multiplication factor (selected by MULT).

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

762 CONTENTS

PDB_CLK_PREDIV_BY_64 Counting divided by 64 x prescaler multiplication factor (selected by MULT).

PDB_CLK_PREDIV_BY_128 Counting divided by 128 x prescaler multiplication factor (selected by MULT).

Definition at line 58 of file pdb_driver.h.

16.80.3.2 enum pdb_clk_prescaler_mult_factor_t

Defines the type of the multiplication source mode for PDB.

Selects the multiplication factor of the prescaler divider for the PDB counter clock. Implements : pdb_clk_←↩

prescaler_mult_factor_t_Class

Enumerator

PDB_CLK_PREMULT_FACT_AS_1 Multiplication factor is 1.

PDB_CLK_PREMULT_FACT_AS_10 Multiplication factor is 10.

PDB_CLK_PREMULT_FACT_AS_20 Multiplication factor is 20.

PDB_CLK_PREMULT_FACT_AS_40 Multiplication factor is 40.

Definition at line 89 of file pdb_driver.h.

16.80.3.3 enum pdb_load_value_mode_t

Defines the type of value load mode for the PDB module.

Some timing related registers, such as the MOD, IDLY, CHnDLYm, INTx and POyDLY, buffer the setting values.
Only the load operation is triggered. The setting value is loaded from a buffer and takes effect. There are four
loading modes to fit different applications. Implements : pdb_load_value_mode_t_Class

Enumerator

PDB_LOAD_VAL_IMMEDIATELY Loaded immediately after load operation.

PDB_LOAD_VAL_AT_MODULO_COUNTER Loaded when counter hits the modulo after load operation.

PDB_LOAD_VAL_AT_NEXT_TRIGGER Loaded when detecting an input trigger after load operation.

PDB_LOAD_VAL_AT_MODULO_COUNTER_OR_NEXT_TRIGGER Loaded when counter hits the modulo
or detecting an input trigger after load operation.

Definition at line 42 of file pdb_driver.h.

16.80.3.4 enum pdb_trigger_src_t

Defines the type of trigger source mode for the PDB.

Selects the trigger input source for the PDB. The trigger input source can be internal or the software trigger. Imple-
ments : pdb_trigger_src_t_Class

Enumerator

PDB_TRIGGER_IN0 Source trigger comes from TRGMUX.

PDB_SOFTWARE_TRIGGER Select software trigger.

Definition at line 77 of file pdb_driver.h.

16.80.4 Function Documentation

16.80.4.1 void PDB_DRV_ClearAdcPreTriggerFlags (const uint32_t instance, const uint32_t chn, const uint32_t preChnMask)

Clears the ADC pre_trigger flag in the PDB module.

This function clears the ADC pre_trigger flags in the PDB module.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.80 PDB Driver 763

Parameters

in instance PDB instance ID.
in chn PDB channel.
in preChnMask ADC pre_trigger channels mask.

Definition at line 379 of file pdb_driver.c.

16.80.4.2 void PDB_DRV_ClearAdcPreTriggerSeqErrFlags (const uint32_t instance, const uint32_t chn, const uint32_t
preChnMask)

Clears the ADC pre_trigger flag in the PDB module.

This function clears the ADC pre_trigger sequence error flags in the PDB module.

Parameters

in instance PDB instance ID.
in chn PDB channel.
in preChnMask ADC pre_trigger channels mask.

Definition at line 415 of file pdb_driver.c.

16.80.4.3 void PDB_DRV_ClearTimerIntFlag (const uint32_t instance)

Clears the interrupt flag.

This function clears the interrupt flag.

Parameters

in instance PDB instance ID.

Definition at line 278 of file pdb_driver.c.

16.80.4.4 void PDB_DRV_ConfigAdcPreTrigger (const uint32_t instance, const uint32_t chn, const
pdb_adc_pretrigger_config_t ∗ configPtr)

Configures the ADC pre_trigger in the PDB module.

This function configures the ADC pre_trigger in the PDB module. Important note: any pretrigger which is enabled
and has the trigger output enabled (preTriggerOutputEnable and preTriggerEnable both true) must have the corre-
sponding delay value set to a non-zero value by calling PDB_DRV_SetAdcPreTriggerDelayValue function.

Parameters

in instance PDB instance ID.
in chn PDB channel.
in configPtr Pointer to the user configuration structure. See pdb_adc_pretrigger_config_t.

Definition at line 340 of file pdb_driver.c.

16.80.4.5 void PDB_DRV_Deinit (const uint32_t instance)

De-initializes the PDB module.

This function de-initializes the PDB module. Calling this function shuts down the PDB module and reduces the
power consumption.

Parameters

in instance PDB instance ID.

Definition at line 136 of file pdb_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

764 CONTENTS

16.80.4.6 void PDB_DRV_Disable (const uint32_t instance)

Disables the PDB module.

This function disables the PDB module, counter is off also.

Parameters

in instance PDB instance ID.

Definition at line 215 of file pdb_driver.c.

16.80.4.7 void PDB_DRV_Enable (const uint32_t instance)

Enables the PDB module.

This function enables the PDB module, counter is on.

Parameters

in instance PDB instance ID.

Definition at line 200 of file pdb_driver.c.

16.80.4.8 uint32_t PDB_DRV_GetAdcPreTriggerFlags (const uint32_t instance, const uint32_t chn, const uint32_t preChnMask
)

Gets the ADC pre_trigger flag in the PDB module.

This function gets the ADC pre_trigger flags in the PDB module.

Parameters

in instance PDB instance ID.
in chn PDB channel.
in preChnMask ADC pre_trigger channels mask.

Returns

Assertion of indicated flag.

Definition at line 361 of file pdb_driver.c.

16.80.4.9 uint32_t PDB_DRV_GetAdcPreTriggerSeqErrFlags (const uint32_t instance, const uint32_t chn, const uint32_t
preChnMask)

Gets the ADC pre_trigger flag in the PDB module.

This function gets the ADC pre_trigger flags in the PDB module.

Parameters

in instance PDB instance ID.
in chn PDB channel.
in preChnMask ADC pre_trigger channels mask.

Returns

Assertion of indicated flag.

Definition at line 397 of file pdb_driver.c.

16.80.4.10 void PDB_DRV_GetDefaultConfig (pdb_timer_config_t ∗const config)

Gets the default configuration structure of PDB with default settings.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.80 PDB Driver 765

This function initializes the hardware configuration structure to default values (Reference Manual Resets). This
function should be called before configuring the hardware feature by PDB_DRV_Init() function, otherwise all mem-
bers be written by user. This function ensures that all members are written with safe values, but the user still can
modify the desired members.

Parameters

out config Pointer to PDB configuration structure.

Definition at line 164 of file pdb_driver.c.

16.80.4.11 bool PDB_DRV_GetTimerIntFlag (const uint32_t instance)

Gets the PDB interrupt flag.

This function gets the PDB interrupt flag. It is asserted if the PDB interrupt occurs.

Parameters

in instance PDB instance ID.

Returns

Assertion of indicated event.

Definition at line 263 of file pdb_driver.c.

16.80.4.12 uint32_t PDB_DRV_GetTimerValue (const uint32_t instance)

Gets the current value of the PDB counter.

This function gets the current counter value.

Parameters

in instance PDB instance ID.

Returns

Current PDB counter value.

Definition at line 247 of file pdb_driver.c.

16.80.4.13 void PDB_DRV_Init (const uint32_t instance, const pdb_timer_config_t ∗ userConfigPtr)

Initializes the PDB counter and triggers input.

This function initializes the PDB counter, input triggers and general pre-trigger settings. It resets PDB registers and
enables the PDB clock. Therefore, it should be called before any other operation. After it is initialized, the PDB can
act as a triggered timer, which enables other features in PDB module.

Parameters

in instance PDB instance ID.
in userConfigPtr Pointer to the user configuration structure. See the "pdb_user_config_t".

Definition at line 61 of file pdb_driver.c.

16.80.4.14 void PDB_DRV_LoadValuesCmd (const uint32_t instance)

Executes the command of loading values.

This function executes the command of loading values.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

766 CONTENTS

Parameters

in instance PDB instance ID.

Definition at line 293 of file pdb_driver.c.

16.80.4.15 void PDB_DRV_SetAdcPreTriggerDelayValue (const uint32_t instance, const uint32_t chn, const uint32_t preChn,
const uint32_t value)

Sets the ADC pre_trigger delay value in the PDB module.

This function sets the ADC pre_trigger delay value in the PDB module.

Parameters

instance PDB instance ID.
chn ADC channel.

preChn ADC pre_channel.
value Setting value.

Definition at line 433 of file pdb_driver.c.

16.80.4.16 void PDB_DRV_SetCmpPulseOutDelayForHigh (const uint32_t instance, const uint32_t pulseChn, const uint32_t
value)

Sets the CMP pulse out delay value for high in the PDB module.

This function sets the CMP pulse out delay value for high in the PDB module.

Parameters

in instance PDB instance ID.
in pulseChn Pulse channel.
in value Setting value.

Definition at line 471 of file pdb_driver.c.

16.80.4.17 void PDB_DRV_SetCmpPulseOutDelayForLow (const uint32_t instance, const uint32_t pulseChn, const uint32_t
value)

Sets the CMP pulse out delay value for low in the PDB module.

This function sets the CMP pulse out delay value for low in the PDB module.

Parameters

in instance PDB instance ID.
in pulseChn Pulse channel.
in value Setting value.

Definition at line 489 of file pdb_driver.c.

16.80.4.18 void PDB_DRV_SetCmpPulseOutEnable (const uint32_t instance, const uint32_t pulseChnMask, bool enable)

Switches on/off the CMP pulse out in the PDB module.

This function switches the CMP pulse on/off in the PDB module.

Parameters

in instance PDB instance ID.
in pulseChnMask Pulse channel mask.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.80 PDB Driver 767

in enable Switcher to assert the feature.

Definition at line 454 of file pdb_driver.c.

16.80.4.19 void PDB_DRV_SetTimerModulusValue (const uint32_t instance, const uint16_t value)

Sets the value of timer modulus.

This function sets the value of timer modulus.

Parameters

in instance PDB instance ID.
in value Setting value.

Definition at line 308 of file pdb_driver.c.

16.80.4.20 void PDB_DRV_SetValueForTimerInterrupt (const uint32_t instance, const uint16_t value)

Sets the value for the timer interrupt.

This function sets the value for the timer interrupt.

Parameters

in instance PDB instance ID.
in value Setting value.

Definition at line 324 of file pdb_driver.c.

16.80.4.21 void PDB_DRV_SoftTriggerCmd (const uint32_t instance)

Triggers the PDB with a software trigger.

This function triggers the PDB with a software trigger. When the PDB is set to use the software trigger as input,
calling this function triggers the PDB.

Parameters

in instance PDB instance ID.

Definition at line 232 of file pdb_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

768 CONTENTS

16.81 PINS Driver

16.81.1 Detailed Description

This section describes the programming interface of the PINS driver.

Data Structures

• struct pin_settings_config_t

Defines the converter configuration. More...

Typedefs

• typedef uint8_t pins_level_type_t

Type of a port levels representation. Implements : pins_level_type_t_Class.

Enumerations

• enum port_data_direction_t { GPIO_INPUT_DIRECTION = 0x0U, GPIO_OUTPUT_DIRECTION = 0x1U, G←↩

PIO_UNSPECIFIED_DIRECTION = 0x2U }

Configures the port data direction Implements : port_data_direction_t_Class.

PINS DRIVER API.

• status_t PINS_DRV_Init (uint32_t pinCount, const pin_settings_config_t config[])

Initializes the pins with the given configuration structure.

• void PINS_DRV_WritePin (GPIO_Type ∗const base, pins_channel_type_t pin, pins_level_type_t value)

Write a pin of a port with a given value.

• void PINS_DRV_WritePins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write all pins of a port.

• pins_channel_type_t PINS_DRV_GetPinsOutput (const GPIO_Type ∗const base)

Get the current output from a port.

• void PINS_DRV_SetPins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write pins with 'Set' value.

• void PINS_DRV_ClearPins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write pins to 'Clear' value.

• void PINS_DRV_TogglePins (GPIO_Type ∗const base, pins_channel_type_t pins)

Toggle pins value.

• pins_channel_type_t PINS_DRV_ReadPins (const GPIO_Type ∗const base)

Read input pins.

16.81.2 Data Structure Documentation

16.81.2.1 struct pin_settings_config_t

Defines the converter configuration.

This structure is used to configure the pins Implements : pin_settings_config_t_Class

Definition at line 565 of file pins_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.81 PINS Driver 769

Data Fields

• uint32_t pinPortIdx
• port_mux_t mux

Pin (C55: Out) mux selection.
• GPIO_Type ∗ gpioBase
• port_data_direction_t direction
• pins_level_type_t initValue

Field Documentation

16.81.2.1.1 port_data_direction_t direction

Configures the port data direction.

Definition at line 602 of file pins_driver.h.

16.81.2.1.2 GPIO_Type∗ gpioBase

GPIO base pointer.

Definition at line 601 of file pins_driver.h.

16.81.2.1.3 pins_level_type_t initValue

Initial value

Definition at line 638 of file pins_driver.h.

16.81.2.1.4 port_mux_t mux

Pin (C55: Out) mux selection.

Definition at line 588 of file pins_driver.h.

16.81.2.1.5 uint32_t pinPortIdx

Port pin number.

Definition at line 572 of file pins_driver.h.

16.81.3 Typedef Documentation

16.81.3.1 typedef uint8_t pins_level_type_t

Type of a port levels representation. Implements : pins_level_type_t_Class.

Definition at line 53 of file pins_driver.h.

16.81.4 Enumeration Type Documentation

16.81.4.1 enum port_data_direction_t

Configures the port data direction Implements : port_data_direction_t_Class.

Enumerator

GPIO_INPUT_DIRECTION General purpose input direction.

GPIO_OUTPUT_DIRECTION General purpose output direction.

GPIO_UNSPECIFIED_DIRECTION General purpose unspecified direction.

Definition at line 59 of file pins_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

770 CONTENTS

16.81.5 Function Documentation

16.81.5.1 void PINS_DRV_ClearPins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write pins to 'Clear' value.

This function configures output pins listed in parameter pins (bits that are '1') to have a 'cleared' value (LOW). Pins
corresponding to '0' will be unaffected.

Parameters

in base GPIO base pointer (PTA, PTB, PTC, etc.)
in pins Pin mask of bits to be cleared. Each bit represents one pin (LSB is pin 0, MSB

is pin 31). For each bit:

• 0: corresponding pin is unaffected

• 1: corresponding pin is cleared(set to LOW)

Definition at line 526 of file pins_driver.c.

16.81.5.2 pins_channel_type_t PINS_DRV_GetPinsOutput (const GPIO_Type ∗const base)

Get the current output from a port.

This function returns the current output that is written to a port. Only pins that are configured as output will have
meaningful values.

Parameters

in base GPIO base pointer (PTA, PTB, PTC, etc.)

Returns

GPIO outputs. Each bit represents one pin (LSB is pin 0, MSB is pin 31). For each bit:

• 0: corresponding pin is set to LOW

• 1: corresponding pin is set to HIGH

Definition at line 497 of file pins_driver.c.

16.81.5.3 status_t PINS_DRV_Init (uint32_t pinCount, const pin_settings_config_t config[])

Initializes the pins with the given configuration structure.

This function configures the pins with the options provided in the provided structure.

Parameters

in pinCount The number of configured pins in structure
in config The configuration structure

Returns

The status of the operation

Definition at line 50 of file pins_driver.c.

16.81.5.4 pins_channel_type_t PINS_DRV_ReadPins (const GPIO_Type ∗const base)

Read input pins.

This function returns the current input values from a port. Only pins configured as input will have meaningful values.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.81 PINS Driver 771

Parameters

in base GPIO base pointer (PTA, PTB, PTC, etc.)

Returns

GPIO inputs. Each bit represents one pin (LSB is pin 0, MSB is pin 31). For each bit:

• 0: corresponding pin is read as LOW

• 1: corresponding pin is read as HIGH

Definition at line 554 of file pins_driver.c.

16.81.5.5 void PINS_DRV_SetPins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write pins with 'Set' value.

This function configures output pins listed in parameter pins (bits that are '1') to have a value of 'set' (HIGH). Pins
corresponding to '0' will be unaffected.

Parameters

in base GPIO base pointer (PTA, PTB, PTC, etc.)
in pins Pin mask of bits to be set. Each bit represents one pin (LSB is pin 0, MSB is

pin 31). For each bit:

• 0: corresponding pin is unaffected

• 1: corresponding pin is set to HIGH

Definition at line 511 of file pins_driver.c.

16.81.5.6 void PINS_DRV_TogglePins (GPIO_Type ∗const base, pins_channel_type_t pins)

Toggle pins value.

This function toggles output pins listed in parameter pins (bits that are '1'). Pins corresponding to '0' will be unaf-
fected.

Parameters

in base GPIO base pointer (PTA, PTB, PTC, etc.)
in pins Pin mask of bits to be toggled. Each bit represents one pin (LSB is pin 0, MSB

is pin 31). For each bit:

• 0: corresponding pin is unaffected

• 1: corresponding pin is toggled

Definition at line 540 of file pins_driver.c.

16.81.5.7 void PINS_DRV_WritePin (GPIO_Type ∗const base, pins_channel_type_t pin, pins_level_type_t value)

Write a pin of a port with a given value.

This function writes the given pin from a port, with the given value ('0' represents LOW, '1' represents HIGH).

Parameters

in base GPIO base pointer (PTA, PTB, PTC, etc.)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

772 CONTENTS

in pin Pin number to be written
in value Pin value to be written

• 0: corresponding pin is set to LOW

• 1: corresponding pin is set to HIGH

Definition at line 468 of file pins_driver.c.

16.81.5.8 void PINS_DRV_WritePins (GPIO_Type ∗const base, pins_channel_type_t pins)

Write all pins of a port.

This function writes all pins configured as output with the values given in the parameter pins. '0' represents LOW,
'1' represents HIGH.

Parameters

in base GPIO base pointer (PTA, PTB, PTC, etc.)
in pins Pin mask to be written

• 0: corresponding pin is set to LOW

• 1: corresponding pin is set to HIGH

Definition at line 483 of file pins_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.82 Peripheral access layer for S32K144 773

16.82 Peripheral access layer for S32K144

This module covers all memory mapped register available on SoC.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

774 CONTENTS

16.83 Pins Driver (PINS)

16.83.1 Detailed Description

The S32 SDK provides Peripheral Drivers for the PINS module of S32K1xx, S32MTV, S32V234, MPC574xx and
S32Rx7x devices.

The module provides dedicated pad control to general-purpose pads that can be configured as either inputs or
outputs. The PINS module provides registers that enable user software to read values from GPIO pads configured
as inputs, and write values to GPIO pads configured as outputs:

• When configured as output, you can write to an internal register to control the state driven on the associated
output pad.

• When configured as input, you can detect the state of the associated pad by reading the value from an internal
register.

• When configured as input and output, the pad value can be read back, which can be used as a method of
checking if the written value appeared on the pad.

The PINS supports these following features: For S32K1xx and S32MTV devices: Pins driver is based on PORT
(Port Control and Interrupt) and GPIO (General-Purpose Input/Output) modules Pin interrupt

• Interrupt flag and enable registers for each pin

• Support for edge sensitive (rising, falling, both) or level sensitive (low, high) configured per pin

• Support for interrupt or DMA request configured per pin

• Asynchronous wake-up in low-power modes

• Pin interrupt is functional in all digital pin muxing modes

• Peripheral trigger output (active high, low) configured per pin Digital input filter

• Digital input filter for each pin, usable by any digital peripheral muxed onto the pin

• Individual enable or bypass control field per pin

• Selectable clock source for digital input filter with a five bit resolution on filter size

• Functional in all digital pin multiplexing modes Port control

• Individual pull control fields with pullup, pulldown, and pull-disable support

• Individual drive strength field supporting high and low drive strength

• Individual slew rate field supporting fast and slow slew rates

• Individual input passive filter field supporting enable and disable of the individual input passive filter

• Individual open drain field supporting enable and disable of the individual open drain output

• Individual over-current detect enable with over-current detect flag and associated interrupt

• Individual mux control field supporting analog or pin disabled, GPIO, and up to 6 chip-specific digital functions

• Pad configuration fields are functional in all digital pin muxing modes For S32V234, MPC574xx and S32Rx7x
devices: Pins driver is based on SIUL2 (System Integration Unit Lite2) module The System Integration Unit
Lite2 supports these distinctive features:

• 1 to 32 GPIO ports with data control

• Drive data to as many as 16 independent I/O channels

• Sample data from as many as 16 independent I/O channels Two 16-bit registers can be read/written with one
access for a 32-bit port, if needed. External interrupt/DMA request support with:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.83 Pins Driver (PINS) 775

• 1 to 4 system interrupt vectors for 1 to 4 interrupt sources with independent interrupt masks. For 32 external
interrupt sources (REQ pins), four groups have eight interrupt sources each, and each of the four groups is
assigned one system interrupt vector.

• 1 to 32 programmable digital glitch filters, one for each REQ pin

• 1 to 4 system DMA request channels up to 32 REQ pins, depending on device using

• Edge detection Additionally the SIUL2 contains the Multiplexed Signal Configuration Registers (MSCR) that
configure the electrical parameters and settings for as many as 512 functional pads. The number of these
registers that is actually implemented varies by device. These registers configure the following pad features:

• Drive strength

• Output impedance control

• Open drain/source output enable

• Slew rate control

• Hysteresis control

• Inversion control

• Internal pull control and pull selection

• Pin function assignment

• Control of analog path switches

• Safe mode behavior configuration

Modules

• PINS Driver

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

776 CONTENTS

16.84 Power Manager

16.84.1 Detailed Description

The S32 SDK Power Manager provides a set of API/services that enables applications to configure and select
among various operational and low power modes.

Driver consideration

The Power Manager driver is developed on top of an appropriate hardware access layer. The Power Manager
provides API to handle the device power modes. It also supports run-time switching between multiple power modes.
Each power mode is described by configuration structures with multiple power-related options. The Power Manager
provides a notification mechanism for registered callbacks and API for static and dynamic callback registration.

The Driver uses structures for configuration. The actual format of the structure is defined by the underlying device
specific header file. There is a power mode and a callback configuration structure. These structures may be
generated using Processor Expert. The user application can use the default for most settings, changing only what
is necessary.

This driver provides functions for initializing power manager and changing the power mode.

All methods that access the hardware layer will return an error code to signal if the operation succeeded or failed.
The values are defined by the status_t enumeration, and the possible values include: success, switch error, callback
notification errors, wrong clock setup error.

Modules

• Power Manager Driver

This module covers the device-specific power_manager functionality implemented for S32K1xx, s32k14xW and
S32MTV SOC.

• Power_s32k1xx

Data Structures

• struct power_manager_notify_struct_t

Power mode user configuration structure. More...

• struct power_manager_callback_user_config_t

callback configuration structure More...

• struct power_manager_state_t

Power manager internal state structure. More...

Typedefs

• typedef void power_manager_callback_data_t

Callback-specific data.

• typedef status_t(∗ power_manager_callback_t) (power_manager_notify_struct_t ∗notify, power_manager_←↩

callback_data_t ∗dataPtr)

Callback prototype.

Enumerations

• enum power_manager_policy_t { POWER_MANAGER_POLICY_AGREEMENT, POWER_MANAGER_P←↩

OLICY_FORCIBLE }

Power manager policies.

• enum power_manager_notify_t { POWER_MANAGER_NOTIFY_RECOVER = 0x00U, POWER_MANAGE←↩

R_NOTIFY_BEFORE = 0x01U, POWER_MANAGER_NOTIFY_AFTER = 0x02U }

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.84 Power Manager 777

The PM notification type. Used to notify registered callbacks. Callback notifications can be invoked in following
situations:

• enum power_manager_callback_type_t { POWER_MANAGER_CALLBACK_BEFORE = 0x01U, POWER←↩

_MANAGER_CALLBACK_AFTER = 0x02U, POWER_MANAGER_CALLBACK_BEFORE_AFTER = 0x03U
}

The callback type indicates when a callback will be invoked.

Functions

• status_t POWER_SYS_Init (power_manager_user_config_t ∗(∗powerConfigsPtr)[], uint8_t configsNumber,
power_manager_callback_user_config_t ∗(∗callbacksPtr)[], uint8_t callbacksNumber)

Power manager initialization for operation.
• status_t POWER_SYS_Deinit (void)

This function deinitializes the Power manager.
• status_t POWER_SYS_SetMode (uint8_t powerModeIndex, power_manager_policy_t policy)

This function configures the power mode.
• status_t POWER_SYS_GetLastMode (uint8_t ∗powerModeIndexPtr)

This function returns the last successfully set power mode.
• status_t POWER_SYS_GetLastModeConfig (power_manager_user_config_t ∗∗powerModePtr)

This function returns the user configuration structure of the last successfully set power mode.
• power_manager_modes_t POWER_SYS_GetCurrentMode (void)

This function returns currently running power mode.
• uint8_t POWER_SYS_GetErrorCallbackIndex (void)

This function returns the last failed notification callback.
• power_manager_callback_user_config_t ∗ POWER_SYS_GetErrorCallback (void)

This function returns the callback configuration structure for the last failed notification.
• void POWER_SYS_GetDefaultConfig (power_manager_user_config_t ∗const config)

This function returns the default power_manager configuration structure.

Variables

• power_manager_state_t gPowerManagerState

Power manager internal structure.

16.84.2 Data Structure Documentation

16.84.2.1 struct power_manager_notify_struct_t

Power mode user configuration structure.

This structure defines power mode with additional power options. This structure is implementation-defiend. Please
refer to actual definition based on the underlying HAL (SMC, MC_ME etc). Applications may define multiple power
modes and switch between them. A list of all defined power modes is passed to the Power manager during initializa-
tion as an array of references to structures of this type (see POWER_SYS_Init()). Power modes can be switched by
calling POWER_SYS_SetMode(), which takes as argument the index of the reqested power mode in the list passed
during manager initialization. The power mode currently in use can be retrieved by calling POWER_SYS_GetLast←↩

Mode(), which provides the index of the current power mode, or by calling POWER_SYS_GetLastModeConfig(),
which provides a pointer to the configuration structure of the current power mode. The members of the power mode
configuration structure depend on power options available for a specific chip, and includes at least the power mode.
The available power modes are chip-specific. See power_manager_modes_t defined in the underlying HAL for a
list of all supported modes.

Power notification structure passed to registered callback function

Implements power_manager_notify_struct_t_Class

Definition at line 140 of file power_manager.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

778 CONTENTS

Data Fields

• power_manager_user_config_t ∗ targetPowerConfigPtr
• uint8_t targetPowerConfigIndex
• power_manager_policy_t policy
• power_manager_notify_t notifyType

Field Documentation

16.84.2.1.1 power_manager_notify_t notifyType

Power mode notification type.

Definition at line 145 of file power_manager.h.

16.84.2.1.2 power_manager_policy_t policy

Power mode transition policy.

Definition at line 144 of file power_manager.h.

16.84.2.1.3 uint8_t targetPowerConfigIndex

Target power configuration index.

Definition at line 143 of file power_manager.h.

16.84.2.1.4 power_manager_user_config_t∗ targetPowerConfigPtr

Pointer to target power configuration

Definition at line 142 of file power_manager.h.

16.84.2.2 struct power_manager_callback_user_config_t

callback configuration structure

This structure holds configuration of callbacks passed to the Power manager during its initialization. Structures of
this type are expected to be statically allocated. This structure contains following application-defined data: callback
- pointer to the callback function callbackType - specifies when the callback is called callbackData - pointer to the
data passed to the callback Implements power_manager_callback_user_config_t_Class

Definition at line 185 of file power_manager.h.

Data Fields

• power_manager_callback_t callbackFunction
• power_manager_callback_type_t callbackType
• power_manager_callback_data_t ∗ callbackData

Field Documentation

16.84.2.2.1 power_manager_callback_data_t∗ callbackData

Definition at line 189 of file power_manager.h.

16.84.2.2.2 power_manager_callback_t callbackFunction

Definition at line 187 of file power_manager.h.

16.84.2.2.3 power_manager_callback_type_t callbackType

Definition at line 188 of file power_manager.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.84 Power Manager 779

16.84.2.3 struct power_manager_state_t

Power manager internal state structure.

Power manager internal structure. Contains data necessary for Power manager proper functionality. Stores ref-
erences to registered power mode configurations, callbacks, and other internal data. This structure is statically
allocated and initialized by POWER_SYS_Init(). Implements power_manager_state_t_Class

Definition at line 201 of file power_manager.h.

Data Fields

• power_manager_user_config_t ∗(∗ configs)[]

• uint8_t configsNumber

• power_manager_callback_user_config_t ∗(∗ staticCallbacks)[]

• uint8_t staticCallbacksNumber

• uint8_t errorCallbackIndex

• uint8_t currentConfig

Field Documentation

16.84.2.3.1 power_manager_user_config_t∗(∗ configs)[]

Pointer to power configure table.

Definition at line 203 of file power_manager.h.

16.84.2.3.2 uint8_t configsNumber

Number of power configurations

Definition at line 204 of file power_manager.h.

16.84.2.3.3 uint8_t currentConfig

Index of current configuration.

Definition at line 208 of file power_manager.h.

16.84.2.3.4 uint8_t errorCallbackIndex

Index of callback returns error.

Definition at line 207 of file power_manager.h.

16.84.2.3.5 power_manager_callback_user_config_t∗(∗ staticCallbacks)[]

Pointer to callback table.

Definition at line 205 of file power_manager.h.

16.84.2.3.6 uint8_t staticCallbacksNumber

Max. number of callback configurations

Definition at line 206 of file power_manager.h.

16.84.3 Typedef Documentation

16.84.3.1 typedef void power_manager_callback_data_t

Callback-specific data.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

780 CONTENTS

Pointer to data of this type is passed during callback registration. The pointer is part of the power_manager_←↩

callback_user_config_t structure and is passed to the callback during power mode change notifications. Implements
power_manager_callback_data_t_Class

Definition at line 115 of file power_manager.h.

16.84.3.2 typedef status_t(∗ power_manager_callback_t) (power_manager_notify_struct_t ∗notify,
power_manager_callback_data_t ∗dataPtr)

Callback prototype.

Declaration of callback. It is common for all registered callbacks. Function pointer of this type is part of power←↩

_manager_callback_user_config_t callback configuration structure. Depending on the callback type, the callback
function is invoked during power mode change (see POWER_SYS_SetMode()) before the mode change, after it, or
in both cases to notify about the change progress (see power_manager_callback_type_t). When called, the type
of the notification is passed as parameter along with a pointer to power mode configuration structure (see power←↩

_manager_notify_struct_t) and any data passed during the callback registration (see power_manager_callback_←↩

data_t). When notified before a mode change, depending on the power mode change policy (see power_manager←↩

_policy_t) the callback may deny the mode change by returning any error code other than STATUS_SUCCESS (see
POWER_SYS_SetMode()).

Parameters

notify Notification structure.
dataPtr Callback data. Pointer to the data passed during callback registration. Intended to pass any

driver or application data such as internal state information.

Returns

An error code or STATUS_SUCCESS. Implements power_manager_callback_t_Class

Definition at line 169 of file power_manager.h.

16.84.4 Enumeration Type Documentation

16.84.4.1 enum power_manager_callback_type_t

The callback type indicates when a callback will be invoked.

Used in the callback configuration structures (power_manager_callback_user_config_t) to specify when the regis-
tered callback will be called during power mode change initiated by POWER_SYS_SetMode().

Implements power_manager_callback_type_t_Class

Enumerator

POWER_MANAGER_CALLBACK_BEFORE Before callback.

POWER_MANAGER_CALLBACK_AFTER After callback.

POWER_MANAGER_CALLBACK_BEFORE_AFTER Before-After callback.

Definition at line 100 of file power_manager.h.

16.84.4.2 enum power_manager_notify_t

The PM notification type. Used to notify registered callbacks. Callback notifications can be invoked in following
situations:

• before a power mode change (Callback return value can affect POWER_SYS_SetMode() execution. Refer to
the POWER_SYS_SetMode() and power_manager_policy_t documentation).

• after a successful change of the power mode.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.84 Power Manager 781

• after an unsuccessful attempt to switch power mode, in order to recover to a working state. Implements
power_manager_notify_t_Class

Enumerator

POWER_MANAGER_NOTIFY_RECOVER Notify IP to recover to previous work state.

POWER_MANAGER_NOTIFY_BEFORE Notify IP that the system will change the power setting.

POWER_MANAGER_NOTIFY_AFTER Notify IP that the system has changed to a new power setting.

Definition at line 84 of file power_manager.h.

16.84.4.3 enum power_manager_policy_t

Power manager policies.

Defines whether the mode switch initiated by the POWER_SYS_SetMode() is agreed upon (depending on the result
of notification callbacks), or forced. For POWER_MANAGER_POLICY_FORCIBLE the power mode is changed
regardless of the callback results, while for POWER_MANAGER_POLICY_AGREEMENT policy any error code
returned by one of the callbacks aborts the mode change. See also POWER_SYS_SetMode() description. Imple-
ments power_manager_policy_t_Class

Enumerator

POWER_MANAGER_POLICY_AGREEMENT Power mode is changed if all of the callbacks return success.

POWER_MANAGER_POLICY_FORCIBLE Power mode is changed regardless of the result of callbacks.

Definition at line 69 of file power_manager.h.

16.84.5 Function Documentation

16.84.5.1 status_t POWER_SYS_Deinit (void)

This function deinitializes the Power manager.

Returns

An error code or STATUS_SUCCESS.

Definition at line 110 of file power_manager.c.

16.84.5.2 power_manager_modes_t POWER_SYS_GetCurrentMode (void)

This function returns currently running power mode.

This function reads hardware settings and returns currently running power mode.

Returns

Currently used run power mode.

Definition at line 244 of file power_manager_S32K1xx.c.

16.84.5.3 void POWER_SYS_GetDefaultConfig (power_manager_user_config_t ∗const config)

This function returns the default power_manager configuration structure.

This function returns a pointer of the power_manager configuration structure. All structure members have default
value when CPU is default power mode.

Definition at line 406 of file power_manager.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

782 CONTENTS

16.84.5.4 power_manager_callback_user_config_t∗ POWER_SYS_GetErrorCallback (void)

This function returns the callback configuration structure for the last failed notification.

This function returns a pointer to configuration structure of the last callback that failed during the power mode switch
when POWER_SYS_SetMode() was called. If the last POWER_SYS_SetMode() call ended successfully, a NULL
value is returned.

Returns

Pointer to the callback configuration which returns error.

Definition at line 208 of file power_manager.c.

16.84.5.5 uint8_t POWER_SYS_GetErrorCallbackIndex (void)

This function returns the last failed notification callback.

This function returns the index of the last callback that failed during the power mode switch when POWER_SY←↩

S_SetMode() was called. The returned value represents the index in the array of registered callbacks. If the last
POWER_SYS_SetMode() call ended successfully, a value equal to the number of registered callbacks is returned.

Returns

Callback index of last failed callback or value equal to callbacks count.

Definition at line 196 of file power_manager.c.

16.84.5.6 status_t POWER_SYS_GetLastMode (uint8_t ∗ powerModeIndexPtr)

This function returns the last successfully set power mode.

This function returns index of power mode which was last set using POWER_SYS_SetMode(). If the power mode
was entered even though some of the registered callbacks denied the mode change, or if any of the callbacks
invoked after the entering/restoring run mode failed, then the return code of this function has STATUS_ERROR
value.

Parameters

out powerMode←↩

IndexPtr
Power mode which has been set represented as an index into array of power
mode configurations passed to the POWER_SYS_Init().

Returns

An error code or STATUS_SUCCESS.

Definition at line 133 of file power_manager.c.

16.84.5.7 status_t POWER_SYS_GetLastModeConfig (power_manager_user_config_t ∗∗ powerModePtr)

This function returns the user configuration structure of the last successfully set power mode.

This function returns a pointer to configuration structure which was last set using POWER_SYS_SetMode(). If the
current power mode was entered even though some of the registered callbacks denied the mode change, or if
any of the callbacks invoked after the entering/restoring run mode failed, then the return code of this function has
STATUS_ERROR value.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.84 Power Manager 783

out powerModePtr Pointer to power mode configuration structure of the last set power mode.

Returns

An error code or STATUS_SUCCESS.

Definition at line 165 of file power_manager.c.

16.84.5.8 status_t POWER_SYS_Init (power_manager_user_config_t ∗(∗) powerConfigsPtr[], uint8_t configsNumber,
power_manager_callback_user_config_t ∗(∗) callbacksPtr[], uint8_t callbacksNumber)

Power manager initialization for operation.

This function initializes the Power manager and its run-time state structure. Pointer to an array of Power mode
configuration structures needs to be passed as a parameter along with a parameter specifying its size. At least one
power mode configuration is required. Optionally, pointer to the array of predefined callbacks can be passed with
its corresponding size parameter. For details about callbacks, refer to the power_manager_callback_user_config_t.
As Power manager stores only pointers to arrays of these structures, they need to exist and be valid for the entire
life cycle of Power manager.

Parameters

in powerConfigsPtr A pointer to an array of pointers to all power configurations which will be han-
dled by Power manager.

in configsNumber Number of power configurations. Size of powerConfigsPtr array.
in callbacksPtr A pointer to an array of pointers to callback configurations. If there are no

callbacks to register during Power manager initialization, use NULL value.
in callbacks←↩

Number
Number of registered callbacks. Size of callbacksPtr array.

Returns

An error code or STATUS_SUCCESS.

Definition at line 70 of file power_manager.c.

16.84.5.9 status_t POWER_SYS_SetMode (uint8_t powerModeIndex, power_manager_policy_t policy)

This function configures the power mode.

This function switches to one of the defined power modes. Requested mode number is passed as an input param-
eter. This function notifies all registered callback functions before the mode change (using POWER_MANAGE←↩

R_CALLBACK_BEFORE set as callback type parameter), sets specific power options defined in the power mode
configuration and enters the specified mode. In case of run modes (for example, Run, Very low power run, or High
speed run), this function also invokes all registered callbacks after the mode change (using POWER_MANAGER←↩

_CALLBACK_AFTER). In case of sleep or deep sleep modes, if the requested mode is not exited through a reset,
these notifications are sent after the core wakes up. Callbacks are invoked in the following order: All registered
callbacks are notified ordered by index in the callbacks array (see callbacksPtr parameter of POWER_SYS_Init()).
The same order is used for before and after switch notifications. The notifications before the power mode switch
can be used to obtain confirmation about the change from registered callbacks. If any registered callback denies
the power mode change, further execution of this function depends on mode change policy: the mode change
is either forced(POWER_MANAGER_POLICY_FORCIBLE) or aborted(POWER_MANAGER_POLICY_AGREE←↩

MENT). When mode change is forced, the results of the before switch notifications are ignored. If agreement is
requested, in case any callback returns an error code then further before switch notifications are cancelled and
all already notified callbacks are re-invoked with POWER_MANAGER_CALLBACK_AFTER set as callback type
parameter. The index of the callback which returned error code during pre-switch notifications is stored and can
be obtained by using POWER_SYS_GetErrorCallback(). Any error codes during callbacks re-invocation (recover
phase) are ignored. POWER_SYS_SetMode() returns an error code denoting the phase in which a callback failed.
It is possible to enter any mode supported by the processor. Refer to the chip reference manual for the list of
available power modes. If it is necessary to switch into an intermediate power mode prior to entering the requested

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

784 CONTENTS

mode (for example, when switching from Run into Very low power wait through Very low power run mode), then the
intermediate mode is entered without invoking the callback mechanism.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.84 Power Manager 785

Parameters

in powerMode←↩

Index
Requested power mode represented as an index into array of user-defined
power mode configurations passed to the POWER_SYS_Init().

in policy Transaction policy

Returns

An error code or STATUS_SUCCESS.

Definition at line 323 of file power_manager.c.

16.84.6 Variable Documentation

16.84.6.1 power_manager_state_t gPowerManagerState

Power manager internal structure.

Definition at line 52 of file power_manager_S32K1xx.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

786 CONTENTS

16.85 Power Manager Driver

This module covers the device-specific power_manager functionality implemented for S32K1xx, s32k14xW and
S32MTV SOC.

Hardware background

System mode controller (SMC) is passing the system into and out of all low-power Stop and Run modes.
Controls the power, clocks and memories of the system to achieve the power consumption and functionality of that
mode.

Driver consideration

Power mode entry and sleep-on-exit-value are provided at initialization time through the power manager user con-
figuration structure.
With platform is S32K14x, the available power mode entries are the following ones: HSRUN, RUN, VLPR, STOP1,
STOP2 and VLPS.
With platform is S32MTV,S32K11x and S32K14xW. The available power mode entries are the following ones: RUN,
VLPR, STOP1, STOP2 and VLPS.

This is an example of configuration:

power_manager_user_config_t pwrMan1_InitConfig0 = {
.powerMode = POWER_MANAGER_RUN,
.sleepOnExitValue = false,

};

power_manager_user_config_t *powerConfigsArr[] = {
&pwrMan1_InitConfig0

};

power_manager_callback_user_config_t * powerCallbacksConfigsArr[] = {(
void *)0};

if (STATUS_SUCCESS != POWER_SYS_Init(&powerConfigsArr,1,&powerCallbacksConfigsArr,0)) {
...

}
else {

...
}

if (STATUS_SUCCESS != POWER_SYS_SetMode(0,
POWER_MANAGER_POLICY_AGREEMENT)) {

...
}
else {

...
}

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\power_manager.c
${S32SDK_PATH}\platform\drivers\src\S32K1xx\power_manager_S32K1xx.c
${S32SDK_PATH}\platform\drivers\src\S32K1xx\power_smc_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\
${S32SDK_PATH}\platform\drivers\src\power\
${S32SDK_PATH}\platform\drivers\src\power\S32K1xx\

Compile symbols

No special symbols are required for this component

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.85 Power Manager Driver 787

Dependencies

Clock Manager

Important Note

1. ERR01077: The SCG_RCCR[SCS] and SCG_HCCR[SCS] may have a corrupted status during the interval
by the software to ensure when the system clock is switching.
This errata did workaround by the SCS field was read twice the system clock switch has completed.
The clock configuration is not immediately updated after MCU switched from very low power mode to run or
high speed mode. It may be taking longer time than expected.

2. The power manager driver will disable SPLL, FIRC, SOSC source in RUN mode before MCU jumps from
RUN,HSRUN to very low power mode.
SIRC is clock source when MCU enters very low power mode. Driver will update initialize system clock
configuration when MCU jumps to RUN or HSRUN mode again.
It will enable all clock source again which is configured by clock configurations. This is executed when user
calls the POWER_SYS_SetMode function for RUN or HSRUN.

3. When MCU switches from HSRUN to STOP or VLP mode, the driver code will auto switch RUN mode before
MCU enters next mode.

4. Users need to take care peripherals clock frequency via SPLLDIVx_CLK, SIRCDIVx_CLK after MCU switched
power mode.
Clock configuration can be re-initialized when MCU returns to RUN mode. This way will make sure the clock
for all peripherals.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

788 CONTENTS

16.86 Power_s32k1xx

16.86.1 Detailed Description

Data Structures

• struct power_manager_user_config_t

Power mode user configuration structure. More...

• struct smc_power_mode_protection_config_t

Power mode protection configuration. More...

• struct smc_power_mode_config_t

Power mode control configuration used for calling the SMC_SYS_SetPowerMode API. More...

Enumerations

• enum power_manager_modes_t { POWER_MANAGER_RUN, POWER_MANAGER_VLPR, POWER_MA←↩

NAGER_VLPS, POWER_MANAGER_MAX }

Power modes enumeration.

• enum power_mode_stat_t {
STAT_RUN = 0x01, STAT_STOP = 0x02, STAT_VLPR = 0x04, STAT_VLPW = 0x08,
STAT_VLPS = 0x10, STAT_HSRUN = 0x80, STAT_INVALID = 0xFF }

Power Modes in PMSTAT.

• enum smc_run_mode_t { SMC_RUN, SMC_RESERVED_RUN, SMC_VLPR, SMC_HSRUN }

Run mode definition.

• enum smc_stop_mode_t { SMC_STOP = 0U, SMC_RESERVED_STOP1 = 1U, SMC_VLPS = 2U }

Stop mode definition.

• enum smc_stop_option_t { SMC_STOP_RESERVED = 0x00, SMC_STOP1 = 0x01, SMC_STOP2 = 0x02 }

STOP option.

• enum rcm_source_names_t {
RCM_LOW_VOLT_DETECT = 1U, RCM_LOSS_OF_CLK = 2U, RCM_LOSS_OF_LOCK = 3U, RCM_WA←↩

TCH_DOG = 5U,
RCM_EXTERNAL_PIN = 6U, RCM_POWER_ON = 7U, RCM_SJTAG = 8U, RCM_CORE_LOCKUP = 9U,
RCM_SOFTWARE = 10U, RCM_SMDM_AP = 11U, RCM_STOP_MODE_ACK_ERR = 13U, RCM_SRC_←↩

NAME_MAX }

System Reset Source Name definitions Implements rcm_source_names_t_Class.

Functions

• status_t POWER_SYS_DoInit (void)

This function implementation-specific configuration of power modes.

• status_t POWER_SYS_DoDeinit (void)

This function implementation-specific de-initialization of power manager.

• status_t POWER_SYS_DoSetMode (const power_manager_user_config_t ∗const configPtr)

This function configures the power mode.

• bool POWER_SYS_GetResetSrcStatusCmd (const RCM_Type ∗const baseAddr, const rcm_source_←↩

names_t srcName)

Gets the reset source status.

• static void POWER_SYS_DoGetDefaultConfig (power_manager_user_config_t ∗const defaultConfig)

Gets the default power_manager configuration structure.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.86 Power_s32k1xx 789

16.86.2 Data Structure Documentation

16.86.2.1 struct power_manager_user_config_t

Power mode user configuration structure.

List of power mode configuration structure members depends on power options available for the specific chip.
Complete list contains: mode - S32K power mode. List of available modes is chip-specific. See power_manager←↩

_modes_t list of modes. sleepOnExitOption - Controls whether the sleep-on-exit option value is used(when set to
true) or ignored(when set to false). See sleepOnExitValue. sleepOnExitValue - When set to true, ARM core returns
to sleep (S32K wait modes) or deep sleep state (S32K stop modes) after interrupt service finishes. When set to
false, core stays woken-up. Implements power_manager_user_config_t_Class

Definition at line 95 of file power_manager_S32K1xx.h.

Data Fields

• power_manager_modes_t powerMode
• bool sleepOnExitValue

Field Documentation

16.86.2.1.1 power_manager_modes_t powerMode

Definition at line 97 of file power_manager_S32K1xx.h.

16.86.2.1.2 bool sleepOnExitValue

Definition at line 98 of file power_manager_S32K1xx.h.

16.86.2.2 struct smc_power_mode_protection_config_t

Power mode protection configuration.

Definition at line 153 of file power_manager_S32K1xx.h.

Data Fields

• bool vlpProt

Field Documentation

16.86.2.2.1 bool vlpProt

VLP protect

Definition at line 155 of file power_manager_S32K1xx.h.

16.86.2.3 struct smc_power_mode_config_t

Power mode control configuration used for calling the SMC_SYS_SetPowerMode API.

Definition at line 165 of file power_manager_S32K1xx.h.

Data Fields

• power_manager_modes_t powerModeName

Field Documentation

16.86.2.3.1 power_manager_modes_t powerModeName

Power mode(enum), see power_manager_modes_t

Definition at line 167 of file power_manager_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

790 CONTENTS

16.86.3 Enumeration Type Documentation

16.86.3.1 enum power_manager_modes_t

Power modes enumeration.

Defines power modes. Used in the power mode configuration structure (power_manager_user_config_t). From
ARM core perspective, Power modes can be generally divided into run modes (High speed run, Run and Very low
power run), sleep (Wait and Very low power wait) and deep sleep modes (all Stop modes). List of power modes
supported by specific chip along with requirements for entering and exiting of these modes can be found in chip
documentation. List of all supported power modes:

• POWER_MANAGER_HSRUN - High speed run mode.

• POWER_MANAGER_RUN - Run mode.

• POWER_MANAGER_VLPR - Very low power run mode.

• POWER_MANAGER_WAIT - Wait mode.

• POWER_MANAGER_VLPW - Very low power wait mode.

• POWER_MANAGER_PSTOP1 - Partial stop 1 mode.

• POWER_MANAGER_PSTOP2 - Partial stop 2 mode.

• POWER_MANAGER_PSTOP1 - Stop 1 mode.

• POWER_MANAGER_PSTOP2 - Stop 2 mode.

• POWER_MANAGER_VLPS - Very low power stop mode. Implements power_manager_modes_t_Class

Enumerator

POWER_MANAGER_RUN Run mode.

POWER_MANAGER_VLPR Very low power run mode.

POWER_MANAGER_VLPS Very low power stop mode.

POWER_MANAGER_MAX

Definition at line 58 of file power_manager_S32K1xx.h.

16.86.3.2 enum power_mode_stat_t

Power Modes in PMSTAT.

Enumerator

STAT_RUN 0000_0001 - Current power mode is RUN

STAT_STOP 0000_0010 - Current power mode is STOP

STAT_VLPR 0000_0100 - Current power mode is VLPR

STAT_VLPW 0000_1000 - Current power mode is VLPW

STAT_VLPS 0001_0000 - Current power mode is VLPS

STAT_HSRUN 1000_0000 - Current power mode is HSRUN

STAT_INVALID 1111_1111 - Non-existing power mode

Definition at line 105 of file power_manager_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.86 Power_s32k1xx 791

16.86.3.3 enum rcm_source_names_t

System Reset Source Name definitions Implements rcm_source_names_t_Class.

Enumerator

RCM_LOW_VOLT_DETECT Low voltage detect reset

RCM_LOSS_OF_CLK Loss of clock reset

RCM_LOSS_OF_LOCK Loss of lock reset

RCM_WATCH_DOG Watch dog reset

RCM_EXTERNAL_PIN External pin reset

RCM_POWER_ON Power on reset

RCM_SJTAG JTAG generated reset

RCM_CORE_LOCKUP core lockup reset

RCM_SOFTWARE Software reset

RCM_SMDM_AP MDM-AP system reset

RCM_STOP_MODE_ACK_ERR Stop mode ack error reset

RCM_SRC_NAME_MAX

Definition at line 181 of file power_manager_S32K1xx.h.

16.86.3.4 enum smc_run_mode_t

Run mode definition.

Enumerator

SMC_RUN normal RUN mode

SMC_RESERVED_RUN

SMC_VLPR Very-Low-Power RUN mode

SMC_HSRUN High Speed Run mode (HSRUN)

Definition at line 120 of file power_manager_S32K1xx.h.

16.86.3.5 enum smc_stop_mode_t

Stop mode definition.

Enumerator

SMC_STOP Normal STOP mode

SMC_RESERVED_STOP1 Reserved

SMC_VLPS Very-Low-Power STOP mode

Definition at line 131 of file power_manager_S32K1xx.h.

16.86.3.6 enum smc_stop_option_t

STOP option.

Enumerator

SMC_STOP_RESERVED Reserved stop mode

SMC_STOP1 Stop with both system and bus clocks disabled

SMC_STOP2 Stop with system clock disabled and bus clock enabled

Definition at line 142 of file power_manager_S32K1xx.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

792 CONTENTS

16.86.4 Function Documentation

16.86.4.1 status_t POWER_SYS_DoDeinit (void)

This function implementation-specific de-initialization of power manager.

This function performs the actual implementation-specific de-initialization.

Returns

Operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed.

Definition at line 200 of file power_manager_S32K1xx.c.

16.86.4.2 static void POWER_SYS_DoGetDefaultConfig (power_manager_user_config_t ∗const defaultConfig)
[inline], [static]

Gets the default power_manager configuration structure.

This function gets the power_manager configuration structure of the default power mode.

Parameters

out defaultConfig : Pointer to power mode configuration structure of the default power mode.

< Power manager mode

< Sleep on exit value

Definition at line 261 of file power_manager_S32K1xx.h.

16.86.4.3 status_t POWER_SYS_DoInit (void)

This function implementation-specific configuration of power modes.

This function performs the actual implementation-specific initialization based on the provided power mode configu-
rations. In addition, This function get all clock source were enabled. This one was used for update init clock when
CPU jump from very low power mode to run or high speed run mode.

Returns

Operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed.

Definition at line 157 of file power_manager_S32K1xx.c.

16.86.4.4 status_t POWER_SYS_DoSetMode (const power_manager_user_config_t ∗const configPtr)

This function configures the power mode.

This function performs the actual implementation-specific logic to switch to one of the defined power modes.

Parameters

configPtr Pointer to user configuration structure

Returns

Operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_MCU_TRANSITION_FAILED: Operation failed.

Definition at line 217 of file power_manager_S32K1xx.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.86 Power_s32k1xx 793

16.86.4.5 bool POWER_SYS_GetResetSrcStatusCmd (const RCM_Type ∗const baseAddr, const rcm_source_names_t
srcName)

Gets the reset source status.

This function gets the current reset source status for a specified source.

Parameters

in baseAddr Register base address of RCM
in srcName reset source name

Returns

status True or false for specified reset source

Definition at line 688 of file power_manager_S32K1xx.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

794 CONTENTS

16.87 Programmable Delay Block (PDB)

16.87.1 Detailed Description

The S32 SDK provides a peripheral driver for the Programmable Delay Block (PDB) module.

The PDB is a configurable counter that can generate events (triggers) that can be used by the ADC to start conver-
sions or routed through TRGMUX to other modules in the device.

Modules

• PDB Driver

Programmable Delay Block Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.88 Pulse-width modulation - Peripheral Abstraction Layer (PWM PAL) 795

16.88 Pulse-width modulation - Peripheral Abstraction Layer (PWM PAL)

16.88.1 Detailed Description

The S32 SDK provides a Peripheral Abstraction Layer for the PWM mode.

The PWM PAL driver allows to generate PWM signals. It was designed to be portable across all platforms and IPs
which support PWM features.

How to integrate PWM in your application

Unlike the other drivers, PWM PAL modules need to include a configuration file named pwm_pal_cfg.h, which allows
the user to specify which IPSs are used and how many resources are allocated for each of them (state structures).
The following code example shows how to configure one instance for each available PWM IP.

#ifndef PWM_PAL_cfg_H
#define PWM_PAL_cfg_H

/* Define which IP instance will be used in current project */
#define PWM_OVER_FTM
#define PWM_OVER_EMIOS
#define PWM_OVER_ETIMER

/* Define the resources necessary for current project */
#define NO_OF_FTM_INSTS_FOR_PWM 1U
#define NO_OF_EMIOS_INSTS_FOR_PWM 1U
#define NO_OF_ETIMER_INSTS_FOR_PWM 1U
#endif /* PWM_PAL_cfg_H */

The following table contains the matching between platforms and available IPs

IP/←↩

M←↩

CU
S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K142←↩

W

S32←↩

K144←↩

W

S32←↩

K146
S32←↩

K148

M←↩

P←↩

C5748←↩

G

M←↩

P←↩

C5746←↩

C

M←↩

P←↩

C5744←↩

P

S32←↩

R274
S32←↩

R372

FTM Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO NO

e←↩

MI←↩

OS

NO NO NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
NO NO NO

E←↩

TI←↩

M←↩

ER

NO NO NO NO NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
Y←↩

ES

In order to use the PWM PAL driver it must be first initialized it using function PWM_Init(). Once initialized, it cannot
be initialized again for the same PWM module instance until it is de-initialized, using PWM_Deinit(). Different PWM
module instances can work independently of each other.

After initialization the duty cycle and pwm period can be updated with these functions: PWM_UpdateDuty() and
PWM_UpdatePeriod(). The measurement unit for duty and period is clock ticks, so the application should be aware
about the clock frequency of the timebase used by PWM channel.

Due to hardware limitation period changing for a specific channel can change the period for other channels if they
share the same timebase. Also, for FTM all channels must have the same period and type.

Important Notes

• The driver enables the interrupts for the corresponding module, but any interrupt priority setting must be done
by the application.

• Due to different hardware features is necessary to use different timebase configuration on each platform and
some features are available only on some peripherals. To be sure that your applications doesn't try to use
unsupported features check return status of called functions and activate DEV_ERROR_DETECT.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

796 CONTENTS

Basic code sequence

1. Initialize PWM_PAL instance

PWM_Init(&pwm_pal1Instance, &pwm_pal1Config);

2. Update duty cycle

PWM_UpdateDuty(&pwm_pal1Instance, 0, dutyCycle);

3. Update period

PWM_UpdatePeriod(&pwm_pal1Instance, 0, period);

4. De-initialize PWM_PAL instance

PWM_Deinit(&pwm_pal1Instance);

Hardware Limitations

eTimer

eTimer cannot generate 0% or 100% duty cycles. At least one clock tick will have inverted polarity.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\pwm\pwm_pal.c

Additionally, it is required to compile also the .c files from the dependencies listed for each ADC PAL type (please
see Dependencies subsection below).

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc\
${S32SDK_PATH}\platform\drivers\inc\

An additional file, named pwm_pal_cfg.h, must be created by the user and added to one of the include paths. The
user has to add to the file the definitions of preprocessor symbols according to the PWM PAL type used. These
symbols are specified in the next subsection.
When using the S32 SDK configuration tool the file is generated by the configurator.

The pal type PWM_OVER_FTM also requires:

${S32SDK_PATH}\platform\drivers\src\ftm\

Compile symbols

Define for selecting one of the PWM PAL type to be used:

PWM_OVER_FTM
PWM_OVER_EMIOS
PWM_OVER_ETIMER

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.88 Pulse-width modulation - Peripheral Abstraction Layer (PWM PAL) 797

Dependencies

• The pal type PWM_OVER_FTM also depends on:
FlexTimer Pulse Width Modulation Driver (FTM_PWM)
FlexTimer (FTM)

• The pal type PWM_OVER_EMIOS also depends on:
mc_emios_driver
pwm_emios_driver

• The pal type PWM_OVER_ETIMER also depends on:
etimer_drv

Data Structures

• struct pwm_ftm_timebase_t

This structure is specific for platforms where FTM is available. Implements : pwm_ftm_timebase_t_Class. More...

• struct pwm_channel_t

This structure includes the configuration for each channel Implements : pwm_channel_t_Class. More...

• struct pwm_global_config_t

This structure is the configuration for initialization of PWM channels. Implements : pwm_global_config_t_Class.
More...

Enumerations

• enum pwm_channel_type_t { PWM_EDGE_ALIGNED = 0, PWM_CENTER_ALIGNED = 1 }

Defines the channel types Implements : pwm_channel_type_t_Class.

• enum pwm_polarity_t { PWM_ACTIVE_HIGH = 0, PWM_ACTIVE_LOW = 1 }

Defines the polarity of pwm channels Implements : pwm_polarity_t_Class.

• enum pwm_complementarty_mode_t { PWM_DUPLICATED = 0, PWM_INVERTED = 1 }

Defines the polarity of complementary pwm channels relative to main channel Implements : pwm_complementarty←↩

_mode_t_Class.

Functions

• status_t PWM_Init (const pwm_instance_t ∗const instance, const pwm_global_config_t ∗config)

Initialize PWM channels based on config parameter.

• status_t PWM_UpdateDuty (const pwm_instance_t ∗const instance, uint8_t channel, uint32_t duty)

Update duty cycle. The measurement unit for duty is clock ticks.

• status_t PWM_UpdatePeriod (const pwm_instance_t ∗const instance, uint8_t channel, uint32_t period)

Update period for specific a specific channel. This function changes period for all channels which shares the timebase
with targeted channel.

• status_t PWM_OverwriteOutputChannels (const pwm_instance_t ∗const instance, uint32_t channelsMask,
uint32_t channelsValues)

This function change the output value for some channels. channelsMask select which channels will be overwrite,
each bit filed representing one channel: 1 - channel is controlled by channelsValues, 0 - channel is controlled by
pwm. channelsValues select output values to be write on corresponding channel. For PWM_PAL over FTM, when
enable complementary channels, if this function is used to force output of complementary channels(n and n+1) with
value is high, the output of channel n is going to be high and the output of channel n+1 is going to be low. Please
refer to Software ouput control behavior table in the reference manual to get more detail.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

798 CONTENTS

• status_t PWM_Deinit (const pwm_instance_t ∗const instance)

De-Initialize PWM instance.

16.88.2 Data Structure Documentation

16.88.2.1 struct pwm_ftm_timebase_t

This structure is specific for platforms where FTM is available. Implements : pwm_ftm_timebase_t_Class.

Definition at line 92 of file pwm_pal.h.

Data Fields

• ftm_clock_source_t sourceClock
• ftm_clock_ps_t prescaler
• ftm_deadtime_ps_t deadtimePrescaler

Field Documentation

16.88.2.1.1 ftm_deadtime_ps_t deadtimePrescaler

Prescaler for FTM dead-time insertion

Definition at line 96 of file pwm_pal.h.

16.88.2.1.2 ftm_clock_ps_t prescaler

Prescaler for FTM timebase

Definition at line 95 of file pwm_pal.h.

16.88.2.1.3 ftm_clock_source_t sourceClock

Clock source for FTM timebase

Definition at line 94 of file pwm_pal.h.

16.88.2.2 struct pwm_channel_t

This structure includes the configuration for each channel Implements : pwm_channel_t_Class.

Definition at line 147 of file pwm_pal.h.

Data Fields

• uint8_t channel
• pwm_channel_type_t channelType
• uint32_t period
• uint32_t duty
• pwm_polarity_t polarity
• bool insertDeadtime
• uint8_t deadtime
• bool enableComplementaryChannel
• pwm_complementarty_mode_t complementaryChannelPolarity
• void ∗ timebase

Field Documentation

16.88.2.2.1 uint8_t channel

Channel number

Definition at line 149 of file pwm_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.88 Pulse-width modulation - Peripheral Abstraction Layer (PWM PAL) 799

16.88.2.2.2 pwm_channel_type_t channelType

Channel waveform type

Definition at line 150 of file pwm_pal.h.

16.88.2.2.3 pwm_complementarty_mode_t complementaryChannelPolarity

Configure the polarity of the complementary channel relative to the main channel

Definition at line 157 of file pwm_pal.h.

16.88.2.2.4 uint8_t deadtime

Dead-time value in ticks

Definition at line 155 of file pwm_pal.h.

16.88.2.2.5 uint32_t duty

Duty cycle in ticks

Definition at line 152 of file pwm_pal.h.

16.88.2.2.6 bool enableComplementaryChannel

Enable a complementary channel. This option can take control over other channel than the channel configured in
this structure.

Definition at line 156 of file pwm_pal.h.

16.88.2.2.7 bool insertDeadtime

Enable/disable dead-time insertion. This feature is available only if complementary mode is enabled

Definition at line 154 of file pwm_pal.h.

16.88.2.2.8 uint32_t period

Period of the PWM signal in ticks

Definition at line 151 of file pwm_pal.h.

16.88.2.2.9 pwm_polarity_t polarity

Channel polarity

Definition at line 153 of file pwm_pal.h.

16.88.2.2.10 void∗ timebase

This field is platform specific and it's used to configure the clocking tree for different time-bases. If FTM is use this
field must be filled by a pointer to pwm_ftm_timebase_t

Definition at line 158 of file pwm_pal.h.

16.88.2.3 struct pwm_global_config_t

This structure is the configuration for initialization of PWM channels. Implements : pwm_global_config_t_Class.

Definition at line 166 of file pwm_pal.h.

Data Fields

• pwm_channel_t ∗ pwmChannels
• uint8_t numberOfPwmChannels

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

800 CONTENTS

Field Documentation

16.88.2.3.1 uint8_t numberOfPwmChannels

Number of channels which are configured

Definition at line 169 of file pwm_pal.h.

16.88.2.3.2 pwm_channel_t∗ pwmChannels

Pointer to channels configurations

Definition at line 168 of file pwm_pal.h.

16.88.3 Enumeration Type Documentation

16.88.3.1 enum pwm_channel_type_t

Defines the channel types Implements : pwm_channel_type_t_Class.

Enumerator

PWM_EDGE_ALIGNED Counter used by this type of channel is in up counting mode and the edge is aligned
to PWM period

PWM_CENTER_ALIGNED Counter used by this type of channel is in up-down counting mode and the duty
is inserted in center of PWM period

Definition at line 60 of file pwm_pal.h.

16.88.3.2 enum pwm_complementarty_mode_t

Defines the polarity of complementary pwm channels relative to main channel Implements : pwm_←↩

complementarty_mode_t_Class.

Enumerator

PWM_DUPLICATED Complementary channel is the same as main channel

PWM_INVERTED Complementary channel is inverted relative to main channel

Definition at line 80 of file pwm_pal.h.

16.88.3.3 enum pwm_polarity_t

Defines the polarity of pwm channels Implements : pwm_polarity_t_Class.

Enumerator

PWM_ACTIVE_HIGH Polarity is active high

PWM_ACTIVE_LOW Polarity is active low

Definition at line 70 of file pwm_pal.h.

16.88.4 Function Documentation

16.88.4.1 status_t PWM_Deinit (const pwm_instance_t ∗const instance)

De-Initialize PWM instance.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.88 Pulse-width modulation - Peripheral Abstraction Layer (PWM PAL) 801

Parameters

in instance The name of the instance

Returns

Error or success status returned by API

Definition at line 819 of file pwm_pal.c.

16.88.4.2 status_t PWM_Init (const pwm_instance_t ∗const instance, const pwm_global_config_t ∗ config)

Initialize PWM channels based on config parameter.

Parameters

in instance The name of the instance
in config The configuration structure used to initialize PWM modules

Returns

Error or success status returned by API

Definition at line 133 of file pwm_pal.c.

16.88.4.3 status_t PWM_OverwriteOutputChannels (const pwm_instance_t ∗const instance, uint32_t channelsMask,
uint32_t channelsValues)

This function change the output value for some channels. channelsMask select which channels will be overwrite,
each bit filed representing one channel: 1 - channel is controlled by channelsValues, 0 - channel is controlled by
pwm. channelsValues select output values to be write on corresponding channel. For PWM_PAL over FTM, when
enable complementary channels, if this function is used to force output of complementary channels(n and n+1) with
value is high, the output of channel n is going to be high and the output of channel n+1 is going to be low. Please
refer to Software ouput control behavior table in the reference manual to get more detail.

Parameters

in instance The name of the instance
in channelsMask The name mask used to select which channel is overwrite
in channelsValues The name overwrite values for all channels

Returns

Error or success status returned by API

Definition at line 775 of file pwm_pal.c.

16.88.4.4 status_t PWM_UpdateDuty (const pwm_instance_t ∗const instance, uint8_t channel, uint32_t duty)

Update duty cycle. The measurement unit for duty is clock ticks.

Parameters

in instance The name of the instance
in channel The channel which is update
in duty The duty cycle measured in ticks

Returns

Error or success status returned by API

Definition at line 574 of file pwm_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

802 CONTENTS

16.88.4.5 status_t PWM_UpdatePeriod (const pwm_instance_t ∗const instance, uint8_t channel, uint32_t period)

Update period for specific a specific channel. This function changes period for all channels which shares the
timebase with targeted channel.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.88 Pulse-width modulation - Peripheral Abstraction Layer (PWM PAL) 803

Parameters

in instance The name of the instance
in channel The channel which is update
in period The period measured in ticks

Returns

Error or success status returned by API

Definition at line 669 of file pwm_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

804 CONTENTS

16.89 RTC Driver

16.89.1 Detailed Description

Real Time Clock Peripheral Driver.

This section describes the programming interface of the RTC driver.

Data Structures

• struct rtc_timedate_t

RTC Time Date structure Implements : rtc_timedate_t_Class. More...

• struct rtc_init_config_t

RTC Initialization structure Implements : rtc_init_config_t_Class. More...

• struct rtc_alarm_config_t

RTC alarm configuration Implements : rtc_alarm_config_t_Class. More...

• struct rtc_interrupt_config_t

RTC interrupt configuration. It is used to configure interrupt other than Time Alarm and Time Seconds interrupt
Implements : rtc_interrupt_config_t_Class. More...

• struct rtc_seconds_int_config_t

RTC Seconds Interrupt Configuration Implements : rtc_seconds_int_config_t_Class. More...

• struct rtc_register_lock_config_t

RTC Register Lock Configuration Implements : rtc_register_lock_config_t_Class. More...

Macros

• #define SECONDS_IN_A_DAY (86400UL)

• #define SECONDS_IN_A_HOUR (3600U)

• #define SECONDS_IN_A_MIN (60U)

• #define MINS_IN_A_HOUR (60U)

• #define HOURS_IN_A_DAY (24U)

• #define DAYS_IN_A_YEAR (365U)

• #define DAYS_IN_A_LEAP_YEAR (366U)

• #define YEAR_RANGE_START (1970U)

• #define YEAR_RANGE_END (2099U)

Enumerations

• enum rtc_second_int_cfg_t {
RTC_INT_1HZ = 0x00U, RTC_INT_2HZ = 0x01U, RTC_INT_4HZ = 0x02U, RTC_INT_8HZ = 0x03U,
RTC_INT_16HZ = 0x04U, RTC_INT_32HZ = 0x05U, RTC_INT_64HZ = 0x06U, RTC_INT_128HZ = 0x07U }

RTC Seconds interrupt configuration Implements : rtc_second_int_cfg_t_Class.

• enum rtc_clk_out_config_t { RTC_CLKOUT_DISABLED = 0x00U, RTC_CLKOUT_SRC_TSIC = 0x01U, R←↩

TC_CLKOUT_SRC_32KHZ = 0x02U }

RTC CLKOUT pin configuration Implements : rtc_clk_out_config_t_Class.

• enum rtc_clk_select_t { RTC_CLK_SRC_OSC_32KHZ = 0x00U, RTC_CLK_SRC_LPO_1KHZ = 0x01U }

RTC clock select Implements : rtc_clk_select_t_Class.

• enum rtc_lock_register_select_t { RTC_LOCK_REG_LOCK = 0x00U, RTC_STATUS_REG_LOCK = 0x01U,
RTC_CTRL_REG_LOCK = 0x02U, RTC_TCL_REG_LOCK = 0x03U }

RTC register lock Implements : rtc_lock_register_select_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.89 RTC Driver 805

Functions

• status_t RTC_DRV_Init (uint32_t instance, const rtc_init_config_t ∗const rtcUserCfg)

This function initializes the RTC instance with the settings provided by the user via the rtcUserCfg parameter. The
user must ensure that clock is enabled for the RTC instance used. If the Control register is locked then this method
returns STATUS_ERROR. In order to clear the CR Lock the user must perform a power-on reset.

• status_t RTC_DRV_Deinit (uint32_t instance)

This function deinitializes the RTC instance. If the Control register is locked then this method returns STATUS_ER←↩

ROR.

• void RTC_DRV_GetDefaultConfig (rtc_init_config_t ∗const config)

This function will set the default configuration values into the structure passed as a parameter.

• status_t RTC_DRV_StartCounter (uint32_t instance)

Start RTC instance counter. Before calling this function the user should use RTC_DRV_SetTimeDate to configure
the start time.

• status_t RTC_DRV_StopCounter (uint32_t instance)

Disable RTC instance counter.

• status_t RTC_DRV_GetCurrentTimeDate (uint32_t instance, rtc_timedate_t ∗const currentTime)

Get current time and date from RTC instance.

• status_t RTC_DRV_SetTimeDate (uint32_t instance, const rtc_timedate_t ∗const time)

Set time and date for RTC instance. The user must stop the counter before using this function. Otherwise it will return
an error.

• status_t RTC_DRV_ConfigureRegisterLock (uint32_t instance, const rtc_register_lock_config_t ∗const
lockConfig)

This method configures register lock for the corresponding RTC instance. Remember that all the registers are un-
locked only by software reset or power on reset. (Except for CR that is unlocked only by POR).

• void RTC_DRV_GetRegisterLock (uint32_t instance, rtc_register_lock_config_t ∗const lockConfig)

Get which registers are locked for RTC instance.

• status_t RTC_DRV_ConfigureTimeCompensation (uint32_t instance, uint8_t compInterval, int8_t compensa-
tion)

This method configures time compensation. Data is passed by the compInterval and compensation parameters. For
more details regarding coefficient calculation see the Reference Manual.

• void RTC_DRV_GetTimeCompensation (uint32_t instance, uint8_t ∗compInterval, int8_t ∗compensation)

This retrieves the time compensation coefficients and saves them on the variables referenced by the parameters.

• void RTC_DRV_ConfigureFaultInt (uint32_t instance, rtc_interrupt_config_t ∗const intConfig)

This method configures fault interrupts such as:

• void RTC_DRV_ConfigureSecondsInt (uint32_t instance, rtc_seconds_int_config_t ∗const intConfig)

This method configures the Time Seconds Interrupt with the configuration from the intConfig parameter.

• status_t RTC_DRV_ConfigureAlarm (uint32_t instance, rtc_alarm_config_t ∗const alarmConfig)

This method configures the alarm with the configuration from the alarmConfig parameter.

• void RTC_DRV_GetAlarmConfig (uint32_t instance, rtc_alarm_config_t ∗alarmConfig)

Get alarm configuration for RTC instance.

• bool RTC_DRV_IsAlarmPending (uint32_t instance)

Check if alarm is pending.

• void RTC_DRV_ConvertSecondsToTimeDate (const uint32_t ∗seconds, rtc_timedate_t ∗const timeDate)

Convert seconds to rtc_timedate_t structure.

• void RTC_DRV_ConvertTimeDateToSeconds (const rtc_timedate_t ∗const timeDate, uint32_t ∗const sec-
onds)

Convert seconds to rtc_timedate_t structure.

• bool RTC_DRV_IsYearLeap (uint16_t year)

Check if the current year is leap.

• bool RTC_DRV_IsTimeDateCorrectFormat (const rtc_timedate_t ∗const timeDate)

Check if the date time struct is configured properly.

• status_t RTC_DRV_GetNextAlarmTime (uint32_t instance, rtc_timedate_t ∗const alarmTime)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

806 CONTENTS

Gets the next alarm time.

• void RTC_DRV_IRQHandler (uint32_t instance)

This method is the API's Interrupt handler for generic and alarm IRQ. It will handle the alarm repetition and calls the
user callbacks if they are not NULL.

• void RTC_DRV_SecondsIRQHandler (uint32_t instance)

This method is the API's Interrupt handler for RTC Second interrupt. This ISR will call the user callback if defined.

16.89.2 Data Structure Documentation

16.89.2.1 struct rtc_timedate_t

RTC Time Date structure Implements : rtc_timedate_t_Class.

Definition at line 97 of file rtc_driver.h.

Data Fields

• uint16_t year

• uint16_t month

• uint16_t day

• uint16_t hour

• uint16_t minutes

• uint8_t seconds

Field Documentation

16.89.2.1.1 uint16_t day

Day

Definition at line 101 of file rtc_driver.h.

16.89.2.1.2 uint16_t hour

Hour

Definition at line 102 of file rtc_driver.h.

16.89.2.1.3 uint16_t minutes

Minutes

Definition at line 103 of file rtc_driver.h.

16.89.2.1.4 uint16_t month

Month

Definition at line 100 of file rtc_driver.h.

16.89.2.1.5 uint8_t seconds

Seconds

Definition at line 104 of file rtc_driver.h.

16.89.2.1.6 uint16_t year

Year

Definition at line 99 of file rtc_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.89 RTC Driver 807

16.89.2.2 struct rtc_init_config_t

RTC Initialization structure Implements : rtc_init_config_t_Class.

Definition at line 111 of file rtc_driver.h.

Data Fields

• uint8_t compensationInterval
• int8_t compensation
• rtc_clk_select_t clockSelect
• rtc_clk_out_config_t clockOutConfig
• bool updateEnable
• bool nonSupervisorAccessEnable

Field Documentation

16.89.2.2.1 rtc_clk_out_config_t clockOutConfig

RTC Clock Out Source

Definition at line 116 of file rtc_driver.h.

16.89.2.2.2 rtc_clk_select_t clockSelect

RTC Clock Select

Definition at line 115 of file rtc_driver.h.

16.89.2.2.3 int8_t compensation

Compensation Value

Definition at line 114 of file rtc_driver.h.

16.89.2.2.4 uint8_t compensationInterval

Compensation Interval

Definition at line 113 of file rtc_driver.h.

16.89.2.2.5 bool nonSupervisorAccessEnable

Enable writes to the registers in non Supervisor Mode

Definition at line 118 of file rtc_driver.h.

16.89.2.2.6 bool updateEnable

Enable changing the Time Counter Enable bit even if the Status register is locked

Definition at line 117 of file rtc_driver.h.

16.89.2.3 struct rtc_alarm_config_t

RTC alarm configuration Implements : rtc_alarm_config_t_Class.

Definition at line 125 of file rtc_driver.h.

Data Fields

• rtc_timedate_t alarmTime
• uint32_t repetitionInterval
• uint32_t numberOfRepeats
• bool repeatForever

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

808 CONTENTS

• bool alarmIntEnable

• void(∗ alarmCallback)(void ∗callbackParam)

• void ∗ callbackParams

Field Documentation

16.89.2.3.1 void(∗ alarmCallback) (void ∗callbackParam)

Pointer to the user callback method.

Definition at line 132 of file rtc_driver.h.

16.89.2.3.2 bool alarmIntEnable

Enable alarm interrupt

Definition at line 131 of file rtc_driver.h.

16.89.2.3.3 rtc_timedate_t alarmTime

Alarm time

Definition at line 127 of file rtc_driver.h.

16.89.2.3.4 void∗ callbackParams

Pointer to the callback parameters.

Definition at line 133 of file rtc_driver.h.

16.89.2.3.5 uint32_t numberOfRepeats

Number of alarm repeats

Definition at line 129 of file rtc_driver.h.

16.89.2.3.6 bool repeatForever

Repeat forever if set, discard number of repeats

Definition at line 130 of file rtc_driver.h.

16.89.2.3.7 uint32_t repetitionInterval

Interval of repetition in sec

Definition at line 128 of file rtc_driver.h.

16.89.2.4 struct rtc_interrupt_config_t

RTC interrupt configuration. It is used to configure interrupt other than Time Alarm and Time Seconds interrupt
Implements : rtc_interrupt_config_t_Class.

Definition at line 141 of file rtc_driver.h.

Data Fields

• bool overflowIntEnable

• bool timeInvalidIntEnable

• void(∗ rtcCallback)(void ∗callbackParam)

• void ∗ callbackParams

Field Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.89 RTC Driver 809

16.89.2.4.1 void∗ callbackParams

Pointer to the callback parameters.

Definition at line 146 of file rtc_driver.h.

16.89.2.4.2 bool overflowIntEnable

Enable Time Overflow Interrupt

Definition at line 143 of file rtc_driver.h.

16.89.2.4.3 void(∗ rtcCallback) (void ∗callbackParam)

Pointer to the user callback method.

Definition at line 145 of file rtc_driver.h.

16.89.2.4.4 bool timeInvalidIntEnable

Enable Time Invalid Interrupt

Definition at line 144 of file rtc_driver.h.

16.89.2.5 struct rtc_seconds_int_config_t

RTC Seconds Interrupt Configuration Implements : rtc_seconds_int_config_t_Class.

Definition at line 153 of file rtc_driver.h.

Data Fields

• rtc_second_int_cfg_t secondIntConfig
• bool secondIntEnable
• void(∗ rtcSecondsCallback)(void ∗callbackParam)
• void ∗ secondsCallbackParams

Field Documentation

16.89.2.5.1 void(∗ rtcSecondsCallback) (void ∗callbackParam)

Pointer to the user callback method.

Definition at line 157 of file rtc_driver.h.

16.89.2.5.2 rtc_second_int_cfg_t secondIntConfig

Seconds Interrupt frequency

Definition at line 155 of file rtc_driver.h.

16.89.2.5.3 bool secondIntEnable

Seconds Interrupt enable

Definition at line 156 of file rtc_driver.h.

16.89.2.5.4 void∗ secondsCallbackParams

Pointer to the callback parameters.

Definition at line 158 of file rtc_driver.h.

16.89.2.6 struct rtc_register_lock_config_t

RTC Register Lock Configuration Implements : rtc_register_lock_config_t_Class.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

810 CONTENTS

Definition at line 165 of file rtc_driver.h.

Data Fields

• bool lockRegisterLock

• bool statusRegisterLock

• bool controlRegisterLock

• bool timeCompensationRegisterLock

Field Documentation

16.89.2.6.1 bool controlRegisterLock

Lock state of the Control Register

Definition at line 169 of file rtc_driver.h.

16.89.2.6.2 bool lockRegisterLock

Lock state of the Lock Register

Definition at line 167 of file rtc_driver.h.

16.89.2.6.3 bool statusRegisterLock

Lock state of the Status Register

Definition at line 168 of file rtc_driver.h.

16.89.2.6.4 bool timeCompensationRegisterLock

Lock state of the Time Compensation Register

Definition at line 170 of file rtc_driver.h.

16.89.3 Macro Definition Documentation

16.89.3.1 #define DAYS_IN_A_LEAP_YEAR (366U)

Definition at line 40 of file rtc_driver.h.

16.89.3.2 #define DAYS_IN_A_YEAR (365U)

Definition at line 39 of file rtc_driver.h.

16.89.3.3 #define HOURS_IN_A_DAY (24U)

Definition at line 38 of file rtc_driver.h.

16.89.3.4 #define MINS_IN_A_HOUR (60U)

Definition at line 37 of file rtc_driver.h.

16.89.3.5 #define SECONDS_IN_A_DAY (86400UL)

Definition at line 34 of file rtc_driver.h.

16.89.3.6 #define SECONDS_IN_A_HOUR (3600U)

Definition at line 35 of file rtc_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.89 RTC Driver 811

16.89.3.7 #define SECONDS_IN_A_MIN (60U)

Definition at line 36 of file rtc_driver.h.

16.89.3.8 #define YEAR_RANGE_END (2099U)

Definition at line 42 of file rtc_driver.h.

16.89.3.9 #define YEAR_RANGE_START (1970U)

Definition at line 41 of file rtc_driver.h.

16.89.4 Enumeration Type Documentation

16.89.4.1 enum rtc_clk_out_config_t

RTC CLKOUT pin configuration Implements : rtc_clk_out_config_t_Class.

Enumerator

RTC_CLKOUT_DISABLED Clock out pin is disabled

RTC_CLKOUT_SRC_TSIC Output on RTC_CLKOUT as configured on Time seconds interrupt

RTC_CLKOUT_SRC_32KHZ Output on RTC_CLKOUT of the 32KHz clock

Definition at line 64 of file rtc_driver.h.

16.89.4.2 enum rtc_clk_select_t

RTC clock select Implements : rtc_clk_select_t_Class.

Enumerator

RTC_CLK_SRC_OSC_32KHZ RTC Prescaler increments using 32 KHz crystal

RTC_CLK_SRC_LPO_1KHZ RTC Prescaler increments using 1KHz LPO

Definition at line 75 of file rtc_driver.h.

16.89.4.3 enum rtc_lock_register_select_t

RTC register lock Implements : rtc_lock_register_select_t_Class.

Enumerator

RTC_LOCK_REG_LOCK RTC Lock Register lock

RTC_STATUS_REG_LOCK RTC Status Register lock

RTC_CTRL_REG_LOCK RTC Control Register lock

RTC_TCL_REG_LOCK RTC Time Compensation Reg lock

Definition at line 85 of file rtc_driver.h.

16.89.4.4 enum rtc_second_int_cfg_t

RTC Seconds interrupt configuration Implements : rtc_second_int_cfg_t_Class.

Enumerator

RTC_INT_1HZ RTC seconds interrupt occurs at 1 Hz

RTC_INT_2HZ RTC seconds interrupt occurs at 2 Hz

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

812 CONTENTS

RTC_INT_4HZ RTC seconds interrupt occurs at 4 Hz

RTC_INT_8HZ RTC seconds interrupt occurs at 8 Hz

RTC_INT_16HZ RTC seconds interrupt occurs at 16 Hz

RTC_INT_32HZ RTC seconds interrupt occurs at 32 Hz

RTC_INT_64HZ RTC seconds interrupt occurs at 64 Hz

RTC_INT_128HZ RTC seconds interrupt occurs at 128 Hz

Definition at line 48 of file rtc_driver.h.

16.89.5 Function Documentation

16.89.5.1 status_t RTC_DRV_ConfigureAlarm (uint32_t instance, rtc_alarm_config_t ∗const alarmConfig)

This method configures the alarm with the configuration from the alarmConfig parameter.

Parameters

in instance The number of the RTC instance used
in alarmConfig Pointer to the structure which holds the alarm configuration

Returns

STATUS_SUCCESS if the configuration is successful or STATUS_ERROR if the alarm time is invalid.

Definition at line 933 of file rtc_driver.c.

16.89.5.2 void RTC_DRV_ConfigureFaultInt (uint32_t instance, rtc_interrupt_config_t ∗const intConfig)

This method configures fault interrupts such as:

• Time Overflow Interrupt

• Time Invalid Interrupt with the user provided configuration struct intConfig.

Parameters

in instance The number of the RTC instance used
in intConfig Pointer to the structure which holds the configuration

Returns

None

Definition at line 876 of file rtc_driver.c.

16.89.5.3 status_t RTC_DRV_ConfigureRegisterLock (uint32_t instance, const rtc_register_lock_config_t ∗const
lockConfig)

This method configures register lock for the corresponding RTC instance. Remember that all the registers are
unlocked only by software reset or power on reset. (Except for CR that is unlocked only by POR).

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.89 RTC Driver 813

in instance The number of the RTC instance used
in lockConfig Pointer to the lock configuration structure

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if the Lock Register is locked.

Definition at line 426 of file rtc_driver.c.

16.89.5.4 void RTC_DRV_ConfigureSecondsInt (uint32_t instance, rtc_seconds_int_config_t ∗const intConfig)

This method configures the Time Seconds Interrupt with the configuration from the intConfig parameter.

Parameters

in instance The number of the RTC instance used
in intConfig Pointer to the structure which holds the configuration

Returns

None

Definition at line 903 of file rtc_driver.c.

16.89.5.5 status_t RTC_DRV_ConfigureTimeCompensation (uint32_t instance, uint8_t compInterval, int8_t compensation)

This method configures time compensation. Data is passed by the compInterval and compensation parameters.
For more details regarding coefficient calculation see the Reference Manual.

Parameters

in instance The number of the RTC instance used
in compInterval Compensation interval
in compensation Compensation value

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if the TC Register is locked.

Definition at line 501 of file rtc_driver.c.

16.89.5.6 void RTC_DRV_ConvertSecondsToTimeDate (const uint32_t ∗ seconds, rtc_timedate_t ∗const timeDate)

Convert seconds to rtc_timedate_t structure.

Parameters

in seconds Pointer to the seconds
out timeDate Pointer to the structure in which to store the result

Returns

None

Definition at line 551 of file rtc_driver.c.

16.89.5.7 void RTC_DRV_ConvertTimeDateToSeconds (const rtc_timedate_t ∗const timeDate, uint32_t ∗const seconds)

Convert seconds to rtc_timedate_t structure.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

814 CONTENTS

Parameters

in timeDate Pointer to the source struct
out seconds Pointer to the variable in which to store the result

Returns

None

Definition at line 645 of file rtc_driver.c.

16.89.5.8 status_t RTC_DRV_Deinit (uint32_t instance)

This function deinitializes the RTC instance. If the Control register is locked then this method returns STATUS_E←↩

RROR.

Parameters

in instance The number of the RTC instance used

Returns

STATUS_SUCCESS if the operation was successful or STATUS_ERROR if Control register is locked.

Definition at line 158 of file rtc_driver.c.

16.89.5.9 void RTC_DRV_GetAlarmConfig (uint32_t instance, rtc_alarm_config_t ∗ alarmConfig)

Get alarm configuration for RTC instance.

Parameters

in instance The number of the RTC instance used
out alarmConfig Pointer to the structure in which to store the alarm configuration

Returns

None

Definition at line 987 of file rtc_driver.c.

16.89.5.10 status_t RTC_DRV_GetCurrentTimeDate (uint32_t instance, rtc_timedate_t ∗const currentTime)

Get current time and date from RTC instance.

Parameters

in instance The number of the RTC instance used
out currentTime Pointer to the variable in which to store the result

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if there was a problem.

Definition at line 327 of file rtc_driver.c.

16.89.5.11 void RTC_DRV_GetDefaultConfig (rtc_init_config_t ∗const config)

This function will set the default configuration values into the structure passed as a parameter.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.89 RTC Driver 815

Parameters

out config Pointer to the structure in which the configuration will be saved.

Returns

None

Definition at line 194 of file rtc_driver.c.

16.89.5.12 status_t RTC_DRV_GetNextAlarmTime (uint32_t instance, rtc_timedate_t ∗const alarmTime)

Gets the next alarm time.

Parameters

in instance The number of the RTC instance used
out alarmTime Pointer to the variable in which to store the data

Returns

STATUS_SUCCESS if the next alarm time is valid, STATUS_ERROR if there is no new alarm or alarm
configuration specified.

Definition at line 1019 of file rtc_driver.c.

16.89.5.13 void RTC_DRV_GetRegisterLock (uint32_t instance, rtc_register_lock_config_t ∗const lockConfig)

Get which registers are locked for RTC instance.

Parameters

in instance The number of the RTC instance used
out lockConfig Pointer to the lock configuration structure in which to save the data

Returns

None

Definition at line 473 of file rtc_driver.c.

16.89.5.14 void RTC_DRV_GetTimeCompensation (uint32_t instance, uint8_t ∗ compInterval, int8_t ∗ compensation)

This retrieves the time compensation coefficients and saves them on the variables referenced by the parameters.

Parameters

in instance The number of the RTC instance used
out compInterval Pointer to the variable in which to save the compensation interval
out compensation Pointer to the variable in which to save the compensation value

Returns

None

Definition at line 534 of file rtc_driver.c.

16.89.5.15 status_t RTC_DRV_Init (uint32_t instance, const rtc_init_config_t ∗const rtcUserCfg)

This function initializes the RTC instance with the settings provided by the user via the rtcUserCfg parameter. The
user must ensure that clock is enabled for the RTC instance used. If the Control register is locked then this method
returns STATUS_ERROR. In order to clear the CR Lock the user must perform a power-on reset.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

816 CONTENTS

Parameters

in instance The number of the RTC instance used
in rtcUserCfg Pointer to the user's configuration structure

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if Control is locked.

Definition at line 97 of file rtc_driver.c.

16.89.5.16 void RTC_DRV_IRQHandler (uint32_t instance)

This method is the API's Interrupt handler for generic and alarm IRQ. It will handle the alarm repetition and calls the
user callbacks if they are not NULL.

Parameters

in instance RTC instance used

Returns

None

Definition at line 773 of file rtc_driver.c.

16.89.5.17 bool RTC_DRV_IsAlarmPending (uint32_t instance)

Check if alarm is pending.

Parameters

in instance The number of the RTC instance used

Returns

True if the alarm has occurred, false if not

Definition at line 1002 of file rtc_driver.c.

16.89.5.18 bool RTC_DRV_IsTimeDateCorrectFormat (const rtc_timedate_t ∗const timeDate)

Check if the date time struct is configured properly.

Parameters

in timeDate Structure to check to check

Returns

True if the time date is in the correct format, false if not

Definition at line 695 of file rtc_driver.c.

16.89.5.19 bool RTC_DRV_IsYearLeap (uint16_t year)

Check if the current year is leap.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.89 RTC Driver 817

Parameters

in year Year to check

Returns

True if the year is leap, false if not

Definition at line 737 of file rtc_driver.c.

16.89.5.20 void RTC_DRV_SecondsIRQHandler (uint32_t instance)

This method is the API's Interrupt handler for RTC Second interrupt. This ISR will call the user callback if defined.

Parameters

in instance RTC instance used

Returns

None

Definition at line 850 of file rtc_driver.c.

16.89.5.21 status_t RTC_DRV_SetTimeDate (uint32_t instance, const rtc_timedate_t ∗const time)

Set time and date for RTC instance. The user must stop the counter before using this function. Otherwise it will
return an error.

Parameters

in instance The number of the RTC instance used
in time Pointer to the variable in which the time is stored

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if the time provided was invalid or if
the counter was not stopped.

Definition at line 382 of file rtc_driver.c.

16.89.5.22 status_t RTC_DRV_StartCounter (uint32_t instance)

Start RTC instance counter. Before calling this function the user should use RTC_DRV_SetTimeDate to configure
the start time.

Parameters

in instance The number of the RTC instance used

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if the counter cannot be enabled or
is already enabled.

Definition at line 265 of file rtc_driver.c.

16.89.5.23 status_t RTC_DRV_StopCounter (uint32_t instance)

Disable RTC instance counter.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

818 CONTENTS

Parameters

in instance The number of the RTC instance used

Returns

STATUS_SUCCESS if the operation was successful, STATUS_ERROR if the counter could not be stopped.

Definition at line 296 of file rtc_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.90 Raw API 819

16.90 Raw API

16.90.1 Detailed Description

The raw API is operating on PDU level and it is typically used to gateway PDUs between CAN and LIN.

Usually, a FIFO is used to buffer PDUs in order to handle the different bus speeds.

Functions

• void ld_put_raw (l_ifc_handle iii, const l_u8 ∗const data)

Queue the transmission of 8 bytes of data in one frame.

• void ld_get_raw (l_ifc_handle iii, l_u8 ∗const data)

Copy the oldest received diagnostic frame data to the memory specified by data.

• l_u8 ld_raw_tx_status (l_ifc_handle iii)

Get the status of the raw frame transmission function.

• l_u8 ld_raw_rx_status (l_ifc_handle iii)

Get the status of the raw frame receive function.

16.90.2 Function Documentation

16.90.2.1 void ld_get_raw (l_ifc_handle iii, l_u8 ∗const data)

Copy the oldest received diagnostic frame data to the memory specified by data.

Parameters

in iii Interface name
in data Buffer for the data to be transmitted

Returns

void

Copy the oldest received diagnostic frame data to the memory specified by data. The data returned is received from
master request frame for slave node and the slave response frame for master node.

Definition at line 161 of file lin_commontl_api.c.

16.90.2.2 void ld_put_raw (l_ifc_handle iii, const l_u8 ∗const data)

Queue the transmission of 8 bytes of data in one frame.

Parameters

in iii Interface name
in data Buffer for the data to be transmitted

Returns

void

Queue the transmission of 8 bytes of data in one frame The data is sent in the next suitable frame.

Definition at line 129 of file lin_commontl_api.c.

16.90.2.3 l_u8 ld_raw_rx_status (l_ifc_handle iii)

Get the status of the raw frame receive function.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

820 CONTENTS

Parameters

in iii Interface name

Returns

l_u8

Get the status of the raw frame receive function: LD_NO_DATA The receive queue is empty.(For LIN2.1 and
above only) LD_DATA_AVAILABLE The receive queue contains data that can be read. LD_RECEIVE_ERROR LIN
protocol errors occurred during the transfer; initialize and redo the transfer.(For LIN2.1 and above only). LD_TRA←↩

NSFER_ERROR: (For LIN2.0 and J2602 only) LIN protocol errors occurred during the transfer; initialize and redo
the transfer.

Definition at line 193 of file lin_commontl_api.c.

16.90.2.4 l_u8 ld_raw_tx_status (l_ifc_handle iii)

Get the status of the raw frame transmission function.

Parameters

in iii Interface name

Returns

l_u8

Get the status of the raw frame transmission function: This function is available for < br / > LD_QUEUE_EMPTY
: The transmit queue is empty. In case previous calls to < br / > ld_put_raw, all frames in the queue have been <
br / > transmitted. < br / > LD_QUEUE_AVAILABLE: The transmit queue contains entries, but is not full. < br /
> (For LIN2.1 and above only). LD_QUEUE_FULL : The transmit queue is full and can not accept further < br /
> frames. < br / > LD_TRANSMIT_ERROR : (For LIN2.1 and above only) LIN protocol errors occurred during the
transfer; initialize and redo the transfer. LD_TRANSFER_ERROR: (For LIN2.0 and J2602 only) LIN protocol errors
occurred during the transfer; initialize and redo the transfer.

Definition at line 178 of file lin_commontl_api.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.91 Real Time Clock Driver (RTC) 821

16.91 Real Time Clock Driver (RTC)

16.91.1 Detailed Description

The S32 SDK provides the Peripheral Driver for the Real Time Clock (RTC) module of S32 SDK devices.

Hardware background

The Real Time Clock Module is a independent timer that keeps track of the exact date and time with no software
overhead, with low power usage.

Features of the RTC module include:

• 32-bit seconds counter with roll-over protection and 32-bit alarm

• 16-bit prescaler with compensation that can correct errors between 0.12 ppm and 3906 ppm

• Option to increment prescaler using the LPO (prescaler increments by 32 every clock edge)

• Register write protection

• Lock register requires POR or software reset to enable write access

• Configurable 1, 2, 4, 8, 16, 32, 64 or 128 Hz square wave output with optional interrupt

• Alarm interrupt configured by the driver automatically refreshes alarm time configured by the user

• User interrupt handlers can be configured for all interrupts

How to use the RTC driver in your application

In order to be able to use the RTC in your application, the first thing to do is initializing it with the desired config-
uration. This is done by calling the RTC_DRV_Init function. One of the arguments passed to this function is the
configuration which will be used for the RTC instance, specified by the rtc_init_config_t structure.

The rtc_init_config_t structure allows you to configure the following:

• RTC clock source (32 KHz clock or 1 KHz LPO clock)

• Clock Out pin configuration (Clock OUT pin source)

• Compensation (Interval and value)

• Update enable - this allows updates to Time Counter Enable bit if the Status Register under limited conditions

• Enable non supervisor writes to the registers

The rtc_seconds_int_config_t structure configures the time seconds interrupt. To setup an interrupt every
seconds you have to configure the structure mentioned with the following parameters:

• Frequency of the interrupt

• Interrupt Handler

• If needed - interrupt handler parameters

An alarm is configured with rtc_alarm_config_t structure, which is described by the following parameters:

• Alarm time in date-time format

• Interval of alarm repeat in seconds

• Number of alarm repeats (use 0 if the alarm is not recursive)

• Repeat forever field (if set, the number of repeats field will be ignored)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

822 CONTENTS

• Alarm interrupt enable

• Alarm interrupt handler

• Alarm interrupt handler parameters

Note

If the alarm interrupt is not enabled, the user must make the updates of the alarm time manually.

After the RTC_DRV_Init() function call and, if needed, alarm and other configurations the RTC counter is started
by calling RTC_DRV_StartCounter().

To update desired time date use RTC_DRV_SetTimeDate() function, this method uses a Time and Date structure
rtc_timedate_t in a calendar format mode.

To get the current time and date you can call RTC_DRV_GetCurrentTimeDate() function, this method will get the
seconds from the Time Seconds Register and will convert into human readable format as rtc_timedate_t.

To check if a structure rtc_timedate_t is properly configured use RTC_DRV_IsTimeDateCorrectFormat() function
that will return true if configuration is valid or false if configuration is invalid.

To set an alarm at a desired date and time use RTC_DRV_ConfigureAlarm() function, this method uses a structure
rtc_alarm_config_t with Time, Date and Alarm Handler and will trigger at set time an interrupt set by user.

To get the configured alarm use RTC_DRV_GetAlarmConfig() function, this method will return the Time and Date
for alarm in a structure rtc_alarm_config_t.

To check if an alarm is pending use RTC_DRV_IsAlarmPending() function, this method will return true if alarm is
pending or false if no alarm pending.

To configure a seconds interrupt use RTC_DRV_ConfigureSecondsInt() function, this method use structure rtc←↩

_seconds_int_config_t to be configured with a callback function.

After driver configuration the user can use RTC_DRV_StartCounter() function to start the timer and RTC_DRV_←↩

StopCounter() function to stop it.

To lock access to RTC registers use RTC_DRV_ConfigureRegisterLock() function, this method uses a structure
rtc_register_lock_config_t that describes what registers will be locked. Attention all the registers are unlocked
only by software reset or power on reset.

To check if RTC registers are locked use RTC_DRV_GetRegisterLock() function, this will return a structure rtc_←↩

register_lock_config_t with locked registers.

To convert seconds to a human readable value use RTC_DRV_ConvertSecondsToTimeDate() function, this will
return a structure rtc_timedate_t based on the seconds value.

To convert a time date to seconds use RTC_DRV_ConvertTimeDateToSeconds() function, this will return seconds
value based on time date structure rtc_timedate_t.

To get the time date for next alarm use RTC_DRV_GetNextAlarmTime() function, this will return a structure rtc←↩

_timedate_t.

To configure a fault handler for cases as Overflow and Invalid Time use RTC_DRV_ConfigureFaultInt() function,
this method will use a structure rtc_interrupt_config_t with a callback function.

Example

/* Time Seconds interrupt handler */
void secondsISR(void)
{

/* Do Something */

}

void rtcAlarmCallback(void)
{

rtc_timedate_t currentTime;
RTC_DRV_GetCurrentTimeDate(0U, ¤tTime);

/* Do something with the time and date */

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.91 Real Time Clock Driver (RTC) 823

}

int main()
{

rtc_seconds_int_config_t rtcTimer1_SecIntConfig0 =
{

.secondIntConfig = RTC_INT_1HZ,

.secondIntEnable = true,

.rtcSecondsCallback = secondsISR,

.secondsCallbackParams = NULL
};

/* rtcTimer1 configuration structure */
const rtc_init_config_t rtcTimer1_Config0 =
{

/* Time compensation interval */
.compensationInterval = 0U,
/* Time compensation value */
.compensation = 0,
/* RTC Clock Source is 32 KHz crystal */
.clockSelect = RTC_CLK_SRC_OSC_32KHZ,
/* RTC Clock Out is 32 KHz clock */
.clockOutConfig = RTC_CLKOUT_SRC_32KHZ,
/* Update of the TCE bit is not allowed */
.updateEnable = false,
/* Non-supervisor mode write accesses are not supported and generate

* a bus error.

*/
.nonSupervisorAccessEnable = false

};

/* RTC Initial Time and Date */
rtc_timedate_t rtcStartTime =
{

/* Year */
.year = 2016U,
/* Month */
.month = 01U,
/* Day */
.day = 01U,
/* Hour */
.hour = 00U,
/* Minutes */
.minutes = 00U,
/* Seconds */
.seconds = 00U

};

/* rtcTimer1 Alarm configuration 0 */
rtc_alarm_config_t alarmConfig0 =
{

/* Alarm Date */
.alarmTime =

{
/* Year */
.year = 2016U,
/* Month */
.month = 01U,
/* Day */
.day = 01U,
/* Hour */
.hour = 00U,
/* Minutes */
.minutes = 00U,
/* Seconds */
.seconds = 03U,

},

/* Alarm repeat interval */
.repetitionInterval = 3UL,

/* Number of alarm repeats */
.numberOfRepeats = 0UL,

/* Repeat alarm forever */
.repeatForever = true,

/* Alarm interrupt disabled */
.alarmIntEnable = true,

/* Alarm interrupt handler */
.alarmCallback = (void *)rtcAlarmCallback,

/* Alarm interrupt handler parameters */
.callbackParams = (void *)NULL

};

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

824 CONTENTS

/* Call the init function */
RTC_DRV_Init(0UL, &rtcInitConfig);

/* Set the time and date */
RTC_DRV_SetTimeDate(0UL, &rtcStartTime);

/* Configure RTC Time Seconds Interrupt */
RTC_DRV_ConfigureSecondsInt(0UL, &rtcTimer1_SecIntConfig0);

/* Start RTC counter */
RTC_DRV_StartCounter(0UL);

/* Configure an alarm every 3 seconds */
RTC_DRV_ConfigureAlarm(0UL, &rtcAlarmConfig0);

while(1);
}

Important Notes

• Before using the RTC driver the module clock must be configured

Note

When using the on chip LPO clock as source input for the RTC, the user needs to make sure that the
LPO generates the desired frequency by adjusting the LPO trimming value.
For more details about LPO trimming please consult the available documentation.

• The driver enables the interrupts for the corresponding RTC module, but any interrupt priority must be done
by the application

• The board specific configurations must be done prior to driver calls; the driver has no influence on the func-
tionality of the clockout pin - they must be configured by application

• If Non-supervisor mode write accesses are supported you need to set AIPS to allow usermode access to
RTC Memory Space

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\rtc\rtc_driver.c
${S32SDK_PATH}\platform\drivers\src\rtc\rtc_hw_access.c
${S32SDK_PATH}\platform\drivers\src\rtc\rtc_irq.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

1. Clock Manager

2. Interrupt Manager (Interrupt)

Modules

• RTC Driver

Real Time Clock Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.92 S32K144 SoC Header file 825

16.92 S32K144 SoC Header file

16.92.1 Detailed Description

This module covers the S32K144 SoC Header file.

Modules

• Backward Compatibility Symbols for S32K144

This module covers backward compatibility symbols.

• Interrupt vector numbers for S32K144

This module covers interrupt number allocation.

• Peripheral access layer for S32K144

This module covers all memory mapped register available on SoC.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

826 CONTENTS

16.93 S32K144 System Files

This module covers the SoC support file for S32K144.

SystemInit method is called automatically from start-up code to do the minimum setup of the SoC. It disables the
watchdog, enables FPU and the power mode protection if the corresponding feature macro is enabled.

SystemCoreClockUpdate method can be used at any time to update SystemCoreClock. It evaluates the clock
register settings and calculates the current core clock.

SystemSoftwareReset method initiates a system reset.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.94 Schedule management 827

16.94 Schedule management

16.94.1 Detailed Description

This group contains APIs that help users manage schedule tables in master node only.

Functions

• l_u8 l_sch_tick (l_ifc_handle iii)

This function follows a schedule. When a frame becomes due, its transmission is initiated. When the end of the
current schedule is reached, this function starts again at the beginning of the schedule.

• void l_sch_set (l_ifc_handle iii, l_schedule_handle schedule_iii, l_u8 entry)

Set up the next schedule to be followed by the l_sch_tick function for a certain interface. The new schedule will be
activated as soon as the current schedule reaches its next schedule entry point.

16.94.2 Function Documentation

16.94.2.1 void l_sch_set (l_ifc_handle iii, l_schedule_handle schedule_iii, l_u8 entry)

Set up the next schedule to be followed by the l_sch_tick function for a certain interface. The new schedule will be
activated as soon as the current schedule reaches its next schedule entry point.

Parameters

in iii Interface name
in schedule_iii Schedule table for interface
in entry Entry to be set

Returns

void

Definition at line 73 of file lin_common_api.c.

16.94.2.2 l_u8 l_sch_tick (l_ifc_handle iii)

This function follows a schedule. When a frame becomes due, its transmission is initiated. When the end of the
current schedule is reached, this function starts again at the beginning of the schedule.

Parameters

in Interface name

Returns

Operation status

• Zero: if the next call of l_sch_tick will not start transmission of a frame.

• Non-Zero: if the next call of l_sch_tick will start transmission of a frame. The return value will in this
case be the next schedule table entry's number (counted from the beginning of the schedule table) in
the schedule table. The return value will be in range 1 to N if the schedule table has N entries.

Definition at line 240 of file lin_common_api.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

828 CONTENTS

16.95 Security PAL

16.95.1 Detailed Description

Security Peripheral Abstraction Layer.

Data Structures

• struct security_user_config_t

Define user configuration Implements : security_user_config_t_Class. More...

Enumerations

• enum security_instance_t { SECURITY_INSTANCE0 = 0U }

Define instances for SECURITY PAL Implements : security_instance_t_Class.

• enum security_key_id_t {
SECURITY_SECRET_KEY = 0x0U, SECURITY_MASTER_ECU = 0x1U, SECURITY_BOOT_MAC_KEY =
0x2U, SECURITY_BOOT_MAC = 0x3U,
SECURITY_KEY_1, SECURITY_KEY_2, SECURITY_KEY_3, SECURITY_KEY_4,
SECURITY_KEY_5, SECURITY_KEY_6, SECURITY_KEY_7, SECURITY_KEY_8,
SECURITY_KEY_9, SECURITY_KEY_10, SECURITY_RAM_KEY = 0xFU, SECURITY_KEY_11 = 0x14U,
SECURITY_KEY_12, SECURITY_KEY_13, SECURITY_KEY_14, SECURITY_KEY_15,
SECURITY_KEY_16, SECURITY_KEY_17 }

Defines the security keys Implements : security_key_id_t_Class.

• enum security_boot_flavor_t { SECURITY_BOOT_STRICT = 0U, SECURITY_BOOT_SERIAL = 1U, SEC←↩

URITY_BOOT_PARALLEL = 2U, SECURITY_BOOT_NOT_DEFINED = 3U }

Defines the security boot flavor Implements : security_boot_flavor_t_Class.

• enum security_cmd_t {
SECURITY_CMD_ENC_ECB = 1U, SECURITY_CMD_ENC_CBC, SECURITY_CMD_DEC_ECB, SECU←↩

RITY_CMD_DEC_CBC,
SECURITY_CMD_GENERATE_MAC, SECURITY_CMD_VERIFY_MAC, SECURITY_CMD_LOAD_KEY,
SECURITY_CMD_LOAD_PLAIN_KEY,
SECURITY_CMD_EXPORT_RAM_KEY, SECURITY_CMD_INIT_RNG, SECURITY_CMD_EXTEND_SE←↩

ED, SECURITY_CMD_RND,
SECURITY_CMD_RESERVED_1, SECURITY_CMD_BOOT_FAILURE, SECURITY_CMD_BOOT_OK, S←↩

ECURITY_CMD_GET_ID,
SECURITY_CMD_BOOT_DEFINE, SECURITY_CMD_DBG_CHAL, SECURITY_CMD_DBG_AUTH, SE←↩

CURITY_CMD_RESERVED_2,
SECURITY_CMD_RESERVED_3, SECURITY_CMD_MP_COMPRESS }

Defines the security command Implements : security_cmd_t_Class.

Functions

• void SECURITY_GetDefaultConfig (security_user_config_t ∗config)

Initializes the configuration structure.

• status_t SECURITY_Init (security_instance_t instance, const security_user_config_t ∗config)

Initializes the SECURITY module.

• status_t SECURITY_Deinit (security_instance_t instance)

De-initializes the SECURITY module.

• status_t SECURITY_EncryptEcbBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗plainText, uint32_t msgLen, uint8_t ∗cipherText, uint32_t timeout)

ECB Encryption.

• status_t SECURITY_DecryptEcbBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗cipherText, uint32_t msgLen, uint8_t ∗plainText, uint32_t timeout)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.95 Security PAL 829

ECB Decryption.

• status_t SECURITY_EncryptCbcBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗plainText, uint32_t msgLen, const uint8_t ∗iv, uint8_t ∗cipherText, uint32_t timeout)

CBC Decryption.

• status_t SECURITY_DecryptCbcBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗cipherText, uint32_t msgLen, const uint8_t ∗iv, uint8_t ∗plainText, uint32_t timeout)

CBC Decryption.

• status_t SECURITY_GenerateMacBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗msg, uint64_t msgLen, uint8_t ∗cmac, uint32_t timeout)

MAC Generation.

• status_t SECURITY_VerifyMacBlocking (security_instance_t instance, security_key_id_t keyId, const uint8←↩

_t ∗msg, uint64_t msgLen, const uint8_t ∗mac, uint16_t macLen, bool ∗verifStatus, uint32_t timeout)

MAC Verification.

• status_t SECURITY_LoadKey (security_instance_t instance, security_key_id_t keyId, const uint8_t ∗m1, con-
st uint8_t ∗m2, const uint8_t ∗m3, uint8_t ∗m4, uint8_t ∗m5, uint32_t timeout)

Load Key.

• status_t SECURITY_LoadPlainKey (security_instance_t instance, const uint8_t ∗plainKey, uint32_t timeout)

Load Plain Key.

• status_t SECURITY_ExportRamKey (security_instance_t instance, uint8_t ∗m1, uint8_t ∗m2, uint8_t ∗m3,
uint8_t ∗m4, uint8_t ∗m5, uint32_t timeout)

Export RAM key.

• status_t SECURITY_ExtendSeed (security_instance_t instance, const uint8_t ∗entropy, uint32_t timeout)

Initialize Random Number Generator.

• status_t SECURITY_InitRng (security_instance_t instance, uint32_t timeout)

Initialize Random Number Generator.

• status_t SECURITY_GenerateRnd (security_instance_t instance, uint8_t ∗rnd, uint32_t timeout)

Generate RND.

• status_t SECURITY_GetId (security_instance_t instance, const uint8_t ∗challenge, uint8_t ∗uid, uint8_←↩

t ∗sreg, uint8_t ∗mac, uint32_t timeout)

Get ID.

• status_t SECURITY_SecureBoot (security_instance_t instance, uint32_t bootImageSize, const uint8_←↩

t ∗bootImagePtr, uint32_t timeout)

Secure boot.

• status_t SECURITY_BootFailure (security_instance_t instance, uint32_t timeout)

Boot Failure.

• status_t SECURITY_BootOk (security_instance_t instance, uint32_t timeout)

Boot Ok.

• status_t SECURITY_BootDefine (security_instance_t instance, uint32_t bootSize, security_boot_flavor_←↩

t bootFlavor, uint32_t timeout)

Boot Define.

• status_t SECURITY_DbgChal (security_instance_t instance, uint8_t ∗challenge, uint32_t timeout)

Debug Challenge.

• status_t SECURITY_DbgAuth (security_instance_t instance, const uint8_t ∗authorization, uint32_t timeout)

Debug Authentification.

• status_t SECURITY_MPCompress (security_instance_t instance, const uint8_t ∗msg, uint32_t msgLen,
uint8_t ∗mpCompress, uint32_t timeout)

Miyaguchi-Prenell Compression.

• status_t SECURITY_GenerateTrnd (security_instance_t instance, uint8_t ∗trnd, uint32_t timeout)

Generate True Random Number.

• status_t SECURITY_CancelCommand (security_instance_t instance)

Cancel Command.

• status_t SECURITY_GetAsyncCmdStatus (security_instance_t instance)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

830 CONTENTS

Get asynchronous command status.

• status_t SECURITY_EncryptEcb (security_instance_t instance, security_key_id_t keyId, const uint8_←↩

t ∗plainText, uint32_t msgLen, uint8_t ∗cipherText)

Encrypt ECB.

• status_t SECURITY_DecryptEcb (security_instance_t instance, security_key_id_t keyId, const uint8_←↩

t ∗cipherText, uint32_t msgLen, uint8_t ∗plainText)

Decrypt ECB.

• status_t SECURITY_EncryptCbc (security_instance_t instance, security_key_id_t keyId, const uint8_←↩

t ∗plainText, uint32_t msgLen, const uint8_t ∗iv, uint8_t ∗cipherText)

Encrypt CBC.

• status_t SECURITY_DecryptCbc (security_instance_t instance, security_key_id_t keyId, const uint8_←↩

t ∗cipherText, uint32_t msgLen, const uint8_t ∗iv, uint8_t ∗plainText)

Decrypt CBC.

• status_t SECURITY_GenerateMac (security_instance_t instance, security_key_id_t keyId, const uint8_←↩

t ∗msg, uint64_t msgLen, uint8_t ∗cmac)

Generate MAC.

• status_t SECURITY_VerifyMac (security_instance_t instance, security_key_id_t keyId, const uint8_t ∗msg,
uint64_t msgLen, const uint8_t ∗mac, uint16_t macLen, bool ∗verifStatus)

Verify MAC.

16.95.2 Data Structure Documentation

16.95.2.1 struct security_user_config_t

Define user configuration Implements : security_user_config_t_Class.

Definition at line 155 of file security_pal.h.

Data Fields

• security_callback_t callback
• void ∗ callbackParam

Field Documentation

16.95.2.1.1 security_callback_t callback

The callback invoked when an asynchronous command is completed

Definition at line 157 of file security_pal.h.

16.95.2.1.2 void∗ callbackParam

User parameter for the command completion callback

Definition at line 158 of file security_pal.h.

16.95.3 Enumeration Type Documentation

16.95.3.1 enum security_boot_flavor_t

Defines the security boot flavor Implements : security_boot_flavor_t_Class.

Enumerator

SECURITY_BOOT_STRICT

SECURITY_BOOT_SERIAL

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.95 Security PAL 831

SECURITY_BOOT_PARALLEL

SECURITY_BOOT_NOT_DEFINED

Definition at line 97 of file security_pal.h.

16.95.3.2 enum security_cmd_t

Defines the security command Implements : security_cmd_t_Class.

Enumerator

SECURITY_CMD_ENC_ECB

SECURITY_CMD_ENC_CBC

SECURITY_CMD_DEC_ECB

SECURITY_CMD_DEC_CBC

SECURITY_CMD_GENERATE_MAC

SECURITY_CMD_VERIFY_MAC

SECURITY_CMD_LOAD_KEY

SECURITY_CMD_LOAD_PLAIN_KEY

SECURITY_CMD_EXPORT_RAM_KEY

SECURITY_CMD_INIT_RNG

SECURITY_CMD_EXTEND_SEED

SECURITY_CMD_RND

SECURITY_CMD_RESERVED_1

SECURITY_CMD_BOOT_FAILURE

SECURITY_CMD_BOOT_OK

SECURITY_CMD_GET_ID

SECURITY_CMD_BOOT_DEFINE

SECURITY_CMD_DBG_CHAL

SECURITY_CMD_DBG_AUTH

SECURITY_CMD_RESERVED_2

SECURITY_CMD_RESERVED_3

SECURITY_CMD_MP_COMPRESS

Definition at line 109 of file security_pal.h.

16.95.3.3 enum security_instance_t

Define instances for SECURITY PAL Implements : security_instance_t_Class.

Enumerator

SECURITY_INSTANCE0

Definition at line 49 of file security_pal.h.

16.95.3.4 enum security_key_id_t

Defines the security keys Implements : security_key_id_t_Class.

Enumerator

SECURITY_SECRET_KEY

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

832 CONTENTS

SECURITY_MASTER_ECU

SECURITY_BOOT_MAC_KEY

SECURITY_BOOT_MAC

SECURITY_KEY_1

SECURITY_KEY_2

SECURITY_KEY_3

SECURITY_KEY_4

SECURITY_KEY_5

SECURITY_KEY_6

SECURITY_KEY_7

SECURITY_KEY_8

SECURITY_KEY_9

SECURITY_KEY_10

SECURITY_RAM_KEY

SECURITY_KEY_11

SECURITY_KEY_12

SECURITY_KEY_13

SECURITY_KEY_14

SECURITY_KEY_15

SECURITY_KEY_16

SECURITY_KEY_17

Definition at line 58 of file security_pal.h.

16.95.4 Function Documentation

16.95.4.1 status_t SECURITY_BootDefine (security_instance_t instance, uint32_t bootSize, security_boot_flavor_t
bootFlavor, uint32_t timeout)

Boot Define.

Implements an extension of the SHE standard to define both the user boot size and boot method.

Parameters

in instance security module instance
in bootSize Number of blocks of 128-bit data to check on boot. Maximum size is 512k←↩

Bytes.
in bootFlavor The boot method.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Unsupported code if function is not available.

Definition at line 695 of file security_pal.c.

16.95.4.2 status_t SECURITY_BootFailure (security_instance_t instance, uint32_t timeout)

Boot Failure.

Signals a failure detected during later stages of the boot process.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.95 Security PAL 833

Parameters

in instance security module instance
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution.

Definition at line 641 of file security_pal.c.

16.95.4.3 status_t SECURITY_BootOk (security_instance_t instance, uint32_t timeout)

Boot Ok.

Marks a successful boot verification during later stages of the boot process.

Parameters

in instance security module instance
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution.

Definition at line 668 of file security_pal.c.

16.95.4.4 status_t SECURITY_CancelCommand (security_instance_t instance)

Cancel Command.

Cancels a previously initiated command.

Parameters

in instance security module instance

Returns

STATUS_SUCCES

Definition at line 844 of file security_pal.c.

16.95.4.5 status_t SECURITY_DbgAuth (security_instance_t instance, const uint8_t ∗ authorization, uint32_t timeout)

Debug Authentification.

Erases all keys (actual and outdated) stored in NVM Memory if the authorization is confirmed.

Parameters

in instance security module instance
in authorization Pointer to the 128-bit buffer containing the authorization value.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution.

Definition at line 756 of file security_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

834 CONTENTS

16.95.4.6 status_t SECURITY_DbgChal (security_instance_t instance, uint8_t ∗ challenge, uint32_t timeout)

Debug Challenge.

Obtains a random number which the user shall use along with the MASTER_ECU_KEY and UID to return an
authorization request.

Parameters

in instance security module instance
out challenge Pointer to the 128-bit buffer where the challenge data will be stored.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 728 of file security_pal.c.

16.95.4.7 status_t SECURITY_DecryptCbc (security_instance_t instance, security_key_id_t keyId, const uint8_t ∗
cipherText, uint32_t msgLen, const uint8_t ∗ iv, uint8_t ∗ plainText)

Decrypt CBC.

Asynchronously performs the AES-128 decryption in CBC mode of the input cipher text buffer.

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation.
in cipherText Pointer to the cipher text buffer.
in msgLen Number of bytes of cipher text message to be decrypted. It should be multiple

of 16 bytes.
in iv Pointer to the initialization vector buffer.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.

Returns

STATUS_BUSY if another command is in execution, otherwise STATUS_SUCCESS.

Definition at line 982 of file security_pal.c.

16.95.4.8 status_t SECURITY_DecryptCbcBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗ cipherText, uint32_t msgLen, const uint8_t ∗ iv, uint8_t ∗ plainText, uint32_t timeout)

CBC Decryption.

Perform AES-128 decryption in CBC mode of the input cipher text buffer.

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation
in cipherText Pointer to the cipher text buffer.
in msgLen Number of bytes of plain text message to be encrypted. It is multiple of 16

bytes.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.95 Security PAL 835

in iv Pointer to the initialization vector buffer.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 312 of file security_pal.c.

16.95.4.9 status_t SECURITY_DecryptEcb (security_instance_t instance, security_key_id_t keyId, const uint8_t ∗
cipherText, uint32_t msgLen, uint8_t ∗ plainText)

Decrypt ECB.

Asynchronously performs the AES-128 decryption in ECB mode of the input cipher text buffer.

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation.
in cipherText Pointer to the cipher text buffer.
in msgLen Number of bytes of cipher text message to be decrypted. It should be multiple

of 16 bytes.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.

Returns

STATUS_BUSY if another command is in execution, otherwise STATUS_SUCCESS.

Definition at line 923 of file security_pal.c.

16.95.4.10 status_t SECURITY_DecryptEcbBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗ cipherText, uint32_t msgLen, uint8_t ∗ plainText, uint32_t timeout)

ECB Decryption.

Perform AES-128 decryption in ECB mode of the input cipher text buffer.

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation
in cipherText Pointer to the cipher text buffer.
in msgLen Number of bytes of plain text message to be encrypted. It is multiple of 16

bytes.
out plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 251 of file security_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

836 CONTENTS

16.95.4.11 status_t SECURITY_Deinit (security_instance_t instance)

De-initializes the SECURITY module.

This function de-initializes the requested SECURITY instance.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.95 Security PAL 837

Parameters

in instance security module instance

Returns

Error or success status returned by API

Definition at line 188 of file security_pal.c.

16.95.4.12 status_t SECURITY_EncryptCbc (security_instance_t instance, security_key_id_t keyId, const uint8_t ∗
plainText, uint32_t msgLen, const uint8_t ∗ iv, uint8_t ∗ cipherText)

Encrypt CBC.

Asynchronously performs the AES-128 encryption in CBC mode of the input plain text buffer.

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation.
in plainText Pointer to the plain text buffer.
in msgLen Number of bytes of plain text message to be encrypted. It should be multiple

of 16 bytes.
in iv Pointer to the initialization vector buffer.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.

Returns

STATUS_BUSY if another command is in execution, otherwise STATUS_SUCCESS.

Definition at line 952 of file security_pal.c.

16.95.4.13 status_t SECURITY_EncryptCbcBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗ plainText, uint32_t msgLen, const uint8_t ∗ iv, uint8_t ∗ cipherText, uint32_t timeout)

CBC Decryption.

Perform AES-128 decryption in CBC mode of the input cipher text buffer.

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation
in plainText Pointer to the plain text buffer. The buffer shall have the same size as the

cipher text buffer.
in msgLen Number of bytes of plain text message to be encrypted. It is multiple of 16

bytes.
in iv Pointer to the initialization vector buffer.
out cipherText Pointer to the cipher text buffer.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 281 of file security_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

838 CONTENTS

16.95.4.14 status_t SECURITY_EncryptEcb (security_instance_t instance, security_key_id_t keyId, const uint8_t ∗
plainText, uint32_t msgLen, uint8_t ∗ cipherText)

Encrypt ECB.

Asynchronously performs the AES-128 encryption in ECB mode of the input plain text buffer.

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation.
in plainText Pointer to the plain text buffer.
in msgLen Number of bytes of plain text message to be encrypted. It should be multiple

of 16 bytes.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.

Returns

STATUS_BUSY if another command is in execution, otherwise STATUS_SUCCESS.

Definition at line 894 of file security_pal.c.

16.95.4.15 status_t SECURITY_EncryptEcbBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗ plainText, uint32_t msgLen, uint8_t ∗ cipherText, uint32_t timeout)

ECB Encryption.

Perform AES-128 encryption in ECB mode of the input plain text buffer.

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation
in plainText Pointer to the plain text buffer
in msgLen Number of bytes of plain text message to be encrypted. It is multiple of 16

bytes.
out cipherText Pointer to the cipher text buffer. The buffer shall have the same size as the

plain text buffer.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 221 of file security_pal.c.

16.95.4.16 status_t SECURITY_ExportRamKey (security_instance_t instance, uint8_t ∗ m1, uint8_t ∗ m2, uint8_t ∗ m3,
uint8_t ∗ m4, uint8_t ∗ m5, uint32_t timeout)

Export RAM key.

Exports the RAM_KEY into a format protected by SECRET_KEY.

Parameters

in instance security module instance

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.95 Security PAL 839

out m1 Pointer to a buffer where the M1 parameter will be exported.
out m2 Pointer to a buffer where the M2 parameter will be exported.
out m3 Pointer to a buffer where the M3 parameter will be exported.
out m4 Pointer to a buffer where the M4 parameter will be exported.
out m5 Pointer to a buffer where the M5 parameter will be exported.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 467 of file security_pal.c.

16.95.4.17 status_t SECURITY_ExtendSeed (security_instance_t instance, const uint8_t ∗ entropy, uint32_t timeout)

Initialize Random Number Generator.

Extends the seed of the PRNG by compressing the former seed value and the supplied entropy into a new seed.
This new seed is then to be used to generate a random number by invoking the CMD_RND command. The random
number generator must be initialized by CMD_INIT_RNG before the seed may be extended.

Parameters

in instance security module instance
in entropy pointer to a 128-bit buffer containing the entropy.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution.

Definition at line 498 of file security_pal.c.

16.95.4.18 status_t SECURITY_GenerateMac (security_instance_t instance, security_key_id_t keyId, const uint8_t ∗
msg, uint64_t msgLen, uint8_t ∗ cmac)

Generate MAC.

Asynchronously calculates the MAC of a given message using CMAC with AES-128.

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
out cmac Pointer to the buffer containing the result of the CMAC computation.

Returns

STATUS_BUSY if another command is in execution, otherwise STATUS_SUCCESS.

Definition at line 1012 of file security_pal.c.

16.95.4.19 status_t SECURITY_GenerateMacBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗ msg, uint64_t msgLen, uint8_t ∗ cmac, uint32_t timeout)

MAC Generation.

Calculates MAC of a given message using CMAC with AES-128.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

840 CONTENTS

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
out cmac Pointer to the buffer containing the result of the CMAC computation.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 342 of file security_pal.c.

16.95.4.20 status_t SECURITY_GenerateRnd (security_instance_t instance, uint8_t ∗ rnd, uint32_t timeout)

Generate RND.

Generates a vector of 128 random bits.

Parameters

in instance security module instance
out rnd Pointer to a 128-bit buffer where the generated random number has to be

stored.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 551 of file security_pal.c.

16.95.4.21 status_t SECURITY_GenerateTrnd (security_instance_t instance, uint8_t ∗ trnd, uint32_t timeout)

Generate True Random Number.

Generates a vector of 128 random bits using TRNG.

Parameters

in instance security module instance
out trnd Pointer to a 128-bit buffer where the generated random number is stored.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.
Unsupported code if function is not available.

Definition at line 816 of file security_pal.c.

16.95.4.22 status_t SECURITY_GetAsyncCmdStatus (security_instance_t instance)

Get asynchronous command status.

Checks the status of the execution of an asynchronous command.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.95 Security PAL 841

Parameters

in instance security module instance

Returns

Error Code after command execution; STATUS_BUSY if a command is still in progress.

Definition at line 869 of file security_pal.c.

16.95.4.23 void SECURITY_GetDefaultConfig (security_user_config_t ∗ config)

Initializes the configuration structure.

This function initializes the configuration struct members to default values.

Parameters

out config configuration struct pointer

Definition at line 126 of file security_pal.c.

16.95.4.24 status_t SECURITY_GetId (security_instance_t instance, const uint8_t ∗ challenge, uint8_t ∗ uid, uint8_t ∗
sreg, uint8_t ∗ mac, uint32_t timeout)

Get ID.

Returns the identity (UID) and the value of the status register protected by a MAC over a challenge and the data.

Parameters

in instance security module instance
in challenge Pointer to the 128-bit buffer containing Challenge data.
out uid Pointer to 120 bit buffer where the UID will be stored.
out sreg Value of the status register.
out mac Pointer to the 128 bit buffer where the MAC generated over challenge and UID

and status will be stored.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 579 of file security_pal.c.

16.95.4.25 status_t SECURITY_Init (security_instance_t instance, const security_user_config_t ∗ config)

Initializes the SECURITY module.

This function initializes and enables the requested SECURITY instance.

Parameters

in instance security module instance
in config pointer to security module configuration structure

Returns

Error or success status returned by API

Definition at line 141 of file security_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

842 CONTENTS

16.95.4.26 status_t SECURITY_InitRng (security_instance_t instance, uint32_t timeout)

Initialize Random Number Generator.

Initializes the seed and derive a key for the PRNG.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.95 Security PAL 843

Parameters

in instance security module instance
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution.

Definition at line 525 of file security_pal.c.

16.95.4.27 status_t SECURITY_LoadKey (security_instance_t instance, security_key_id_t keyId, const uint8_t ∗ m1,
const uint8_t ∗ m2, const uint8_t ∗ m3, uint8_t ∗ m4, uint8_t ∗ m5, uint32_t timeout)

Load Key.

Updates an internal key per the SHE specification.

Parameters

in instance security module instance
in keyId KeyID of the key to be updated.
in m1 Pointer to the 128-bit M1 message containing the UID, Key ID and Authentica-

tion Key ID.
in m2 Pointer to the 256-bit M2 message contains the new security flags, counter

and the key value all encrypted using a derived key generated from the Au-
thentication Key.

in m3 Pointer to the 128-bit M3 message is a MAC generated over messages M1
and M2.

out m4 Pointer to a 256 bits buffer where the computed M4 parameter is stored.
out m5 Pointer to a 128 bits buffer where the computed M5 parameter is stored.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 408 of file security_pal.c.

16.95.4.28 status_t SECURITY_LoadPlainKey (security_instance_t instance, const uint8_t ∗ plainKey, uint32_t timeout)

Load Plain Key.

Updates the RAM key memory slot with a 128-bit plaintext.

Parameters

in instance security module instance
in plainKey Pointer to the 128-bit buffer containing the key that needs to be copied in R←↩

AM_KEY slot.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution.

Definition at line 440 of file security_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

844 CONTENTS

16.95.4.29 status_t SECURITY_MPCompress (security_instance_t instance, const uint8_t ∗ msg, uint32_t msgLen,
uint8_t ∗ mpCompress, uint32_t timeout)

Miyaguchi-Prenell Compression.

Compresses the given messages by accessing the Miyaguchi-Prenell compression feature with in the CSEc feature
set.

Parameters

in instance security module instance
in msg Pointer to the messages to be compressed. Messages must be pre-processed

per SHE specification if they do not already meet the full 128-bit block size
requirement.

in msgLen The number of 128 bit messages to be compressed.
out mpCompress Pointer to the 128 bit buffer storing the compressed data.
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 785 of file security_pal.c.

16.95.4.30 status_t SECURITY_SecureBoot (security_instance_t instance, uint32_t bootImageSize, const uint8_t ∗
bootImagePtr, uint32_t timeout)

Secure boot.

The function loads the command processor firmware and memory slot data and then executes the SHE secure boot
protocol.

Parameters

in instance security module instance
in bootImageSize Boot image size (in bytes).
in bootImagePtr Boot image start address.

Note

Address passed in this parameter must be 32 bit aligned.

Parameters

in timeout Timeout in ms; the function returns STATUS_TIMEOUT if the command is not
finished in the allocated period.

Returns

Error Code after command execution.

Definition at line 610 of file security_pal.c.

16.95.4.31 status_t SECURITY_VerifyMac (security_instance_t instance, security_key_id_t keyId, const uint8_t ∗ msg,
uint64_t msgLen, const uint8_t ∗ mac, uint16_t macLen, bool ∗ verifStatus)

Verify MAC.

Asynchronously verifies the MAC of a given message using CMAC with AES-128.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.95 Security PAL 845

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
in mac Pointer to the buffer containing the CMAC to be verified.
in macLen Number of bits of the CMAC to be compared. A macLength value of zero

indicates that all 128-bits are compared.
out verifStatus Status of MAC verification command (true: verification operation passed,

false: verification operation failed).

Returns

STATUS_BUSY if another command is in execution, otherwise STATUS_SUCCESS.

Definition at line 1044 of file security_pal.c.

16.95.4.32 status_t SECURITY_VerifyMacBlocking (security_instance_t instance, security_key_id_t keyId, const
uint8_t ∗ msg, uint64_t msgLen, const uint8_t ∗ mac, uint16_t macLen, bool ∗ verifStatus, uint32_t timeout)

MAC Verification.

Verifies the MAC of a given message using CMAC with AES-128.

Parameters

in instance security module instance
in keyId KeyID used to perform the cryptographic operation.
in msg Pointer to the message buffer.
in msgLen Number of bits of message on which CMAC will be computed.
in mac Pointer to the buffer containing the CMAC to be verified.
in macLen Number of bits of the CMAC to be compared. A macLength value of zero

indicates that all 128-bits are compared.
out verifStatus Status of MAC verification command (true: verification operation passed,

false: verification operation failed).
in timeout Specifies the maximum time allowed for command completion, else STATU←↩

S_TIMEOUT is returned.

Returns

Error Code after command execution. Output parameters are valid if the error code is STATUS_SUCCESS.

Definition at line 374 of file security_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

846 CONTENTS

16.96 Security Peripheral Abstraction Layer - SECURITY PAL

16.96.1 Detailed Description

The SECURITY PAL provides security features over specific modules like:
-> Cryptographic Services Engine (CSEc)
-> Hardware Security Module (HSM)

Features

• Secure cryptographic key storage

• AES-128 encryption and decryption

• AES-128 CMAC (Cipher-based Message Authentication Code) calculation and authentication

• ECB (Electronic Cypher Book) Mode - encryption and decryption

• CBC (Cipher Block Chaining) Mode - encryption and decryption

• True and Pseudo random number generation

• Miyaguchi-Prenell compression function

• Secure Boot Mode (user configurable)

How to use the SECURITY PAL in your application

The SECURITY PAL is designed to be used in conjunction with CSEc driver or HSM driver, based on hardware
platform. The SECURITY PAL can't be used simultaneously over different driver types.

The following table contains the matching between platforms and available IPs:

IP/←↩

MCU
S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K142←↩

W

S32←↩

K144←↩

W

S32←↩

K146
S32←↩

K148
S32←↩

MTV
MP←↩

C5746←↩

C

MP←↩

C5748←↩

G
CS←↩

EC
YES YES YES YES YES YES YES YES YES NO NO

HSM NO NO NO NO NO NO NO NO NO YES YES

The SECURITY PAL includes file security_pal_cfg.h, which allows the user to specify which IP is used and how
many resources are allocated (state structure). The following code example shows how to configure one instance
for one available security module.

#ifndef SECURITY_PAL_CFG_H
#define SECURITY_PAL_CFG_H

/* Define which IP instance will be used in current project */
#define SECURITY_OVER_CSEC
#define NO_OF_CSEC_INSTS_FOR_SECURITY 1

#endif /* SECURITY_PAL_CFG_H */

In order to use the SECURITY modules, the initialization procedure must be completed. Using the SECURITY_Init()
function, the instance of the module is selected and configured using the user configuration structure.

The security features are available in two types: blocking and non-blocking. The blocking features have specified in
their naming the 'blocking' attribute. All other functions are considered to be non-blocking. The blocking functions
use the osif layer, providing timeout feature.

Important Notes

• For advanced usage, user must verify the specific drivers documentation for CSEc or HSM.

• The SECURITY PAL enables the interrupts for the corresponding module. The application must configure
the interrupts priorities.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.96 Security Peripheral Abstraction Layer - SECURITY PAL 847

• The SECURITY PAL API offers a "timeout" parameter for a number of functions. If "timeout" value is set to
value '0', the returned status shall not be assumed as "STATUS_TIMEOUT". This behaviour is given by the
response time of the OS system tick and the execution time of the called function. Example: If OS system tick
is set to 1ms, then the response time for a timeout set to '0', is between 0ms and 0.99ms. If the execution time
of the functon is 10us, then there is a high probability that the returned status shall be "STATUS_SUCCESS".

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\security\security_pal.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc
${S32SDK_PATH}\platform\pal\inc
${S32_SDK_PATH}\rtos\osif

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt) OS Interface (OSIF)

Example code

static security_user_config_t g_SecurityUserConfig;

void SecurityCallback(uint32_t completedCmd, void *callbackParam)
{

security_cmd_t securityCmd = (security_cmd_t)completedCmd;
switch (securityCmd)
{

case SECURITY_CMD_ENC_ECB:
/* Do something... */
break;

default:
/* Error... */
break;

}
}

void main()
{

static status_t status = STATUS_SUCCESS;
static uint8_t rndBuf[16];

g_SecurityUserConfig.callback = SecurityCallback;

status = SECURITY_Init(SECURITY_INSTANCE0, &g_SecurityUserConfig);
if(status != STATUS_SUCCESS)
{

/* Error... */
}
status = SECURITY_InitRng(SECURITY_INSTANCE0, TIMEOUT);
if(status != STATUS_SUCCESS)
{

/* Error... */
}
status = SECURITY_GenerateRnd(SECURITY_INSTANCE0, rndBuf, TIMEOUT

);
if(status != STATUS_SUCCESS)
{

/* Error... */
}

while(1);
}

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

848 CONTENTS

Modules

• Security PAL

Security Peripheral Abstraction Layer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.97 Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL) 849

16.97 Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL)

16.97.1 Detailed Description

Serial Peripheral Interface - Peripheral Abstraction Layer.

The SPI PAL driver allows communication on an SPI bus. It was designed to be portable across all platforms and
IPs which support SPI communication.

How to integrate DSPI in your application

Unlike the other drivers, SPI PAL modules need to include a configuration file named spi_pal_cfg.h, which allows
the user to specify which IPSs are used and how many resources are allocated for each of them (state structures).
The following code example shows how to configure one instance for each available SPI IPs.

#ifndef SPI_PAL_cfg_H
#define SPI_PAL_cfg_H

/* Define which IP instance will be used in current project */
#define SPI_OVER_LPSPI
#define SPI_OVER_FLEXIO
#define SPI_OVER_DSPI

/* Define the resources necessary for current project */
#define NO_OF_LPSPI_INSTS_FOR_SPI 1U
#define NO_OF_FLEXIO_INSTS_FOR_SPI 1U
#define NO_OF_DSPI_INSTS_FOR_SPI 1U
#endif /* SPI_PAL_cfg_H */

The following table contains the matching between platforms and available IPs

IP/←↩

M←↩

CU
S32←↩

K118
S32←↩

K116
S32←↩

K142
S32←↩

K144
S32←↩

K146
S32←↩

K148
S32←↩

K142←↩

W

S32←↩

K144←↩

W

M←↩

P←↩

C5748←↩

G

M←↩

P←↩

C5746←↩

C

M←↩

P←↩

C5744←↩

P

S32←↩

R274
S32←↩

R372

FL←↩

E←↩

XIO

Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO NO

LP←↩

S←↩

PI

Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO NO

D←↩

S←↩

PI/←↩

S←↩

PI

NO NO NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES

In order to use the SPI driver it must be first initialized in either master or slave mode, using functions SPI_Master←↩

Init() or SPI_SlaveInit(). Once initialized, it cannot be initialized again for the same SPI module instance until it is
de-initialized, using SPI_SlaveDeinit() or SPI_MasterDeinit. Different SPI module instances can work independently
of each other.

In each mode (master/slave) are available two types of transfers: blocking and non-blocking. The functions which
initiate blocking transfers will configure the time out for transmission. If time expires SPI_MasterTransferBlocking()
or SPI_SlaveTransferBlocking() will return error and the transmission will be aborted.

The configuration structure includes a special field named extension. It will be used only for SPI transfers over
FLEXIO and should contain a pointer to extension_flexio_for_spi_t structure. The purpose of this structure is to
configure which FLEXIO pins are used by the applications and their functionality (MISO, MOSI, SCK, SS). One
FLEXIO hardware instance can implements spi, so if instType is SPI_INST_TYPE_FLEXIO instIdx can be 0 or 1.

If device name is from MPC574xP and S32Rx7x families it can't be used as master in DMA mode and PAL will
automatically switch the functionality to interrupt mode. If DMA mode is mandatory please use DSPI driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

850 CONTENTS

Important Notes

• The driver enables the interrupts for the corresponding module, but any interrupt priority setting must be done
by the application.

Example code

/* Configure SPI master */
spi_master_t spi10_MasterConfig0 =
{

.baudRate = 100000,

.ssPolarity = SPI_ACTIVE_HIGH,

.frameSize = 8,

.clockPhase = READ_ON_ODD_EDGE,

.clockPolarity = SPI_ACTIVE_HIGH,

.bitOrder = SPI_TRANSFER_MSB_FIRST,

.transferType = SPI_USING_INTERRUPTS,

.rxDMAChannel = 255,

.txDMAChannel = 255,

.callback = NULL,

.callbackParam = NULL,

.ssPin = 0,

.extension = NULL
};

/* Configure FLEXIO pins routing */
extension_flexio_for_spi_t extension;
extension.misoPin = 0;
extension.mosiPin = 1;
extension.sckPin = 2;
extension.ssPin = 3;
spi0_MasterConfig0.extension = &extension;

/* Configure instances used in this example */
spi_instance_t lpspiInstance, flexioInstance;
lpspiInstance.instIdx = 0U;
lpspiInstance.instType = SPI_INST_TYPE_LPSPI;
flexioInstance.instIdx = 1U;
lpspiInstance.instType = SPI_INST_TYPE_FLEXIO;

/* Buffers */
uint8_t tx[5] = {1,2,3,4,5};
uint8_t rx[5];

/* Initializes SPI master for LPSPI 0 and send 5 frames */
SPI_MasterInit(&lpspiInstance, &spi0_MasterConfig0);
SPI_MasterTransfer(&lpspiInstance, tx, rx, 5);
/* Initializes SPI master for FLEXIO 0 and send 5 frames */
SPI_MasterInit(&flexioInstance, &spi1_MasterConfig0);
SPI_MasterTransfer(&flexioInstance, tx, rx, 5);

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\spi\spi_pal.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc
spi_pal_cfg.h path

Compile symbols

No special symbols are required for this component

Dependencies

Low Power Serial Peripheral Interface (LPSPI) flexio_spi Clock Manager OS Interface (OSIF) Interrupt Manager
(Interrupt) Enhanced Direct Memory Access (eDMA)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.97 Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL) 851

Data Structures

• struct spi_master_t

Defines the configuration structure for SPI master Implements : spi_master_t_Class. More...
• struct spi_slave_t

Defines the configuration structure for SPI slave Implements : spi_slave_t_Class. More...
• struct extension_flexio_for_spi_t

Defines the extension structure for the SPI over FLEXIO Implements : extension_flexio_for_spi_t_Class. More...

Enumerations

• enum spi_transfer_type_t { SPI_USING_DMA = 0U, SPI_USING_INTERRUPTS = 1U }

Defines the mechanism to update the rx or tx buffers Implements : spi_transfer_type_t_Class.
• enum spi_polarity_t { SPI_ACTIVE_HIGH = 0U, SPI_ACTIVE_LOW = 1U }

Defines the polarity of signals Implements : spi_polarity_t_Class.
• enum spi_clock_phase_t { READ_ON_ODD_EDGE = 0U, READ_ON_EVEN_EDGE = 1U }

Defines the edges used for sampling and shifting Implements : spi_clock_phase_t_Class.
• enum spi_transfer_bit_order_t { SPI_TRANSFER_MSB_FIRST = 0U, SPI_TRANSFER_LSB_FIRST = 1U }

Defines the bit order Implements : spi_transfer_bit_order_t_Class.

Functions

• status_t SPI_MasterInit (const spi_instance_t ∗const instance, const spi_master_t ∗config)

Initializes the SPI module in master mode.
• status_t SPI_SlaveInit (const spi_instance_t ∗const instance, const spi_slave_t ∗config)

Initializes the SPI module in slave mode.
• status_t SPI_SetSS (const spi_instance_t ∗const instance, uint8_t ss)

Update the SS.
• status_t SPI_MasterTransfer (const spi_instance_t ∗const instance, const void ∗txBuffer, void ∗rxBuffer,

uint16_t numberOfFrames)

Initializes a non-blocking master transfer.
• status_t SPI_MasterTransferBlocking (const spi_instance_t ∗const instance, const void ∗txBuffer, void ∗rx←↩

Buffer, uint16_t numberOfFrames, uint16_t timeout)

Initializes a blocking master transfer.
• status_t SPI_SlaveTransfer (const spi_instance_t ∗const instance, const void ∗txBuffer, void ∗rxBuffer,

uint16_t numberOfFrames)

Initializes a non-blocking slave transfer.
• status_t SPI_SlaveTransferBlocking (const spi_instance_t ∗const instance, const void ∗txBuffer, void ∗rx←↩

Buffer, uint16_t numberOfFrames, uint16_t timeout)

Initializes a blocking slave transfer.
• status_t SPI_GetStatus (const spi_instance_t ∗const instance)

Gets the status of the last transfer.
• status_t SPI_GetDefaultMasterConfig (spi_master_t ∗config)

Gets the default configuration structure for master.
• status_t SPI_GetDefaultSlaveConfig (spi_slave_t ∗config)

Gets the default configuration structure for slave.
• status_t SPI_MasterDeinit (const spi_instance_t ∗const instance)

De-initializes the spi master module.
• status_t SPI_SlaveDeinit (const spi_instance_t ∗const instance)

De-initializes the spi slave module.
• status_t SPI_MasterSetDelay (const spi_instance_t ∗const instance, uint32_t delayBetweenTransfers,

uint32_t delaySCKtoPCS, uint32_t delayPCStoSCK)

Configures the SPI_PAL master mode bus timing delay options.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

852 CONTENTS

16.97.2 Data Structure Documentation

16.97.2.1 struct spi_master_t

Defines the configuration structure for SPI master Implements : spi_master_t_Class.

Definition at line 82 of file spi_pal.h.

Data Fields

• uint32_t baudRate

• uint8_t frameSize

• spi_transfer_bit_order_t bitOrder

• spi_polarity_t clockPolarity

• spi_polarity_t ssPolarity

• spi_clock_phase_t clockPhase

• uint8_t ssPin

• spi_transfer_type_t transferType

• uint8_t rxDMAChannel

• uint8_t txDMAChannel

• spi_callback_t callback

• void ∗ callbackParam

• void ∗ extension

Field Documentation

16.97.2.1.1 uint32_t baudRate

Clock frequency

Definition at line 84 of file spi_pal.h.

16.97.2.1.2 spi_transfer_bit_order_t bitOrder

Select if first bit is MSB or LSB

Definition at line 86 of file spi_pal.h.

16.97.2.1.3 spi_callback_t callback

Select the callback to transfer complete

Definition at line 94 of file spi_pal.h.

16.97.2.1.4 void∗ callbackParam

Select additional callback parameters if it's necessary

Definition at line 95 of file spi_pal.h.

16.97.2.1.5 spi_clock_phase_t clockPhase

Select clock edges for sampling and shifting

Definition at line 89 of file spi_pal.h.

16.97.2.1.6 spi_polarity_t clockPolarity

Select polarity for Clock

Definition at line 87 of file spi_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.97 Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL) 853

16.97.2.1.7 void∗ extension

This field will be used to add extra settings to the basic configuration like FlexIO pins

Definition at line 96 of file spi_pal.h.

16.97.2.1.8 uint8_t frameSize

Size of frame in bits

Definition at line 85 of file spi_pal.h.

16.97.2.1.9 uint8_t rxDMAChannel

Channel number for DMA rx channel

Definition at line 92 of file spi_pal.h.

16.97.2.1.10 uint8_t ssPin

Select which SS is used

Definition at line 90 of file spi_pal.h.

16.97.2.1.11 spi_polarity_t ssPolarity

Select polarity for SS

Definition at line 88 of file spi_pal.h.

16.97.2.1.12 spi_transfer_type_t transferType

Select if buffers are managed by internal interrupt handler or by DMA

Definition at line 91 of file spi_pal.h.

16.97.2.1.13 uint8_t txDMAChannel

Channel number for DMA tx channel

Definition at line 93 of file spi_pal.h.

16.97.2.2 struct spi_slave_t

Defines the configuration structure for SPI slave Implements : spi_slave_t_Class.

Definition at line 103 of file spi_pal.h.

Data Fields

• uint8_t frameSize
• spi_transfer_bit_order_t bitOrder
• spi_polarity_t clockPolarity
• spi_polarity_t ssPolarity
• spi_clock_phase_t clockPhase
• spi_transfer_type_t transferType
• uint8_t rxDMAChannel
• uint8_t txDMAChannel
• spi_callback_t callback
• void ∗ callbackParam
• void ∗ extension

Field Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

854 CONTENTS

16.97.2.2.1 spi_transfer_bit_order_t bitOrder

Select if first bit is MSB or LSB

Definition at line 106 of file spi_pal.h.

16.97.2.2.2 spi_callback_t callback

Select the callback to transfer complete

Definition at line 113 of file spi_pal.h.

16.97.2.2.3 void∗ callbackParam

Select additional callback parameters if it's necessary

Definition at line 114 of file spi_pal.h.

16.97.2.2.4 spi_clock_phase_t clockPhase

Select clock edges for sampling and shifting

Definition at line 109 of file spi_pal.h.

16.97.2.2.5 spi_polarity_t clockPolarity

Select polarity for Clock

Definition at line 107 of file spi_pal.h.

16.97.2.2.6 void∗ extension

This field will be used to add extra settings to the basic configuration like FlexIO

Definition at line 115 of file spi_pal.h.

16.97.2.2.7 uint8_t frameSize

Size of frame in bits

Definition at line 105 of file spi_pal.h.

16.97.2.2.8 uint8_t rxDMAChannel

Channel number for DMA rx channel

Definition at line 111 of file spi_pal.h.

16.97.2.2.9 spi_polarity_t ssPolarity

Select polarity for SS

Definition at line 108 of file spi_pal.h.

16.97.2.2.10 spi_transfer_type_t transferType

Select if buffers are managed by internal interrupt handler or by DMA

Definition at line 110 of file spi_pal.h.

16.97.2.2.11 uint8_t txDMAChannel

Channel number for DMA tx channel

Definition at line 112 of file spi_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.97 Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL) 855

16.97.2.3 struct extension_flexio_for_spi_t

Defines the extension structure for the SPI over FLEXIO Implements : extension_flexio_for_spi_t_Class.

Definition at line 123 of file spi_pal.h.

Data Fields

• uint8_t mosiPin
• uint8_t misoPin
• uint8_t sckPin
• uint8_t ssPin

Field Documentation

16.97.2.3.1 uint8_t misoPin

FlexIO pin for MISO

Definition at line 126 of file spi_pal.h.

16.97.2.3.2 uint8_t mosiPin

FlexIO pin for MOSI

Definition at line 125 of file spi_pal.h.

16.97.2.3.3 uint8_t sckPin

FlexIO pin for SCK

Definition at line 127 of file spi_pal.h.

16.97.2.3.4 uint8_t ssPin

FlexIO pin for SS

Definition at line 128 of file spi_pal.h.

16.97.3 Enumeration Type Documentation

16.97.3.1 enum spi_clock_phase_t

Defines the edges used for sampling and shifting Implements : spi_clock_phase_t_Class.

Enumerator

READ_ON_ODD_EDGE The SPI signal is read on odd edges of SCK and counting starts after SS activation

READ_ON_EVEN_EDGE The SPI signal is read on even edges of SCK and counting starts after SS activation

Definition at line 61 of file spi_pal.h.

16.97.3.2 enum spi_polarity_t

Defines the polarity of signals Implements : spi_polarity_t_Class.

Enumerator

SPI_ACTIVE_HIGH The signal is active high

SPI_ACTIVE_LOW The signal is active low

Definition at line 51 of file spi_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

856 CONTENTS

16.97.3.3 enum spi_transfer_bit_order_t

Defines the bit order Implements : spi_transfer_bit_order_t_Class.

Enumerator

SPI_TRANSFER_MSB_FIRST Transmit data starting with most significant bit

SPI_TRANSFER_LSB_FIRST Transmit data starting with least significant bit

Definition at line 71 of file spi_pal.h.

16.97.3.4 enum spi_transfer_type_t

Defines the mechanism to update the rx or tx buffers Implements : spi_transfer_type_t_Class.

Enumerator

SPI_USING_DMA The driver will use DMA to perform SPI transfer

SPI_USING_INTERRUPTS The driver will use interrupts to perform SPI transfer

Definition at line 41 of file spi_pal.h.

16.97.4 Function Documentation

16.97.4.1 status_t SPI_GetDefaultMasterConfig (spi_master_t ∗ config)

Gets the default configuration structure for master.

The default configuration structure is:

Parameters

out config Pointer to configuration structure

Returns

Error or success status returned by API

Definition at line 734 of file spi_pal.c.

16.97.4.2 status_t SPI_GetDefaultSlaveConfig (spi_slave_t ∗ config)

Gets the default configuration structure for slave.

The default configuration structure is:

Parameters

out config Pointer to configuration structure

Returns

Error or success status returned by API

Definition at line 759 of file spi_pal.c.

16.97.4.3 status_t SPI_GetStatus (const spi_instance_t ∗const instance)

Gets the status of the last transfer.

This function return the status of the last transfer. Using this function the user can check if the transfer is still in
progress or if time-out event occurred.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.97 Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL) 857

Parameters

in instance The name of the instance
in txBuffer Pointer to tx buffer.
in rxBuffer Pointer to rx buffer.
in numberOf←↩

Frames
Number of frames sent/received

in timeout Transfer time-out in ms

Returns

Error or success status returned by API

Definition at line 946 of file spi_pal.c.

16.97.4.4 status_t SPI_MasterDeinit (const spi_instance_t ∗const instance)

De-initializes the spi master module.

This function de-initialized the spi master module.

Parameters

in instance The name of the instance

Returns

Error or success status returned by API

Definition at line 782 of file spi_pal.c.

16.97.4.5 status_t SPI_MasterInit (const spi_instance_t ∗const instance, const spi_master_t ∗ config)

Initializes the SPI module in master mode.

This function initializes and enables the requested SPI module in master mode, configuring the bus parameters.

Parameters

in instance The name of the instance
in config The configuration structure

Returns

Error or success status returned by API

Definition at line 248 of file spi_pal.c.

16.97.4.6 status_t SPI_MasterSetDelay (const spi_instance_t ∗const instance, uint32_t delayBetweenTransfers, uint32_t
delaySCKtoPCS, uint32_t delayPCStoSCK)

Configures the SPI_PAL master mode bus timing delay options.

This function involves the DSPI module's delay options to "fine tune" some of the signal timings and match the
timing needs of a slower peripheral device. This is an optional function that can be called after the SPI_PAL module
has been initialized for master mode. The timings are adjusted in terms of microseconds. The bus timing delays
that can be adjusted are listed below:

SCK to PCS Delay: Adjustable delay option between the last edge of SCK to the de-assertion of the PCS signal.

PCS to SCK Delay: Adjustable delay option between the assertion of the PCS signal to the first SCK edge.

Delay between Transfers: Adjustable delay option between the de-assertion of the PCS signal for a frame to the
assertion of the PCS signal for the next frame.

Definition at line 1014 of file spi_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

858 CONTENTS

16.97.4.7 status_t SPI_MasterTransfer (const spi_instance_t ∗const instance, const void ∗ txBuffer, void ∗ rxBuffer,
uint16_t numberOfFrames)

Initializes a non-blocking master transfer.

This function initializes a non-blocking master transfer.

Parameters

in instance The name of the instance
in txBuffer Pointer to tx buffer.
in rxBuffer Pointer to rx buffer.
in numberOf←↩

Frames
Number of frames sent/received

Returns

Error or success status returned by API

Definition at line 373 of file spi_pal.c.

16.97.4.8 status_t SPI_MasterTransferBlocking (const spi_instance_t ∗const instance, const void ∗ txBuffer, void ∗
rxBuffer, uint16_t numberOfFrames, uint16_t timeout)

Initializes a blocking master transfer.

This function initializes a blocking master transfer.

Parameters

in instance The name of the instance
in txBuffer Pointer to tx buffer.
in rxBuffer Pointer to rx buffer.
in numberOf←↩

Frames
Number of frames sent/received

in timeout Transfer time-out in ms

Returns

Error or success status returned by API

Definition at line 436 of file spi_pal.c.

16.97.4.9 status_t SPI_SetSS (const spi_instance_t ∗const instance, uint8_t ss)

Update the SS.

This function changes the SS, if this feature is available.

Parameters

in instance The name of the instance
in ss The number of SS

Returns

Error or success status returned by API

Definition at line 900 of file spi_pal.c.

16.97.4.10 status_t SPI_SlaveDeinit (const spi_instance_t ∗const instance)

De-initializes the spi slave module.

This function de-initialized the spi slave module.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.97 Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL) 859

Parameters

in instance The name of the instance

Returns

Error or success status returned by API

Definition at line 844 of file spi_pal.c.

16.97.4.11 status_t SPI_SlaveInit (const spi_instance_t ∗const instance, const spi_slave_t ∗ config)

Initializes the SPI module in slave mode.

This function initializes and enables the requested SPI module in slave mode, configuring the bus parameters.

Parameters

in instance The name of the instance
in config The configuration structure

Returns

Error or success status returned by API

Definition at line 499 of file spi_pal.c.

16.97.4.12 status_t SPI_SlaveTransfer (const spi_instance_t ∗const instance, const void ∗ txBuffer, void ∗ rxBuffer,
uint16_t numberOfFrames)

Initializes a non-blocking slave transfer.

This function initializes a non-blocking slave transfer.

Parameters

in instance The name of the instance
in txBuffer Pointer to tx buffer.
in rxBuffer Pointer to rx buffer.
in numberOf←↩

Frames
Number of frames sent/received

Returns

Error or success status returned by API

Definition at line 608 of file spi_pal.c.

16.97.4.13 status_t SPI_SlaveTransferBlocking (const spi_instance_t ∗const instance, const void ∗ txBuffer, void ∗
rxBuffer, uint16_t numberOfFrames, uint16_t timeout)

Initializes a blocking slave transfer.

This function initializes a blocking slave transfer.

Parameters

in instance The name of the instance

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

860 CONTENTS

in txBuffer Pointer to tx buffer.
in rxBuffer Pointer to rx buffer.
in numberOf←↩

Frames
Number of frames sent/received

in timeout Transfer time-out in ms

Returns

Error or success status returned by API

Definition at line 671 of file spi_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.98 Signal interaction 861

16.98 Signal interaction

This group contains APIs that help users interract with signals of LIN node.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

862 CONTENTS

16.99 SoC Header file (SoC Header)

16.99.1 Detailed Description

This module covers SoC Header file.

This section describes the functionality supported by the header file. For usage please see soc_header_usage

Modules

• S32K144 SoC Header file

This module covers the S32K144 SoC Header file.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.100 SoC Support 863

16.100 SoC Support

16.100.1 Detailed Description

This module covers SoC support files.

This section describes the files that are used for supporting various SoCs.

The support files are:

1. Linker files

2. Start-up files

3. SVD file

4. Header files

Linker files

Linker files are used to control the linkage part of the project compilation and contain details regarding the
following:

1. memory areas definition (type and ranges)

2. data and code segments definition and their mapping to the memory areas.

linker configuration files are provided for all supported linkers. Please see Build Tools for details.

Start-up files

Start-up files are used to control the SoC bring-up part and contain:

1. interrupt vector allocation

2. start-up code and routines

Start-up files are provided for all supported compilers. Please see Build Tools for details.

SVD file

SVD file contains details about registers and can be used with an IDE to allow mapping of memory location to the
register definition and information.

Header file

For each SoC there are two header files provided in the SDK:

1. <SoC_name>.h

2. <SoC_name>_features.h

The <SoC_name>.h file contains information related to registers that is used by the SDK drivers and code. The
<SoC_name>_features.h contains information related to the integration of modules in the SoC.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\devices\<SoC_name>\startup\system_<SoC_name>.c
${S32SDK_PATH}\platform\devices\startup.c
${S32SDK_PATH}\platform\devices\<SoC_name>\startup\<Toolchain>\startup_<SoC_name>.S

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

864 CONTENTS

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\devices
${S32SDK_PATH}\platform\devices\<SoC_name>\
${S32SDK_PATH}\platform\devices\startup\
${S32SDK_PATH}\platform\devices\<SoC_name>\include\
${S32SDK_PATH}\platform\devices\common

Compile symbols

CPU_S32K144HFT0VLLT for S32K144
CPU_<SoC_name>

Dependencies

No special dependencies are required for this component

Limitations

IAR: Function alignment is not supported using ALIGNED() macro.

Modules

• S32K144 System Files

This module covers the SoC support file for S32K144.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.101 Structural Core Self Test 865

16.101 Structural Core Self Test

Structural Core Self Test integration with S32 SDK
.

General Information

• The SCST library provides tests to achieve the claimed diagnostic coverage (analytically estimated).

• The SCST library can be executed periodically at run time. This way, it contributes to a Single-Point Fault
metric. The library preserves execution context of application and device configuration.

• The included tests cover most of the core instructions, as well as the tests targeting specific IP blocks of the
core:

– Core control logic (branch control, exception control);

– Core data path including:

* Register file and register multiplexing;

* ALU, multiplier, divider, load/store, and other execution units;

* SIMDSAT;

* Instruction decoder,16-Bit,32-Bit;

• Interrupts can be enabled during execution of the most of the tests. SCST library provides its own interrupt
vector table and wrappers for interrupt service routines, which in case of unexpected for the library interrupt,
forwards it to the corresponding interrupt handler of the OS / user application. SCST library supports nested
interrupts without any limitations.

• SCST library can be compiled and linked with other SCST libraries (e.g. SCST library for Cortex A5 core)
within the same application for which a single .elf file is generated.

Note

This is just a brief description of the Structural Core Self Test Library, for more information please
check the full library documentation found in <SDK_Location>/lib/<CPU_Family>/SCS←↩

T/User_Documentation/<CoreType>>_<CPU_Name>_SCST_User_Manual.pdf
The library is provided in binary format, compiled using GCC and for evaluation purposes only. Please
consult license.txt file for more information found in <SDK_Location>/lib/<CPU_Family>/←↩

SCST/license.txt
The library was built with FPU(hard) enabled, so it must be enabled also in the application which will
use it.

How to use

To add SCST in your application you need to follow four steps:

• 1) Add sCST S32CT component into your project. The component will automatically add the required include
paths and library files to the compilation.

• 2) Check that _m4_scst is added to Libraries under Linker build settings. If it is not present add a new entry
with text :lib_m4_scst.a

• 3) Check that "${workspace_loc:/${ProjName}/SDK/lib/SCST/SCST/src/lib}" is added to Library search
paths under Linker build settings. If it is not present add a new entry with following text (include the quotes
as well) "${workspace_loc:/${ProjName}/SDK/lib/SCST/SCST/src/lib}" or add the path to the folder where
the library is located.

• 4) Add sCST code and data section to the linker file

– Example(for GCC linker file):

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

../../lib/S32K14x/SCST/license.txt
../../lib/S32K14x/SCST/license.txt

866 CONTENTS

.m4_scst :
{

*(.m4_scst_test_code)

*(.m4_scst_test_code_unprivileged)

*(.m4_scst_test_code1_unprivileged)

*(.m4_scst_test_shell_code)

*(.m4_scst_rom_data)
. = ALIGN(4);

*(.m4_scst_exception_wrappers)

*(.m4_scst_vector_table)
. = ALIGN(4);

} > m_text

.m4_scst2 :
{

__SCST_DATA_ROM = .;
__scst_data_start__ = .;

*(.m4_scst_test_shell_data)
. = ALIGN(4);

*(.m4_scst_ram_data)
. = ALIGN(4);

*(.m4_scst_ram_data_target0)
. = ALIGN(4);

*(.m4_scst_ram_data_target1)
. = ALIGN(4);

*(.m4_scst_ram_test_code)
. = ALIGN(4);
__scst_data_end__ = .;

} > m_data

• 5) Use the library API to execute the required tests.

You can use the sCST example as a practical implementation of the steps described above. SCST can not be used
with RAM debug configuration due to RAM memory being to small.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.102 System Basis Chip Driver (SBC) - UJA116xA Family 867

16.102 System Basis Chip Driver (SBC) - UJA116xA Family

16.102.1 Detailed Description

System Basis Chip driver is a middleware driver for SBC settings and control.

Hardware background

The UJA116xA is a mini high-speed CAN System Basis Chip (SBC) containing an ISO 11898-2:201x compliant
HS-CAN transceiver and an integrated 5 V or 3.3 V 250 mA scalable supply (V1) for a microcontroller and/or other
loads. It also features a watchdog and a Serial Peripheral Interface (SPI). The UJA116xA can be operated in very
low-current Standby and Sleep modes with bus and local wake-up capability. The UJA1169A comes in six variants.
The UJA1169ATK, UJA1169ATK/F, UJA1169ATK/X and UJA1169ATK/X/F contain a 5 V regulator (V1). V1 is a
3.3 V regulator in the UJA1169ATK/3 and the UJA1169ATK/F/3. The UJA1169ATK, UJA1169ATK/F, UJA1169←↩

ATK/3 and UJA1169ATK/F/3 variants feature a second on-board 5 V regulator (V2) that supplies the internal CAN
transceiver and can also be used to supply additional on-board hardware. The UJA1169ATK/X and UJA1169AT←↩

K/X/F are equipped with a 5 V supply (VEXT) for off-board components. VEXT is short-circuit proof to the battery,
ground and negative voltages. The integrated CAN transceiver is supplied internally via V1, in parallel with the
microcontroller. The UJA1168 comes in four variants. The UJA1168ATK, UJA1168ATK/FD, UJA1168ATK/VX and
UJA1168ATK/VX/FD contain a 5 V regulator (V1). The UJA1168ATK and UJA1168ATK/FD versions contain a
battery-related high-voltage output (INH) for controlling an external voltage regulator, while the UJA1168ATK/VX
and UJA1168ATK/VX/FD are equipped with a 5 V sensor supply (VEXT). The UJA1169xx/F and UJA1168xx/F←↩

D variants support ISO 11898 compliant CAN partial networking with a selective wake-up function incorporating
CAN FD-passive. CAN FD-passive is a feature that allows CAN FD bus traffic to be ignored in Sleep/Standby
mode. CAN FD-passive partial networking is the perfect fit for networks that support both CAN FD and classic
CAN communications. It allows normal CAN controllers that do not need to communicate CAN FD messages to
remain in partial networking Sleep/Standby mode during CAN FD communication without generating bus errors.
The UJA116xA implements the standard CAN physical layer as defined in the current ISO11898 standard (-2:2003,
-5:2007, -6:2013). A dedicated LIMP output pin is provided to flag system failures on UJA1169 variants. A number
of configuration settings are stored in non-volatile memory. This arrangement makes it possible to configure the
power-on and limp-home behavior of the UJA116xA to meet the requirements of different applications.

How to use SBC driver in your application

In order to set up SBC device the user needs to configure sbc_int_config_t structure in which are included following
structures: sbc_regulator_ctr_t, sbc_wtdog_ctr_t, sbc_mode_mc_t, sbc_fail_safe_lhc_t, sbc_sys_evnt_t, sbc_←↩

lock_t, sbc_can_conf_t, sbc_wake_t These nested structures correspond to individual registers. The sbc_int_←↩

config_t structure is passed as a parameter to Init function to initialize SBC device. The rest of the functions are
related to individual registers.

Initialization

The SBC_InitDriver function takes a parameter which is an instance of SPI used for communication with UJA116xA.
The SBC_InitDevice function is responsible for setting up the UJA116xA, according to user configuration data which
is passed as parameter. The SBC_InitDevice function configures all SBC registers except factories configuration
set up in non volatile memory, (Start up control and SBC configuration register.) The SBC_InitDevice function
transitions the SBC to standby mode, where the configuration is performed, and then to a mode selected in the
main configuration structure. Before the transition to standby mode all event capture registers are cleared. In order
to read the pre-reset or wake-up events, use SBC_GetEventsStatus between SBC_InitDriver and SBC_InitDevice.

Mode transition

SBC_SetMode performs software transition from one mode to another. The transition is achieved by writing to mode
control register. The event capture registers are cleared before device is moved to standby and sleep mode.

Writing to registers

In order to write to registers, there are several methods dedicated to some specific registers. These methods
(names starting with SBC_Set) take a value or a pointer to structure containing values to be written to particular

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

868 CONTENTS

registers as a parameter. Besides these methods there is also a method SBC_DataTransfer which is common to
reading and writing to all registers. It takes three parameters. The first one is an address of a register to be written.
Addresses of registers are defined in sbc_register_ t enum. The second argument is pointer to a value which should
be sent to a register. The last argument is used for register reading only and its value is unused in this case. NULL
pointer is used when parameter is unused.

Reading from registers

Content of a register is read by method SBC_DataTransfer, which provides both reading and writing to all registers.
This method has three arguments. The first one is an address of a register to be read from, the third one is a pointer
to a variable where the content of a register will be stored. Second argument is used for the register writing only
and it should be NULL in this case. Addresses of registers are defined in enum sbc_register_t. Several methods
to reading specific control and status register are available similarly to the register writing. Their names start with
SBC_Get.

Reading status registers

Content of status register can be read by method SBC_DataTransfer or using appropriate function which starts with
SBC_Get and finishes with Status. Event capture registers must be cleared using SBC_CleanEvents by setting to
1 appropriate status. For clear all events set all statuses to 1 or reading all event capture statuses using SBC_←↩

GetEventsStatus before.

There are several functions which read status and store it to structure. The Table 3 sumarize which function reads
appropriate status register.

Function name Status register
SBC_GetMainStatus Main status, Watchdog status
SBC_GetSupplyStatus V2/VEXT status, V1 status
SBC_GetCanStatus CAN transceiver status, CAN partial networking error,

CAN partial networking status, CAN oscillator status,
CAN-bus silence status, VCAN status, CAN failure
status

SBC_GetWakeStatus WAKE pin status
SBC_GetEventsStatus Global event status, System event status, Supply

event status, Transceiver event status, WAKE pin
event status

SBC_GetAllStatus Read all statuses from this table

Reading and writing non-volatile SBC configuration

The UJA116xA contains Multiple Time Programmable Non-Volatile (MTPNV) memory cells that allow some of the
default device settings to be reconfigured. This non-volatile memory has limited write access. Programming of the
NVM registers is performed in two steps. First, the required values are written. In the second step, reprogramming
is confirmed by writing the correct CRC value to the MTPNV CRC control register. This memory is accessed by
SBC_GetFactoriesSettings and SBC_ChangeFactoriesSettings methods. The only parameter is a pointer to sbc←↩

_factories_conf_t data structure, which should be written to NTPNVM or where should be stored data read out
from the NTPNVM. If the device has been programmed previously, the factory presets may need to be restored
before reprogramming can begin. When the factory presets have been restored successfully, a system reset is
generated automatically and UJA116xA switches back to Forced Normal mode. If SBC_ChangeFactoriesSettings
method returns an error “SBC_UJA_NVN_ERROR” it means device was preconfigured from default settings and it
is not possible to write to non-volatile memory. Restore factory preset values is needed. Factory preset values are
restored if the following conditions apply continuously for at least td(MTPNV) during battery power-up: • pin RSTN
is held LOW • CANH is pulled up to VBAT • CANL is pulled down to GND Now SBC_ChangeFactoriesSettings can
be used for change factory preset values to custom configuration.

Error tracking

If an error during the R/W operations to UJA116xA registers occurs, the driver keeps track of it. If a method returns
status different from STATUS_SUCCESS the status represents the type of error from sbc_status_t enum.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.102 System Basis Chip Driver (SBC) - UJA116xA Family 869

Example code snippets (for FRDM PK144-Q100 freedom board).

Initialization example

This example source code snippet shows how to initialize SPI and the SBC. The SPI instance used in this example
is LPSPICOM1. The following structures are generated by the configuration tool or need to be created by the user:
lpspiCom1_MasterConfig0, lpspiCom1State, sbc_uja116x_InitConfig0.

int main(void)
{

...

sbc_status_t status = STATUS_SUCCESS;

/* Initialization clocks. */
...

/* Initialize pins. */
...

/* Initialize LPSPI. */
LPSPI_DRV_MasterInit(LPSPICOM1, &lpspiCom1State, &lpspiCom1_MasterConfig0);

/* Initialize SBC. */
status = SBC_InitDriver(LPSPICOM1);
status |= SBC_InitDevice(&sbc_uja116x_InitConfig0);

if(status != STATUS_SUCCESS)
{

/* Do something here. */
}

...
}

Write to Regulator control registers example
This example source code snippet shows how to configure Regulator control register.
Power distribution control (PDC), V2/VEXT configuration (V2C/ VETXT), V1 reset threshold can be
configured by writing to Regulator Control register.
Note: PDC can be set for UJA1169 variants (not UJA1168),
V2 can be set for models UJA1169ATK, UJA1169ATK/3, UJA1169ATK/F and UJA1169ATK/F/3,
VEXT can be set for models UJA1169ATK/X and UJA1169ATK/X/F. For more info read function description.

int main(void)
{

...

sbc_status_t status = STATUS_SUCCESS;
sbc_regulator_ctr_t regulator;
regulator.regulator.pdc = SBC_UJA_REGULATOR_PDC_HV;
regulator.regulator.v2c = SBC_UJA_REGULATOR_V2C_OFF;
regulator.regulator.v1rtc = SBC_UJA_REGULATOR_V1RTC_80;

regulator.supplyEvnt.v2oe = SBC_UJA_SUPPLY_EVNT_V2OE_EN;
regulator.supplyEvnt.v2ue = SBC_UJA_SUPPLY_EVNT_V2UE_EN;
regulator.supplyEvnt.v1ue = SBC_UJA_SUPPLY_EVNT_V1UE_DIS;

status = SBC_SetVreg(®ulator);

if(status != STATUS_SUCCESS)
{

/* Do something here. */
}

...
}

Read from Regulator control registers example

This example source code snippet shows how to read from Regulator control registers. Reading Regulator con-
trol register gives information about Power distribution control (PDC), V2/VEXT configuration (V2C/ VETXT), V1
reset threshold current configuration. Using this method can be useful for check if the Regulator control register is
configured correctly. For more info read function description.

int main(void)
{

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

870 CONTENTS

...

sbc_status_t status = STATUS_SUCCESS;
sbc_regulator_ctr_t regulator;

status = SBC_GetVreg(®ulator);

if(status == STATUS_SUCCESS)
{

if(regulator.supplyEvnt.v2oe ==
SBC_UJA_SUPPLY_EVNT_V2OE_EN)

{
/* Do something here. */

}
}

...
}

Reading all device status example

This example source code snippet shows how to read all SBC device statuses in one function. Variable allStatuses
contains these registers: Main status register, Watchdog status register, Supply voltage status register, Transceiver
status register, WAKE pin status register, Event capture registers. For more info read function description.

int main(void)
{

...

sbc_status_t status = STATUS_SUCCESS;
sbc_status_group_t allStatuses;

while(1){

status = SBC_GetAllStatus(&allStatuses);

if(status == STATUS_SUCCESS)
{

if(allStatuses.trans.cbss == SBC_UJA_TRANS_STAT_CBSS_ACT)
{

/* Do something here. */
}

if(allStatuses.supply.v1s == SBC_UJA_SUPPLY_STAT_V1S_VAB)
{

/* Do something here. */
}

...

/* Periodically feed watchdog (anytime in watchdog period in case of timeout watchdog mode). */
SBC_FeedWatchdog();

}
}

}

Reading Transceiver device status example

This example source code snippet shows how to read Transceiver device status from SBC. It contains CA←↩

N transceiver status, CAN partial networking error, CAN partial networking status, CAN oscillator status, CAN-bus
silence status, VCAN status, CAN failure status. For more info read function description. Note similar approach can
be used for reading other status using different SBC_Get∗Status.

int main(void)
{

...

sbc_status_t status = STATUS_SUCCESS;
sbc_trans_stat_t transStatus;

while(1){

status = SBC_GetCanStatus(&transStatus);

if(status == STATUS_SUCCESS)
{

if(transStatus.cbss == SBC_UJA_TRANS_STAT_CBSS_ACT)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.102 System Basis Chip Driver (SBC) - UJA116xA Family 871

{
/* Do something here. */

}

...

/* Periodically feed watchdog (anytime in watchdog period in case of timeout watchdog mode). */
SBC_FeedWatchdog();

}
}

}

Change factories settings

This example source code snippet shows how to change factory preset value of non-volatile memmory. Device must
be set to fatory preset. For more info read function description.

int main(void)
{

...

sbc_status_t status = STATUS_SUCCESS;
sbc_factories_conf_t factories;

status = SBC_GetFactoriesSettings(&factories);

factories.control.fnmc = SBC_UJA_SBC_SDMC_EN;
factories.control.sdmc = SBC_UJA_SBC_SDMC_DIS;
factories.startUp.rlc = SBC_UJA_START_UP_RLC_20_25p0;

if(status == STATUS_SUCCESS)
{

status = SBC_ChangeFactoriesSettings(&factories);
}

if(status != STATUS_SUCCESS)
{

/* Do something here. */
}

}

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\middleware\sbc\sbc_uja116x\source\sbc_uja116x_driver.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\middleware\sbc\sbc_uja116x\include

Compile symbols

No special symbols are required for this component

Dependencies

Low Power Serial Peripheral Interface (LPSPI) OS Interface (OSIF)

Modules

• UJA116xA SBC Driver

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

872 CONTENTS

16.103 TRGMUX Driver

16.103.1 Detailed Description

Trigger MUX Control Peripheral Driver. The TRGMUX introduces an extremely flexible methodology for connecting
various trigger sources to multiple pins/peripherals.

The S32 SDK provides Peripheral Drivers for the Trigger MUX Control (TRGMUX) module of S32 SDK devices.

Overview

This section describes the programing interface of the TRGMUX driver. The TRGMUX driver configures the TR←↩

GMUX (Trigger Mux Control). The Trigger MUX module allows software to configure the trigger inputs for various
peripherals.

TRGMUX Driver model building

TRGMUX can be seen as a collection of muxes, each mux allowing to select one output from a list of input signals
that are common to all muxes. The TRGMUX registers are identical as structure and all bitfields can be read/written
using the TRGMUX driver API.

TRGMUX Initialization

The TRGMUX_DRV_Init() function is used to initialize the TRGMUX IP. The function receives as parameter a pointer
to the trgmux_user_config_t structure. This structure contains a variable number of mappings between a trgmux
trigger source and a trgmux target modules.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\trgmux\trgmux_driver.c
${S32SDK_PATH}\platform\drivers\src\trgmux\trgmux_hw_access.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

There are no dependencies with other components

TRGMUX API

After initialization, the driver allows the reconfiguration of the source trigger for a given target module using TR←↩

GMUX_DRV_SetTrigSourceForTargetModule(). Also, by using TRGMUX_DRV_SetLockForTargetModule(), a
given target module can be locked, such that it cannot be updated until a reset.

Data Structures

• struct trgmux_inout_mapping_config_t

Configuration structure for pairing source triggers with target modules. More...

• struct trgmux_user_config_t

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.103 TRGMUX Driver 873

User configuration structure for the TRGMUX driver. More...

Typedefs

• typedef enum trgmux_trigger_source_e trgmux_trigger_source_t

Enumeration for trigger source module of TRGMUX.

• typedef enum trgmux_target_module_e trgmux_target_module_t

Enumeration for target module of TRGMUX.

Functions

• status_t TRGMUX_DRV_Init (const uint32_t instance, const trgmux_user_config_t ∗const trgmuxUserConfig)

Initialize a TRGMUX instance for operation.

• status_t TRGMUX_DRV_Deinit (const uint32_t instance)

Reset to default values the source triggers corresponding to all target modules, if none of the target modules is locked.

• status_t TRGMUX_DRV_SetTrigSourceForTargetModule (const uint32_t instance, const trgmux_trigger_←↩

source_t triggerSource, const trgmux_target_module_t targetModule)

Configure a source trigger for a selected target module.

• trgmux_trigger_source_t TRGMUX_DRV_GetTrigSourceForTargetModule (const uint32_t instance, const
trgmux_target_module_t targetModule)

Get the source trigger configured for a target module.

• void TRGMUX_DRV_SetLockForTargetModule (const uint32_t instance, const trgmux_target_module_←↩

t targetModule)

Locks the TRGMUX register of a target module.

• bool TRGMUX_DRV_GetLockForTargetModule (const uint32_t instance, const trgmux_target_module_←↩

t targetModule)

Get the Lock bit status of the TRGMUX register of a target module.

• void TRGMUX_DRV_GenSWTrigger (const uint32_t instance)

Generate software triggers.

16.103.2 Data Structure Documentation

16.103.2.1 struct trgmux_inout_mapping_config_t

Configuration structure for pairing source triggers with target modules.

Use an instance of this structure to define a TRGMUX link between a trigger source and a target module. This
structure is used by the user configuration structure.

Implements : trgmux_inout_mapping_config_t_Class

Definition at line 88 of file trgmux_driver.h.

Data Fields

• trgmux_trigger_source_t triggerSource
• trgmux_target_module_t targetModule
• bool lockTargetModuleReg

Field Documentation

16.103.2.1.1 bool lockTargetModuleReg

if true, the LOCK bit of the target module register will be set by TRGMUX_DRV_INIT(), after the current mapping is
configured

Definition at line 92 of file trgmux_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

874 CONTENTS

16.103.2.1.2 trgmux_target_module_t targetModule

selects one of the TRGMUX target modules

Definition at line 91 of file trgmux_driver.h.

16.103.2.1.3 trgmux_trigger_source_t triggerSource

selects one of the TRGMUX trigger sources

Definition at line 90 of file trgmux_driver.h.

16.103.2.2 struct trgmux_user_config_t

User configuration structure for the TRGMUX driver.

Use an instance of this structure with the TRGMUX_DRV_Init() function. This enables configuration of TRGMUX
with the user defined mappings between inputs (source triggers) and outputs (target modules), via a single function
call.

Implements : trgmux_user_config_t_Class

Definition at line 104 of file trgmux_driver.h.

Data Fields

• uint8_t numInOutMappingConfigs
• const trgmux_inout_mapping_config_t ∗ inOutMappingConfig

Field Documentation

16.103.2.2.1 const trgmux_inout_mapping_config_t∗ inOutMappingConfig

pointer to array of in-out mapping structures

Definition at line 107 of file trgmux_driver.h.

16.103.2.2.2 uint8_t numInOutMappingConfigs

number of in-out mappings defined in TRGMUX configuration

Definition at line 106 of file trgmux_driver.h.

16.103.3 Typedef Documentation

16.103.3.1 typedef enum trgmux_target_module_e trgmux_target_module_t

Enumeration for target module of TRGMUX.

Describes all possible outputs (target modules) of the TRGMUX IP This enumeration depends on the supported
instances in device

Implements : trgmux_target_module_t_Class

Definition at line 78 of file trgmux_driver.h.

16.103.3.2 typedef enum trgmux_trigger_source_e trgmux_trigger_source_t

Enumeration for trigger source module of TRGMUX.

Describes all possible inputs (trigger sources) of the TRGMUX IP This enumeration depends on the supported
instances in device

Implements : trgmux_trigger_source_t_Class

Definition at line 68 of file trgmux_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.103 TRGMUX Driver 875

16.103.4 Function Documentation

16.103.4.1 status_t TRGMUX_DRV_Deinit (const uint32_t instance)

Reset to default values the source triggers corresponding to all target modules, if none of the target modules is
locked.

Parameters

in instance The TRGMUX instance number.

Returns

Execution status:
STATUS_SUCCESS
STATUS_ERROR - if at least one of the target module register is locked.

Definition at line 114 of file trgmux_driver.c.

16.103.4.2 void TRGMUX_DRV_GenSWTrigger (const uint32_t instance)

Generate software triggers.

This function uses a SIM register in order to generate a software triggers to the target peripherals selected in
TRGMUX

Parameters

param[in] instance The TRGMUX instance number.

Definition at line 221 of file trgmux_driver.c.

16.103.4.3 bool TRGMUX_DRV_GetLockForTargetModule (const uint32_t instance, const trgmux_target_module_t
targetModule)

Get the Lock bit status of the TRGMUX register of a target module.

This function gets the value of the LK bit from the TRGMUX register corresponding to the selected target module.

Parameters

in instance The TRGMUX instance number.
in targetModule One of the values in the trgmux_target_module_t enumeration

Returns

true - if the selected targetModule register is locked
false - if the selected targetModule register is not locked

Definition at line 203 of file trgmux_driver.c.

16.103.4.4 trgmux_trigger_source_t TRGMUX_DRV_GetTrigSourceForTargetModule (const uint32_t instance, const
trgmux_target_module_t targetModule)

Get the source trigger configured for a target module.

This function returns the TRGMUX source trigger linked to a selected target module.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

876 CONTENTS

in instance The TRGMUX instance number.
in targetModule One of the values in the trgmux_target_module_t enumeration.

Returns

Enum value corresponding to the trigger source configured for the selected target module.

Definition at line 168 of file trgmux_driver.c.

16.103.4.5 status_t TRGMUX_DRV_Init (const uint32_t instance, const trgmux_user_config_t ∗const trgmuxUserConfig)

Initialize a TRGMUX instance for operation.

This function first resets the source triggers of all TRGMUX target modules to their default values, then configures
the TRGMUX with all the user defined in-out mappings. If at least one of the target modules is locked, the function
will not change any of the TRGMUX target modules and return error code. This example shows how to set up the
trgmux_user_config_t parameters and how to call the TRGMUX_DRV_Init() function with the required parameters:

1 trgmux_user_config_t trgmuxConfig;
2 trgmux_inout_mapping_config_t trgmuxInoutMappingConfig[] =
3 {
4 {TRGMUX_TRIG_SOURCE_TRGMUX_IN9, TRGMUX_TARGET_MODULE_DMA_CH0, false},
5 {TRGMUX_TRIG_SOURCE_FTM1_EXT_TRIG, TRGMUX_TARGET_MODULE_TRGMUX_OUT4, true}
6 };
7
8 trgmuxConfig.numInOutMappingConfigs = 2;
9 trgmuxConfig.inOutMappingConfig = trgmuxInoutMappingConfig;
10
11 TRGMUX_DRV_Init(instance, &trgmuxConfig);

Parameters

in instance The TRGMUX instance number.
in trgmuxUser←↩

Config
Pointer to the user configuration structure.

Returns

Execution status:
STATUS_SUCCESS
STATUS_ERROR - if at least one of the target module register is locked.

Definition at line 71 of file trgmux_driver.c.

16.103.4.6 void TRGMUX_DRV_SetLockForTargetModule (const uint32_t instance, const trgmux_target_module_t
targetModule)

Locks the TRGMUX register of a target module.

This function sets the LK bit of the TRGMUX register corresponding to the selected target module. Please note that
some TRGMUX registers can contain up to 4 SEL bitfields, meaning that these registers can be used to configure
up to 4 target modules independently. Because the LK bit is only one per register, the configuration of all target
modules referred from that register will be locked.

Parameters

in instance The TRGMUX instance number.
in targetModule One of the values in the trgmux_target_module_t enumeration

Definition at line 185 of file trgmux_driver.c.

16.103.4.7 status_t TRGMUX_DRV_SetTrigSourceForTargetModule (const uint32_t instance, const
trgmux_trigger_source_t triggerSource, const trgmux_target_module_t targetModule)

Configure a source trigger for a selected target module.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.103 TRGMUX Driver 877

This function configures a TRGMUX link between a source trigger and a target module, if the requested target
module is not locked.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

878 CONTENTS

Parameters

in instance The TRGMUX instance number.
in triggerSource One of the values in the trgmux_trigger_source_t enumeration
in targetModule One of the values in the trgmux_target_module_t enumeration

Returns

Execution status:
STATUS_SUCCESS
STATUS_ERROR - if requested target module is locked

Definition at line 135 of file trgmux_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.104 Timing - Peripheral Abstraction Layer (TIMING PAL) 879

16.104 Timing - Peripheral Abstraction Layer (TIMING PAL)

16.104.1 Detailed Description

The S32 SDK provides a Peripheral Abstraction Layer for timer modules of S32 SDK devices.

The TIMING PAL driver allows to generate period event. It was designed to be portable across all platforms and
IPs which support LPIT, PIT, LPTMR, FTM, STM.

How to integrate TIMING PAL in your application

Unlike the other drivers, TIMING PAL modules need to include a configuration file named timing_pal_cfg.h, which
allows the user to specify which IPs are used. The following code example shows how to configure one instance for
each available TIMING IPs.

#ifndef TIMING_PAL_CFG_H
#define TIMING_PAL_CFG_H

/* Define which IP instance will be used in current project */
#define TIMING_OVER_LPIT
#define TIMING_OVER_FTM
#define TIMING_OVER_LPTMR

#endif /* TIMING_PAL_CFG_H */

The following table contains the matching between platforms and available IPs

I←↩

P/←↩

M←↩

CU

S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K146
S32←↩

K148
S32←↩

K142←↩

W

S32←↩

K144←↩

W

S32←↩

V234
S32←↩

R274
S32←↩

R372

M←↩

P←↩

C5748←↩

G

M←↩

P←↩

C5746←↩

C

M←↩

P←↩

C5744←↩

P
L←↩

PI←↩

T←↩

_←↩

TI←↩

M←↩

I←↩

NG

Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO NO NO

L←↩

P←↩

T←↩

M←↩

R←↩

_←↩

TI←↩

M←↩

I←↩

NG

Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO NO NO

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

880 CONTENTS

F←↩

T←↩

M←↩

_←↩

TI←↩

M←↩

I←↩

NG

Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
NO NO NO NO NO

PI←↩

T←↩

_←↩

TI←↩

M←↩

I←↩

NG

NO NO NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES

S←↩

T←↩

M←↩

_←↩

TI←↩

M←↩

I←↩

NG

NO NO NO NO NO NO NO NO Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES
Y←↩

ES

Features

• Start timer channel counting with period in ticks function

• Generate one-shot or continuous notification(Event)

• Get elapsed time and remaining time functions

• Get tick resolution in engineering units (nanosecond, microsecond or millisecond)

Functionality

Initialization

In order to use the TIMING PAL driver it must be first initialized, using TIMING_Init() function. Once initialized, it
should be de-initialized before initialized again for the same TIMING module instance, using TIMING_Deinit(). The
initialization function does the following operations:

• sets the clock source, clock prescaler (except LPIT, PIT_TIMING)

• sets notification type and callback function of timer channel Different TIMING modules instances can function
independently of each other.

Start/Stop a timer channel counting with new period

After initialization, a timer channel can be started by calling TIMING_StartChannel function. The input period unit is
ticks, the max value of period depends on which timer is used for timing. The TIMING_StartChannel function can be
called consecutively, it starts new period immediately but in case LPIT, PIT_TIMING when timer channel is running,
to abort the current timer channel period and start a timer channel period with a new value, the timer channel must
be stopped and started again. A timer channel can be stop by calling TIMING_StopChannel function.

Get elapsed and remaining time

When a timer channel is running, the elapsed and remaining timer can be got by calling TIMING_GetElapsed and
TIMING_GetRemaining function. The elapsed and remaining time in nanosecond, microsecond or millisecond is
the result of this function multiplies by the result of the TIMING_GetResolution.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.104 Timing - Peripheral Abstraction Layer (TIMING PAL) 881

Important Notes

• Before using the TIMING PAL driver the module clock must be configured. Refer to Clock Manager for clock
configuration.

• The driver enables the interrupts for the corresponding TIMING module, but any interrupt priority must be
done by the application

• When the vector table is not in ram (flash_vector_table = 1):

– INT_SYS_InstallHandler shall check if the function pointer provided as parameter for the new handler is
already present in the vector table for the given IRQ number.

– The user will be required to manually add the correct handlers in the startup files

• The board specific configurations must be done prior to driver calls

• Some features are not available for all TIMING IPs and incorrect parameters will be handled by DEV_ASS←↩

ERT

• Because of the driver code limit, when use FTM_TIMING or STM_TIMING the executing time of interrupt
handler is about 4 microseconds, so the erroneous period is about 4 microsecond, should configure period
enough to skip this erroneous period.

• In MPC574xG and MPC574xC devices, STM module has Errata e10200. If STM clock source is configured
to use the FXOSC clock for the case application software reads the STM Count register(STM_CNT) while
the counter is running, the value returned may be incorrect. Note the default clock source for the STM is
the FS80 (divided system clock) and this configuration is working properly. Consequently the value returned
by the function STM_DRV_GetCounterValue() may be incorrect when clock source is set to FXOSC option.
Thus, this issue impacts to the functions that call STM_DRV_GetCounterValue() function:

– TIMING_GetElapsed

– TIMING_GetRemaining

– TIMING_StartChannel only in case the timer is already started This issue should be taken care when
using TMING over STM.

Example code

/* The timer channel number */
#define TIMER_CHANNEL 0U

/* The timer channel period by nanosecond */
#define TIMER_PERIOD_NANO 1000000000U

/* Counting variable */
uint32_t count = 0;

/* Callback function */
void My_Callback(void * data)
{

(void)data;
count = count + 1;

}

/* Configure timer channel */
timer_chan_config_t timing_pal1_channelArray[] =
{

{
TIMER_CHANNEL,
TIMER_CHAN_TYPE_CONTINUOUS,
My_Callback,
NULL

}
};

/* Configure FTM clock source */
extension_ftm_for_timer_t timing_pal1_ftmExtention =
{

FTM_CLOCK_SOURCE_FIXEDCLK,
FTM_CLOCK_DIVID_BY_1,
0xFFFF

};

/* Configure TIMING instance */

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

882 CONTENTS

timer_config_t timing_pal1_InitConfig =
{

timing_pal1_channelArray,
1,
&timing_pal1_ftmExtention

};

/* TIMING instance number structure */
timing_instance_t instance =
{

TIMING_INST_TYPE_LPIT,
0U

};

int main(void)
{
uint64_t resolution;
uint32_t elapsedTime;

/* Initialize TIMING */
TIMING_Init(&instance, &timing_pal1_InitConfig);

/* Get tick resolution in nanosecond */
TIMING_GetResolution(&instance,

TIMER_RESOLUTION_TYPE_NANOSECOND, &resolution);

/* Start channel counting with period is 1 second */
TIMING_StartChannel(&instance, TIMER_CHANNEL, (TIMER_PERIOD_NANO / resolution));
....

/* Get elapsed time in ticks */
elapsedTime = TIMING_GetElapsed(&instance, TIMER_CHANNEL);

/* Get elapsed time in nanosecond */
elapsedTime = elapsedTime * resolution;

/* De-initialize TIMING */
TIMING_Deinit(&instance);

}

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\timing\timing_pal.c
${S32SDK_PATH}\platform\pal\src\timing\timing_irq.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc\

Compile symbols

No special symbols are required for this component

Dependencies

Common: Clock Manager Interrupt Manager (Interrupt)

S32K1xx: Low Power Interrupt Timer (LPIT) Low Power Timer (LPTMR) FlexTimer (FTM)

MPC574x and S32Rx7x: pit stm

Data Structures

• struct timer_chan_config_t

Structure to configure the channel timer notification. More...

• struct timer_config_t

Timer configuration structure. More...

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.104 Timing - Peripheral Abstraction Layer (TIMING PAL) 883

• struct extension_lptmr_for_timer_t

Defines the extension structure for the timer over LPTMR. More...

• struct extension_ftm_for_timer_t

Defines the extension structure for the timer over FTM. More...

Enumerations

• enum timer_resolution_type_t { TIMER_RESOLUTION_TYPE_NANOSECOND, TIMER_RESOLUTION_←↩

TYPE_MICROSECOND, TIMER_RESOLUTION_TYPE_MILISECOND }

Type options available for tick resolution.

• enum timer_chan_type_t { TIMER_CHAN_TYPE_CONTINUOUS, TIMER_CHAN_TYPE_ONESHOT }

Type options available for timer channel notification.

Functions

• status_t TIMING_Init (const timing_instance_t ∗const instance, const timer_config_t ∗const config)

Initialize the timer instance and timer channels with value from input configuration structure.

• void TIMING_Deinit (const timing_instance_t ∗const instance)

De-initialize a timer instance.

• void TIMING_StartChannel (const timing_instance_t ∗const instance, const uint8_t channel, const uint32_t
periodTicks)

Starts the timer channel counting.

• void TIMING_StopChannel (const timing_instance_t ∗const instance, const uint8_t channel)

Stop the timer channel counting.

• uint32_t TIMING_GetElapsed (const timing_instance_t ∗const instance, const uint8_t channel)

Get elapsed ticks.

• uint32_t TIMING_GetRemaining (const timing_instance_t ∗const instance, const uint8_t channel)

Get remaining ticks.

• void TIMING_EnableNotification (const timing_instance_t ∗const instance, const uint8_t channel)

Enable channel notifications.

• void TIMING_DisableNotification (const timing_instance_t ∗const instance, const uint8_t channel)

Disable channel notifications.

• status_t TIMING_GetResolution (const timing_instance_t ∗const instance, const timer_resolution_type_←↩

t type, uint64_t ∗const resolution)

Get tick resolution.

• status_t TIMING_GetMaxPeriod (const timing_instance_t ∗const instance, const timer_resolution_type_←↩

t type, uint64_t ∗const maxPeriod)

Get max period in engineering units.

• void TIMING_InstallCallback (const timing_instance_t ∗const instance, const uint8_t channel, const timer_←↩

callback_t callback, void ∗const callbackParam)

Installs callback function for the timer channel.

16.104.2 Data Structure Documentation

16.104.2.1 struct timer_chan_config_t

Structure to configure the channel timer notification.

This structure holds the configuration settings for the timer channel notification Implements : timer_chan_config_←↩

t_Class

Definition at line 77 of file timing_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

884 CONTENTS

Data Fields

• uint8_t channel
• timer_chan_type_t chanType
• timer_callback_t callback
• void ∗ callbackParam

Field Documentation

16.104.2.1.1 timer_callback_t callback

Callback function called on notification

Definition at line 81 of file timing_pal.h.

16.104.2.1.2 void∗ callbackParam

Callback parameter pointer

Definition at line 82 of file timing_pal.h.

16.104.2.1.3 uint8_t channel

Channel number

Definition at line 79 of file timing_pal.h.

16.104.2.1.4 timer_chan_type_t chanType

Continuous or One-shot

Definition at line 80 of file timing_pal.h.

16.104.2.2 struct timer_config_t

Timer configuration structure.

This structure holds the configuration settings for the timer Implements : timer_config_t_Class

Definition at line 91 of file timing_pal.h.

Data Fields

• const timer_chan_config_t ∗ chanConfigArray
• uint8_t numChan
• void ∗ extension

Field Documentation

16.104.2.2.1 const timer_chan_config_t∗ chanConfigArray

Channel configuration array

Definition at line 93 of file timing_pal.h.

16.104.2.2.2 void∗ extension

IP specific configuration structure

Definition at line 95 of file timing_pal.h.

16.104.2.2.3 uint8_t numChan

Number of elements in chanConfigArray

Definition at line 94 of file timing_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.104 Timing - Peripheral Abstraction Layer (TIMING PAL) 885

16.104.2.3 struct extension_lptmr_for_timer_t

Defines the extension structure for the timer over LPTMR.

Part of LPTMR configuration structure Implements : extension_lptmr_for_timer_t_Class

Definition at line 114 of file timing_pal.h.

Data Fields

• lptmr_clocksource_t clockSelect
• lptmr_prescaler_t prescaler
• bool bypassPrescaler

Field Documentation

16.104.2.3.1 bool bypassPrescaler

Enable/Disable prescaler bypass

Definition at line 118 of file timing_pal.h.

16.104.2.3.2 lptmr_clocksource_t clockSelect

LPTMR clock source selection

Definition at line 116 of file timing_pal.h.

16.104.2.3.3 lptmr_prescaler_t prescaler

Prescaler Selection

Definition at line 117 of file timing_pal.h.

16.104.2.4 struct extension_ftm_for_timer_t

Defines the extension structure for the timer over FTM.

Part of FTM configuration structure Implements : extension_ftm_for_timer_t_Class

Definition at line 129 of file timing_pal.h.

Data Fields

• ftm_clock_source_t clockSelect
• ftm_clock_ps_t prescaler
• uint16_t finalValue

Field Documentation

16.104.2.4.1 ftm_clock_source_t clockSelect

FTM clock source selection

Definition at line 131 of file timing_pal.h.

16.104.2.4.2 uint16_t finalValue

The final value of FTM counter

Definition at line 133 of file timing_pal.h.

16.104.2.4.3 ftm_clock_ps_t prescaler

Prescaler Selection

Definition at line 132 of file timing_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

886 CONTENTS

16.104.3 Enumeration Type Documentation

16.104.3.1 enum timer_chan_type_t

Type options available for timer channel notification.

Implements : timer_chan_type_t_Class

Enumerator

TIMER_CHAN_TYPE_CONTINUOUS Timer channel creates continuous notification

TIMER_CHAN_TYPE_ONESHOT Timer channel creates one-shot notification

Definition at line 65 of file timing_pal.h.

16.104.3.2 enum timer_resolution_type_t

Type options available for tick resolution.

Implements : timer_resolution_type_t_Class

Enumerator

TIMER_RESOLUTION_TYPE_NANOSECOND Tick resolution is nanosecond

TIMER_RESOLUTION_TYPE_MICROSECOND Tick resolution is microsecond

TIMER_RESOLUTION_TYPE_MILISECOND Tick resolution is millisecond

Definition at line 53 of file timing_pal.h.

16.104.4 Function Documentation

16.104.4.1 void TIMING_Deinit (const timing_instance_t ∗const instance)

De-initialize a timer instance.

This function de-initializes timer instance. In order to use the timer instance again, TIMING_Init must be called.

Parameters

in instance The pointer to timer instance number structure

Definition at line 604 of file timing_pal.c.

16.104.4.2 void TIMING_DisableNotification (const timing_instance_t ∗const instance, const uint8_t channel)

Disable channel notifications.

This function disables channel notification.

Parameters

in instance The pointer to timer instance number structure
in channel The channel number

Definition at line 1390 of file timing_pal.c.

16.104.4.3 void TIMING_EnableNotification (const timing_instance_t ∗const instance, const uint8_t channel)

Enable channel notifications.

This function enables channel notification.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.104 Timing - Peripheral Abstraction Layer (TIMING PAL) 887

Parameters

in instance The pointer to timer instance number structure
in channel The channel number

Definition at line 1292 of file timing_pal.c.

16.104.4.4 uint32_t TIMING_GetElapsed (const timing_instance_t ∗const instance, const uint8_t channel)

Get elapsed ticks.

This function gets elapsed time of the current period by ticks. The elapsed time by nanosecond, microsecond or
millisecond is the result of this function multiplies by the result of the TIMING_GetResolution function. Note that:
If the timer channel type is continuous, this function may not return value of the period at the moment period is
timeout depending on timer frequency, optimizations, etc. The behavior occurs if the execution time of the function
is significant relative to timer tick duration. If the timer channel type is one-shot, this function can be used to check
whether the current period is timeout, in this case if the returned value is bigger or equal than the period, the current
period is timeout or overflowed.

Parameters

in instance The pointer to timer instance number structure
in channel The channel number

Returns

Number of ticks elapsed of the current period

Definition at line 956 of file timing_pal.c.

16.104.4.5 status_t TIMING_GetMaxPeriod (const timing_instance_t ∗const instance, const timer_resolution_type_t
type, uint64_t ∗const maxPeriod)

Get max period in engineering units.

This function gets max period in engineering units.

Parameters

in instance The pointer to timer instance number structure
in type Resolution type
out maxPeriod The pointer to max period in engineering units

Returns

Operation status

• STATUS_SUCCESS: Operation was successful

• STATUS_ERROR : The timer frequency is not fit to resolution type

Definition at line 1627 of file timing_pal.c.

16.104.4.6 uint32_t TIMING_GetRemaining (const timing_instance_t ∗const instance, const uint8_t channel)

Get remaining ticks.

This function gets remaining time of the current period by ticks. The remaining time by nanosecond, microsecond
or millisecond is the result of this function multiplies by the result of the TIMING_GetResolution function. Note that:
If the timer channel type is continuous, this function may not return 0 at the moment period is timeout depending on
timer frequency, optimizations, etc. The behavior occurs if the execution time of the function is significant relative
to timer tick duration. If the timer channel type is one-shot, this function can be used to check whether the current
period is timeout, in this case if the returned value is 0, the current period is timeout or overflowed.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

888 CONTENTS

Parameters

in instance The pointer to timer instance number structure
in channel The channel number

Returns

Number of ticks remaining of the current period

Definition at line 1127 of file timing_pal.c.

16.104.4.7 status_t TIMING_GetResolution (const timing_instance_t ∗const instance, const timer_resolution_type_t
type, uint64_t ∗const resolution)

Get tick resolution.

This function gets tick resolution in engineering units (nanosecond, microsecond or millisecond). The result of this
function is used to calculate period, remaining time or elapsed time in engineering units.

Parameters

in instance The pointer to timer instance number structure
in type Resolution type
out resolution The pointer to resolution in engineering units

Returns

Operation status

• STATUS_SUCCESS: Operation was successful

• STATUS_ERROR : The timer frequency is not fit to resolution type

Definition at line 1481 of file timing_pal.c.

16.104.4.8 status_t TIMING_Init (const timing_instance_t ∗const instance, const timer_config_t ∗const config)

Initialize the timer instance and timer channels with value from input configuration structure.

This function initializes clock source, prescaler of the timer instance(except LPIT, PIT), the final value of counter
(only FTM). This function also setups notification type and callback function of timer channel. The timer instance
number and its configuration structure shall be passed as arguments. Timer channels do not start counting by
default after calling this function. The function TIMING_StartChannel must be called to start the timer channel
counting.

Parameters

in instance The pointer to timer instance number structure
in config The pointer to configuration structure

Returns

Operation status

• STATUS_SUCCESS: Operation was successful

• STATUS_ERROR : Operation was fail if the timer instance is out of range For example: Timing over
LPIT but the instance is not LPIT instance(TIMING_OVER_LPIT0_INSTANCE)

• STATUS_ERROR : Operation was fail if the FTM instance has been initialized

Definition at line 526 of file timing_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.104 Timing - Peripheral Abstraction Layer (TIMING PAL) 889

16.104.4.9 void TIMING_InstallCallback (const timing_instance_t ∗const instance, const uint8_t channel, const
timer_callback_t callback, void ∗const callbackParam)

Installs callback function for the timer channel.

This function installs new callback function and callback parameter for the timer channel event. This function allows
changing the callback function and parameter while the timer channel is running. If the provided callback function
parameter is NULL, it is equivalent to removing the callback.

Parameters

in instance The pointer to timer instance number structure
in callback The new callback function for timer channel
in callbackParam The new callback parameter pointer

Definition at line 1785 of file timing_pal.c.

16.104.4.10 void TIMING_StartChannel (const timing_instance_t ∗const instance, const uint8_t channel, const uint32_t
periodTicks)

Starts the timer channel counting.

This function starts channel counting with a new period in ticks. Note that:

• If the timer is PIT or LPIT, to abort the current timer channel period and start a timer channel period with a
new value, the timer channel must be stopped and started again.

• If the timer is FTM, this function start channel by enable channel interrupt generation.

• LPTMR and FTM is 16 bit timer, so the input period must be smaller than 65535.

• LPTMR and FTM is 16 bit timer, so the input period must be smaller than 65535.

Parameters

in instance The pointer to timer instance number structure
in channel The channel number
in periodTicks The input period in ticks

Definition at line 678 of file timing_pal.c.

16.104.4.11 void TIMING_StopChannel (const timing_instance_t ∗const instance, const uint8_t channel)

Stop the timer channel counting.

This function stop channel counting. Note that if the timer is FTM, this function stop channel by disable channel
interrupt generation.

Parameters

in instance The pointer to timer instance number structure
in channel The channel number

Definition at line 854 of file timing_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

890 CONTENTS

16.105 Transport layer API

16.105.1 Detailed Description

Transport layer stands between the application layer and the core API layer.

This layer consists the implementation of data transportation which contains one or more LIN frames. It is situated
between the application layer and the core API layer including LIN2.1 TL API and LIN TL J2602. This layer provides
APIs for the transport protocol, node configuration and diagnostic services. For LIN 2.1, all components will be
extended from LIN 2.0 specification. The node configuration for J2602 implements only some functions of LIN 2.0
specification.

Modules

• Common Transport Layer API

Contains Transport Layer APIs that used for both protocols LIN 2.1 and J2602.

• J2602 Transport Layer specific API

Contains Transport Layer APIs that only used for J2602 protocol.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 891

16.106 UJA116xA SBC Driver

16.106.1 Detailed Description

Data Structures

• struct sbc_wtdog_ctr_t

Watchdog control register structure. Watchdog configuration structure. More...

• struct sbc_sbc_t

SBC configuration control register structure. Two operating modes have a major impact on the operation of the
watchdog: Forced Normal mode and Software Development mode (Software Development mode is provided for test
and development purposes only and is not a dedicated SBC operating mode; the UJA116xA can be in any functional
operating mode with Software Development mode enabled). These modes are enabled and disabled via bits FNMC
and SDMC respectively in the SBC configuration control register. Note that this register is located in the non-volatile
memory area. The watchdog is disabled in Forced Normal mode (FNM). In Software Development mode (SDM), the
watchdog can be disabled or activated for test and software debugging purposes. More...

• struct sbc_start_up_t

Start-up control register structure. This structure contains settings of RSTN output reset pulse width and V2/VEXT
start-up control. More...

• struct sbc_regulator_t

Regulator control register structure. This structure set power distribution control, V2/VEXT configuration, set V1 reset
threshold. More...

• struct sbc_supply_evnt_t

Supply event capture enable register structure. This structure enables or disables detection of V2/VEXT overvoltage,
undervoltage and V1 undervoltage enable. More...

• struct sbc_sys_evnt_t

System event capture enable register structure. This structure enables or disables overtemperature warning, SPI
failure enable. More...

• struct sbc_can_ctr_t

CAN control register structure. This structure configure CAN peripheral behavior. More...

• struct sbc_trans_evnt_t

Transceiver event capture enable register structure. Can bus silence, Can failure and Can wake-up settings. More...

• struct sbc_frame_t

Frame control register structure. The wake-up frame format, standard (11-bit) or extended (29-bit) identifier, is select-
ed via bit IDE in the Frame control register. More...

• struct sbc_can_conf_t

CAN configuration group structure. This structure configure CAN peripheral behavior. More...

• struct sbc_wake_t

WAKE pin event capture enable register structure. Local wake-up is enabled via bits WPRE and WPFE in the WAKE
pin event capture enable register. A wake-up event is triggered by a LOW-to-HIGH (ifWPRE = 1) and/or a HIGH-to-
LOW (if WPFE = 1) transition on the WAKE pin. This arrangement allows for maximum flexibility when designing a
local wake-up circuit. In applications that do not use the local wake-up facility, local wake-up should be disabled and
the WAKE pin connected to GND. More...

• struct sbc_regulator_ctr_t

Regulator control register group. This structure is group of regulator settings. More...

• struct sbc_int_config_t

Init configuration structure. This structure is used for initialization of sbc. More...

• struct sbc_factories_conf_t

Factory configuration structure. It contains Start-up control register and SBC configuration control register. This
is non-volatile memory with limited write access. The MTPNV cells can be reprogrammed a maximum of 200 times
(Ncy(W)MTP; Bit NVMPS in the MTPNV status register indicates whether the non-volatile cells can be reprogrammed.
This register also contains a write counter, WRCNTS, that is incremented each time the MTPNV cells are repro-
grammed (up to a maximum value of 111111; there is no overflow; performing a factory reset also increments the
counter). This counter is provided for information purposes only; reprogramming will not be rejected when it reach-
es its maximum value. Factory preset values are restored if the following conditions apply continuously for at least
td(MTPNV) during battery power-up: pin RSTN is held LOW, CANH is pulled up to VBAT, CANL is pulled down to

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

892 CONTENTS

GND After the factory preset values have been restored, the SBC performs a system reset and enters Forced normal
Mode. Since the CAN-bus is clamped dominant, pin RXDC is forced LOW. Pin RXD is forced HIGH during the factory
preset restore process (td(MTPNV)). A falling edge on RXD caused by bit PO being set after power-on indicates that
the factory preset process has been completed. Note that the write counter, WRCNTS, in the MTPNV status register
is incremented every time the factory presets are restored. More...

• struct sbc_main_status_t

Main status register structure. The Main status register can be accessed to monitor the status of the overtemperature
warning flag and to determine whether the UJA116xA has entered Normal mode after initial power-up. It also indicates
the source of the most recent reset event. More...

• struct sbc_wtdog_status_t

Watchdog status register structure. Information on the status of the watchdog is available from the Watchdog status
register. This register also indicates whether Forced Normal and Software Development modes are active. More...

• struct sbc_supply_status_t

Supply voltage status register structure. V2/VEXT and V1 undervoltage and overvoltage status. More...

• struct sbc_trans_stat_t

Transceiver status register structure. There are stored CAN transceiver statuses. More...

• struct sbc_gl_evnt_stat_t

Global event status register. The microcontroller can monitor events via the event status registers. An extra status
register, the Global event status register, is provided to help speed up software polling routines. By polling the Global
event status register, the microcontroller can quickly determine the type of event captured (system, supply, transceiver
or WAKE pin) and then query the relevant event status register. More...

• struct sbc_sys_evnt_stat_t

System event status register. Wake-up and interrupt event diagnosis in the UJA116xA is intended to provide the
microcontroller with information on the status of a range of features and functions. This information is stored in the
event status registers and is signaled on pin RXD, if enabled. More...

• struct sbc_sup_evnt_stat_t

Supply event status register. More...

• struct sbc_trans_evnt_stat_t

Transceiver event status register. More...

• struct sbc_wake_evnt_stat_t

WAKE pin event status register. More...

• struct sbc_evn_capt_t

Event capture registers structure. This structure contains Global event status, System event status, Supply event
status, Transceiver event status, WAKE pin event status. More...

• struct sbc_mtpnv_stat_t

MTPNV status register. The MTPNV cells can be reprogrammed a maximum of 200 times (Ncy(W)MTP). Bit N←↩

VMPS in the MTPNV status register indicates whether the non-volatile cells can be reprogrammed. This register
also contains a write counter, WRCNTS, that is incremented each time the MTPNV cells are reprogrammed (up to a
maximum value of 111111; there is no overflow; performing a factory reset also increments the counter). This counter
is provided for information purposes only; reprogramming will not be rejected when it reaches its maximum value.
More...

• struct sbc_status_group_t

Status group structure. All statuses of SBC are stored in this structure. More...

Macros

• #define SBC_UJA_TIMEOUT 1000U

• #define SBC_UJA_COUNT_ID_REG 4U

• #define SBC_UJA_COUNT_MASK 4U

• #define SBC_UJA_COUNT_DMASK 8U

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 893

Typedefs

• typedef uint8_t sbc_fail_safe_rcc_t

Fail-safe control register, reset counter control (0x02). incremented every time the SBC enters Reset mode while
FNMC = 0; RCC overflows from 11 to 00; default at power-on is 00.

• typedef uint8_t sbc_identifier_t

ID registers, identifier format (0x27 to 0x2A). A valid WUF identifier is defined and stored in the ID registers. An ID
mask can be defined to allow a group of identifiers to be recognized as valid by an individual node.

• typedef uint8_t sbc_identif_mask_t

ID mask registers (0x2B to 0x2E). The identifier mask is defined in the ID mask registers, where a 1 means dont care.

• typedef uint8_t sbc_frame_ctr_dlc_t

Frame control register, number of data bytes expected in a CAN frame (0x2F).

• typedef uint8_t sbc_data_mask_t

Data mask registers. The data field indicates the nodes to be woken up. Within the data field, groups of nodes can
be predefined and associated with bits in a data mask. By comparing the incoming data field with the data mask,
multiple groups of nodes can be woken up simultaneously with a single wake-up message.

• typedef uint8_t sbc_mtpnv_stat_wrcnts_t

MTPNV status register, write counter status (0x70). 6-bits - contains the number of times the MTPNV cells were
reprogrammed.

Enumerations

• enum sbc_register_t {
SBC_UJA_WTDOG_CTR = 0x00U, SBC_UJA_MODE = 0x01U, SBC_UJA_FAIL_SAFE = 0x02U, SBC_U←↩

JA_MAIN = 0x03U,
SBC_UJA_SYSTEM_EVNT = 0x04U, SBC_UJA_WTDOG_STAT = 0x05U, SBC_UJA_MEMORY_0 =
0x06U, SBC_UJA_MEMORY_1 = 0x07U,
SBC_UJA_MEMORY_2 = 0x08U, SBC_UJA_MEMORY_3 = 0x09U, SBC_UJA_LOCK = 0x0AU, SBC_UJ←↩

A_REGULATOR = 0x10U,
SBC_UJA_SUPPLY_STAT = 0x1BU, SBC_UJA_SUPPLY_EVNT = 0x1CU, SBC_UJA_CAN = 0x20U, SB←↩

C_UJA_TRANS_STAT = 0x22U,
SBC_UJA_TRANS_EVNT = 0x23U, SBC_UJA_DAT_RATE = 0x26U, SBC_UJA_IDENTIF_0 = 0x27U, S←↩

BC_UJA_IDENTIF_1 = 0x28U,
SBC_UJA_IDENTIF_2 = 0x29U, SBC_UJA_IDENTIF_3 = 0x2AU, SBC_UJA_MASK_0 = 0x2BU, SBC_UJ←↩

A_MASK_1 = 0x2CU,
SBC_UJA_MASK_2 = 0x2DU, SBC_UJA_MASK_3 = 0x2EU, SBC_UJA_FRAME_CTR = 0x2FU, SBC_U←↩

JA_DAT_MASK_0 = 0x68U,
SBC_UJA_DAT_MASK_1 = 0x69U, SBC_UJA_DAT_MASK_2 = 0x6AU, SBC_UJA_DAT_MASK_3 = 0x6←↩

BU, SBC_UJA_DAT_MASK_4 = 0x6CU,
SBC_UJA_DAT_MASK_5 = 0x6DU, SBC_UJA_DAT_MASK_6 = 0x6EU, SBC_UJA_DAT_MASK_7 = 0x6←↩

FU, SBC_UJA_WAKE_STAT = 0x4BU,
SBC_UJA_WAKE_EN = 0x4CU, SBC_UJA_GL_EVNT_STAT = 0x60U, SBC_UJA_SYS_EVNT_STAT =
0x61U, SBC_UJA_SUP_EVNT_STAT = 0x62U,
SBC_UJA_TRANS_EVNT_STAT = 0x63U, SBC_UJA_WAKE_EVNT_STAT = 0x64U, SBC_UJA_MTPNV←↩

_STAT = 0x70U, SBC_UJA_START_UP = 0x73U,
SBC_UJA_SBC = 0x74U, SBC_UJA_MTPNV_CRC = 0x75U, SBC_UJA_IDENTIF = 0x7EU }

Register map.

• enum sbc_wtdog_ctr_wmc_t { SBC_UJA_WTDOG_CTR_WMC_AUTO = SBC_UJA_WTDOG_CTR_WM←↩

C_F(1U), SBC_UJA_WTDOG_CTR_WMC_TIME = SBC_UJA_WTDOG_CTR_WMC_F(2U), SBC_UJA_←↩

WTDOG_CTR_WMC_WIND = SBC_UJA_WTDOG_CTR_WMC_F(4U) }

Watchdog control register, watchdog mode control (0x00). The UJA116xA contains a watchdog that supports three
operating modes: Window, Timeout and Autonomous. In Window mode (available only in SBC Normal mode), a
watchdog trigger event within a defined watchdog window triggers and resets the watchdog timer. In Timeout mode,
the watchdog runs continuously and can be triggered and reset at any time within the watchdog period by a watchdog
trigger. Watchdog time-out mode can also be used for cyclic wake-up of the microcontroller. In Autonomous mode, the
watchdog can be off or autonomously in Timeout mode, depending on the selected SBC mode. The watchdog mode

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

894 CONTENTS

is selected via bits WMC in the Watchdog control register. The SBC must be in Standby mode when the watchdog
mode is changed.

• enum sbc_wtdog_ctr_nwp_t {
SBC_UJA_WTDOG_CTR_NWP_8 = 0x08U, SBC_UJA_WTDOG_CTR_NWP_16 = 0x01U, SBC_UJA_W←↩

TDOG_CTR_NWP_32 = 0x02U, SBC_UJA_WTDOG_CTR_NWP_64 = 0x0BU,
SBC_UJA_WTDOG_CTR_NWP_128 = 0x04U, SBC_UJA_WTDOG_CTR_NWP_256 = 0x0DU, SBC_UJA←↩

_WTDOG_CTR_NWP_1024 = 0x0EU, SBC_UJA_WTDOG_CTR_NWP_4096 = 0x07U }

Watchdog control register, nominal watchdog period (0x00). Eight watchdog periods are supported, from 8 ms to 4096
ms. The watchdog period is programmed via bits NWP. The selected period is valid for both Window and Timeout
modes. The default watchdog period is 128 ms. A watchdog trigger event resets the watchdog timer. A watchdog
trigger event is any valid write access to the Watchdog control register. If the watchdog mode or the watchdog period
have changed as a result of the write access, the new values are immediately valid.

• enum sbc_mode_mc_t { SBC_UJA_MODE_MC_SLEEP = 0x01U, SBC_UJA_MODE_MC_STANDBY =
0x04U, SBC_UJA_MODE_MC_NORMAL = 0x07U }

Mode control register, mode control (0x01)

• enum sbc_fail_safe_lhc_t { SBC_UJA_FAIL_SAFE_LHC_FLOAT = SBC_UJA_FAIL_SAFE_LHC_F(0U), S←↩

BC_UJA_FAIL_SAFE_LHC_LOW = SBC_UJA_FAIL_SAFE_LHC_F(1U) }

Fail-safe control register, LIMP home control (0x02). The dedicated LIMP pin can be used to enable so called limp
home hardware in the event of a serious ECU failure. Detectable failure conditions include SBC overtemperature
events, loss of watchdog service, short-circuits on pins RSTN or V1 and user-initiated or external reset events. The
LIMP pin is a battery-robust, active-LOW, open-drain output. The LIMP pin can also be forced LOW by setting bit
LHC in the Fail-safe control register.

• enum sbc_main_otws_t { SBC_UJA_MAIN_OTWS_BELOW = SBC_UJA_MAIN_OTWS_F(0U), SBC_UJ←↩

A_MAIN_OTWS_ABOVE = SBC_UJA_MAIN_OTWS_F(1U) }

Main status register, Overtemperature warning status (0x03).

• enum sbc_main_nms_t { SBC_UJA_MAIN_NMS_NORMAL = SBC_UJA_MAIN_NMS_F(0U), SBC_UJA_←↩

MAIN_NMS_PWR_UP = SBC_UJA_MAIN_NMS_F(1U) }

Main status register, normal mode status (0x03).

• enum sbc_main_rss_t {
SBC_UJA_MAIN_RSS_OFF_MODE = 0x00U, SBC_UJA_MAIN_RSS_CAN_WAKEUP = 0x01U, SBC_UJ←↩

A_MAIN_RSS_SLP_WAKEUP = 0x04U, SBC_UJA_MAIN_RSS_OVF_SLP = 0x0CU,
SBC_UJA_MAIN_RSS_DIAG_WAKEUP = 0x0DU, SBC_UJA_MAIN_RSS_WATCH_TRIG = 0x0EU, SBC←↩

_UJA_MAIN_RSS_WATCH_OVF = 0x0FU, SBC_UJA_MAIN_RSS_ILLEG_WATCH = 0x10U,
SBC_UJA_MAIN_RSS_RSTN_PULDW = 0x11U, SBC_UJA_MAIN_RSS_LFT_OVERTM = 0x12U, SBC_←↩

UJA_MAIN_RSS_V1_UNDERV = 0x13U, SBC_UJA_MAIN_RSS_ILLEG_SLP = 0x14U,
SBC_UJA_MAIN_RSS_WAKE_SLP = 0x16U }

Main status register, Reset source status (0x03).

• enum sbc_sys_evnt_otwe_t { SBC_UJA_SYS_EVNT_OTWE_DIS = SBC_UJA_SYS_EVNT_OTWE_F(0U),
SBC_UJA_SYS_EVNT_OTWE_EN = SBC_UJA_SYS_EVNT_OTWE_F(1U) }

System event capture enable, overtemperature warning enable (0x04).

• enum sbc_sys_evnt_spife_t { SBC_UJA_SYS_EVNT_SPIFE_DIS = SBC_UJA_SYS_EVNT_SPIFE_F(0U),
SBC_UJA_SYS_EVNT_SPIFE_EN = SBC_UJA_SYS_EVNT_SPIFE_F(1U) }

System event capture enable, SPI failure enable (0x04).

• enum sbc_wtdog_stat_fnms_t { SBC_UJA_WTDOG_STAT_FNMS_N_NORMAL = SBC_UJA_WTDOG_←↩

STAT_FNMS_F(0U), SBC_UJA_WTDOG_STAT_FNMS_NORMAL = SBC_UJA_WTDOG_STAT_FNMS←↩

_F(1U) }

Watchdog status register, forced Normal mode status (0x05).

• enum sbc_wtdog_stat_sdms_t { SBC_UJA_WTDOG_STAT_SDMS_N_NORMAL = SBC_UJA_WTDOG_←↩

STAT_SDMS_F(0U), SBC_UJA_WTDOG_STAT_SDMS_NORMAL = SBC_UJA_WTDOG_STAT_SDMS←↩

_F(1U) }

Watchdog status register, Software Development mode status (0x05).

• enum sbc_wtdog_stat_wds_t { SBC_UJA_WTDOG_STAT_WDS_OFF = SBC_UJA_WTDOG_STAT_WD←↩

S_F(0U), SBC_UJA_WTDOG_STAT_WDS_FIH = SBC_UJA_WTDOG_STAT_WDS_F(1U), SBC_UJA_←↩

WTDOG_STAT_WDS_SEH = SBC_UJA_WTDOG_STAT_WDS_F(2U) }

Watchdog status register, watchdog status (0x05).

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 895

• enum sbc_lock_t {
LK0C = SBC_UJA_LOCK_LK0C_MASK, LK1C = SBC_UJA_LOCK_LK1C_MASK, LK2C = SBC_UJA_LO←↩

CK_LK2C_MASK, LK3C = SBC_UJA_LOCK_LK3C_MASK,
LK4C = SBC_UJA_LOCK_LK4C_MASK, LK5C = SBC_UJA_LOCK_LK5C_MASK, LK6C = SBC_UJA_LO←↩

CK_LK6C_MASK, LKAC = SBC_UJA_LOCK_LKNC_MASK }

Lock control(0x0A). Sections of the register address area can be write-protected to protect against unintended mod-
ifications. This facility only protects locked bits from being modified via the SPI and will not prevent the UJA116xA
updating status registers etc.

• enum sbc_regulator_pdc_t { SBC_UJA_REGULATOR_PDC_HV = SBC_UJA_REGULATOR_PDC_F(0U),
SBC_UJA_REGULATOR_PDC_LV = SBC_UJA_REGULATOR_PDC_F(1U) }

Regulator control register, power distribution control (0x10). PDC is not available on UJA1168 device variants, use
any of these two values, the value written to the device will be ignored.

• enum sbc_regulator_v2c_t { SBC_UJA_REGULATOR_V2C_OFF = SBC_UJA_REGULATOR_V2C_F(0U),
SBC_UJA_REGULATOR_V2C_N = SBC_UJA_REGULATOR_V2C_F(1U), SBC_UJA_REGULATOR_V2←↩

C_N_S_R = SBC_UJA_REGULATOR_V2C_F(2U), SBC_UJA_REGULATOR_V2C_N_S_S_R = SBC_UJ←↩

A_REGULATOR_V2C_F(3U) }

Regulator control register, V2/VEXT configuration (0x10).

• enum sbc_regulator_v1rtc_t { SBC_UJA_REGULATOR_V1RTC_90 = SBC_UJA_REGULATOR_V1RTC←↩

_F(0U), SBC_UJA_REGULATOR_V1RTC_80 = SBC_UJA_REGULATOR_V1RTC_F(1U), SBC_UJA_RE←↩

GULATOR_V1RTC_70 = SBC_UJA_REGULATOR_V1RTC_F(2U), SBC_UJA_REGULATOR_V1RTC_60 =
SBC_UJA_REGULATOR_V1RTC_F(3U) }

Regulator control register, set V1 reset threshold (0x10).

• enum sbc_supply_stat_v2s_t { SBC_UJA_SUPPLY_STAT_V2S_VOK = SBC_UJA_SUPPLY_STAT_V2S←↩

_F(0U), SBC_UJA_SUPPLY_STAT_V2S_VBE = SBC_UJA_SUPPLY_STAT_V2S_F(1U), SBC_UJA_SU←↩

PPLY_STAT_V2S_VAB = SBC_UJA_SUPPLY_STAT_V2S_F(2U), SBC_UJA_SUPPLY_STAT_V2S_DIS =
SBC_UJA_SUPPLY_STAT_V2S_F(3U) }

Supply voltage status register, V2/VEXT status (0x1B).

• enum sbc_supply_stat_v1s_t { SBC_UJA_SUPPLY_STAT_V1S_VAB = SBC_UJA_SUPPLY_STAT_V1S←↩

_F(0U), SBC_UJA_SUPPLY_STAT_V1S_VBE = SBC_UJA_SUPPLY_STAT_V1S_F(1U) }

Supply voltage status register, V1 status (0x1B).

• enum sbc_supply_evnt_v2oe_t { SBC_UJA_SUPPLY_EVNT_V2OE_DIS = SBC_UJA_SUPPLY_EVNT_←↩

V2OE_F(0U), SBC_UJA_SUPPLY_EVNT_V2OE_EN = SBC_UJA_SUPPLY_EVNT_V2OE_F(1U) }

Supply event capture enable register, V2/VEXT overvoltage enable (0x1C).

• enum sbc_supply_evnt_v2ue_t { SBC_UJA_SUPPLY_EVNT_V2UE_DIS = SBC_UJA_SUPPLY_EVNT_←↩

V2UE_F(0U), SBC_UJA_SUPPLY_EVNT_V2UE_EN = SBC_UJA_SUPPLY_EVNT_V2UE_F(1U) }

Supply event capture enable register, V2/VEXT undervoltage enable (0x1C).

• enum sbc_supply_evnt_v1ue_t { SBC_UJA_SUPPLY_EVNT_V1UE_DIS = SBC_UJA_SUPPLY_EVNT_←↩

V1UE_F(0U), SBC_UJA_SUPPLY_EVNT_V1UE_EN = SBC_UJA_SUPPLY_EVNT_V1UE_F(1U) }

Supply event capture enable register, V1 undervoltage enable (0x1C).

• enum sbc_can_cfdc_t { SBC_UJA_CAN_CFDC_DIS = SBC_UJA_CAN_CFDC_F(0U), SBC_UJA_CAN_←↩

CFDC_EN = SBC_UJA_CAN_CFDC_F(1U) }

CAN control register, CAN FD control (0x20).

• enum sbc_can_pncok_t { SBC_UJA_CAN_PNCOK_DIS = SBC_UJA_CAN_PNCOK_F(0U), SBC_UJA_C←↩

AN_PNCOK_EN = SBC_UJA_CAN_PNCOK_F(1U) }

CAN control register, CAN partial networking configuration OK (0x20).

• enum sbc_can_cpnc_t { SBC_UJA_CAN_CPNC_DIS = SBC_UJA_CAN_CPNC_F(0U), SBC_UJA_CAN_←↩

CPNC_EN = SBC_UJA_CAN_CPNC_F(1U) }

CAN control register, CAN partial networking control (0x20).

• enum sbc_can_cmc_t { SBC_UJA_CAN_CMC_OFMODE = SBC_UJA_CAN_CMC_F(0U), SBC_UJA_CA←↩

N_CMC_ACMODE_DA = SBC_UJA_CAN_CMC_F(1U), SBC_UJA_CAN_CMC_ACMODE_DD = SBC_U←↩

JA_CAN_CMC_F(2U), SBC_UJA_CAN_CMC_LISTEN = SBC_UJA_CAN_CMC_F(3U) }

CAN control register, CAN mode control (0x20).

• enum sbc_trans_stat_cts_t { SBC_UJA_TRANS_STAT_CTS_INACT = SBC_UJA_TRANS_STAT_CTS_←↩

F(0U), SBC_UJA_TRANS_STAT_CTS_ACT = SBC_UJA_TRANS_STAT_CTS_F(1U) }

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

896 CONTENTS

Transceiver status register, CAN transceiver status (0x22).

• enum sbc_trans_stat_cpnerr_t { SBC_UJA_TRANS_STAT_CPNERR_NO_DET = SBC_UJA_TRANS_ST←↩

AT_CPNERR_F(0U), SBC_UJA_TRANS_STAT_CPNERR_DET = SBC_UJA_TRANS_STAT_CPNERR_←↩

F(1U) }

Transceiver status register, CAN partial networking error (0x22).

• enum sbc_trans_stat_cpns_t { SBC_UJA_TRANS_STAT_CPNS_ERR = SBC_UJA_TRANS_STAT_CPN←↩

S_F(0U), SBC_UJA_TRANS_STAT_CPNS_OK = SBC_UJA_TRANS_STAT_CPNS_F(1U) }

Transceiver status register, CAN partial networking status (0x22).

• enum sbc_trans_stat_coscs_t { SBC_UJA_TRANS_STAT_COSCS_NRUN = SBC_UJA_TRANS_STAT_←↩

COSCS_F(0U), SBC_UJA_TRANS_STAT_COSCS_RUN = SBC_UJA_TRANS_STAT_COSCS_F(1U) }

Transceiver status register, CAN oscillator status (0x22).

• enum sbc_trans_stat_cbss_t { SBC_UJA_TRANS_STAT_CBSS_ACT = SBC_UJA_TRANS_STAT_CBSS←↩

_F(0U), SBC_UJA_TRANS_STAT_CBSS_INACT = SBC_UJA_TRANS_STAT_CBSS_F(1U) }

Transceiver status register, CAN-bus silence status (0x22).

• enum sbc_trans_stat_vcs_t { SBC_UJA_TRANS_STAT_VCS_AB = SBC_UJA_TRANS_STAT_VCS_F(0U),
SBC_UJA_TRANS_STAT_VCS_BE = SBC_UJA_TRANS_STAT_VCS_F(1U) }

Transceiver status register, VCAN status (0x22).

• enum sbc_trans_stat_cfs_t { SBC_UJA_TRANS_STAT_CFS_NO_TXD = SBC_UJA_TRANS_STAT_CFS←↩

_F(0U), SBC_UJA_TRANS_STAT_CFS_TXD = SBC_UJA_TRANS_STAT_CFS_F(1U) }

Transceiver status register, CAN failure status (0x22).

• enum sbc_trans_evnt_cbse_t { SBC_UJA_TRANS_EVNT_CBSE_DIS = SBC_UJA_TRANS_EVNT_CBS←↩

E_F(0U), SBC_UJA_TRANS_EVNT_CBSE_EN = SBC_UJA_TRANS_EVNT_CBSE_F(1U) }

Transceiver event capture enable register, CAN-bus silence enable (0x23).

• enum sbc_trans_evnt_cfe_t { SBC_UJA_TRANS_EVNT_CFE_DIS = SBC_UJA_TRANS_EVNT_CFE_F(0←↩

U), SBC_UJA_TRANS_EVNT_CFE_EN = SBC_UJA_TRANS_EVNT_CFE_F(1U) }

Transceiver event capture enable register, CAN failure enable (0x23).

• enum sbc_trans_evnt_cwe_t { SBC_UJA_TRANS_EVNT_CWE_DIS = SBC_UJA_TRANS_EVNT_CWE_←↩

F(0U), SBC_UJA_TRANS_EVNT_CWE_EN = SBC_UJA_TRANS_EVNT_CWE_F(1U) }

Transceiver event capture enable register, CAN wake-up enable (0x23).

• enum sbc_dat_rate_t {
SBC_UJA_DAT_RATE_CDR_50KB = SBC_UJA_DAT_RATE_CDR_F(0U), SBC_UJA_DAT_RATE_CDR←↩

_100KB = SBC_UJA_DAT_RATE_CDR_F(1U), SBC_UJA_DAT_RATE_CDR_125KB = SBC_UJA_DAT_←↩

RATE_CDR_F(2U), SBC_UJA_DAT_RATE_CDR_250KB = SBC_UJA_DAT_RATE_CDR_F(3U),
SBC_UJA_DAT_RATE_CDR_500KB = SBC_UJA_DAT_RATE_CDR_F(5U), SBC_UJA_DAT_RATE_CD←↩

R_1000KB = SBC_UJA_DAT_RATE_CDR_F(7U) }

Data rate register, CAN data rate selection (0x26). CAN partial networking configuration registers. Dedicated registers
are provided for configuring CAN partial networking.

• enum sbc_frame_ctr_ide_t { SBC_UJA_FRAME_CTR_IDE_11B = SBC_UJA_FRAME_CTR_IDE_F(0U),
SBC_UJA_FRAME_CTR_IDE_29B = SBC_UJA_FRAME_CTR_IDE_F(1U) }

Frame control register, identifier format (0x2F). The wake-up frame format, standard (11-bit) or extended (29-bit)
identifier, is selected via bit IDE in the Frame control register.

• enum sbc_frame_ctr_pndm_t { SBC_UJA_FRAME_CTR_PNDM_DCARE = SBC_UJA_FRAME_CTR_PN←↩

DM_F(0U), SBC_UJA_FRAME_CTR_PNDM_EVAL = SBC_UJA_FRAME_CTR_PNDM_F(1U) }

Frame control register, partial networking data mask (0x2F).

• enum sbc_wake_stat_wpvs_t { SBC_UJA_WAKE_STAT_WPVS_BE = SBC_UJA_WAKE_STAT_WPVS_←↩

F(0U), SBC_UJA_WAKE_STAT_WPVS_AB = SBC_UJA_WAKE_STAT_WPVS_F(1U) }

WAKE pin status register, WAKE pin status (0x4B).

• enum sbc_wake_en_wpre_t { SBC_UJA_WAKE_EN_WPRE_DIS = SBC_UJA_WAKE_EN_WPRE_F(0U),
SBC_UJA_WAKE_EN_WPRE_EN = SBC_UJA_WAKE_EN_WPRE_F(1U) }

WAKE pin event capture enable register, WAKE pin rising-edge enable (0x4C).

• enum sbc_wake_en_wpfe_t { SBC_UJA_WAKE_EN_WPFE_DIS = SBC_UJA_WAKE_EN_WPFE_F(0U),
SBC_UJA_WAKE_EN_WPFE_EN = SBC_UJA_WAKE_EN_WPFE_F(1U) }

WAKE pin event capture enable register, WAKE pin falling-edge enable (0x4C).

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 897

• enum sbc_gl_evnt_stat_wpe_t { SBC_UJA_GL_EVNT_STAT_WPE_NO = SBC_UJA_GL_EVNT_STAT_←↩

WPE_F(0U), SBC_UJA_GL_EVNT_STAT_WPE = SBC_UJA_GL_EVNT_STAT_WPE_F(1U) }

Global event status register, WAKE pin event (0x60).

• enum sbc_gl_evnt_stat_trxe_t { SBC_UJA_GL_EVNT_STAT_TRXE_NO = SBC_UJA_GL_EVNT_STAT_←↩

TRXE_F(0U), SBC_UJA_GL_EVNT_STAT_TRXE = SBC_UJA_GL_EVNT_STAT_TRXE_F(1U) }

Global event status register, transceiver event (0x60).

• enum sbc_gl_evnt_stat_supe_t { SBC_UJA_GL_EVNT_STAT_SUPE_NO = SBC_UJA_GL_EVNT_STAT←↩

_SUPE_F(0U), SBC_UJA_GL_EVNT_STAT_SUPE = SBC_UJA_GL_EVNT_STAT_SUPE_F(1U) }

Global event status register, supply event (0x60).

• enum sbc_gl_evnt_stat_syse_t { SBC_UJA_GL_EVNT_STAT_SYSE_NO = SBC_UJA_GL_EVNT_STAT←↩

_SYSE_F(0U), SBC_UJA_GL_EVNT_STAT_SYSE = SBC_UJA_GL_EVNT_STAT_SYSE_F(1U) }

Global event status register, system event (0x60).

• enum sbc_sys_evnt_stat_po_t { SBC_UJA_SYS_EVNT_STAT_PO_NO = SBC_UJA_SYS_EVNT_STAT_←↩

PO_F(0U), SBC_UJA_SYS_EVNT_STAT_PO = SBC_UJA_SYS_EVNT_STAT_PO_F(1U) }

System event status register, power-on (0x61).

• enum sbc_sys_evnt_stat_otw_t { SBC_UJA_SYS_EVNT_STAT_OTW_NO = SBC_UJA_SYS_EVNT_ST←↩

AT_OTW_F(0U), SBC_UJA_SYS_EVNT_STAT_OTW = SBC_UJA_SYS_EVNT_STAT_OTW_F(1U) }

System event status register, overtemperature warning (0x61).

• enum sbc_sys_evnt_stat_spif_t { SBC_UJA_SYS_EVNT_STAT_SPIF_NO = SBC_UJA_SYS_EVNT_STA←↩

T_SPIF_F(0U), SBC_UJA_SYS_EVNT_STAT_SPIF = SBC_UJA_SYS_EVNT_STAT_SPIF_F(1U) }

System event status register, SPI failure (0x61).

• enum sbc_sys_evnt_stat_wdf_t { SBC_UJA_SYS_EVNT_STAT_WDF_NO = SBC_UJA_SYS_EVNT_ST←↩

AT_WDF_F(0U), SBC_UJA_SYS_EVNT_STAT_WDF = SBC_UJA_SYS_EVNT_STAT_WDF_F(1U) }

System event status register, watchdog failure (0x61).

• enum sbc_sup_evnt_stat_v2o_t { SBC_UJA_SUP_EVNT_STAT_V2O_NO = SBC_UJA_SUP_EVNT_ST←↩

AT_V2O_F(0U), SBC_UJA_SUP_EVNT_STAT_V2O = SBC_UJA_SUP_EVNT_STAT_V2O_F(1U) }

Supply event status register, V2/VEXT overvoltage (0x62).

• enum sbc_sup_evnt_stat_v2u_t { SBC_UJA_SUP_EVNT_STAT_V2U_NO = SBC_UJA_SUP_EVNT_STA←↩

T_V2U_F(0U), SBC_UJA_SUP_EVNT_STAT_V2U = SBC_UJA_SUP_EVNT_STAT_V2U_F(1U) }

Supply event status register, V2/VEXT undervoltage (0x62).

• enum sbc_sup_evnt_stat_v1u_t { SBC_UJA_SUP_EVNT_STAT_V1U_NO = SBC_UJA_SUP_EVNT_STA←↩

T_V1U_F(0U), SBC_UJA_SUP_EVNT_STAT_V1U = SBC_UJA_SUP_EVNT_STAT_V1U_F(1U) }

Supply event status register, V1 undervoltage (0x62).

• enum sbc_trans_evnt_stat_pnfde_t { SBC_UJA_TRANS_EVNT_STAT_PNFDE_NO = SBC_UJA_TRANS←↩

_EVNT_STAT_PNFDE_F(0U), SBC_UJA_TRANS_EVNT_STAT_PNFDE = SBC_UJA_TRANS_EVNT_S←↩

TAT_PNFDE_F(1U) }

Transceiver event status register,partial networking frame detection error (0x63).

• enum sbc_trans_evnt_stat_cbs_t { SBC_UJA_TRANS_EVNT_STAT_CBS_NO = SBC_UJA_TRANS_EV←↩

NT_STAT_CBS_F(0U), SBC_UJA_TRANS_EVNT_STAT_CBS = SBC_UJA_TRANS_EVNT_STAT_CBS←↩

_F(1U) }

Transceiver event status register, CAN-bus status (0x63).

• enum sbc_trans_evnt_stat_cf_t { SBC_UJA_TRANS_EVNT_STAT_CF_NO = SBC_UJA_TRANS_EVNT_←↩

STAT_CF_F(0U), SBC_UJA_TRANS_EVNT_STAT_CF = SBC_UJA_TRANS_EVNT_STAT_CF_F(1U) }

Transceiver event status register, CAN failure (0x63).

• enum sbc_trans_evnt_stat_cw_t { SBC_UJA_TRANS_EVNT_STAT_CW_NO = SBC_UJA_TRANS_EVN←↩

T_STAT_CW_F(0U), SBC_UJA_TRANS_EVNT_STAT_CW = SBC_UJA_TRANS_EVNT_STAT_CW_F(1U)
}

Transceiver event status register, CAN wake-up (0x63).

• enum sbc_wake_evnt_stat_wpr_t { SBC_UJA_WAKE_EVNT_STAT_WPR_NO = SBC_UJA_WAKE_EVN←↩

T_STAT_WPR_F(0U), SBC_UJA_WAKE_EVNT_STAT_WPR = SBC_UJA_WAKE_EVNT_STAT_WPR_←↩

F(1U) }

WAKE pin event status register, WAKE pin rising edge (0x64).

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

898 CONTENTS

• enum sbc_wake_evnt_stat_wpf_t { SBC_UJA_WAKE_EVNT_STAT_WPF_NO = SBC_UJA_WAKE_EVNT←↩

_STAT_WPF_F(0U), SBC_UJA_WAKE_EVNT_STAT_WPF = SBC_UJA_WAKE_EVNT_STAT_WPF_F(1←↩

U) }

WAKE pin event status register, WAKE pin falling edge (0x64).

• enum sbc_mtpnv_stat_eccs_t { SBC_UJA_MTPNV_STAT_ECCS_NO = SBC_UJA_MTPNV_STAT_ECC←↩

S_F(0U), SBC_UJA_MTPNV_STAT_ECCS = SBC_UJA_MTPNV_STAT_ECCS_F(1U) }

MTPNV status register, error correction code status (0x70).

• enum sbc_mtpnv_stat_nvmps_t { SBC_UJA_MTPNV_STAT_NVMPS_NO = SBC_UJA_MTPNV_STAT_N←↩

VMPS_F(0U), SBC_UJA_MTPNV_STAT_NVMPS = SBC_UJA_MTPNV_STAT_NVMPS_F(1U) }

MTPNV status register, non-volatile memory programming status (0x70).

• enum sbc_start_up_rlc_t { SBC_UJA_START_UP_RLC_20_25p0 = SBC_UJA_START_UP_RLC_F(0U),
SBC_UJA_START_UP_RLC_10_12p5 = SBC_UJA_START_UP_RLC_F(1U), SBC_UJA_START_UP_R←↩

LC_03p6_05 = SBC_UJA_START_UP_RLC_F(2U), SBC_UJA_START_UP_RLC_01_01p5 = SBC_UJA_←↩

START_UP_RLC_F(3U) }

Start-up control register, RSTN output reset pulse width macros (0x73).

• enum sbc_start_up_v2suc_t { SBC_UJA_START_UP_V2SUC_00 = SBC_UJA_START_UP_V2SUC_F(0U),
SBC_UJA_START_UP_V2SUC_11 = SBC_UJA_START_UP_V2SUC_F(1U) }

Start-up control register, V2/VEXT start-up control (0x73).

• enum sbc_sbc_v1rtsuc_t { SBC_UJA_SBC_V1RTSUC_90 = SBC_UJA_SBC_V1RTSUC_F(0U), SBC_U←↩

JA_SBC_V1RTSUC_80 = SBC_UJA_SBC_V1RTSUC_F(1U), SBC_UJA_SBC_V1RTSUC_70 = SBC_UJ←↩

A_SBC_V1RTSUC_F(2U), SBC_UJA_SBC_V1RTSUC_60 = SBC_UJA_SBC_V1RTSUC_F(3U) }

SBC configuration control register, V1 undervoltage threshold (defined by bit V1RTC) at start-up (0x74).

• enum sbc_sbc_fnmc_t { SBC_UJA_SBC_FNMC_DIS = SBC_UJA_SBC_FNMC_F(0U), SBC_UJA_SBC_←↩

FNMC_EN = SBC_UJA_SBC_FNMC_F(1U) }

SBC configuration control register, Forced Normal mode control (0x74).

• enum sbc_sbc_sdmc_t { SBC_UJA_SBC_SDMC_DIS = SBC_UJA_SBC_SDMC_F(0U), SBC_UJA_SBC←↩

_SDMC_EN = SBC_UJA_SBC_SDMC_F(1U) }

SBC configuration control register, Software Development mode control (0x74).

• enum sbc_sbc_slpc_t { SBC_UJA_SBC_SLPC_AC = SBC_UJA_SBC_SLPC_F(0U), SBC_UJA_SBC_SL←↩

PC_IG = SBC_UJA_SBC_SLPC_F(1U) }

SBC configuration control register, Sleep control (0x74).

16.106.2 Data Structure Documentation

16.106.2.1 struct sbc_wtdog_ctr_t

Watchdog control register structure. Watchdog configuration structure.

Implements : sbc_wtdog_ctr_t_Class

Definition at line 1086 of file sbc_uja116x_driver.h.

Data Fields

• sbc_wtdog_ctr_wmc_t modeControl

• sbc_wtdog_ctr_nwp_t nominalPeriod

Field Documentation

16.106.2.1.1 sbc_wtdog_ctr_wmc_t modeControl

Watchdog mode control.

Definition at line 1087 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 899

16.106.2.1.2 sbc_wtdog_ctr_nwp_t nominalPeriod

Nominal watchdog period.

Definition at line 1088 of file sbc_uja116x_driver.h.

16.106.2.2 struct sbc_sbc_t

SBC configuration control register structure. Two operating modes have a major impact on the operation of the
watchdog: Forced Normal mode and Software Development mode (Software Development mode is provided for
test and development purposes only and is not a dedicated SBC operating mode; the UJA116xA can be in any
functional operating mode with Software Development mode enabled). These modes are enabled and disabled via
bits FNMC and SDMC respectively in the SBC configuration control register. Note that this register is located in
the non-volatile memory area. The watchdog is disabled in Forced Normal mode (FNM). In Software Development
mode (SDM), the watchdog can be disabled or activated for test and software debugging purposes.

Implements : sbc_sbc_t_Class

Definition at line 1107 of file sbc_uja116x_driver.h.

Data Fields

• sbc_sbc_v1rtsuc_t v1rtsuc
• sbc_sbc_fnmc_t fnmc
• sbc_sbc_sdmc_t sdmc
• sbc_sbc_slpc_t slpc

Field Documentation

16.106.2.2.1 sbc_sbc_fnmc_t fnmc

Forced Normal mode control.

Definition at line 1110 of file sbc_uja116x_driver.h.

16.106.2.2.2 sbc_sbc_sdmc_t sdmc

Software Development mode control.

Definition at line 1111 of file sbc_uja116x_driver.h.

16.106.2.2.3 sbc_sbc_slpc_t slpc

Sleep control.

Definition at line 1113 of file sbc_uja116x_driver.h.

16.106.2.2.4 sbc_sbc_v1rtsuc_t v1rtsuc

V1 undervoltage threshold (defined by bit V1RTC) at start-up (0x74).

Definition at line 1108 of file sbc_uja116x_driver.h.

16.106.2.3 struct sbc_start_up_t

Start-up control register structure. This structure contains settings of RSTN output reset pulse width and V2/VEXT
start-up control.

Implements : sbc_start_up_t_Class

Definition at line 1123 of file sbc_uja116x_driver.h.

Data Fields

• sbc_start_up_rlc_t rlc
• sbc_start_up_v2suc_t v2suc

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

900 CONTENTS

Field Documentation

16.106.2.3.1 sbc_start_up_rlc_t rlc

RSTN output reset pulse width macros.

Definition at line 1124 of file sbc_uja116x_driver.h.

16.106.2.3.2 sbc_start_up_v2suc_t v2suc

V2/VEXT start-up control.

Definition at line 1126 of file sbc_uja116x_driver.h.

16.106.2.4 struct sbc_regulator_t

Regulator control register structure. This structure set power distribution control, V2/VEXT configuration, set V1
reset threshold.

Implements : sbc_regulator_t_Class

Definition at line 1136 of file sbc_uja116x_driver.h.

Data Fields

• sbc_regulator_pdc_t pdc
• sbc_regulator_v2c_t v2c
• sbc_regulator_v1rtc_t v1rtc

Field Documentation

16.106.2.4.1 sbc_regulator_pdc_t pdc

Power distribution control.

Definition at line 1137 of file sbc_uja116x_driver.h.

16.106.2.4.2 sbc_regulator_v1rtc_t v1rtc

Set V1 reset threshold.

Definition at line 1139 of file sbc_uja116x_driver.h.

16.106.2.4.3 sbc_regulator_v2c_t v2c

V2/VEXT configuration.

Definition at line 1138 of file sbc_uja116x_driver.h.

16.106.2.5 struct sbc_supply_evnt_t

Supply event capture enable register structure. This structure enables or disables detection of V2/VEXT overvoltage,
undervoltage and V1 undervoltage enable.

Implements : sbc_supply_evnt_t_Class

Definition at line 1149 of file sbc_uja116x_driver.h.

Data Fields

• sbc_supply_evnt_v2oe_t v2oe
• sbc_supply_evnt_v2ue_t v2ue
• sbc_supply_evnt_v1ue_t v1ue

Field Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 901

16.106.2.5.1 sbc_supply_evnt_v1ue_t v1ue

SV1 undervoltage enable.

Definition at line 1152 of file sbc_uja116x_driver.h.

16.106.2.5.2 sbc_supply_evnt_v2oe_t v2oe

V2/VEXT overvoltage enable.

Definition at line 1150 of file sbc_uja116x_driver.h.

16.106.2.5.3 sbc_supply_evnt_v2ue_t v2ue

V2/VEXT undervoltage enable.

Definition at line 1151 of file sbc_uja116x_driver.h.

16.106.2.6 struct sbc_sys_evnt_t

System event capture enable register structure. This structure enables or disables overtemperature warning, SPI
failure enable.

Implements : sbc_sys_evnt_t_Class

Definition at line 1162 of file sbc_uja116x_driver.h.

Data Fields

• sbc_sys_evnt_otwe_t owte
• sbc_sys_evnt_spife_t spife

Field Documentation

16.106.2.6.1 sbc_sys_evnt_otwe_t owte

Overtemperature warning enable.

Definition at line 1163 of file sbc_uja116x_driver.h.

16.106.2.6.2 sbc_sys_evnt_spife_t spife

SPI failure enable.

Definition at line 1164 of file sbc_uja116x_driver.h.

16.106.2.7 struct sbc_can_ctr_t

CAN control register structure. This structure configure CAN peripheral behavior.

Implements : sbc_can_ctr_t_Class

Definition at line 1173 of file sbc_uja116x_driver.h.

Data Fields

• sbc_can_cfdc_t cfdc
• sbc_can_pncok_t pncok
• sbc_can_cpnc_t cpnc
• sbc_can_cmc_t cmc

Field Documentation

16.106.2.7.1 sbc_can_cfdc_t cfdc

CAN FD control.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

902 CONTENTS

Definition at line 1174 of file sbc_uja116x_driver.h.

16.106.2.7.2 sbc_can_cmc_t cmc

CAN mode control.

Definition at line 1179 of file sbc_uja116x_driver.h.

16.106.2.7.3 sbc_can_cpnc_t cpnc

CAN partial. networking control.

Definition at line 1177 of file sbc_uja116x_driver.h.

16.106.2.7.4 sbc_can_pncok_t pncok

CAN partial networking. configuration OK.

Definition at line 1175 of file sbc_uja116x_driver.h.

16.106.2.8 struct sbc_trans_evnt_t

Transceiver event capture enable register structure. Can bus silence, Can failure and Can wake-up settings.

Implements : sbc_trans_evnt_t_Class

Definition at line 1188 of file sbc_uja116x_driver.h.

Data Fields

• sbc_trans_evnt_cbse_t cbse

• sbc_trans_evnt_cfe_t cfe

• sbc_trans_evnt_cwe_t cwe

Field Documentation

16.106.2.8.1 sbc_trans_evnt_cbse_t cbse

CAN-bus silence enable.

Definition at line 1189 of file sbc_uja116x_driver.h.

16.106.2.8.2 sbc_trans_evnt_cfe_t cfe

CAN failure enable.

Definition at line 1190 of file sbc_uja116x_driver.h.

16.106.2.8.3 sbc_trans_evnt_cwe_t cwe

CAN wake-up enable.

Definition at line 1191 of file sbc_uja116x_driver.h.

16.106.2.9 struct sbc_frame_t

Frame control register structure. The wake-up frame format, standard (11-bit) or extended (29-bit) identifier, is
selected via bit IDE in the Frame control register.

Implements : sbc_frame_t_Class

Definition at line 1201 of file sbc_uja116x_driver.h.

Data Fields

• sbc_frame_ctr_ide_t ide

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 903

• sbc_frame_ctr_pndm_t pndm
• sbc_frame_ctr_dlc_t dlc

Field Documentation

16.106.2.9.1 sbc_frame_ctr_dlc_t dlc

Number of data bytes expected.

Definition at line 1204 of file sbc_uja116x_driver.h.

16.106.2.9.2 sbc_frame_ctr_ide_t ide

Identifier format.

Definition at line 1202 of file sbc_uja116x_driver.h.

16.106.2.9.3 sbc_frame_ctr_pndm_t pndm

Partial networking data mask.

Definition at line 1203 of file sbc_uja116x_driver.h.

16.106.2.10 struct sbc_can_conf_t

CAN configuration group structure. This structure configure CAN peripheral behavior.

Implements : sbc_can_conf_t_Class

Definition at line 1213 of file sbc_uja116x_driver.h.

Data Fields

• sbc_can_ctr_t canConf
• sbc_trans_evnt_t canTransEvnt
• sbc_dat_rate_t datRate
• sbc_identifier_t identif [SBC_UJA_COUNT_ID_REG]
• sbc_identif_mask_t mask [SBC_UJA_COUNT_MASK]
• sbc_frame_t frame
• sbc_data_mask_t dataMask [SBC_UJA_COUNT_DMASK]

Field Documentation

16.106.2.10.1 sbc_can_ctr_t canConf

CAN control register.

Definition at line 1214 of file sbc_uja116x_driver.h.

16.106.2.10.2 sbc_trans_evnt_t canTransEvnt

Transceiver event capture enable register.

Definition at line 1215 of file sbc_uja116x_driver.h.

16.106.2.10.3 sbc_data_mask_t dataMask[SBC_UJA_COUNT_DMASK]

Data mask 0 - 7 configuration.

Definition at line 1221 of file sbc_uja116x_driver.h.

16.106.2.10.4 sbc_dat_rate_t datRate

CAN data rate selection.

Definition at line 1217 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

904 CONTENTS

16.106.2.10.5 sbc_frame_t frame

Frame control register.

Definition at line 1220 of file sbc_uja116x_driver.h.

16.106.2.10.6 sbc_identifier_t identif[SBC_UJA_COUNT_ID_REG]

ID registers.

Definition at line 1218 of file sbc_uja116x_driver.h.

16.106.2.10.7 sbc_identif_mask_t mask[SBC_UJA_COUNT_MASK]

ID mask registers.

Definition at line 1219 of file sbc_uja116x_driver.h.

16.106.2.11 struct sbc_wake_t

WAKE pin event capture enable register structure. Local wake-up is enabled via bits WPRE and WPFE in the
WAKE pin event capture enable register. A wake-up event is triggered by a LOW-to-HIGH (ifWPRE = 1) and/or a
HIGH-to-LOW (if WPFE = 1) transition on the WAKE pin. This arrangement allows for maximum flexibility when
designing a local wake-up circuit. In applications that do not use the local wake-up facility, local wake-up should be
disabled and the WAKE pin connected to GND.

Implements : sbc_wake_t_Class

Definition at line 1236 of file sbc_uja116x_driver.h.

Data Fields

• sbc_wake_en_wpre_t wpre

• sbc_wake_en_wpfe_t wpfe

Field Documentation

16.106.2.11.1 sbc_wake_en_wpfe_t wpfe

WAKE pin falling-edge enable.

Definition at line 1238 of file sbc_uja116x_driver.h.

16.106.2.11.2 sbc_wake_en_wpre_t wpre

WAKE pin rising-edge enable.

Definition at line 1237 of file sbc_uja116x_driver.h.

16.106.2.12 struct sbc_regulator_ctr_t

Regulator control register group. This structure is group of regulator settings.

Implements : sbc_regulator_ctr_t_Class

Definition at line 1247 of file sbc_uja116x_driver.h.

Data Fields

• sbc_regulator_t regulator

• sbc_supply_evnt_t supplyEvnt

Field Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 905

16.106.2.12.1 sbc_regulator_t regulator

Regulator control register.

Definition at line 1248 of file sbc_uja116x_driver.h.

16.106.2.12.2 sbc_supply_evnt_t supplyEvnt

Supply event capture enable register.

Definition at line 1249 of file sbc_uja116x_driver.h.

16.106.2.13 struct sbc_int_config_t

Init configuration structure. This structure is used for initialization of sbc.

Implements : sbc_int_config_t_Class

Definition at line 1259 of file sbc_uja116x_driver.h.

Data Fields

• sbc_regulator_ctr_t regulatorCtr
• sbc_wtdog_ctr_t watchdog
• sbc_mode_mc_t mode
• sbc_fail_safe_lhc_t lhc
• sbc_sys_evnt_t sysEvnt
• sbc_lock_t lockMask
• sbc_can_conf_t can
• sbc_wake_t wakePin

Field Documentation

16.106.2.13.1 sbc_can_conf_t can

CAN configuration group.

Definition at line 1267 of file sbc_uja116x_driver.h.

16.106.2.13.2 sbc_fail_safe_lhc_t lhc

LIMP home control.

Definition at line 1263 of file sbc_uja116x_driver.h.

16.106.2.13.3 sbc_lock_t lockMask

Lock control register.

Definition at line 1266 of file sbc_uja116x_driver.h.

16.106.2.13.4 sbc_mode_mc_t mode

Mode control register.

Definition at line 1262 of file sbc_uja116x_driver.h.

16.106.2.13.5 sbc_regulator_ctr_t regulatorCtr

Regulator control register group.

Definition at line 1260 of file sbc_uja116x_driver.h.

16.106.2.13.6 sbc_sys_evnt_t sysEvnt

System event capture enable registers.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

906 CONTENTS

Definition at line 1264 of file sbc_uja116x_driver.h.

16.106.2.13.7 sbc_wake_t wakePin

WAKE pin event capture enable register.

Definition at line 1268 of file sbc_uja116x_driver.h.

16.106.2.13.8 sbc_wtdog_ctr_t watchdog

Watchdog control register.

Definition at line 1261 of file sbc_uja116x_driver.h.

16.106.2.14 struct sbc_factories_conf_t

Factory configuration structure. It contains Start-up control register and SBC configuration control register. This
is non-volatile memory with limited write access. The MTPNV cells can be reprogrammed a maximum of 200
times (Ncy(W)MTP; Bit NVMPS in the MTPNV status register indicates whether the non-volatile cells can be repro-
grammed. This register also contains a write counter, WRCNTS, that is incremented each time the MTPNV cells are
reprogrammed (up to a maximum value of 111111; there is no overflow; performing a factory reset also increments
the counter). This counter is provided for information purposes only; reprogramming will not be rejected when it
reaches its maximum value. Factory preset values are restored if the following conditions apply continuously for at
least td(MTPNV) during battery power-up: pin RSTN is held LOW, CANH is pulled up to VBAT, CANL is pulled down
to GND After the factory preset values have been restored, the SBC performs a system reset and enters Forced
normal Mode. Since the CAN-bus is clamped dominant, pin RXDC is forced LOW. Pin RXD is forced HIGH during
the factory preset restore process (td(MTPNV)). A falling edge on RXD caused by bit PO being set after power-on
indicates that the factory preset process has been completed. Note that the write counter, WRCNTS, in the MTPNV
status register is incremented every time the factory presets are restored.

Implements : sbc_factories_conf_t_Class

Definition at line 1298 of file sbc_uja116x_driver.h.

Data Fields

• sbc_start_up_t startUp

• sbc_sbc_t control

Field Documentation

16.106.2.14.1 sbc_sbc_t control

SBC configuration control register. Note that this register is located in the non-volatile memory area.

Definition at line 1300 of file sbc_uja116x_driver.h.

16.106.2.14.2 sbc_start_up_t startUp

Start-up control register.

Definition at line 1299 of file sbc_uja116x_driver.h.

16.106.2.15 struct sbc_main_status_t

Main status register structure. The Main status register can be accessed to monitor the status of the overtempera-
ture warning flag and to determine whether the UJA116xA has entered Normal mode after initial power-up. It also
indicates the source of the most recent reset event.

Implements : sbc_main_status_t_Class

Definition at line 1314 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 907

Data Fields

• sbc_main_otws_t otws
• sbc_main_nms_t nms
• sbc_main_rss_t rss

Field Documentation

16.106.2.15.1 sbc_main_nms_t nms

Normal mode status.

Definition at line 1316 of file sbc_uja116x_driver.h.

16.106.2.15.2 sbc_main_otws_t otws

Overtemperature warning status.

Definition at line 1315 of file sbc_uja116x_driver.h.

16.106.2.15.3 sbc_main_rss_t rss

Reset source status.

Definition at line 1317 of file sbc_uja116x_driver.h.

16.106.2.16 struct sbc_wtdog_status_t

Watchdog status register structure. Information on the status of the watchdog is available from the Watchdog status
register. This register also indicates whether Forced Normal and Software Development modes are active.

Implements : sbc_wtdog_status_t_Class

Definition at line 1328 of file sbc_uja116x_driver.h.

Data Fields

• sbc_wtdog_stat_fnms_t fnms
• sbc_wtdog_stat_sdms_t sdms
• sbc_wtdog_stat_wds_t wds

Field Documentation

16.106.2.16.1 sbc_wtdog_stat_fnms_t fnms

Forced Normal mode status.

Definition at line 1329 of file sbc_uja116x_driver.h.

16.106.2.16.2 sbc_wtdog_stat_sdms_t sdms

Software Development mode status.

Definition at line 1330 of file sbc_uja116x_driver.h.

16.106.2.16.3 sbc_wtdog_stat_wds_t wds

Watchdog status.

Definition at line 1331 of file sbc_uja116x_driver.h.

16.106.2.17 struct sbc_supply_status_t

Supply voltage status register structure. V2/VEXT and V1 undervoltage and overvoltage status.

Implements : sbc_supply_status_t_Class

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

908 CONTENTS

Definition at line 1340 of file sbc_uja116x_driver.h.

Data Fields

• sbc_supply_stat_v2s_t v2s
• sbc_supply_stat_v1s_t v1s

Field Documentation

16.106.2.17.1 sbc_supply_stat_v1s_t v1s

V1 status.

Definition at line 1342 of file sbc_uja116x_driver.h.

16.106.2.17.2 sbc_supply_stat_v2s_t v2s

V2/VEXT status.

Definition at line 1341 of file sbc_uja116x_driver.h.

16.106.2.18 struct sbc_trans_stat_t

Transceiver status register structure. There are stored CAN transceiver statuses.

Implements : sbc_trans_stat_t_Class

Definition at line 1351 of file sbc_uja116x_driver.h.

Data Fields

• sbc_trans_stat_cts_t cts
• sbc_trans_stat_cpnerr_t cpnerr
• sbc_trans_stat_cpns_t cpns
• sbc_trans_stat_coscs_t coscs
• sbc_trans_stat_cbss_t cbss
• sbc_trans_stat_vcs_t vcs
• sbc_trans_stat_cfs_t cfs

Field Documentation

16.106.2.18.1 sbc_trans_stat_cbss_t cbss

CAN-bus silence status.

Definition at line 1356 of file sbc_uja116x_driver.h.

16.106.2.18.2 sbc_trans_stat_cfs_t cfs

CAN failure status.

Definition at line 1358 of file sbc_uja116x_driver.h.

16.106.2.18.3 sbc_trans_stat_coscs_t coscs

CAN oscillator status.

Definition at line 1355 of file sbc_uja116x_driver.h.

16.106.2.18.4 sbc_trans_stat_cpnerr_t cpnerr

CAN partial networking error.

Definition at line 1353 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 909

16.106.2.18.5 sbc_trans_stat_cpns_t cpns

CAN partial networking status.

Definition at line 1354 of file sbc_uja116x_driver.h.

16.106.2.18.6 sbc_trans_stat_cts_t cts

CAN transceiver status.

Definition at line 1352 of file sbc_uja116x_driver.h.

16.106.2.18.7 sbc_trans_stat_vcs_t vcs

VCAN status.

Definition at line 1357 of file sbc_uja116x_driver.h.

16.106.2.19 struct sbc_gl_evnt_stat_t

Global event status register. The microcontroller can monitor events via the event status registers. An extra status
register, the Global event status register, is provided to help speed up software polling routines. By polling the
Global event status register, the microcontroller can quickly determine the type of event captured (system, supply,
transceiver or WAKE pin) and then query the relevant event status register.

Implements : sbc_gl_evnt_stat_t_Class

Definition at line 1372 of file sbc_uja116x_driver.h.

Data Fields

• sbc_gl_evnt_stat_wpe_t wpe
• sbc_gl_evnt_stat_trxe_t trxe
• sbc_gl_evnt_stat_supe_t supe
• sbc_gl_evnt_stat_syse_t syse

Field Documentation

16.106.2.19.1 sbc_gl_evnt_stat_supe_t supe

Supply event.

Definition at line 1375 of file sbc_uja116x_driver.h.

16.106.2.19.2 sbc_gl_evnt_stat_syse_t syse

System event.

Definition at line 1376 of file sbc_uja116x_driver.h.

16.106.2.19.3 sbc_gl_evnt_stat_trxe_t trxe

Transceiver event.

Definition at line 1374 of file sbc_uja116x_driver.h.

16.106.2.19.4 sbc_gl_evnt_stat_wpe_t wpe

WAKE pin event.

Definition at line 1373 of file sbc_uja116x_driver.h.

16.106.2.20 struct sbc_sys_evnt_stat_t

System event status register. Wake-up and interrupt event diagnosis in the UJA116xA is intended to provide the
microcontroller with information on the status of a range of features and functions. This information is stored in the

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

910 CONTENTS

event status registers and is signaled on pin RXD, if enabled.

Implements : sbc_sys_evnt_stat_t_Class

Definition at line 1388 of file sbc_uja116x_driver.h.

Data Fields

• sbc_sys_evnt_stat_po_t po
• sbc_sys_evnt_stat_otw_t otw
• sbc_sys_evnt_stat_spif_t spif
• sbc_sys_evnt_stat_wdf_t wdf

Field Documentation

16.106.2.20.1 sbc_sys_evnt_stat_otw_t otw

Transceiver event, overtemperature warning

Definition at line 1390 of file sbc_uja116x_driver.h.

16.106.2.20.2 sbc_sys_evnt_stat_po_t po

Power-on.

Definition at line 1389 of file sbc_uja116x_driver.h.

16.106.2.20.3 sbc_sys_evnt_stat_spif_t spif

SPI failure.

Definition at line 1392 of file sbc_uja116x_driver.h.

16.106.2.20.4 sbc_sys_evnt_stat_wdf_t wdf

Watchdog failure.

Definition at line 1393 of file sbc_uja116x_driver.h.

16.106.2.21 struct sbc_sup_evnt_stat_t

Supply event status register.

Implements : sbc_sup_evnt_stat_t_Class

Definition at line 1401 of file sbc_uja116x_driver.h.

Data Fields

• sbc_sup_evnt_stat_v2o_t v2o
• sbc_sup_evnt_stat_v2u_t v2u
• sbc_sup_evnt_stat_v1u_t v1u

Field Documentation

16.106.2.21.1 sbc_sup_evnt_stat_v1u_t v1u

V1 undervoltage.

Definition at line 1404 of file sbc_uja116x_driver.h.

16.106.2.21.2 sbc_sup_evnt_stat_v2o_t v2o

V2/VEXT overvoltage.

Definition at line 1402 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 911

16.106.2.21.3 sbc_sup_evnt_stat_v2u_t v2u

V2/VEXT undervoltage.

Definition at line 1403 of file sbc_uja116x_driver.h.

16.106.2.22 struct sbc_trans_evnt_stat_t

Transceiver event status register.

Implements : sbc_trans_evnt_stat_t_Class

Definition at line 1412 of file sbc_uja116x_driver.h.

Data Fields

• sbc_trans_evnt_stat_pnfde_t pnfde
• sbc_trans_evnt_stat_cbs_t cbs
• sbc_trans_evnt_stat_cf_t cf
• sbc_trans_evnt_stat_cw_t cw

Field Documentation

16.106.2.22.1 sbc_trans_evnt_stat_cbs_t cbs

CAN-bus status.

Definition at line 1415 of file sbc_uja116x_driver.h.

16.106.2.22.2 sbc_trans_evnt_stat_cf_t cf

CAN failure.

Definition at line 1416 of file sbc_uja116x_driver.h.

16.106.2.22.3 sbc_trans_evnt_stat_cw_t cw

CAN wake-up.

Definition at line 1417 of file sbc_uja116x_driver.h.

16.106.2.22.4 sbc_trans_evnt_stat_pnfde_t pnfde

Partial networking frame detection error.

Definition at line 1413 of file sbc_uja116x_driver.h.

16.106.2.23 struct sbc_wake_evnt_stat_t

WAKE pin event status register.

Implements : sbc_wake_evnt_stat_t_Class

Definition at line 1425 of file sbc_uja116x_driver.h.

Data Fields

• sbc_wake_evnt_stat_wpr_t wpr
• sbc_wake_evnt_stat_wpf_t wpf

Field Documentation

16.106.2.23.1 sbc_wake_evnt_stat_wpf_t wpf

WAKE pin falling edge.

Definition at line 1427 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

912 CONTENTS

16.106.2.23.2 sbc_wake_evnt_stat_wpr_t wpr

WAKE pin rising edge.

Definition at line 1426 of file sbc_uja116x_driver.h.

16.106.2.24 struct sbc_evn_capt_t

Event capture registers structure. This structure contains Global event status, System event status, Supply event
status, Transceiver event status, WAKE pin event status.

Implements : sbc_evn_capt_t_Class

Definition at line 1437 of file sbc_uja116x_driver.h.

Data Fields

• sbc_gl_evnt_stat_t glEvnt
• sbc_sys_evnt_stat_t sysEvnt
• sbc_sup_evnt_stat_t supEvnt
• sbc_trans_evnt_stat_t transEvnt
• sbc_wake_evnt_stat_t wakePinEvnt

Field Documentation

16.106.2.24.1 sbc_gl_evnt_stat_t glEvnt

Global event status.

Definition at line 1438 of file sbc_uja116x_driver.h.

16.106.2.24.2 sbc_sup_evnt_stat_t supEvnt

Supply event status.

Definition at line 1440 of file sbc_uja116x_driver.h.

16.106.2.24.3 sbc_sys_evnt_stat_t sysEvnt

System event status.

Definition at line 1439 of file sbc_uja116x_driver.h.

16.106.2.24.4 sbc_trans_evnt_stat_t transEvnt

Transceiver event status.

Definition at line 1441 of file sbc_uja116x_driver.h.

16.106.2.24.5 sbc_wake_evnt_stat_t wakePinEvnt

WAKE pin event status.

Definition at line 1442 of file sbc_uja116x_driver.h.

16.106.2.25 struct sbc_mtpnv_stat_t

MTPNV status register. The MTPNV cells can be reprogrammed a maximum of 200 times (Ncy(W)MTP). Bit N←↩

VMPS in the MTPNV status register indicates whether the non-volatile cells can be reprogrammed. This register
also contains a write counter, WRCNTS, that is incremented each time the MTPNV cells are reprogrammed (up to
a maximum value of 111111; there is no overflow; performing a factory reset also increments the counter). This
counter is provided for information purposes only; reprogramming will not be rejected when it reaches its maximum
value.

Implements : sbc_mtpnv_stat_t_Class

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 913

Definition at line 1458 of file sbc_uja116x_driver.h.

Data Fields

• sbc_mtpnv_stat_wrcnts_t wrcnts
• sbc_mtpnv_stat_eccs_t eccs
• sbc_mtpnv_stat_nvmps_t nvmps

Field Documentation

16.106.2.25.1 sbc_mtpnv_stat_eccs_t eccs

Error correction code status.

Definition at line 1460 of file sbc_uja116x_driver.h.

16.106.2.25.2 sbc_mtpnv_stat_nvmps_t nvmps

Non-volatile memory programming status.

Definition at line 1461 of file sbc_uja116x_driver.h.

16.106.2.25.3 sbc_mtpnv_stat_wrcnts_t wrcnts

Write counter status.

Definition at line 1459 of file sbc_uja116x_driver.h.

16.106.2.26 struct sbc_status_group_t

Status group structure. All statuses of SBC are stored in this structure.

Implements : sbc_status_group_t_Class

Definition at line 1472 of file sbc_uja116x_driver.h.

Data Fields

• sbc_main_status_t mainS
• sbc_wtdog_status_t wtdog
• sbc_supply_status_t supply
• sbc_trans_stat_t trans
• sbc_wake_stat_wpvs_t wakePin
• sbc_evn_capt_t events

Field Documentation

16.106.2.26.1 sbc_evn_capt_t events

Event capture registers.

Definition at line 1478 of file sbc_uja116x_driver.h.

16.106.2.26.2 sbc_main_status_t mainS

Main status.

Definition at line 1473 of file sbc_uja116x_driver.h.

16.106.2.26.3 sbc_supply_status_t supply

Supply voltage status.

Definition at line 1475 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

914 CONTENTS

16.106.2.26.4 sbc_trans_stat_t trans

Transceiver status.

Definition at line 1476 of file sbc_uja116x_driver.h.

16.106.2.26.5 sbc_wake_stat_wpvs_t wakePin

WAKE pin status.

Definition at line 1477 of file sbc_uja116x_driver.h.

16.106.2.26.6 sbc_wtdog_status_t wtdog

Watchdog status.

Definition at line 1474 of file sbc_uja116x_driver.h.

16.106.3 Macro Definition Documentation

16.106.3.1 #define SBC_UJA_COUNT_DMASK 8U

Definition at line 41 of file sbc_uja116x_driver.h.

16.106.3.2 #define SBC_UJA_COUNT_ID_REG 4U

Definition at line 39 of file sbc_uja116x_driver.h.

16.106.3.3 #define SBC_UJA_COUNT_MASK 4U

Definition at line 40 of file sbc_uja116x_driver.h.

16.106.3.4 #define SBC_UJA_TIMEOUT 1000U

Timeout for the transfer in milliseconds. If the transfer takes longer than this time, the transfer is aborted and
LPSPI_STATUS_SBC_UJA_TIMEOUT error is reported.

Definition at line 33 of file sbc_uja116x_driver.h.

16.106.4 Typedef Documentation

16.106.4.1 typedef uint8_t sbc_data_mask_t

Data mask registers. The data field indicates the nodes to be woken up. Within the data field, groups of nodes can
be predefined and associated with bits in a data mask. By comparing the incoming data field with the data mask,
multiple groups of nodes can be woken up simultaneously with a single wake-up message.

Implements : sbc_data_mask_t_Class

Definition at line 706 of file sbc_uja116x_driver.h.

16.106.4.2 typedef uint8_t sbc_fail_safe_rcc_t

Fail-safe control register, reset counter control (0x02). incremented every time the SBC enters Reset mode while
FNMC = 0; RCC overflows from 11 to 00; default at power-on is 00.

Implements : sbc_fail_safe_rcc_t_Class

Definition at line 195 of file sbc_uja116x_driver.h.

16.106.4.3 typedef uint8_t sbc_frame_ctr_dlc_t

Frame control register, number of data bytes expected in a CAN frame (0x2F).

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 915

Implements : sbc_frame_ctr_dlc_t_Class

Definition at line 695 of file sbc_uja116x_driver.h.

16.106.4.4 typedef uint8_t sbc_identif_mask_t

ID mask registers (0x2B to 0x2E). The identifier mask is defined in the ID mask registers, where a 1 means dont
care.

Implements : sbc_identif_mask_t_Class

Definition at line 661 of file sbc_uja116x_driver.h.

16.106.4.5 typedef uint8_t sbc_identifier_t

ID registers, identifier format (0x27 to 0x2A). A valid WUF identifier is defined and stored in the ID registers. An ID
mask can be defined to allow a group of identifiers to be recognized as valid by an individual node.

Implements : sbc_identifier_t_Class

Definition at line 652 of file sbc_uja116x_driver.h.

16.106.4.6 typedef uint8_t sbc_mtpnv_stat_wrcnts_t

MTPNV status register, write counter status (0x70). 6-bits - contains the number of times the MTPNV cells were
reprogrammed.

Implements : sbc_mtpnv_stat_wrcnts_t_Class

Definition at line 967 of file sbc_uja116x_driver.h.

16.106.5 Enumeration Type Documentation

16.106.5.1 enum sbc_can_cfdc_t

CAN control register, CAN FD control (0x20).

Implements : sbc_can_cfdc_t_Class

Enumerator

SBC_UJA_CAN_CFDC_DIS CAN FD tolerance disabled.

SBC_UJA_CAN_CFDC_EN CAN FD tolerance enabled.

Definition at line 460 of file sbc_uja116x_driver.h.

16.106.5.2 enum sbc_can_cmc_t

CAN control register, CAN mode control (0x20).

Implements : sbc_can_cmc_t_Class

Enumerator

SBC_UJA_CAN_CMC_OFMODE Offline mode.

SBC_UJA_CAN_CMC_ACMODE_DA Active mode (when the SBC is in Normal mode); CAN supply under-
voltage detection active.

SBC_UJA_CAN_CMC_ACMODE_DD Active mode (when the SBC is in Normal mode); CAN supply under-
voltage detection disabled.

SBC_UJA_CAN_CMC_LISTEN Listen-only mode.

Definition at line 496 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

916 CONTENTS

16.106.5.3 enum sbc_can_cpnc_t

CAN control register, CAN partial networking control (0x20).

Implements : sbc_can_cpnc_t_Class

Enumerator

SBC_UJA_CAN_CPNC_DIS Disable CAN selective wake-up.

SBC_UJA_CAN_CPNC_EN Enable CAN selective wake-up.

Definition at line 484 of file sbc_uja116x_driver.h.

16.106.5.4 enum sbc_can_pncok_t

CAN control register, CAN partial networking configuration OK (0x20).

Implements : sbc_can_pncok_t_Class

Enumerator

SBC_UJA_CAN_PNCOK_DIS Partial networking register configuration invalid (wake-up via standard wake-
up pattern only).

SBC_UJA_CAN_PNCOK_EN Partial networking registers configured successfully.

Definition at line 472 of file sbc_uja116x_driver.h.

16.106.5.5 enum sbc_dat_rate_t

Data rate register, CAN data rate selection (0x26). CAN partial networking configuration registers. Dedicated
registers are provided for configuring CAN partial networking.

Implements : sbc_dat_rate_t_Class

Enumerator

SBC_UJA_DAT_RATE_CDR_50KB 50 kbit/s.

SBC_UJA_DAT_RATE_CDR_100KB 100 kbit/s.

SBC_UJA_DAT_RATE_CDR_125KB 125 kbit/s.

SBC_UJA_DAT_RATE_CDR_250KB 250 kbit/s.

SBC_UJA_DAT_RATE_CDR_500KB 500 kbit/s.

SBC_UJA_DAT_RATE_CDR_1000KB 1000 kbit/s.

Definition at line 635 of file sbc_uja116x_driver.h.

16.106.5.6 enum sbc_fail_safe_lhc_t

Fail-safe control register, LIMP home control (0x02). The dedicated LIMP pin can be used to enable so called limp
home hardware in the event of a serious ECU failure. Detectable failure conditions include SBC overtemperature
events, loss of watchdog service, short-circuits on pins RSTN or V1 and user-initiated or external reset events. The
LIMP pin is a battery-robust, active-LOW, open-drain output. The LIMP pin can also be forced LOW by setting bit
LHC in the Fail-safe control register.

Implements : sbc_fail_safe_lhc_t_Class

Enumerator

SBC_UJA_FAIL_SAFE_LHC_FLOAT LIMP pin is floating.

SBC_UJA_FAIL_SAFE_LHC_LOW LIMP pin is driven LOW.

Definition at line 183 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 917

16.106.5.7 enum sbc_frame_ctr_ide_t

Frame control register, identifier format (0x2F). The wake-up frame format, standard (11-bit) or extended (29-bit)
identifier, is selected via bit IDE in the Frame control register.

Implements : sbc_frame_ctr_ide_t_Class

Enumerator

SBC_UJA_FRAME_CTR_IDE_11B Standard frame format (11-bit).

SBC_UJA_FRAME_CTR_IDE_29B Extended frame format (29-bit).

Definition at line 670 of file sbc_uja116x_driver.h.

16.106.5.8 enum sbc_frame_ctr_pndm_t

Frame control register, partial networking data mask (0x2F).

Implements : sbc_frame_ctr_pndm_t_Class

Enumerator

SBC_UJA_FRAME_CTR_PNDM_DCARE Data length code and data field are do not care for wake-up.

SBC_UJA_FRAME_CTR_PNDM_EVAL Data length code and data field are evaluated at wake-up.

Definition at line 682 of file sbc_uja116x_driver.h.

16.106.5.9 enum sbc_gl_evnt_stat_supe_t

Global event status register, supply event (0x60).

Implements : sbc_gl_evnt_stat_supe_t_Class

Enumerator

SBC_UJA_GL_EVNT_STAT_SUPE_NO No pending supply event.

SBC_UJA_GL_EVNT_STAT_SUPE Supply event pending at address 0x62 .

Definition at line 773 of file sbc_uja116x_driver.h.

16.106.5.10 enum sbc_gl_evnt_stat_syse_t

Global event status register, system event (0x60).

Implements : sbc_gl_evnt_stat_syse_t_Class

Enumerator

SBC_UJA_GL_EVNT_STAT_SYSE_NO No pending system event.

SBC_UJA_GL_EVNT_STAT_SYSE System event pending at address 0x61.

Definition at line 785 of file sbc_uja116x_driver.h.

16.106.5.11 enum sbc_gl_evnt_stat_trxe_t

Global event status register, transceiver event (0x60).

Implements : sbc_gl_evnt_stat_trxe_t_Class

Enumerator

SBC_UJA_GL_EVNT_STAT_TRXE_NO No pending transceiver event.

SBC_UJA_GL_EVNT_STAT_TRXE Transceiver event pending at address 0x63.

Definition at line 761 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

918 CONTENTS

16.106.5.12 enum sbc_gl_evnt_stat_wpe_t

Global event status register, WAKE pin event (0x60).

Implements : sbc_gl_evnt_stat_wpe_t_Class

Enumerator

SBC_UJA_GL_EVNT_STAT_WPE_NO No pending WAKE pin event.

SBC_UJA_GL_EVNT_STAT_WPE WAKE pin event pending at address 0x64.

Definition at line 749 of file sbc_uja116x_driver.h.

16.106.5.13 enum sbc_lock_t

Lock control(0x0A). Sections of the register address area can be write-protected to protect against unintended
modifications. This facility only protects locked bits from being modified via the SPI and will not prevent the UJ←↩

A116xA updating status registers etc.

Implements : sbc_lock_t_Class

Enumerator

LK0C Lock control 0: address area 0x06 to 0x09 - general-purpose memory macros. Lock control 1: address
area 0x10 to 0x1F - regulator control macros.

LK1C Lock control 2: address area 0x20 to 0x2F - transceiver control macros.

LK2C Lock control 3: address area 0x30 to 0x3F - unused register range macros.

LK3C Lock control 4: address area 0x40 to 0x4F - WAKE pin control macros.

LK4C Lock control 5: address area 0x50 to 0x5F.

LK5C Lock control 6: address area 0x68 to 0x6F macros.

LK6C Lock control All: address area 0x10 to 0x6F macros.

LKAC

Definition at line 317 of file sbc_uja116x_driver.h.

16.106.5.14 enum sbc_main_nms_t

Main status register, normal mode status (0x03).

Implements : sbc_main_nms_t_Class

Enumerator

SBC_UJA_MAIN_NMS_NORMAL UJA116xA has entered Normal mode (after power-up)

SBC_UJA_MAIN_NMS_PWR_UP UJA116xA has powered up but has not yet switched to Normal mode.

Definition at line 214 of file sbc_uja116x_driver.h.

16.106.5.15 enum sbc_main_otws_t

Main status register, Overtemperature warning status (0x03).

Implements : sbc_main_otws_t_Class

Enumerator

SBC_UJA_MAIN_OTWS_BELOW IC temperature below overtemperature warning threshold.

SBC_UJA_MAIN_OTWS_ABOVE IC temperature above overtemperature warning threshold.

Definition at line 202 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 919

16.106.5.16 enum sbc_main_rss_t

Main status register, Reset source status (0x03).

Implements : sbc_main_rss_t_Class

Enumerator

SBC_UJA_MAIN_RSS_OFF_MODE Left Off mode (power-on).

SBC_UJA_MAIN_RSS_CAN_WAKEUP CAN wake-up in Sleep mode.

SBC_UJA_MAIN_RSS_SLP_WAKEUP Wake-up via WAKE pin in Sleep mode.

SBC_UJA_MAIN_RSS_OVF_SLP Watchdog overflow in Sleep mode (Timeout mode).

SBC_UJA_MAIN_RSS_DIAG_WAKEUP Diagnostic wake-up in Sleep mode

SBC_UJA_MAIN_RSS_WATCH_TRIG Watchdog triggered too early (Window mode).

SBC_UJA_MAIN_RSS_WATCH_OVF Watchdog overflow (Window mode or Timeout mode with WDF = 1)

SBC_UJA_MAIN_RSS_ILLEG_WATCH Illegal watchdog mode control access.

SBC_UJA_MAIN_RSS_RSTN_PULDW RSTN pulled down externally.

SBC_UJA_MAIN_RSS_LFT_OVERTM Left Overtemp mode.

SBC_UJA_MAIN_RSS_V1_UNDERV V1 undervoltage.

SBC_UJA_MAIN_RSS_ILLEG_SLP Illegal Sleep mode command received.

SBC_UJA_MAIN_RSS_WAKE_SLP Wake-up from Sleep mode due to a frame detect error

Definition at line 226 of file sbc_uja116x_driver.h.

16.106.5.17 enum sbc_mode_mc_t

Mode control register, mode control (0x01)

Implements : sbc_mode_mc_t_Class

Enumerator

SBC_UJA_MODE_MC_SLEEP Sleep mode.

SBC_UJA_MODE_MC_STANDBY Standby mode.

SBC_UJA_MODE_MC_NORMAL Normal mode.

Definition at line 165 of file sbc_uja116x_driver.h.

16.106.5.18 enum sbc_mtpnv_stat_eccs_t

MTPNV status register, error correction code status (0x70).

Implements : sbc_mtpnv_stat_eccs_t_Class

Enumerator

SBC_UJA_MTPNV_STAT_ECCS_NO No bit failure detected in non-volatile memory.

SBC_UJA_MTPNV_STAT_ECCS Bit failure detected and corrected in non-volatile memory.

Definition at line 974 of file sbc_uja116x_driver.h.

16.106.5.19 enum sbc_mtpnv_stat_nvmps_t

MTPNV status register, non-volatile memory programming status (0x70).

Implements : sbc_mtpnv_stat_nvmps_t_Class

Enumerator

SBC_UJA_MTPNV_STAT_NVMPS_NO MTPNV memory cannot be overwritten.

SBC_UJA_MTPNV_STAT_NVMPS MTPNV memory is ready to be reprogrammed.

Definition at line 986 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

920 CONTENTS

16.106.5.20 enum sbc_register_t

Register map.

Implements : sbc_register_t_Class

Enumerator

SBC_UJA_WTDOG_CTR

SBC_UJA_MODE

SBC_UJA_FAIL_SAFE

SBC_UJA_MAIN

SBC_UJA_SYSTEM_EVNT

SBC_UJA_WTDOG_STAT

SBC_UJA_MEMORY_0

SBC_UJA_MEMORY_1

SBC_UJA_MEMORY_2

SBC_UJA_MEMORY_3

SBC_UJA_LOCK

SBC_UJA_REGULATOR

SBC_UJA_SUPPLY_STAT

SBC_UJA_SUPPLY_EVNT

SBC_UJA_CAN

SBC_UJA_TRANS_STAT

SBC_UJA_TRANS_EVNT

SBC_UJA_DAT_RATE

SBC_UJA_IDENTIF_0

SBC_UJA_IDENTIF_1

SBC_UJA_IDENTIF_2

SBC_UJA_IDENTIF_3

SBC_UJA_MASK_0

SBC_UJA_MASK_1

SBC_UJA_MASK_2

SBC_UJA_MASK_3

SBC_UJA_FRAME_CTR

SBC_UJA_DAT_MASK_0

SBC_UJA_DAT_MASK_1

SBC_UJA_DAT_MASK_2

SBC_UJA_DAT_MASK_3

SBC_UJA_DAT_MASK_4

SBC_UJA_DAT_MASK_5

SBC_UJA_DAT_MASK_6

SBC_UJA_DAT_MASK_7

SBC_UJA_WAKE_STAT

SBC_UJA_WAKE_EN

SBC_UJA_GL_EVNT_STAT

SBC_UJA_SYS_EVNT_STAT

SBC_UJA_SUP_EVNT_STAT

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 921

SBC_UJA_TRANS_EVNT_STAT

SBC_UJA_WAKE_EVNT_STAT

SBC_UJA_MTPNV_STAT

SBC_UJA_START_UP

SBC_UJA_SBC

SBC_UJA_MTPNV_CRC

SBC_UJA_IDENTIF

Definition at line 51 of file sbc_uja116x_driver.h.

16.106.5.21 enum sbc_regulator_pdc_t

Regulator control register, power distribution control (0x10). PDC is not available on UJA1168 device variants, use
any of these two values, the value written to the device will be ignored.

Implements : sbc_regulator_pdc_t_Class

Enumerator

SBC_UJA_REGULATOR_PDC_HV V1 threshold current for activating the external PNP transistor, load cur-
rent rising; Ith(act)PNP (higher value) V1 threshold current for deactivating the external PNP transistor,
load current falling; Ith(deact)PNP (higher value).

SBC_UJA_REGULATOR_PDC_LV V1 threshold current for activating the external PNP transistor; load cur-
rent rising; Ith(act)PNP (lower value) V1 threshold current for deactivating the external PNP transistor;
load current falling; Ith(deact)PNP (lower value).

Definition at line 344 of file sbc_uja116x_driver.h.

16.106.5.22 enum sbc_regulator_v1rtc_t

Regulator control register, set V1 reset threshold (0x10).

Implements : sbc_regulator_v1rtc_t_Class

Enumerator

SBC_UJA_REGULATOR_V1RTC_90 Reset threshold set to 90 % of V1 nominal output voltage.

SBC_UJA_REGULATOR_V1RTC_80 Reset threshold set to 80 % of V1 nominal output voltage.

SBC_UJA_REGULATOR_V1RTC_70 Reset threshold set to 70 % of V1 nominal output voltage.

SBC_UJA_REGULATOR_V1RTC_60 Reset threshold set to 60 % of V1 nominal output voltage.

Definition at line 378 of file sbc_uja116x_driver.h.

16.106.5.23 enum sbc_regulator_v2c_t

Regulator control register, V2/VEXT configuration (0x10).

Implements : sbc_regulator_v2c_t_Class

Enumerator

SBC_UJA_REGULATOR_V2C_OFF V2/VEXT off in all modes.

SBC_UJA_REGULATOR_V2C_N V2/VEXT on in Normal mode.

SBC_UJA_REGULATOR_V2C_N_S_R V2/VEXT on in Normal, Standby and Reset modes.

SBC_UJA_REGULATOR_V2C_N_S_S_R V2/VEXT on in Normal, Standby, Sleep and Reset modes.

Definition at line 362 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

922 CONTENTS

16.106.5.24 enum sbc_sbc_fnmc_t

SBC configuration control register, Forced Normal mode control (0x74).

Implements : sbc_sbc_fnmc_t_Class

Enumerator

SBC_UJA_SBC_FNMC_DIS Forced Normal mode disabled.

SBC_UJA_SBC_FNMC_EN Forced Normal mode enabled.

Definition at line 1043 of file sbc_uja116x_driver.h.

16.106.5.25 enum sbc_sbc_sdmc_t

SBC configuration control register, Software Development mode control (0x74).

Implements : sbc_sbc_sdmc_t_Class

Enumerator

SBC_UJA_SBC_SDMC_DIS Software Development mode disabled.

SBC_UJA_SBC_SDMC_EN Software Development mode enabled.

Definition at line 1056 of file sbc_uja116x_driver.h.

16.106.5.26 enum sbc_sbc_slpc_t

SBC configuration control register, Sleep control (0x74).

Implements : sbc_sbc_slpc_t_Class

Enumerator

SBC_UJA_SBC_SLPC_AC Sleep mode commands accepted. Factory preset value.

SBC_UJA_SBC_SLPC_IG Sleep mode commands ignored.

Definition at line 1069 of file sbc_uja116x_driver.h.

16.106.5.27 enum sbc_sbc_v1rtsuc_t

SBC configuration control register, V1 undervoltage threshold (defined by bit V1RTC) at start-up (0x74).

Implements : sbc_sbc_v1rtsuc_t_Class

Enumerator

SBC_UJA_SBC_V1RTSUC_90 V1 undervoltage detection at 90 % of nominal value at start-up (V1RTC =
00).

SBC_UJA_SBC_V1RTSUC_80 V1 undervoltage detection at 80 % of nominal value at start-up (V1RTC =
01).

SBC_UJA_SBC_V1RTSUC_70 V1 undervoltage detection at 70 % of nominal value at start-up V1RTC = 10).

SBC_UJA_SBC_V1RTSUC_60 V1 undervoltage detection at 60 % of nominal value at start-up (V1RTC =
11).

Definition at line 1027 of file sbc_uja116x_driver.h.

16.106.5.28 enum sbc_start_up_rlc_t

Start-up control register, RSTN output reset pulse width macros (0x73).

Implements : sbc_start_up_rlc_t_Class

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 923

Enumerator

SBC_UJA_START_UP_RLC_20_25p0 Tw(rst) = 20 ms to 25 ms.

SBC_UJA_START_UP_RLC_10_12p5 Tw(rst) = 10 ms to 12.5 ms.

SBC_UJA_START_UP_RLC_03p6_05 Tw(rst) = 3.6 ms to 5 ms.

SBC_UJA_START_UP_RLC_01_01p5 Tw(rst) = 1 ms to 1.5 ms.

Definition at line 998 of file sbc_uja116x_driver.h.

16.106.5.29 enum sbc_start_up_v2suc_t

Start-up control register, V2/VEXT start-up control (0x73).

Implements : sbc_start_up_v2suc_t_Class

Enumerator

SBC_UJA_START_UP_V2SUC_00 bits V2C/VEXTC set to 00 at power-up.

SBC_UJA_START_UP_V2SUC_11 bits V2C/VEXTC set to 11 at power-up.

Definition at line 1014 of file sbc_uja116x_driver.h.

16.106.5.30 enum sbc_sup_evnt_stat_v1u_t

Supply event status register, V1 undervoltage (0x62).

Implements : sbc_sup_evnt_stat_v1u_t_Class

Enumerator

SBC_UJA_SUP_EVNT_STAT_V1U_NO no V1 undervoltage event captured.

SBC_UJA_SUP_EVNT_STAT_V1U voltage on V1 has dropped below the 90 % undervoltage threshold while
V1 is active (event is not captured in Sleep mode because V1 is off); V1U event capture is independent
of the setting of bits V1RTC.

Definition at line 876 of file sbc_uja116x_driver.h.

16.106.5.31 enum sbc_sup_evnt_stat_v2o_t

Supply event status register, V2/VEXT overvoltage (0x62).

Implements : sbc_sup_evnt_stat_v2o_t_Class

Enumerator

SBC_UJA_SUP_EVNT_STAT_V2O_NO No V2/VEXT overvoltage event captured.

SBC_UJA_SUP_EVNT_STAT_V2O V2/VEXT overvoltage event captured.

Definition at line 852 of file sbc_uja116x_driver.h.

16.106.5.32 enum sbc_sup_evnt_stat_v2u_t

Supply event status register, V2/VEXT undervoltage (0x62).

Implements : sbc_sup_evnt_stat_v2u_t_Class

Enumerator

SBC_UJA_SUP_EVNT_STAT_V2U_NO No V2/VEXT undervoltage event captured.

SBC_UJA_SUP_EVNT_STAT_V2U V2/VEXT undervoltage event captured.

Definition at line 864 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

924 CONTENTS

16.106.5.33 enum sbc_supply_evnt_v1ue_t

Supply event capture enable register, V1 undervoltage enable (0x1C).

Implements : sbc_supply_evnt_v1ue_t_Class

Enumerator

SBC_UJA_SUPPLY_EVNT_V1UE_DIS V1 undervoltage detection disabled.

SBC_UJA_SUPPLY_EVNT_V1UE_EN V1 undervoltage detection enabled.

Definition at line 448 of file sbc_uja116x_driver.h.

16.106.5.34 enum sbc_supply_evnt_v2oe_t

Supply event capture enable register, V2/VEXT overvoltage enable (0x1C).

Implements : sbc_supply_evnt_v2oe_t_Class

Enumerator

SBC_UJA_SUPPLY_EVNT_V2OE_DIS V2/VEXT overvoltage detection disabled.

SBC_UJA_SUPPLY_EVNT_V2OE_EN V2/VEXT overvoltage detection enabled.

Definition at line 423 of file sbc_uja116x_driver.h.

16.106.5.35 enum sbc_supply_evnt_v2ue_t

Supply event capture enable register, V2/VEXT undervoltage enable (0x1C).

Implements : sbc_supply_evnt_v2ue_t_Class

Enumerator

SBC_UJA_SUPPLY_EVNT_V2UE_DIS V2/VEXT undervoltage detection disabled.

SBC_UJA_SUPPLY_EVNT_V2UE_EN V2/VEXT undervoltage detection enabled.

Definition at line 436 of file sbc_uja116x_driver.h.

16.106.5.36 enum sbc_supply_stat_v1s_t

Supply voltage status register, V1 status (0x1B).

Implements : sbc_supply_stat_v1s_t_Class

Enumerator

SBC_UJA_SUPPLY_STAT_V1S_VAB V1 output voltage above 90 % undervoltage threshold.

SBC_UJA_SUPPLY_STAT_V1S_VBE V1 output voltage below 90 % undervoltage threshold.

Definition at line 410 of file sbc_uja116x_driver.h.

16.106.5.37 enum sbc_supply_stat_v2s_t

Supply voltage status register, V2/VEXT status (0x1B).

Implements : sbc_supply_stat_v2s_t_Class

Enumerator

SBC_UJA_SUPPLY_STAT_V2S_VOK V2/VEXT voltage ok.

SBC_UJA_SUPPLY_STAT_V2S_VBE V2/VEXT output voltage below undervoltage threshold

SBC_UJA_SUPPLY_STAT_V2S_VAB V2/VEXT output voltage above overvoltage threshold

SBC_UJA_SUPPLY_STAT_V2S_DIS V2/VEXT disabled

Definition at line 394 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 925

16.106.5.38 enum sbc_sys_evnt_otwe_t

System event capture enable, overtemperature warning enable (0x04).

Implements : sbc_sys_evnt_otwe_t_Class

Enumerator

SBC_UJA_SYS_EVNT_OTWE_DIS Overtemperature warning disabled.

SBC_UJA_SYS_EVNT_OTWE_EN Overtemperature warning enabled.

Definition at line 251 of file sbc_uja116x_driver.h.

16.106.5.39 enum sbc_sys_evnt_spife_t

System event capture enable, SPI failure enable (0x04).

Implements : sbc_sys_evnt_spife_t_Class

Enumerator

SBC_UJA_SYS_EVNT_SPIFE_DIS SPI failure detection disabled.

SBC_UJA_SYS_EVNT_SPIFE_EN SPI failure detection enabled.

Definition at line 263 of file sbc_uja116x_driver.h.

16.106.5.40 enum sbc_sys_evnt_stat_otw_t

System event status register, overtemperature warning (0x61).

Implements : sbc_sys_evnt_stat_otw_t_Class

Enumerator

SBC_UJA_SYS_EVNT_STAT_OTW_NO Overtemperature not detected.

SBC_UJA_SYS_EVNT_STAT_OTW The global chip temperature has exceeded the overtemperature warn-
ing threshold, Tth(warn)otp (not in Sleep mode).

Definition at line 809 of file sbc_uja116x_driver.h.

16.106.5.41 enum sbc_sys_evnt_stat_po_t

System event status register, power-on (0x61).

Implements : sbc_sys_evnt_stat_po_t_Class

Enumerator

SBC_UJA_SYS_EVNT_STAT_PO_NO No recent battery power-on.

SBC_UJA_SYS_EVNT_STAT_PO The UJA116xA has left Off mode after battery power-on.

Definition at line 797 of file sbc_uja116x_driver.h.

16.106.5.42 enum sbc_sys_evnt_stat_spif_t

System event status register, SPI failure (0x61).

Implements : sbc_sys_evnt_stat_spif_t_Class

Enumerator

SBC_UJA_SYS_EVNT_STAT_SPIF_NO No SPI failure detected

SBC_UJA_SYS_EVNT_STAT_SPIF SPI clock count error (only 16-, 24- and 32-bit commands are valid),
illegal WMC, NWP or MC code or attempted write access to locked register (not in Sleep mode)

Definition at line 822 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

926 CONTENTS

16.106.5.43 enum sbc_sys_evnt_stat_wdf_t

System event status register, watchdog failure (0x61).

Implements : sbc_sys_evnt_stat_wdf_t_Class

Enumerator

SBC_UJA_SYS_EVNT_STAT_WDF_NO No watchdog failure event captured

SBC_UJA_SYS_EVNT_STAT_WDF Watchdog overflow in Window or Timeout mode or watchdog triggered
too early in Window mode; a system reset is triggered immediately in response to a watchdog failure in
Window mode; when the watchdog overflows in Timeout mode, a system reset is only performed if a WDF
is already pending (WDF = 1).

Definition at line 836 of file sbc_uja116x_driver.h.

16.106.5.44 enum sbc_trans_evnt_cbse_t

Transceiver event capture enable register, CAN-bus silence enable (0x23).

Implements : sbc_trans_evnt_cbse_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_CBSE_DIS CAN-bus silence detection disabled.

SBC_UJA_TRANS_EVNT_CBSE_EN CAN-bus silence detection enabled.

Definition at line 597 of file sbc_uja116x_driver.h.

16.106.5.45 enum sbc_trans_evnt_cfe_t

Transceiver event capture enable register, CAN failure enable (0x23).

Implements : sbc_trans_evnt_cfe_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_CFE_DIS CAN failure detection disabled.

SBC_UJA_TRANS_EVNT_CFE_EN CAN failure detection enabled.

Definition at line 609 of file sbc_uja116x_driver.h.

16.106.5.46 enum sbc_trans_evnt_cwe_t

Transceiver event capture enable register, CAN wake-up enable (0x23).

Implements : sbc_trans_evnt_cwe_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_CWE_DIS CAN wake-up detection disabled.

SBC_UJA_TRANS_EVNT_CWE_EN CAN wake-up detection enabled.

Definition at line 621 of file sbc_uja116x_driver.h.

16.106.5.47 enum sbc_trans_evnt_stat_cbs_t

Transceiver event status register, CAN-bus status (0x63).

Implements : sbc_trans_evnt_stat_cbs_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_STAT_CBS_NO CAN-bus active.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 927

SBC_UJA_TRANS_EVNT_STAT_CBS No activity on CAN-bus for tto(silence) (detected only when CBSE =
1 while bus active).

Definition at line 903 of file sbc_uja116x_driver.h.

16.106.5.48 enum sbc_trans_evnt_stat_cf_t

Transceiver event status register, CAN failure (0x63).

Implements : sbc_trans_evnt_stat_cf_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_STAT_CF_NO No CAN failure detected.

SBC_UJA_TRANS_EVNT_STAT_CF CAN transceiver deactivated due to VCAN undervoltage OR dominant
clamped TXD (not in Sleep mode)

Definition at line 916 of file sbc_uja116x_driver.h.

16.106.5.49 enum sbc_trans_evnt_stat_cw_t

Transceiver event status register, CAN wake-up (0x63).

Implements : sbc_trans_evnt_stat_cw_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_STAT_CW_NO No CAN wake-up event detected.

SBC_UJA_TRANS_EVNT_STAT_CW CAN wake-up event detected while the transceiver is in CAN Offline
Mode.

Definition at line 929 of file sbc_uja116x_driver.h.

16.106.5.50 enum sbc_trans_evnt_stat_pnfde_t

Transceiver event status register,partial networking frame detection error (0x63).

Implements : sbc_trans_evnt_stat_pnfde_t_Class

Enumerator

SBC_UJA_TRANS_EVNT_STAT_PNFDE_NO No partial networking frame detection error detected.

SBC_UJA_TRANS_EVNT_STAT_PNFDE Partial networking frame detection error detected.

Definition at line 891 of file sbc_uja116x_driver.h.

16.106.5.51 enum sbc_trans_stat_cbss_t

Transceiver status register, CAN-bus silence status (0x22).

Implements : sbc_trans_stat_cbss_t_Class

Enumerator

SBC_UJA_TRANS_STAT_CBSS_ACT CAN-bus active (communication detected on bus)

SBC_UJA_TRANS_STAT_CBSS_INACT CAN-bus inactive (for longer than t_to(silence)).

Definition at line 561 of file sbc_uja116x_driver.h.

16.106.5.52 enum sbc_trans_stat_cfs_t

Transceiver status register, CAN failure status (0x22).

Implements : sbc_trans_stat_cfs_t_Class

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

928 CONTENTS

Enumerator

SBC_UJA_TRANS_STAT_CFS_NO_TXD No TXD dominant time-out event detected.

SBC_UJA_TRANS_STAT_CFS_TXD CAN transmitter disabled due to a TXD dominant time-out event.

Definition at line 585 of file sbc_uja116x_driver.h.

16.106.5.53 enum sbc_trans_stat_coscs_t

Transceiver status register, CAN oscillator status (0x22).

Implements : sbc_trans_stat_coscs_t_Class

Enumerator

SBC_UJA_TRANS_STAT_COSCS_NRUN CAN partial networking oscillator not running at target frequency.

SBC_UJA_TRANS_STAT_COSCS_RUN CAN partial networking oscillator running at target.

Definition at line 549 of file sbc_uja116x_driver.h.

16.106.5.54 enum sbc_trans_stat_cpnerr_t

Transceiver status register, CAN partial networking error (0x22).

Implements : sbc_trans_stat_cpnerr_t_Class

Enumerator

SBC_UJA_TRANS_STAT_CPNERR_NO_DET no CAN partial networking error detected (PNFDE = 0 AND
PNCOK = 1).

SBC_UJA_TRANS_STAT_CPNERR_DET CAN partial networking error detected (PNFDE = 1OR PNCOK =
0; wake-up via standard wake-up pattern only).

Definition at line 524 of file sbc_uja116x_driver.h.

16.106.5.55 enum sbc_trans_stat_cpns_t

Transceiver status register, CAN partial networking status (0x22).

Implements : sbc_trans_stat_cpns_t_Class

Enumerator

SBC_UJA_TRANS_STAT_CPNS_ERR CAN partial networking configuration error detected(PNCOK = 0).

SBC_UJA_TRANS_STAT_CPNS_OK CAN partial networking configuration ok (PNCOK = 1).

Definition at line 537 of file sbc_uja116x_driver.h.

16.106.5.56 enum sbc_trans_stat_cts_t

Transceiver status register, CAN transceiver status (0x22).

Implements : sbc_trans_stat_cts_t_Class

Enumerator

SBC_UJA_TRANS_STAT_CTS_INACT CAN transceiver not in Active mode.

SBC_UJA_TRANS_STAT_CTS_ACT CAN transceiver in Active mode.

Definition at line 512 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 929

16.106.5.57 enum sbc_trans_stat_vcs_t

Transceiver status register, VCAN status (0x22).

Implements : sbc_trans_stat_vcs_t_Class

Enumerator

SBC_UJA_TRANS_STAT_VCS_AB CAN supply voltage is above the 90 % threshold.

SBC_UJA_TRANS_STAT_VCS_BE CAN supply voltage is below the 90 % threshold

Definition at line 573 of file sbc_uja116x_driver.h.

16.106.5.58 enum sbc_wake_en_wpfe_t

WAKE pin event capture enable register, WAKE pin falling-edge enable (0x4C).

Implements : sbc_wake_en_wpfe_t_Class

Enumerator

SBC_UJA_WAKE_EN_WPFE_DIS Falling-edge detection on WAKE pin disabled.

SBC_UJA_WAKE_EN_WPFE_EN Falling-edge detection on WAKE pin enabled.

Definition at line 737 of file sbc_uja116x_driver.h.

16.106.5.59 enum sbc_wake_en_wpre_t

WAKE pin event capture enable register, WAKE pin rising-edge enable (0x4C).

Implements : sbc_wake_en_wpre_t_Class

Enumerator

SBC_UJA_WAKE_EN_WPRE_DIS Rising-edge detection on WAKE pin disabled.

SBC_UJA_WAKE_EN_WPRE_EN Rising-edge detection on WAKE pin enabled.

Definition at line 725 of file sbc_uja116x_driver.h.

16.106.5.60 enum sbc_wake_evnt_stat_wpf_t

WAKE pin event status register, WAKE pin falling edge (0x64).

Implements : sbc_wake_evnt_stat_wpf_t_Class

Enumerator

SBC_UJA_WAKE_EVNT_STAT_WPF_NO No falling edge detected on WAKE pin.

SBC_UJA_WAKE_EVNT_STAT_WPF Falling edge detected on WAKE pin.

Definition at line 953 of file sbc_uja116x_driver.h.

16.106.5.61 enum sbc_wake_evnt_stat_wpr_t

WAKE pin event status register, WAKE pin rising edge (0x64).

Implements : sbc_wake_evnt_stat_wpr_t_Class

Enumerator

SBC_UJA_WAKE_EVNT_STAT_WPR_NO No rising edge detected on WAKE pin.

SBC_UJA_WAKE_EVNT_STAT_WPR Rising edge detected on WAKE pin.

Definition at line 941 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

930 CONTENTS

16.106.5.62 enum sbc_wake_stat_wpvs_t

WAKE pin status register, WAKE pin status (0x4B).

Implements : sbc_wake_stat_wpvs_t_Class

Enumerator

SBC_UJA_WAKE_STAT_WPVS_BE Voltage on WAKE pin below switching threshold (Vth(sw)).

SBC_UJA_WAKE_STAT_WPVS_AB voltage on WAKE pin above switching threshold (Vth(sw)).

Definition at line 713 of file sbc_uja116x_driver.h.

16.106.5.63 enum sbc_wtdog_ctr_nwp_t

Watchdog control register, nominal watchdog period (0x00). Eight watchdog periods are supported, from 8 ms to
4096 ms. The watchdog period is programmed via bits NWP. The selected period is valid for both Window and
Timeout modes. The default watchdog period is 128 ms. A watchdog trigger event resets the watchdog timer. A
watchdog trigger event is any valid write access to the Watchdog control register. If the watchdog mode or the
watchdog period have changed as a result of the write access, the new values are immediately valid.

Implements : sbc_wtdog_ctr_nwp_t_Class

Enumerator

SBC_UJA_WTDOG_CTR_NWP_8 8 ms.

SBC_UJA_WTDOG_CTR_NWP_16 16 ms.

SBC_UJA_WTDOG_CTR_NWP_32 32 ms.

SBC_UJA_WTDOG_CTR_NWP_64 64 ms.

SBC_UJA_WTDOG_CTR_NWP_128 128 ms.

SBC_UJA_WTDOG_CTR_NWP_256 256 ms.

SBC_UJA_WTDOG_CTR_NWP_1024 1024 ms.

SBC_UJA_WTDOG_CTR_NWP_4096 4096 ms.

Definition at line 149 of file sbc_uja116x_driver.h.

16.106.5.64 enum sbc_wtdog_ctr_wmc_t

Watchdog control register, watchdog mode control (0x00). The UJA116xA contains a watchdog that supports three
operating modes: Window, Timeout and Autonomous. In Window mode (available only in SBC Normal mode),
a watchdog trigger event within a defined watchdog window triggers and resets the watchdog timer. In Timeout
mode, the watchdog runs continuously and can be triggered and reset at any time within the watchdog period
by a watchdog trigger. Watchdog time-out mode can also be used for cyclic wake-up of the microcontroller. In
Autonomous mode, the watchdog can be off or autonomously in Timeout mode, depending on the selected SBC
mode. The watchdog mode is selected via bits WMC in the Watchdog control register. The SBC must be in Standby
mode when the watchdog mode is changed.

Implements : sbc_wtdog_ctr_wmc_t_Class

Enumerator

SBC_UJA_WTDOG_CTR_WMC_AUTO Autonomous mode.

SBC_UJA_WTDOG_CTR_WMC_TIME Timeout mode.

SBC_UJA_WTDOG_CTR_WMC_WIND Window mode (available only in SBC Normal mode).

Definition at line 128 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.106 UJA116xA SBC Driver 931

16.106.5.65 enum sbc_wtdog_stat_fnms_t

Watchdog status register, forced Normal mode status (0x05).

Implements : sbc_wtdog_stat_fnms_t_Class

Enumerator

SBC_UJA_WTDOG_STAT_FNMS_N_NORMAL SBC is not in Forced Normal mode.

SBC_UJA_WTDOG_STAT_FNMS_NORMAL SBC is in Forced Normal mode.

Definition at line 275 of file sbc_uja116x_driver.h.

16.106.5.66 enum sbc_wtdog_stat_sdms_t

Watchdog status register, Software Development mode status (0x05).

Implements : sbc_wtdog_stat_sdms_t_Class

Enumerator

SBC_UJA_WTDOG_STAT_SDMS_N_NORMAL SBC is not in Software Development mode.

SBC_UJA_WTDOG_STAT_SDMS_NORMAL SBC is in Software Development mode.

Definition at line 287 of file sbc_uja116x_driver.h.

16.106.5.67 enum sbc_wtdog_stat_wds_t

Watchdog status register, watchdog status (0x05).

Implements : sbc_wtdog_stat_wds_t_Class

Enumerator

SBC_UJA_WTDOG_STAT_WDS_OFF Watchdog is off.

SBC_UJA_WTDOG_STAT_WDS_FIH Watchdog is in first half of the nominal period.

SBC_UJA_WTDOG_STAT_WDS_SEH Watchdog is in second half of the nominal period.

Definition at line 299 of file sbc_uja116x_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

932 CONTENTS

16.107 Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL)

16.107.1 Detailed Description

The S32 SDK provides a Peripheral Abstraction Layer for Universal Asynchronous Receiver-Transmitter (UART)
modules of S32 SDK devices.

The UART PAL driver allows communication over a serial port. It was designed to be portable across all platforms
and IPs which support UART communication.

How to integrate UART PAL in your application

Unlike the other drivers, UART PAL modules need to include a configuration file named uart_pal_cfg.h, which allows
the user to specify which IPSs are used and how many resources are allocated for each of them (state structures).
The following code example shows how to configure one instance for each available UART IPs.

#ifndef uart_pal_cfg_H
#define uart_pal_cfg_H

/* Define which IP instance will be used in current project */
#define UART_OVER_LPUART
#define UART_OVER_FLEXIO
#define UART_OVER_LINFLEXD

/* Define the resources necessary for current project */
#define NO_OF_LPUART_INSTS_FOR_UART 1U
#define NO_OF_FLEXIO_INSTS_FOR_UART 1U
#define NO_OF_LINFLEXD_INSTS_FOR_UART 1U

#endif /* uart_pal_cfg_H */

The following table contains the matching between platforms and available IPs

I←↩

P/←↩

M←↩

C←↩

U

S32←↩

K116
S32←↩

K118
S32←↩

K142
S32←↩

K144
S32←↩

K146
S32←↩

K148
S32←↩

V234
M←↩

P←↩

C5748←↩

G

M←↩

P←↩

C5746←↩

C

M←↩

P←↩

C5744←↩

P

S32←↩

R274
S32←↩

R372
M←↩

P←↩

C5746←↩

R

M←↩

P←↩

C5777←↩

C

S32←↩

R294
S32←↩

G274←↩

A

S32←↩

R45
S32←↩

K144←↩

W

L←↩

P←↩

U←↩

A←↩

R←↩

T

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
Y←↩

E←↩

S

F←↩

L←↩

E←↩

X←↩

I←↩

O←↩

_←↩

←↩

U←↩

A←↩

R←↩

T

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
Y←↩

E←↩

S

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.107 Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL) 933

L←↩

I←↩

N←↩

Flex←↩

D←↩

_←↩

←↩

U←↩

A←↩

R←↩

T

N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

N←↩

O
Y←↩

E←↩

S

Y←↩

E←↩

S

Y←↩

E←↩

S

N←↩

O

e←↩

S←↩

C←↩

I←↩

_←↩

←↩

U←↩

A←↩

R←↩

T

N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
N←↩

O
Y←↩

E←↩

S

N←↩

O
N←↩

O
N←↩

O
N←↩

O

Features

• Interrupt or DMA mode

• Provides blocking and non-blocking transmit and receive functions

• Configurable baud rate and number of bits per char

The following table contains the matching between IPs and available features

IP/FEATURE Bits per char Parity Stop Bits
LPUART 8, 9, 10 Disabled, Even, Odd 1, 2

FLEXIO_UART 7, 8, 9, 10, 15, 16 Disabled 1
LINFlexD_UART 7, 8, 15, 16 Disabled, Even, Odd 1, 2

Functionality

Initialization

In order to use the UART PAL driver it must be first initialized, using UART_Init() function. Once initialized, it
cannot be initialized again for the same UART module instance until it is de-initialized, using UART_Deinit(). The
initialization function does the following operations:

• sets the baud rate

• sets parity/bit count/stop bits count

• initializes the state structure for the current instance

• enables receiver/transmitter for the current instance Different UART modules instances can function indepen-
dently of each other.

Interrupt-based communication

After initialization, a serial communication can be triggered by calling UART_SendData function. The driver interrupt
handler takes care of transmitting all bytes in the TX buffer. Similarly, data reception is triggered by calling UAR←↩

T_ReceiveData function, passing the RX buffer as parameter. The driver interrupt handler reads the received byte

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

934 CONTENTS

and saves them in the RX buffer. Non-blocking operations will initiate the transfer and return STATUS_SUCC←↩

ESS, but the module is still busy with the transfer and another transfer can't be initiated until the current transfer
is complete. The application can check the status of the current transfer by calling UART_GetTransmitStatus() /
UART_GetReceiveStatus().

The workflow applies to send/receive operations using blocking method (triggered by UART_SendDataBlocking()
and UART_ReceiveDataBlocking()), with the single difference that the send/receive function will not return until the
send/receive operation is complete (all bytes are successfully transferred or a timeout occurred). The timeout for
the blocking method is passed as parameter by the user.

When configured to use the LPUART or LINFlexD peripherals, if a user callback is installed for RX/TX, the callback
has to take care of data handling and aborting the transfer when complete; the driver interrupt handler does not
manipulate the buffers in this case. When using the UART PAL over FLEXIO, when the driver completes the
transmission or reception of the current buffer, it will invoke the user callback (if installed) with an appropriate event.

DMA-based communication

In DMA operation, both blocking and non-blocking transmission methods configure a DMA channel to copy data
to/from the buffer. The driver assumes the DMA channel is already allocated. In case of LPUART and LINFlexD,
the application also assumes that the proper requests are routed to it via DMAMUX. The FLEXIO driver will set
the DMA request source. After configuring the DMA channel, the driver enables DMA requests for RX/TX, then the
DMA engine takes care of moving data to/from the data buffer. In this scenario, the callback is only called when
the full transmission is done, that is when the DMA channel finishes the number of loops configured in the transfer
descriptor.

Important Notes

• Before using the UART PAL driver the module clock must be configured. Refer to Clock Manager for clock
configuration.

• The driver enables the interrupts for the corresponding UART module, but any interrupt priority must be done
by the application

• The board specific configurations must be done prior to driver calls; the driver has no influence on the func-
tionality of the TX/RX pins - they must be configured by application

• DMA module has to be initialized prior to UART usage in DMA mode; also, DMA channels need to be allocated
for UART usage by the application (the driver only takes care of configuring the DMA channels received in
the configuration structure)

• Some features are not available for all UART IPs and incorrect parameters will be handled by DEV_ASSERT

• The UART_SetBaudRate() function attempts to configure the requested baud rate for the selected UAR←↩

T peripheral. Note that due to module limitation not any baud rate can be achieved. The driver will set a
baud rate as close as possible to the requested baud rate, but there may still be substantial differences.
The application should call UART_GetBaudRate() after UART_SetBaudRate() to check what baud rate was
actually set.

• Due to different implementation of drivers, callback parameters in case of errors during reception may be
different. LPUART and LINFLEXD_UART will pass UART_EVENT_ERROR as the event parameter for
callbacks, whereas FLEXIO_UART will pass UART_EVENT_END_TRANSFER. In both cases, in order to
retrieve the exact status of the latest reception, users can call the appropriate functions in the (UART_Get←↩

ReceiveStatus).

• Due to DMA mechanism, bit character length should be recommended multiple by 8. So, LPUART only
supports 8 bit chars while FLEXIO_UART supports 8 and 16 bit chars in DMA module. Specially, LIN←↩

FLEXD_UART can process with all character lengths currently because it takes care of parity bit handling
internally.

Integration guideline

Compilation units

The following files need to be compiled in the project:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.107 Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL) 935

${S32SDK_PATH}\platform\pal\src\uart\uart_pal.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc
${S32SDK_PATH}\platform\pal\inc
${S32_SDK_PATH}\rtos\osif

Preprocessor symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt) Enhanced Direct Memory Access (eDMA) OS Interface (OSIF)

Example code

uint32_t bytesRemaining;

/* Instance information structure */
uart_instance_t uart_pal1_instance = {

.instType = UART_INST_TYPE_FLEXIO_UART,

.instIdx = 0U
};

/* Configure UART */
uart_user_config_t uart_pal1_Config0 = {
.baudRate = 600U,
.bitCount = UART_7_BITS_PER_CHAR,
.parityMode = UART_PARITY_DISABLED,
.stopBitCount = UART_ONE_STOP_BIT,
.transferType = UART_USING_INTERRUPTS,
.rxDMAChannel = 0U,
.txDMAChannel = 0U,
.rxCallback = NULL,
.rxCallbackParam = NULL,
.txCallback = NULL,
.txCallbackParam = NULL,
.extension = NULL

};

/* Configure FLEXIO pins routing */
extension_flexio_for_uart_t extension = {
.dataPinTx = 0U,
.dataPinRx = 1U,

};
uart_pal1_Config0.extension = &extension;

/* Buffers */
uint8_t tx[8] = {0, 1, 2, 3, 4, 5, 6, 7};
uint8_t rx[8];

/* Initialize UART */
UART_Init(&uart_pal1_instance, &uart_pal1_Config0);

/* Send 8 frames */
UART_SendData(&uart_pal1_instance, tx, 8U);
while(UART_GetTransmitStatus(&uart_pal1_instance, &bytesRemaining) !=

STATUS_SUCCESS);

/* Receive 8 frames */
UART_ReceiveData(&uart_pal1_instance, rx, 8UL);
/* Wait for transfer to be completed */
while(UART_GetReceiveStatus(&uart_pal1_instance, &bytesRemaining) != STATUS_SUCCESS)

;

/* De-initialize UART */
UART_Deinit(&uart_pal1_instance);

Data Structures

• struct uart_user_config_t

Defines the UART configuration structure. More...

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

936 CONTENTS

• struct extension_flexio_for_uart_t

Defines the extension structure for the UART over FLEXIO. More...

Enumerations

• enum uart_bit_count_per_char_t {
UART_7_BITS_PER_CHAR = 0x0U, UART_8_BITS_PER_CHAR = 0x1U, UART_9_BITS_PER_CHAR =
0x2U, UART_10_BITS_PER_CHAR = 0x3U,
UART_15_BITS_PER_CHAR = 0x4U, UART_16_BITS_PER_CHAR = 0x5U }

Defines the number of bits in a character.

• enum uart_transfer_type_t { UART_USING_DMA = 0U, UART_USING_INTERRUPTS = 1U }

Defines the transfer type.

• enum uart_parity_mode_t { UART_PARITY_DISABLED = 0x0U, UART_PARITY_EVEN = 0x2U, UART_P←↩

ARITY_ODD = 0x3U }

Defines the parity mode.

• enum uart_stop_bit_count_t { UART_ONE_STOP_BIT = 0x0U, UART_TWO_STOP_BIT = 0x1U }

Defines the number of stop bits.

Functions

• void UART_GetDefaultConfig (uart_user_config_t ∗config)

Gets the default configuration structure.

• status_t UART_Init (const uart_instance_t ∗const instance, const uart_user_config_t ∗config)

Initializes the UART module.

• status_t UART_Deinit (const uart_instance_t ∗const instance)

De-initializes the UART module.

• status_t UART_SetBaudRate (const uart_instance_t ∗const instance, uint32_t desiredBaudRate)

Configures the UART baud rate.

• status_t UART_GetBaudRate (const uart_instance_t ∗const instance, uint32_t ∗configuredBaudRate)

Returns the UART baud rate.

• status_t UART_SendDataBlocking (const uart_instance_t ∗const instance, const uint8_t ∗txBuff, uint32_←↩

t txSize, uint32_t timeout)

Perform a blocking UART transmission.

• status_t UART_SendData (const uart_instance_t ∗const instance, const uint8_t ∗txBuff, uint32_t txSize)

Perform a non-blocking UART transmission.

• status_t UART_AbortSendingData (const uart_instance_t ∗const instance)

Terminates a non-blocking transmission early.

• status_t UART_GetTransmitStatus (const uart_instance_t ∗const instance, uint32_t ∗bytesRemaining)

Get the status of the current non-blocking UART transmission.

• status_t UART_ReceiveDataBlocking (const uart_instance_t ∗const instance, uint8_t ∗rxBuff, uint32_t rxSize,
uint32_t timeout)

Perform a blocking UART reception.

• status_t UART_ReceiveData (const uart_instance_t ∗const instance, uint8_t ∗rxBuff, uint32_t rxSize)

Perform a non-blocking UART reception.

• status_t UART_AbortReceivingData (const uart_instance_t ∗const instance)

Terminates a non-blocking receive early.

• status_t UART_GetReceiveStatus (const uart_instance_t ∗const instance, uint32_t ∗bytesRemaining)

Get the status of the current non-blocking UART reception.

• status_t UART_SetRxBuffer (const uart_instance_t ∗const instance, uint8_t ∗rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.

• status_t UART_SetTxBuffer (const uart_instance_t ∗const instance, const uint8_t ∗txBuff, uint32_t txSize)

Provide a buffer for transmitting data.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.107 Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL) 937

16.107.2 Data Structure Documentation

16.107.2.1 struct uart_user_config_t

Defines the UART configuration structure.

Implements : uart_user_config_t_Class

Definition at line 88 of file uart_pal.h.

Data Fields

• uint32_t baudRate

• uart_bit_count_per_char_t bitCount

• uart_parity_mode_t parityMode

• uart_stop_bit_count_t stopBitCount

• uart_transfer_type_t transferType

• uint8_t rxDMAChannel

• uint8_t txDMAChannel

• uart_callback_t rxCallback

• void ∗ rxCallbackParam

• uart_callback_t txCallback

• void ∗ txCallbackParam

• void ∗ extension

Field Documentation

16.107.2.1.1 uint32_t baudRate

Baud rate

Definition at line 90 of file uart_pal.h.

16.107.2.1.2 uart_bit_count_per_char_t bitCount

Number of bits in a character

Definition at line 91 of file uart_pal.h.

16.107.2.1.3 void∗ extension

This field will be used to add extra settings to the basic configuration like FlexIO data pins

Definition at line 101 of file uart_pal.h.

16.107.2.1.4 uart_parity_mode_t parityMode

Parity mode, disabled (default), even, odd

Definition at line 92 of file uart_pal.h.

16.107.2.1.5 uart_callback_t rxCallback

Callback to invoke for data receive

Definition at line 97 of file uart_pal.h.

16.107.2.1.6 void∗ rxCallbackParam

Receive callback parameter

Definition at line 98 of file uart_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

938 CONTENTS

16.107.2.1.7 uint8_t rxDMAChannel

Channel number for DMA rx channel.

Definition at line 95 of file uart_pal.h.

16.107.2.1.8 uart_stop_bit_count_t stopBitCount

number of stop bits, 1 stop bit (default) or 2 stop bits

Definition at line 93 of file uart_pal.h.

16.107.2.1.9 uart_transfer_type_t transferType

Type of the transfer (interrupt/dma based)

Definition at line 94 of file uart_pal.h.

16.107.2.1.10 uart_callback_t txCallback

Callback to invoke for data send

Definition at line 99 of file uart_pal.h.

16.107.2.1.11 void∗ txCallbackParam

Transmit callback parameter

Definition at line 100 of file uart_pal.h.

16.107.2.1.12 uint8_t txDMAChannel

Channel number for DMA tx channel.

Definition at line 96 of file uart_pal.h.

16.107.2.2 struct extension_flexio_for_uart_t

Defines the extension structure for the UART over FLEXIO.

Implements : extension_flexio_for_uart_t_Class

Definition at line 110 of file uart_pal.h.

Data Fields

• uint8_t dataPinTx

• uint8_t dataPinRx

Field Documentation

16.107.2.2.1 uint8_t dataPinRx

Flexio pin to use as Rx pin

Definition at line 113 of file uart_pal.h.

16.107.2.2.2 uint8_t dataPinTx

Flexio pin to use as Tx pin

Definition at line 112 of file uart_pal.h.

16.107.3 Enumeration Type Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.107 Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL) 939

16.107.3.1 enum uart_bit_count_per_char_t

Defines the number of bits in a character.

Implements : uart_bit_count_per_char_t_Class

Enumerator

UART_7_BITS_PER_CHAR 7-bit data characters

UART_8_BITS_PER_CHAR 8-bit data characters

UART_9_BITS_PER_CHAR 9-bit data characters

UART_10_BITS_PER_CHAR 10-bit data characters

UART_15_BITS_PER_CHAR 15-bit data characters

UART_16_BITS_PER_CHAR 16-bit data characters

Definition at line 39 of file uart_pal.h.

16.107.3.2 enum uart_parity_mode_t

Defines the parity mode.

Implements : uart_parity_mode_t_Class

Enumerator

UART_PARITY_DISABLED parity disabled

UART_PARITY_EVEN parity enabled, type even

UART_PARITY_ODD parity enabled, type odd

Definition at line 65 of file uart_pal.h.

16.107.3.3 enum uart_stop_bit_count_t

Defines the number of stop bits.

Implements : uart_stop_bit_count_t_Class

Enumerator

UART_ONE_STOP_BIT one stop bit

UART_TWO_STOP_BIT two stop bits

Definition at line 77 of file uart_pal.h.

16.107.3.4 enum uart_transfer_type_t

Defines the transfer type.

Implements : uart_transfer_type_t_Class

Enumerator

UART_USING_DMA Driver uses DMA for data transfers

UART_USING_INTERRUPTS Driver uses interrupts for data transfers

Definition at line 54 of file uart_pal.h.

16.107.4 Function Documentation

16.107.4.1 status_t UART_AbortReceivingData (const uart_instance_t ∗const instance)

Terminates a non-blocking receive early.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

940 CONTENTS

Parameters

in instance Pointer to the UART_PAL instance structure.

Returns

STATUS_SUCCESS: if successful; STATUS_ERROR : if invalid instance type;

Definition at line 1018 of file uart_pal.c.

16.107.4.2 status_t UART_AbortSendingData (const uart_instance_t ∗const instance)

Terminates a non-blocking transmission early.

Parameters

in instance Pointer to the UART_PAL instance structure.

Returns

STATUS_SUCCESS: if successful; STATUS_ERROR : if invalid instance type;

Definition at line 832 of file uart_pal.c.

16.107.4.3 status_t UART_Deinit (const uart_instance_t ∗const instance)

De-initializes the UART module.

This function de-initializes the UART module.

Parameters

in instance Pointer to the UART_PAL instance structure.

Returns

STATUS_SUCCESS: if successful; STATUS_BUSY: if TX/RX line is busy; STATUS_ERROR : if invalid in-
stance type;

Definition at line 556 of file uart_pal.c.

16.107.4.4 status_t UART_GetBaudRate (const uart_instance_t ∗const instance, uint32_t ∗ configuredBaudRate)

Returns the UART baud rate.

This function returns the UART configured baud rate.

Parameters

in instance Pointer to the UART_PAL instance structure.
out configured←↩

BaudRate
Pointer to configured baud rate.

Returns

STATUS_SUCCESS: if successful; STATUS_ERROR : if invalid instance type;

Definition at line 687 of file uart_pal.c.

16.107.4.5 void UART_GetDefaultConfig (uart_user_config_t ∗ config)

Gets the default configuration structure.

This function gets the default configuration structure, with the following settings:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.107 Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL) 941

• Baud rate: 9600

• Number of bits in a character: 8

• Parity mode: disable

• Number of stop bits: 1 stop bit

• Type of the transfer: interrupt

• Callback to invoke for data receive: NULL

• Receive callback parameter: NULL

• Callback to invoke for data send: NULL

• Transmit callback parameter: NULL

• Setup pins for FLEXIO: NULL

Parameters

out config Pointer to the UART_PAL user configuration structure.

Returns

NONE

Definition at line 396 of file uart_pal.c.

16.107.4.6 status_t UART_GetReceiveStatus (const uart_instance_t ∗const instance, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking UART reception.

Parameters

in instance Pointer to the UART_PAL instance structure.
out bytesRemaining Pointer to value that is filled with the number of bytes that still need to be

received in the active transfer

Note

In DMA mode, this parameter may not be accurate, in case the transfer completes right after calling this
function; in this edge-case, the parameter will reflect the initial transfer size, due to automatic reloading of the
major loop count in the DMA transfer descriptor.

return STATUS_SUCCESS : The reception has completed successfully; STATUS_BUSY : The reception is still in
progress. bytesReceived will be filled with the number of bytes that have been received so far; STATUS_UART_R←↩

X_OVERRUN : If an overrun error occurred during the reception; STATUS_UART_ABORTED : The reception was
aborted; STATUS_TIMEOUT : A timeout was reached; STATUS_ERROR : An error occurred; return For LPUART
used by UART_PAL: STATUS_UART_FRAMING_ERROR: If bit stop on frame is wrong; STATUS_UART_PARI←↩

TY_ERROR : If bit parity on frame is wrong; STATUS_UART_NOISE_ERROR : If noise happens on bus;

Definition at line 1062 of file uart_pal.c.

16.107.4.7 status_t UART_GetTransmitStatus (const uart_instance_t ∗const instance, uint32_t ∗ bytesRemaining)

Get the status of the current non-blocking UART transmission.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

942 CONTENTS

Parameters

in instance Pointer to the UART_PAL instance structure.
out bytesRemaining Pointer to value that is populated with the number of bytes that have been sent

in the active transfer.

Note

In DMA mode, this parameter may not be accurate, in case the transfer completes right after calling this
function; in this edge-case, the parameter will reflect the initial transfer size, due to automatic reloading of the
major loop count in the DMA transfer descriptor.

Returns

STATUS_SUCCESS : The transmit has completed successfully; STATUS_BUSY : The transmit is still in
progress. bytesTransmitted will be filled with the number of bytes that have been transmitted so far; STATU←↩

S_UART_ABORTED : The transmit was aborted; STATUS_TIMEOUT : A timeout was reached; STATUS_←↩

ERROR : An error occurred;

Definition at line 876 of file uart_pal.c.

16.107.4.8 status_t UART_Init (const uart_instance_t ∗const instance, const uart_user_config_t ∗ config)

Initializes the UART module.

This function initializes and enables the requested UART module, configuring the bus parameters.

Parameters

in instance Pointer to the UART_PAL instance structure.
in config Pointer to the UART_PAL user configuration structure.

return STATUS_SUCCESS: if successful; STATUS_ERROR : if invalid instance type or init over supported hard-
ware. return For LPUART, LINFLEXD_UART used by UART_PAL: STATUS_BUSY : if calling function while bus is
busy;

Definition at line 419 of file uart_pal.c.

16.107.4.9 status_t UART_ReceiveData (const uart_instance_t ∗const instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Perform a non-blocking UART reception.

This function receives a block of data and returns immediately. The rest of the transmission is handled by the
interrupt service routine (if the driver is initialized in interrupt mode).

Parameters

in instance Pointer to the UART_PAL instance structure.
out rxBuff Pointer to the data to be transferred.
in rxSize Length in bytes of the data to be transferred.

Returns

STATUS_BUSY : if bus is busy; STATUS_SUCCESS: if successful; STATUS_ERROR : An error occurred;

Definition at line 972 of file uart_pal.c.

16.107.4.10 status_t UART_ReceiveDataBlocking (const uart_instance_t ∗const instance, uint8_t ∗ rxBuff, uint32_t rxSize,
uint32_t timeout)

Perform a blocking UART reception.

This function receives a block of data and only returns when the transmission is complete.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.107 Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL) 943

Parameters

in instance Pointer to the UART_PAL instance structure.
out rxBuff Pointer to the receive buffer.
in rxSize Length in bytes of the data to be received.
in timeout Timeout for the transfer in milliseconds.

return STATUS_TIMEOUT : if waiting time for reception finished while receive data incompletely; STATUS_BUSY
: if bus is busy; STATUS_SUCCESS : if successful; STATUS_UART_RX_OVERRUN : If an overrun error occurred
during the reception; STATUS_ERROR : An error occurred; return For LPUART used by UART_PAL: STATUS_←↩

UART_FRAMING_ERROR: If bit stop on frame is wrong; STATUS_UART_PARITY_ERROR : If bit parity on frame
is wrong; STATUS_UART_NOISE_ERROR : If noise happens on bus;

Definition at line 921 of file uart_pal.c.

16.107.4.11 status_t UART_SendData (const uart_instance_t ∗const instance, const uint8_t ∗ txBuff, uint32_t txSize)

Perform a non-blocking UART transmission.

This function sends a block of data and returns immediately. The rest of the transmission is handled by the interrupt
service routine (if the driver is initialized in interrupt mode).

Parameters

in instance Pointer to the UART_PAL instance structure.
in txBuffer Pointer to the data to be transferred.
in txSize Length in bytes of the data to be transferred.

Returns

STATUS_BUSY : if bus is busy; STATUS_SUCCESS: if successful; STATUS_ERROR : An error occurred;

Definition at line 785 of file uart_pal.c.

16.107.4.12 status_t UART_SendDataBlocking (const uart_instance_t ∗const instance, const uint8_t ∗ txBuff, uint32_t
txSize, uint32_t timeout)

Perform a blocking UART transmission.

This function sends a block of data and only returns when the transmission is complete.

Parameters

in instance Pointer to the UART_PAL instance structure.
in txBuffer Pointer to the data to be transferred.
in txSize Length in bytes of the data to be transferred.
in timeout Timeout value in milliseconds.

Returns

STATUS_TIMEOUT: if waiting time for transfer finished but transmit data incompletely; STATUS_BUSY : if
bus is busy; STATUS_SUCCESS: if successful; STATUS_ERROR : An error occurred;

Definition at line 732 of file uart_pal.c.

16.107.4.13 status_t UART_SetBaudRate (const uart_instance_t ∗const instance, uint32_t desiredBaudRate)

Configures the UART baud rate.

This function configures the UART baud rate. Note that due to module limitation not any baud rate can be achieved.
The driver will set a baud rate as close as possible to the requested baud rate, but there may still be substantial
differences. The application should call UART_GetBaudRate() after UART_SetBaudRate() to check what baud rate
was actually set.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

944 CONTENTS

Parameters

in instance Pointer to the UART_PAL instance structure.
in desiredBaud←↩

Rate
Desired baud rate.

Returns

STATUS_SUCCESS: if successful; STATUS_BUSY : if calling function while bus is busy; STATUS_ERROR
: if invalid instance type;

Definition at line 633 of file uart_pal.c.

16.107.4.14 status_t UART_SetRxBuffer (const uart_instance_t ∗const instance, uint8_t ∗ rxBuff, uint32_t rxSize)

Provide a buffer for receiving data.

The function can be used to provide a new buffer for receiving data to the driver. Beside, It can be called from rx
callback to provide a new buffer for continuous reception.

Parameters

in instance Pointer to the UART_PAL instance structure.
in rxBuff Pointer to buffer containing received data.
in rxSize The number of bytes to receive.

Returns

STATUS_SUCCESS: Provide completed; STATUS_ERROR : if invalid instance type;

Definition at line 1107 of file uart_pal.c.

16.107.4.15 status_t UART_SetTxBuffer (const uart_instance_t ∗const instance, const uint8_t ∗ txBuff, uint32_t txSize)

Provide a buffer for transmitting data.

The function can be used to provide a new buffer for transmitting data to the driver. Beside, It can be called from tx
callback to provide a new buffer for continuous transmission.

Parameters

in instance Pointer to the UART_PAL instance structure.
in txBuff Pointer to buffer containing transmitted data.
in txSize The number of bytes to transmit.

Returns

STATUS_SUCCESS: Provide completed; STATUS_ERROR : if invalid instance type;

Definition at line 1151 of file uart_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.108 User provided call-outs 945

16.108 User provided call-outs

16.108.1 Detailed Description

This group contains APIs which may be called from within the LIN module in order to enable/disable LIN communi-
cation interrupts.

Functions

• l_u16 l_sys_irq_disable (l_ifc_handle iii)

Disable LIN related IRQ.

• void l_sys_irq_restore (l_ifc_handle iii)

Enable LIN related IRQ.

16.108.2 Function Documentation

16.108.2.1 l_u16 l_sys_irq_disable (l_ifc_handle iii)

Disable LIN related IRQ.

Parameters

in iii Interface name

Returns

l_u16

Definition at line 543 of file lin_common_api.c.

16.108.2.2 void l_sys_irq_restore (l_ifc_handle iii)

Enable LIN related IRQ.

Parameters

in iii Interface name

Returns

void

Definition at line 557 of file lin_common_api.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

946 CONTENTS

16.109 WDG PAL

16.109.1 Detailed Description

Watchdog Peripheral Abstraction Layer.

Data Structures

• struct wdg_option_mode_t

WDG PAL option mode configuration structure Implements : wdg_option_mode_t_Class. More...

• struct extension_ewm_for_wdg_t

The extension structure for the EWM over WDOG peripheral Implements : extension_ewm_for_wdg_t_Class. More...

• struct wdg_config_t

WDG PAL configuration structure Implements : wdg_config_t_Class. More...

Enumerations

• enum wdg_clock_source_t { WDG_PAL_BUS_CLOCK = 0x00U, WDG_PAL_LPO_CLOCK = 0x01U, WD←↩

G_PAL_SOSC_CLOCK = 0x02U, WDG_PAL_SIRC_CLOCK = 0x03U }

Clock sources for the WDG PAL. Implements : wdg_clock_source_t_Class.

• enum wdg_in_assert_logic_t { WDG_IN_ASSERT_DISABLED = 0x00U, WDG_IN_ASSERT_ON_LOGIC←↩

_ZERO = 0x01U, WDG_IN_ASSERT_ON_LOGIC_ONE = 0x02U }

WDG PAL input pin configuration Configures if the input pin is enabled and when is asserted Implements : wdg_in←↩

_assert_logic_t_Class.

• enum wdg_inst_type_t

Enumeration with the types of peripherals supported by Watchdog PAL.

WDG PAL API

• status_t WDG_Init (const wdg_instance_t ∗const instance, const wdg_config_t ∗configPtr)

Initializes the WDG PAL.

• void WDG_GetDefaultConfig (wdg_config_t ∗const config)

Gets default configuration of the WDG PAL.

• void WDG_Refresh (const wdg_instance_t ∗const instance)

Refreshes the WDG PAL counter.

• status_t WDG_Deinit (const wdg_instance_t ∗const instance)

De-initializes the WDG PAL.

• status_t WDG_SetInt (const wdg_instance_t ∗const instance, bool enable)

Set interrupt for WDG PAL.

• status_t WDG_SetTimeout (const wdg_instance_t ∗const instance, uint32_t value)

Sets the value of the WDG PAL timeout.

• status_t WDG_SetWindow (const wdg_instance_t ∗const instance, bool enable, uint32_t value)

Set window mode and window value of the WDG PAL.

• status_t WDG_GetCounter (const wdg_instance_t ∗const instance, uint32_t ∗value)

Gets the value of the WDG PAL counter.

• void WDG_ClearIntFlag (const wdg_instance_t ∗const instance)

Clears the Timeout Interrupt Flag.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.109 WDG PAL 947

16.109.2 Data Structure Documentation

16.109.2.1 struct wdg_option_mode_t

WDG PAL option mode configuration structure Implements : wdg_option_mode_t_Class.

Definition at line 64 of file wdg_pal.h.

Data Fields

• bool wait

• bool stop

• bool debug

Field Documentation

16.109.2.1.1 bool debug

Debug mode

Definition at line 68 of file wdg_pal.h.

16.109.2.1.2 bool stop

Stop mode

Definition at line 67 of file wdg_pal.h.

16.109.2.1.3 bool wait

Wait mode

Definition at line 66 of file wdg_pal.h.

16.109.2.2 struct extension_ewm_for_wdg_t

The extension structure for the EWM over WDOG peripheral Implements : extension_ewm_for_wdg_t_Class.

Definition at line 88 of file wdg_pal.h.

Data Fields

• wdg_in_assert_logic_t assertLogic

• uint8_t prescalerValue

Field Documentation

16.109.2.2.1 wdg_in_assert_logic_t assertLogic

Assert logic for EWM input pin

Definition at line 90 of file wdg_pal.h.

16.109.2.2.2 uint8_t prescalerValue

EWM clock prescaler

Definition at line 91 of file wdg_pal.h.

16.109.2.3 struct wdg_config_t

WDG PAL configuration structure Implements : wdg_config_t_Class.

Definition at line 99 of file wdg_pal.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

948 CONTENTS

Data Fields

• wdg_clock_source_t clkSource

• wdg_option_mode_t opMode

• uint32_t timeoutValue

• uint8_t percentWindow

• bool intEnable

• bool winEnable

• bool prescalerEnable

• void ∗ extension

Field Documentation

16.109.2.3.1 wdg_clock_source_t clkSource

The clock source of the WDOG

Definition at line 101 of file wdg_pal.h.

16.109.2.3.2 void∗ extension

This field will be add extra settings to EWM's configuration

Definition at line 109 of file wdg_pal.h.

16.109.2.3.3 bool intEnable

If true, an interrupt request is generated before reset

Definition at line 105 of file wdg_pal.h.

16.109.2.3.4 wdg_option_mode_t opMode

The modes in which the WDOG is functional

Definition at line 102 of file wdg_pal.h.

16.109.2.3.5 uint8_t percentWindow

The window value compares to timeout value. Maximum value is 100

Definition at line 104 of file wdg_pal.h.

16.109.2.3.6 bool prescalerEnable

If true, prescaler is enabled(default prescaler = 256)

Definition at line 107 of file wdg_pal.h.

16.109.2.3.7 uint32_t timeoutValue

The timeout value

Definition at line 103 of file wdg_pal.h.

16.109.2.3.8 bool winEnable

If true, window mode is enabled

Definition at line 106 of file wdg_pal.h.

16.109.3 Enumeration Type Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.109 WDG PAL 949

16.109.3.1 enum wdg_clock_source_t

Clock sources for the WDG PAL. Implements : wdg_clock_source_t_Class.

Enumerator

WDG_PAL_BUS_CLOCK Bus clock

WDG_PAL_LPO_CLOCK LPO clock

WDG_PAL_SOSC_CLOCK SOSC clock

WDG_PAL_SIRC_CLOCK SIRC clock

Definition at line 52 of file wdg_pal.h.

16.109.3.2 enum wdg_in_assert_logic_t

WDG PAL input pin configuration Configures if the input pin is enabled and when is asserted Implements : wdg_←↩

in_assert_logic_t_Class.

Enumerator

WDG_IN_ASSERT_DISABLED Input pin disabled

WDG_IN_ASSERT_ON_LOGIC_ZERO Input pin asserts EWM when on logic 0

WDG_IN_ASSERT_ON_LOGIC_ONE Input pin asserts EWM when on logic 1

Definition at line 77 of file wdg_pal.h.

16.109.3.3 enum wdg_inst_type_t

Enumeration with the types of peripherals supported by Watchdog PAL.

This enumeration contains the types of peripherals supported by Watchdog PAL. Implements : wdg_inst_type_t←↩

_Class

Definition at line 42 of file wdg_pal_mapping.h.

16.109.4 Function Documentation

16.109.4.1 void WDG_ClearIntFlag (const wdg_instance_t ∗const instance)

Clears the Timeout Interrupt Flag.

This function clears the Timeout Interrupt Flag.

Parameters

in instance The name of the instance.

Definition at line 488 of file wdg_pal.c.

16.109.4.2 status_t WDG_Deinit (const wdg_instance_t ∗const instance)

De-initializes the WDG PAL.

This function resets all configuration to default and disable the WDG PAL instance.

Parameters

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

950 CONTENTS

in instance The name of the instance.

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed due to WDG PAL was locked.

• STATUS_UNSUPPORTED : Operation was unsupported.

Definition at line 282 of file wdg_pal.c.

16.109.4.3 status_t WDG_GetCounter (const wdg_instance_t ∗const instance, uint32_t ∗ value)

Gets the value of the WDG PAL counter.

This function gets counter of WDG PAL module. Note that: Counter will be reset to timeout value if WDG PAL uses
SWT. The counter will continue to run if WDG PAL uses WDOG.

Parameters

in instance The name of the instance.
out value Pointer to the counter value

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed due to SWT was lock by hard lock.

• STATUS_UNSUPPORTED : Operation was unsupported.

Definition at line 440 of file wdg_pal.c.

16.109.4.4 void WDG_GetDefaultConfig (wdg_config_t ∗const config)

Gets default configuration of the WDG PAL.

This function gets the default configuration of the WDG PAL.

Parameters

out configures the default configuration

Definition at line 206 of file wdg_pal.c.

16.109.4.5 status_t WDG_Init (const wdg_instance_t ∗const instance, const wdg_config_t ∗ configPtr)

Initializes the WDG PAL.

This function initializes the WDG instance by user configuration

Parameters

in instance The name of the instance.
in configPtr Pointer to the WDG PAL user configuration structure

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed. Possible causes: previous clock source or the one specified in the
configuration structure is disabled; WDG PAL configuration updates are not allowed.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.109 WDG PAL 951

• STATUS_UNSUPPORTED : Operation was unsupported.

Definition at line 80 of file wdg_pal.c.

16.109.4.6 void WDG_Refresh (const wdg_instance_t ∗const instance)

Refreshes the WDG PAL counter.

This function resets the WDG PAL counter

Parameters

in instance The name of the instance.

Definition at line 243 of file wdg_pal.c.

16.109.4.7 status_t WDG_SetInt (const wdg_instance_t ∗const instance, bool enable)

Set interrupt for WDG PAL.

This function enables/disables the WDG PAL timeout interrupt and sets a function to be called when a timeout
interrupt is received, before reset.

Parameters

in instance The name of the instance.
in enable

• true : Enable interrupt

• false : Disable interrupt

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed. Possible causes: failed to WDG PAL configuration updates not
allowed.

• STATUS_UNSUPPORTED: Operation was unsupported.

Definition at line 319 of file wdg_pal.c.

16.109.4.8 status_t WDG_SetTimeout (const wdg_instance_t ∗const instance, uint32_t value)

Sets the value of the WDG PAL timeout.

This function sets the value of the WDG PAL timeout.

Parameters

in instance The name of the instance.
in value The value of the WDG PAL timeout.

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed due to WDG PAL was locked.

• STATUS_UNSUPPORTED : Operation was unsupported.

Definition at line 358 of file wdg_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

952 CONTENTS

16.109.4.9 status_t WDG_SetWindow (const wdg_instance_t ∗const instance, bool enable, uint32_t value)

Set window mode and window value of the WDG PAL.

This function set window mode, window value is set when window mode enabled.

Parameters

in instance The name of the instance.
in enable

• true : Enable window mode

• false : Disable window mode

in value The value of the WDG PAL window.

Returns

operation status

• STATUS_SUCCESS : Operation was successful.

• STATUS_ERROR : Operation failed due to WDG PAL was locked.

• STATUS_UNSUPPORTED : Operation was unsupported.

Definition at line 397 of file wdg_pal.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.110 WDOG Driver 953

16.110 WDOG Driver

16.110.1 Detailed Description

Watchdog Timer Peripheral Driver.

How to use the WDOG driver in your application

In order to be able to use the Watchdog in your application, the first thing to do is initializing it with the desired
configuration. This is done by calling the WDOG_DRV_Init function. One of the arguments passed to this function
is the configuration which will be used for the Watchdog, specified by the wdog_user_config_t structure.

The wdog_user_config_t structure allows you to configure the following:

• the clock source of the Watchdog;

• the prescaler (a fixed 256 pre-scaling of the Watchdog counter reference clock may be enabled);

• the operation modes in which the Watchdog is functional (by default, the Watchdog is not functional in Debug
mode, Wait mode or Stop mode);

• the timeout value to which the Watchdog counter is compared;

• the window mode option for the refresh mechanism (by default, the window mode is disabled, but it may be
enabled and a window value may be set);

• the Watchdog timeout interrupt (if enabled, after a reset-triggering event, the Watchdog first generates an
interrupt request; next, the Watchdog delays 128 bus clocks before forcing a reset, to allow the interrupt
service routine to perform tasks (like analyzing the stack to debug code));

• the update mechanism (by default, the Watchdog reconfiguration is enabled, but updates can be disabled)

Please note that if the updates are disabled the Watchdog cannot be later modified without forcing a reset (this
implies that further calls of the WDOG_DRV_Init, WDOG_DRV_Deinit or WDOG_DRV_SetInt functions will lead
to a reset).

As mentioned before, a timeout interrupt may be enabled by specifying it at the module initialization. The WDO←↩

G_DRV_Init only allows enabling/disabling the interrupt, and it does not set up the ISR to be used for the interrupt
request. In order to set up a function to be called after a reset-triggering event (and also enable/disable the interrupt),
the WDOG_DRV_SetInt function may be used. Please note that, due to the 128 bus clocks delay before the reset,
a limited amount of job can be done in the ISR.

Integration guideline

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\drivers\src\wdog\wdog_driver.c
${S32SDK_PATH}\platform\drivers\src\wdog\wdog_hw_driver.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\drivers\inc\

Compile symbols

No special symbols are required for this component

Dependencies

Clock Manager Interrupt Manager (Interrupt)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

954 CONTENTS

Basic Operations of WDOG

1. To initialize WDOG, call WDOG_DRV_Init() with an user configuration structure. In the following code,
WDOG is initialized with default settings.

#define INST_WDOG1 (0U)

wdog_user_config_t userConfigPtr = {
.WDOG_LPO_CLOCK, /* Use the LPO clock as source */
.opMode = { /* WDOG not functional in Wait/Debug/Stop mode */

false,
false,
false

},
.true, /* Enable further updates of the WDOG configuration */
.false, /* Timeout interrupt disabled */
.false, /* Window mode disabled */
.0U, /* Window value */
.0x400, /* Timeout value */
.false /* Prescaler disabled */

};

/* Initialize WDOG module */
WDOG_DRV_Init(INST_WDOG1, &userConfigPtr);

2. To get default configuration of WDOG module, just call the function WDOG_DRV_GetDefaultConfig(). Make
sure that the operation before WDOG timeout executing.

wdog_user_config_t userConfigPtr;

/* Get default configuration of WDOG module */
WDOG_DRV_GetDefaultConfig(&userConfigPtr);

3. To refresh WDOG counter of WDOG module, just call the function WDOG_DRV_Trigger(). Make sure that
the operation before WDOG timeout executing.

/* Refresh counter of WDOG counter */
WDOG_DRV_Trigger(INST_WDOG1);

4. To de-initialize WDOG module, just call the function WDOG_DRV_Deinit(). Make sure that the operation
before WDOG timeout executing.

/* De-initialize WDOG module */
WDOG_DRV_Deinit(INST_WDOG1);

Example:

#define INST_WDOG1 (0U)

wdog_user_config_t userConfigPtr = {
.WDOG_LPO_CLOCK, /* Use the LPO clock as source */
.opMode = { /* WDOG not functional in Wait/Debug/Stop mode */

false,
false,
false

},
.true, /* Enable further updates of the WDOG configuration */
.false, /* Timeout interrupt disabled */
.false, /* Window mode disabled */
.0U, /* Window value */
.0x400, /* Timeout value */
.false /* Prescaler disabled */

};

/* Initialize WDOG module */
WDOG_DRV_Init(INST_WDOG1, &userConfigPtr);

/* Enable the timeout interrupt and set the ISR */
WDOG_DRV_SetInt(INST_WDOG1, true);

while (1) {

/* Do something that takes between 0x100 and 0x400 clock cycles */

/* Refresh the counter */
WDOG_DRV_Trigger(INST_WDOG1);

}

/* De-initialize WDOG module */
WDOG_DRV_Deinit(INST_WDOG1);

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.110 WDOG Driver 955

Data Structures

• struct wdog_op_mode_t

WDOG option mode configuration structure Implements : wdog_op_mode_t_Class. More...

• struct wdog_user_config_t

WDOG user configuration structure Implements : wdog_user_config_t_Class. More...

Enumerations

• enum wdog_clk_source_t { WDOG_BUS_CLOCK = 0x00U, WDOG_LPO_CLOCK = 0x01U, WDOG_SOS←↩

C_CLOCK = 0x02U, WDOG_SIRC_CLOCK = 0x03U }

Clock sources for the WDOG. Implements : wdog_clk_source_t_Class.

• enum wdog_test_mode_t { WDOG_TST_DISABLED = 0x00U, WDOG_TST_USER = 0x01U, WDOG_TS←↩

T_LOW = 0x02U, WDOG_TST_HIGH = 0x03U }

Test modes for the WDOG. Implements : wdog_test_mode_t_Class.

• enum wdog_set_mode_t { WDOG_DEBUG_MODE = 0x00U, WDOG_WAIT_MODE = 0x01U, WDOG_ST←↩

OP_MODE = 0x02U }

set modes for the WDOG. Implements : wdog_set_mode_t_Class

WDOG Driver API

• status_t WDOG_DRV_Init (uint32_t instance, const wdog_user_config_t ∗userConfigPtr)

Initializes the WDOG driver.

• status_t WDOG_DRV_Deinit (uint32_t instance)

De-initializes the WDOG driver.

• void WDOG_DRV_GetConfig (uint32_t instance, wdog_user_config_t ∗const config)

Gets the current configuration of the WDOG.

• void WDOG_DRV_GetDefaultConfig (wdog_user_config_t ∗const config)

Gets default configuration of the WDOG.

• status_t WDOG_DRV_SetInt (uint32_t instance, bool enable)

Enables/Disables the WDOG timeout interrupt and sets a function to be called when a timeout interrupt is received,
before reset.

• void WDOG_DRV_ClearIntFlag (uint32_t instance)

Clear interrupt flag of the WDOG.

• void WDOG_DRV_Trigger (uint32_t instance)

Refreshes the WDOG counter.

• uint16_t WDOG_DRV_GetCounter (uint32_t instance)

Gets the value of the WDOG counter.

• status_t WDOG_DRV_SetWindow (uint32_t instance, bool enable, uint16_t windowvalue)

Set window mode and window value of the WDOG.

• status_t WDOG_DRV_SetMode (uint32_t instance, bool enable, wdog_set_mode_t Setmode)

Sets the mode operation of the WDOG.

• status_t WDOG_DRV_SetTimeout (uint32_t instance, uint16_t timeout)

Sets the value of the WDOG timeout.

• status_t WDOG_DRV_SetTestMode (uint32_t instance, wdog_test_mode_t testMode)

Changes the WDOG test mode.

• wdog_test_mode_t WDOG_DRV_GetTestMode (uint32_t instance)

Gets the WDOG test mode.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

956 CONTENTS

16.110.2 Data Structure Documentation

16.110.2.1 struct wdog_op_mode_t

WDOG option mode configuration structure Implements : wdog_op_mode_t_Class.

Definition at line 84 of file wdog_driver.h.

Data Fields

• bool wait
• bool stop
• bool debug

Field Documentation

16.110.2.1.1 bool debug

Debug mode

Definition at line 88 of file wdog_driver.h.

16.110.2.1.2 bool stop

Stop mode

Definition at line 87 of file wdog_driver.h.

16.110.2.1.3 bool wait

Wait mode

Definition at line 86 of file wdog_driver.h.

16.110.2.2 struct wdog_user_config_t

WDOG user configuration structure Implements : wdog_user_config_t_Class.

Definition at line 95 of file wdog_driver.h.

Data Fields

• wdog_clk_source_t clkSource
• wdog_op_mode_t opMode
• bool updateEnable
• bool intEnable
• bool winEnable
• uint16_t windowValue
• uint16_t timeoutValue
• bool prescalerEnable

Field Documentation

16.110.2.2.1 wdog_clk_source_t clkSource

The clock source of the WDOG

Definition at line 97 of file wdog_driver.h.

16.110.2.2.2 bool intEnable

If true, an interrupt request is generated before reset

Definition at line 100 of file wdog_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.110 WDOG Driver 957

16.110.2.2.3 wdog_op_mode_t opMode

The modes in which the WDOG is functional

Definition at line 98 of file wdog_driver.h.

16.110.2.2.4 bool prescalerEnable

If true, a fixed 256 prescaling of the counter reference clock is enabled

Definition at line 104 of file wdog_driver.h.

16.110.2.2.5 uint16_t timeoutValue

The timeout value

Definition at line 103 of file wdog_driver.h.

16.110.2.2.6 bool updateEnable

If true, further updates of the WDOG are enabled

Definition at line 99 of file wdog_driver.h.

16.110.2.2.7 uint16_t windowValue

The window value

Definition at line 102 of file wdog_driver.h.

16.110.2.2.8 bool winEnable

If true, window mode is enabled

Definition at line 101 of file wdog_driver.h.

16.110.3 Enumeration Type Documentation

16.110.3.1 enum wdog_clk_source_t

Clock sources for the WDOG. Implements : wdog_clk_source_t_Class.

Enumerator

WDOG_BUS_CLOCK Bus clock

WDOG_LPO_CLOCK LPO clock

WDOG_SOSC_CLOCK SOSC clock

WDOG_SIRC_CLOCK SIRC clock

Definition at line 49 of file wdog_driver.h.

16.110.3.2 enum wdog_set_mode_t

set modes for the WDOG. Implements : wdog_set_mode_t_Class

Enumerator

WDOG_DEBUG_MODE Debug mode

WDOG_WAIT_MODE Wait mode

WDOG_STOP_MODE Stop mode

Definition at line 73 of file wdog_driver.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

958 CONTENTS

16.110.3.3 enum wdog_test_mode_t

Test modes for the WDOG. Implements : wdog_test_mode_t_Class.

Enumerator

WDOG_TST_DISABLED Test mode disabled

WDOG_TST_USER User mode enabled. (Test mode disabled.)

WDOG_TST_LOW Test mode enabled, only the low byte is used.

WDOG_TST_HIGH Test mode enabled, only the high byte is used.

Definition at line 61 of file wdog_driver.h.

16.110.4 Function Documentation

16.110.4.1 void WDOG_DRV_ClearIntFlag (uint32_t instance)

Clear interrupt flag of the WDOG.

Parameters

in instance WDOG peripheral instance number

Definition at line 270 of file wdog_driver.c.

16.110.4.2 status_t WDOG_DRV_Deinit (uint32_t instance)

De-initializes the WDOG driver.

Parameters

in instance WDOG peripheral instance number

Returns

operation status

• STATUS_SUCCESS: if allowed reconfigures WDOG module and de-initializes successful.

• STATUS_ERROR: Operation failed. Possible causes: failed to WDOG configuration updates not al-
lowed.

Definition at line 160 of file wdog_driver.c.

16.110.4.3 void WDOG_DRV_GetConfig (uint32_t instance, wdog_user_config_t ∗const config)

Gets the current configuration of the WDOG.

Parameters

in instance WDOG peripheral instance number
out configures the current configuration

Definition at line 195 of file wdog_driver.c.

16.110.4.4 uint16_t WDOG_DRV_GetCounter (uint32_t instance)

Gets the value of the WDOG counter.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.110 WDOG Driver 959

Parameters

in instance WDOG peripheral instance number.

Returns

the value of the WDOG counter.

Definition at line 301 of file wdog_driver.c.

16.110.4.5 void WDOG_DRV_GetDefaultConfig (wdog_user_config_t ∗const config)

Gets default configuration of the WDOG.

Parameters

out configures the default configuration

Definition at line 212 of file wdog_driver.c.

16.110.4.6 wdog_test_mode_t WDOG_DRV_GetTestMode (uint32_t instance)

Gets the WDOG test mode.

This function verifies the test mode of the WDOG.

Parameters

in instance WDOG peripheral instance number

Returns

Test modes for the WDOG

Definition at line 459 of file wdog_driver.c.

16.110.4.7 status_t WDOG_DRV_Init (uint32_t instance, const wdog_user_config_t ∗ userConfigPtr)

Initializes the WDOG driver.

Parameters

in instance WDOG peripheral instance number
in userConfigPtr pointer to the WDOG user configuration structure

Returns

operation status

• STATUS_SUCCESS: Operation was successful.

• STATUS_ERROR: Operation failed. Possible causes: previous clock source or the one specified in the
configuration structure is disabled; WDOG configuration updates are not allowed; WDOG instance has
been initialized before; If window mode enabled and window value greater than or equal to the timeout
value.

Definition at line 102 of file wdog_driver.c.

16.110.4.8 status_t WDOG_DRV_SetInt (uint32_t instance, bool enable)

Enables/Disables the WDOG timeout interrupt and sets a function to be called when a timeout interrupt is received,
before reset.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

960 CONTENTS

Parameters

in instance WDOG peripheral instance number
in enable enable/disable interrupt

Returns

operation status

• STATUS_SUCCESS: if allowed reconfigures WDOG timeout interrupt.

• STATUS_ERROR: Operation failed. Possible causes: failed to WDOG configuration updates not al-
lowed.

Definition at line 238 of file wdog_driver.c.

16.110.4.9 status_t WDOG_DRV_SetMode (uint32_t instance, bool enable, wdog_set_mode_t Setmode)

Sets the mode operation of the WDOG.

This function changes the mode operation of the WDOG.

Parameters

in instance WDOG peripheral instance number.
in enable enable/disable mode of the WDOG.
in Setmode select mode of the WDOG.

Returns

operation status

• STATUS_SUCCESS: if allowed reconfigures mode operation of the WDOG.

• STATUS_ERROR: Operation failed. Possible causes: failed to WDOG configuration updates not al-
lowed.

Definition at line 352 of file wdog_driver.c.

16.110.4.10 status_t WDOG_DRV_SetTestMode (uint32_t instance, wdog_test_mode_t testMode)

Changes the WDOG test mode.

This function changes the test mode of the WDOG. If the WDOG is tested in mode, software should set this field to
0x01U in order to indicate that the WDOG is functioning normally.

Parameters

in instance WDOG peripheral instance number
in testMode Test modes for the WDOG.

Returns

operation status

• STATUS_SUCCESS: if allowed reconfigures WDOG test mode.

• STATUS_ERROR: Operation failed. Possible causes: failed to WDOG configuration updates not al-
lowed.

Definition at line 426 of file wdog_driver.c.

16.110.4.11 status_t WDOG_DRV_SetTimeout (uint32_t instance, uint16_t timeout)

Sets the value of the WDOG timeout.

This function sets the value of the WDOG timeout.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.110 WDOG Driver 961

Parameters

in instance WDOG peripheral instance number.
in timeout the value of the WDOG timeout.

Returns

operation status

• STATUS_SUCCESS: if allowed reconfigures WDOG timeout.

• STATUS_ERROR: Operation failed. Possible causes: failed to WDOG configuration updates not al-
lowed.

Definition at line 397 of file wdog_driver.c.

16.110.4.12 status_t WDOG_DRV_SetWindow (uint32_t instance, bool enable, uint16_t windowvalue)

Set window mode and window value of the WDOG.

This function set window mode, window value is set when window mode enabled.

Parameters

in instance WDOG peripheral instance number.
in enable enable/disable window mode and window value.
in windowvalue the value of the WDOG window.

Returns

operation status

• STATUS_SUCCESS: if allowed reconfigures window value success.

• STATUS_ERROR: Operation failed. Possible causes: failed to WDOG configuration updates not al-
lowed.

Definition at line 316 of file wdog_driver.c.

16.110.4.13 void WDOG_DRV_Trigger (uint32_t instance)

Refreshes the WDOG counter.

Parameters

in instance WDOG peripheral instance number

Definition at line 286 of file wdog_driver.c.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

962 CONTENTS

16.111 Watchdog Peripheral Abstraction Layer (WDG PAL)

16.111.1 Detailed Description

The S32 SDK provides a Peripheral Abstraction Layer for Watchdog (WDG PAL) modules of S32 SDK devices.

The Watchdog PAL driver allows to generate interrupt event to reset CPU or external circuit. It was designed to be
portable across all platforms and IPs which support Watchdog Timer.

Integration guideline

Define IPs specification

Unlike the other drivers, WDG PAL modules need to include a configuration file named wdg_pal_cfg.h, which allows
the user to specify which IPSs are used and how many resources are allocated for each of them (state structures).
The following code example shows how to configure one instance for each available WDG IPs.

#ifndef WDG_PAL_CFG_H
#define WDG_PAL_CFG_H

/* Define which IP instance will be used in current project */
#define WDG_OVER_WDOG
#define WDG_OVER_EWM
#define WDG_OVER_SWT

/* Define the resources necessary for current project */
#define WDG_OVER_WDOG_INSTANCE_COUNT 1U
#define WDG_OVER_EWM_INSTANCE_COUNT 1U
#define WDG_OVER_SWT_INSTANCE_COUNT 0U

#endif /* WDG_PAL_CFG_H */

The following table contains the matching between platforms and available IPs

IP/MCU S32K11x S32K14x MPC574x S32Rx7x
WDOG YES YES NO NO
EWM NO YES NO NO
SWT NO NO YES YES

Compilation units

The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pal\src\wdg\wdg_pal.c

Include path

The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pal\inc

Compile symbols

No special symbols are required for this component

Dependencies

• Clock Manager

• Interrupt Manager (Interrupt)

• External Watchdog Monitor (EWM)

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.111 Watchdog Peripheral Abstraction Layer (WDG PAL) 963

• Watchdog timer (WDOG)

• swt

Functionality

Initialization

In order to use the WDG PAL driver it must be first initialized, using WDG_Init() function. Once initialized, it cannot
be initialized again for the same WDG module instance until it is de-initialized, using WDG_Deinit(). Different WDG
modules instances can function independently of each other.

Interrupt event

After initialization, WDG PAL counter will count to timeout value. In window mode, when WDG PAL counter is
refreshed, it will reset count to default value and count again. If WDG PAL counter count to timeout value, CPU or
the external circuit will be reseted or placed into safe mode.

The configuration structure includes a special field named extension. It will be used only for WDG PAL over EWM
peripheral and should contain a pointer to extension_ewm_for_wdg_t structure. The purpose of this structure is to
configure which EWM_OUT pins and clock prescaler are used by the applications.

WDG PAL internal counter

WDG PAL internal counter is

• 8 bit if WDG PAL uses EWM

• 16 bit if WDG PAL uses WDOG

• 32 bit if WDG PAL uses SWT

WDG PAL's counter over EWM and WDOG will start to count from 0 to timeout value. WDG PAL's counter over
SWT will start to count from timeout value to 0.

Important Notes

• Before using the WDG PAL driver the module clock must be configured. Refer to Clock Manager for clock
configuration.

• The driver enables the interrupts for the corresponding WDG PAL module, but any interrupt priority must be
done by the application

• For WDG PAL over SWT, if the counter clock is slow, the software needs a wait time (inversely proportional
to counter clock frequency) to synchronization completed.

Example code

const wdg_instance_t wdg_pal1_Instance =
{

.instType = WDG_INST_TYPE_WDOG,

.instIdx = 0U
};

const wdg_instance_t wdg_pal2_Instance =
{

.instType = WDG_INST_TYPE_EWM,

.instIdx = 0U
};

const wdg_instance_t wdg_pal3_Instance =
{

.instType = WDG_INST_TYPE_SWT,

.instIdx = 0U
};

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

964 CONTENTS

/* Serial User Configurations */

const wdg_config_t wdg_pal1_Config0 =
{

.clkSource = WDG_PAL_LPO_CLOCK,

.opMode =
{

.wait = false,

.stop = false,

.debug = false
},
.timeoutValue = 1024,
.percentWindow = 50,
.intEnable = true,
.winEnable = true,
.prescalerEnable = true

};

const wdg_config_t wdg_pal2_Config0 =
{

.clkSource = WDG_PAL_LPO_CLOCK,

.opMode =
{

.wait = false,

.stop = false,

.debug = false
},
.timeoutValue = 254,
.percentWindow = 100,
.intEnable = true,
.winEnable = true,
.prescalerEnable = true,
.extension = &wdg_pal2_Extension0

};

extension_ewm_for_wdg_t wdg_pal2_Extension0 =
{

.assertLogic = WDG_IN_ASSERT_ON_LOGIC_ZERO,

.prescalerValue = 251
};

const wdg_config_t wdg_pal3_Config0 =
{

.clkSource = WDG_PAL_LPO_CLOCK,

.opMode =
{

.wait = false,

.stop = false,

.debug = false
},
.timeoutValue = 2560,
.percentWindow = 50,
.intEnable = true,
.winEnable = true,
.prescalerEnable = false

};

int main()
{

/* Init clocks, pins, led and other modules */
...

/* Initialize WDG PAL */
WDG_Init(&wdg_pal1_Instance, &wdg_pal1_Config0);

/* Infinite loop*/
while(1)
{

/* Do something until the counter needs to be refreshed */
...
/* Reset WDG PAL counter */
WDG_Refresh(&wdg_pal1_Instance);

}
}

Modules

• WDG PAL

Watchdog Peripheral Abstraction Layer.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

16.112 Watchdog timer (WDOG) 965

16.112 Watchdog timer (WDOG)

16.112.1 Detailed Description

The S32 SDK provides Peripheral Driver for the Watchdog timer (WDOG) module of S32 SDK devices.
.

Hardware background

The Watchdog Timer (WDOG) module is an independent timer that is available for system use. It provides a safety
feature to ensure that software is executing as planned and that the CPU is not stuck in an infinite loop or executing
unintended code. If the WDOG module is not serviced (refreshed) within a certain period, it resets the MCU.

Features of the WDOG module include:

• Configurable clock source inputs independent from the bus clock

• Programmable timeout period

– Programmable 16-bit timeout value

– Optional fixed 256 clock prescaler when longer timeout periods are needed

• Window mode option for the refresh mechanism

– Programmable 16-bit window value

– Provides robust check that program flow is faster than expected

– Early refresh attempts trigger a reset

• Optional timeout interrupt to allow post-processing diagnostics

– Interrupt request to CPU with interrupt vector for an interrupt service routine (ISR)

– Forced reset occurs 128 bus clocks after the interrupt vector fetch

• Configuration bits are write-once-after-reset to ensure watchdog configuration cannot be mistakenly altered

• Robust write sequence for unlocking write-once configuration bits

Modules

• WDOG Driver

Watchdog Timer Peripheral Driver.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

966 CONTENTS

17 Data Structure Documentation

17.1 adc_callback_info_t Struct Reference

Defines a structure used to pass information to the ADC PAL callback.

#include <platform/devices/callbacks.h>

Data Fields

• uint32_t groupIndex
• uint16_t resultBufferTail

17.1.1 Detailed Description

Defines a structure used to pass information to the ADC PAL callback.

Implements : adc_callback_info_t_Class

Definition at line 108 of file callbacks.h.

17.1.2 Field Documentation

17.1.2.1 uint32_t groupIndex

Index of the group executing the callback.

Definition at line 110 of file callbacks.h.

17.1.2.2 uint16_t resultBufferTail

Offset of the most recent conversion result in the result buffer.

Definition at line 111 of file callbacks.h.

The documentation for this struct was generated from the following file:

• platform/devices/callbacks.h

17.2 adc_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/adc_pal_mapping.h>

Data Fields

• adc_inst_type_t instType
• uint32_t instIdx

17.2.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : adc_instance_t_Class

Definition at line 74 of file adc_pal_mapping.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

17.3 can_instance_t Struct Reference 967

17.2.2 Field Documentation

17.2.2.1 uint32_t instIdx

Instance index of the peripheral (for ADC PAL the triggering peripheral) over which the PAL is used

Definition at line 77 of file adc_pal_mapping.h.

17.2.2.2 adc_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 76 of file adc_pal_mapping.h.

The documentation for this struct was generated from the following file:

• platform/pal/inc/adc_pal_mapping.h

17.3 can_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/can_pal_mapping.h>

Data Fields

• can_inst_type_t instType
• uint32_t instIdx

17.3.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : can_instance_t_Class

Definition at line 54 of file can_pal_mapping.h.

17.3.2 Field Documentation

17.3.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 56 of file can_pal_mapping.h.

17.3.2.2 can_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 55 of file can_pal_mapping.h.

The documentation for this struct was generated from the following file:

• platform/pal/inc/can_pal_mapping.h

17.4 drv_config_t Struct Reference

Data Fields

• sbc_wtdog_ctr_t watchdogCtr

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

968 CONTENTS

• uint32_t lpspiIntace
• bool isInit

17.4.1 Detailed Description

Definition at line 58 of file sbc_uja116x_driver.c.

17.4.2 Field Documentation

17.4.2.1 bool isInit

Definition at line 61 of file sbc_uja116x_driver.c.

17.4.2.2 uint32_t lpspiIntace

Definition at line 60 of file sbc_uja116x_driver.c.

17.4.2.3 sbc_wtdog_ctr_t watchdogCtr

Definition at line 59 of file sbc_uja116x_driver.c.

The documentation for this struct was generated from the following file:

• middleware/sbc/sbc_uja116x/source/sbc_uja116x_driver.c

17.5 i2c_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/i2c_pal_mapping.h>

Data Fields

• i2c_inst_type_t instType
• uint32_t instIdx

17.5.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : i2c_instance_t_Class

Definition at line 81 of file i2c_pal_mapping.h.

17.5.2 Field Documentation

17.5.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 83 of file i2c_pal_mapping.h.

17.5.2.2 i2c_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 82 of file i2c_pal_mapping.h.

The documentation for this struct was generated from the following file:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

17.6 i2s_instance_t Struct Reference 969

• platform/pal/inc/i2c_pal_mapping.h

17.6 i2s_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/i2s_pal_mapping.h>

Data Fields

• i2s_inst_type_t instType
• uint32_t instIdx

17.6.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information.

Definition at line 60 of file i2s_pal_mapping.h.

17.6.2 Field Documentation

17.6.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 62 of file i2s_pal_mapping.h.

17.6.2.2 i2s_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 61 of file i2s_pal_mapping.h.

The documentation for this struct was generated from the following file:

• platform/pal/inc/i2s_pal_mapping.h

17.7 ic_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/ic_pal_mapping.h>

Data Fields

• ic_inst_type_t instType
• uint32_t instIdx

17.7.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : ic_instance_t_Class

Definition at line 132 of file ic_pal_mapping.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

970 CONTENTS

17.7.2 Field Documentation

17.7.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 134 of file ic_pal_mapping.h.

17.7.2.2 ic_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 133 of file ic_pal_mapping.h.

The documentation for this struct was generated from the following file:

• platform/pal/inc/ic_pal_mapping.h

17.8 lin_product_id_t Struct Reference

Product id structure Implements : lin_product_id_t_Class.

#include <middleware/lin/include/lin_types.h>

Data Fields

• l_u16 supplier_id

• l_u16 function_id

• l_u8 variant

17.8.1 Detailed Description

Product id structure Implements : lin_product_id_t_Class.

Definition at line 54 of file lin_types.h.

17.8.2 Field Documentation

17.8.2.1 l_u16 function_id

Function ID

Definition at line 57 of file lin_types.h.

17.8.2.2 l_u16 supplier_id

Supplier ID

Definition at line 56 of file lin_types.h.

17.8.2.3 l_u8 variant

Variant value

Definition at line 58 of file lin_types.h.

The documentation for this struct was generated from the following file:

• middleware/lin/include/lin_types.h

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

17.9 mpu_instance_t Struct Reference 971

17.9 mpu_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/mpu_pal_mapping.h>

Data Fields

• mpu_inst_type_t instType

• uint32_t instIdx

17.9.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : mpu_instance_t_Class

Definition at line 68 of file mpu_pal_mapping.h.

17.9.2 Field Documentation

17.9.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 71 of file mpu_pal_mapping.h.

17.9.2.2 mpu_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 70 of file mpu_pal_mapping.h.

The documentation for this struct was generated from the following file:

• platform/pal/inc/mpu_pal_mapping.h

17.10 oc_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/oc_pal_mapping.h>

Data Fields

• oc_inst_type_t instType

• uint32_t instIdx

17.10.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : oc_instance_t_Class

Definition at line 110 of file oc_pal_mapping.h.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

972 CONTENTS

17.10.2 Field Documentation

17.10.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 112 of file oc_pal_mapping.h.

17.10.2.2 oc_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 111 of file oc_pal_mapping.h.

The documentation for this struct was generated from the following file:

• platform/pal/inc/oc_pal_mapping.h

17.11 oc_pal_state_t Struct Reference

The internal context structure.

17.11.1 Detailed Description

The internal context structure.

This structure is used by the driver for its internal logic. It must be provided by the application through the OC_Init()
function, then it cannot be freed until the driver is de-initialized using OC_Deinit(). The application should make no
assumptions about the content of this structure.

Definition at line 97 of file oc_pal.c.

The documentation for this struct was generated from the following file:

• platform/pal/src/oc/oc_pal.c

17.12 pwm_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/pwm_pal_mapping.h>

Data Fields

• pwm_inst_type_t instType

• uint32_t instIdx

17.12.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : pwm_instance_t_Class

Definition at line 46 of file pwm_pal_mapping.h.

17.12.2 Field Documentation

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

17.13 spi_instance_t Struct Reference 973

17.12.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 48 of file pwm_pal_mapping.h.

17.12.2.2 pwm_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 47 of file pwm_pal_mapping.h.

The documentation for this struct was generated from the following file:

• platform/pal/inc/pwm_pal_mapping.h

17.13 spi_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/spi_pal_mapping.h>

Data Fields

• spi_inst_type_t instType

• uint32_t instIdx

17.13.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : spi_instance_t_Class

Definition at line 50 of file spi_pal_mapping.h.

17.13.2 Field Documentation

17.13.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 52 of file spi_pal_mapping.h.

17.13.2.2 spi_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 51 of file spi_pal_mapping.h.

The documentation for this struct was generated from the following file:

• platform/pal/inc/spi_pal_mapping.h

17.14 timer_chan_state_t Struct Reference

Runtime state of the Timer channel.

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

974 CONTENTS

17.14.1 Detailed Description

Runtime state of the Timer channel.

This structure is used by the driver for its internal logic The application should make no assumptions about the
content of this structure

Definition at line 77 of file timing_pal.c.

The documentation for this struct was generated from the following file:

• platform/pal/src/timing/timing_pal.c

17.15 timing_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/timing_pal_mapping.h>

Data Fields

• timing_inst_type_t instType
• uint32_t instIdx

17.15.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : timing_instance_t_Class

Definition at line 88 of file timing_pal_mapping.h.

17.15.2 Field Documentation

17.15.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 90 of file timing_pal_mapping.h.

17.15.2.2 timing_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 89 of file timing_pal_mapping.h.

The documentation for this struct was generated from the following file:

• platform/pal/inc/timing_pal_mapping.h

17.16 uart_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/uart_pal_mapping.h>

Data Fields

• uart_inst_type_t instType
• uint32_t instIdx

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

17.17 wdg_instance_t Struct Reference 975

17.16.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : uart_instance_t_Class

Definition at line 63 of file uart_pal_mapping.h.

17.16.2 Field Documentation

17.16.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 66 of file uart_pal_mapping.h.

17.16.2.2 uart_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 65 of file uart_pal_mapping.h.

The documentation for this struct was generated from the following file:

• platform/pal/inc/uart_pal_mapping.h

17.17 wdg_instance_t Struct Reference

Structure storing PAL instance information.

#include <platform/pal/inc/wdg_pal_mapping.h>

Data Fields

• wdg_inst_type_t instType
• uint32_t instIdx

17.17.1 Detailed Description

Structure storing PAL instance information.

This structure is used for storing PAL instance information. Implements : wdg_instance_t_Class

Definition at line 63 of file wdg_pal_mapping.h.

17.17.2 Field Documentation

17.17.2.1 uint32_t instIdx

Instance index of the peripheral over which the PAL is used

Definition at line 65 of file wdg_pal_mapping.h.

17.17.2.2 wdg_inst_type_t instType

Peripheral over which the PAL is used

Definition at line 64 of file wdg_pal_mapping.h.

The documentation for this struct was generated from the following file:

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

976 CONTENTS

• platform/pal/inc/wdg_pal_mapping.h

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

Index

ADC Driver, 132
ADC_AVERAGE_16, 141
ADC_AVERAGE_32, 141
ADC_AVERAGE_4, 141
ADC_AVERAGE_8, 141
ADC_CLK_ALT_1, 142
ADC_CLK_ALT_2, 142
ADC_CLK_ALT_3, 142
ADC_CLK_ALT_4, 142
ADC_CLK_DIVIDE_1, 142
ADC_CLK_DIVIDE_2, 142
ADC_CLK_DIVIDE_4, 142
ADC_CLK_DIVIDE_8, 142
ADC_DRV_AutoCalibration, 144
ADC_DRV_ClearLatchedTriggers, 145
ADC_DRV_ClearTriggerErrors, 145
ADC_DRV_ConfigChan, 145
ADC_DRV_ConfigConverter, 145
ADC_DRV_ConfigHwAverage, 146
ADC_DRV_ConfigHwCompare, 146
ADC_DRV_ConfigUserCalibration, 146
ADC_DRV_GetChanConfig, 146
ADC_DRV_GetChanResult, 146
ADC_DRV_GetConvCompleteFlag, 147
ADC_DRV_GetConverterConfig, 147
ADC_DRV_GetHwAverageConfig, 147
ADC_DRV_GetHwCompareConfig, 147
ADC_DRV_GetInterruptNumber, 147
ADC_DRV_GetTriggerErrorFlags, 148
ADC_DRV_GetUserCalibration, 148
ADC_DRV_InitChanStruct, 148
ADC_DRV_InitConverterStruct, 148
ADC_DRV_InitHwAverageStruct, 150
ADC_DRV_InitHwCompareStruct, 150
ADC_DRV_InitUserCalibrationStruct, 150
ADC_DRV_Reset, 150
ADC_DRV_SetSwPretrigger, 150
ADC_DRV_WaitConvDone, 152
ADC_INPUTCHAN_BANDGAP, 143
ADC_INPUTCHAN_DISABLED, 142
ADC_INPUTCHAN_EXT0, 142
ADC_INPUTCHAN_EXT1, 142
ADC_INPUTCHAN_EXT10, 142
ADC_INPUTCHAN_EXT11, 142
ADC_INPUTCHAN_EXT12, 142
ADC_INPUTCHAN_EXT13, 142
ADC_INPUTCHAN_EXT14, 142
ADC_INPUTCHAN_EXT3, 142
ADC_INPUTCHAN_EXT4, 142
ADC_INPUTCHAN_EXT5, 142
ADC_INPUTCHAN_EXT6, 142
ADC_INPUTCHAN_EXT7, 142
ADC_INPUTCHAN_EXT9, 142
ADC_INPUTCHAN_INT0, 143
ADC_INPUTCHAN_INT1, 143

ADC_INPUTCHAN_INT2, 143
ADC_INPUTCHAN_INT3, 143
ADC_INPUTCHAN_SUPPLY_VDD, 143
ADC_INPUTCHAN_SUPPLY_VDD_3V, 143
ADC_INPUTCHAN_SUPPLY_VDD_FLASH_3V,

143
ADC_INPUTCHAN_SUPPLY_VDD_LV, 143
ADC_INPUTCHAN_SUPPLY_VDDA, 143
ADC_INPUTCHAN_SUPPLY_VREFH, 143
ADC_INPUTCHAN_TEMP, 143
ADC_INPUTCHAN_VREFSH, 143
ADC_INPUTCHAN_VREFSL, 143
ADC_LATCH_CLEAR_FORCE, 143
ADC_LATCH_CLEAR_WAIT, 143
ADC_PRETRIGGER_SEL_PDB, 143
ADC_PRETRIGGER_SEL_SW, 143
ADC_PRETRIGGER_SEL_TRGMUX, 143
ADC_RESOLUTION_10BIT, 143
ADC_RESOLUTION_12BIT, 143
ADC_RESOLUTION_8BIT, 143
ADC_SW_PRETRIGGER_0, 144
ADC_SW_PRETRIGGER_1, 144
ADC_SW_PRETRIGGER_2, 144
ADC_SW_PRETRIGGER_3, 144
ADC_SW_PRETRIGGER_DISABLED, 144
ADC_TRIGGER_HARDWARE, 144
ADC_TRIGGER_SEL_PDB, 144
ADC_TRIGGER_SEL_TRGMUX, 144
ADC_TRIGGER_SOFTWARE, 144
ADC_VOLTAGEREF_VALT, 144
ADC_VOLTAGEREF_VREF, 144
adc_average_t, 141
adc_clk_divide_t, 141
adc_input_clock_t, 142
adc_inputchannel_t, 142
adc_latch_clear_t, 143
adc_pretrigger_sel_t, 143
adc_resolution_t, 143
adc_sw_pretrigger_t, 143
adc_trigger_sel_t, 144
adc_trigger_t, 144
adc_voltage_reference_t, 144

ADC_AVERAGE_16
ADC Driver, 141

ADC_AVERAGE_32
ADC Driver, 141

ADC_AVERAGE_4
ADC Driver, 141

ADC_AVERAGE_8
ADC Driver, 141

ADC_CLK_ALT_1
ADC Driver, 142

ADC_CLK_ALT_2
ADC Driver, 142

ADC_CLK_ALT_3

978 INDEX

ADC Driver, 142
ADC_CLK_ALT_4

ADC Driver, 142
ADC_CLK_DIVIDE_1

ADC Driver, 142
ADC_CLK_DIVIDE_2

ADC Driver, 142
ADC_CLK_DIVIDE_4

ADC Driver, 142
ADC_CLK_DIVIDE_8

ADC Driver, 142
ADC_DELAY_TYPE_GROUP_DELAY

Analog to Digital Converter - Peripheral Abstraction
Layer (ADC PAL), 161

ADC_DELAY_TYPE_INDIVIDUAL_DELAY
Analog to Digital Converter - Peripheral Abstraction

Layer (ADC PAL), 161
ADC_DELAY_TYPE_NO_DELAY

Analog to Digital Converter - Peripheral Abstraction
Layer (ADC PAL), 161

ADC_DRV_AutoCalibration
ADC Driver, 144

ADC_DRV_ClearLatchedTriggers
ADC Driver, 145

ADC_DRV_ClearTriggerErrors
ADC Driver, 145

ADC_DRV_ConfigChan
ADC Driver, 145

ADC_DRV_ConfigConverter
ADC Driver, 145

ADC_DRV_ConfigHwAverage
ADC Driver, 146

ADC_DRV_ConfigHwCompare
ADC Driver, 146

ADC_DRV_ConfigUserCalibration
ADC Driver, 146

ADC_DRV_GetChanConfig
ADC Driver, 146

ADC_DRV_GetChanResult
ADC Driver, 146

ADC_DRV_GetConvCompleteFlag
ADC Driver, 147

ADC_DRV_GetConverterConfig
ADC Driver, 147

ADC_DRV_GetHwAverageConfig
ADC Driver, 147

ADC_DRV_GetHwCompareConfig
ADC Driver, 147

ADC_DRV_GetInterruptNumber
ADC Driver, 147

ADC_DRV_GetTriggerErrorFlags
ADC Driver, 148

ADC_DRV_GetUserCalibration
ADC Driver, 148

ADC_DRV_InitChanStruct
ADC Driver, 148

ADC_DRV_InitConverterStruct
ADC Driver, 148

ADC_DRV_InitHwAverageStruct
ADC Driver, 150

ADC_DRV_InitHwCompareStruct
ADC Driver, 150

ADC_DRV_InitUserCalibrationStruct
ADC Driver, 150

ADC_DRV_Reset
ADC Driver, 150

ADC_DRV_SetSwPretrigger
ADC Driver, 150

ADC_DRV_WaitConvDone
ADC Driver, 152

ADC_Deinit
Analog to Digital Converter - Peripheral Abstraction

Layer (ADC PAL), 161
ADC_DisableHardwareTrigger

Analog to Digital Converter - Peripheral Abstraction
Layer (ADC PAL), 163

ADC_DisableNotification
Analog to Digital Converter - Peripheral Abstraction

Layer (ADC PAL), 163
ADC_EnableHardwareTrigger

Analog to Digital Converter - Peripheral Abstraction
Layer (ADC PAL), 163

ADC_EnableNotification
Analog to Digital Converter - Peripheral Abstraction

Layer (ADC PAL), 164
ADC_INPUTCHAN_BANDGAP

ADC Driver, 143
ADC_INPUTCHAN_DISABLED

ADC Driver, 142
ADC_INPUTCHAN_EXT0

ADC Driver, 142
ADC_INPUTCHAN_EXT1

ADC Driver, 142
ADC_INPUTCHAN_EXT10

ADC Driver, 142
ADC_INPUTCHAN_EXT11

ADC Driver, 142
ADC_INPUTCHAN_EXT12

ADC Driver, 142
ADC_INPUTCHAN_EXT13

ADC Driver, 142
ADC_INPUTCHAN_EXT14

ADC Driver, 142
ADC_INPUTCHAN_EXT3

ADC Driver, 142
ADC_INPUTCHAN_EXT4

ADC Driver, 142
ADC_INPUTCHAN_EXT5

ADC Driver, 142
ADC_INPUTCHAN_EXT6

ADC Driver, 142
ADC_INPUTCHAN_EXT7

ADC Driver, 142
ADC_INPUTCHAN_EXT9

ADC Driver, 142
ADC_INPUTCHAN_INT0

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 979

ADC Driver, 143
ADC_INPUTCHAN_INT1

ADC Driver, 143
ADC_INPUTCHAN_INT2

ADC Driver, 143
ADC_INPUTCHAN_INT3

ADC Driver, 143
ADC_INPUTCHAN_SUPPLY_VDD

ADC Driver, 143
ADC_INPUTCHAN_SUPPLY_VDD_3V

ADC Driver, 143
ADC_INPUTCHAN_SUPPLY_VDD_FLASH_3V

ADC Driver, 143
ADC_INPUTCHAN_SUPPLY_VDD_LV

ADC Driver, 143
ADC_INPUTCHAN_SUPPLY_VDDA

ADC Driver, 143
ADC_INPUTCHAN_SUPPLY_VREFH

ADC Driver, 143
ADC_INPUTCHAN_TEMP

ADC Driver, 143
ADC_INPUTCHAN_VREFSH

ADC Driver, 143
ADC_INPUTCHAN_VREFSL

ADC Driver, 143
ADC_Init

Analog to Digital Converter - Peripheral Abstraction
Layer (ADC PAL), 164

ADC_LATCH_CLEAR_FORCE
ADC Driver, 143

ADC_LATCH_CLEAR_WAIT
ADC Driver, 143

ADC_PRETRIGGER_SEL_PDB
ADC Driver, 143

ADC_PRETRIGGER_SEL_SW
ADC Driver, 143

ADC_PRETRIGGER_SEL_TRGMUX
ADC Driver, 143

ADC_RESOLUTION_10BIT
ADC Driver, 143

ADC_RESOLUTION_12BIT
ADC Driver, 143

ADC_RESOLUTION_8BIT
ADC Driver, 143

ADC_SW_PRETRIGGER_0
ADC Driver, 144

ADC_SW_PRETRIGGER_1
ADC Driver, 144

ADC_SW_PRETRIGGER_2
ADC Driver, 144

ADC_SW_PRETRIGGER_3
ADC Driver, 144

ADC_SW_PRETRIGGER_DISABLED
ADC Driver, 144

ADC_StartGroupConversion
Analog to Digital Converter - Peripheral Abstraction

Layer (ADC PAL), 164
ADC_StopGroupConversion

Analog to Digital Converter - Peripheral Abstraction
Layer (ADC PAL), 165

ADC_TRIGGER_HARDWARE
ADC Driver, 144

ADC_TRIGGER_SEL_PDB
ADC Driver, 144

ADC_TRIGGER_SEL_TRGMUX
ADC Driver, 144

ADC_TRIGGER_SOFTWARE
ADC Driver, 144

ADC_VOLTAGEREF_VALT
ADC Driver, 144

ADC_VOLTAGEREF_VREF
ADC Driver, 144

ALL_MODES
Clock Manager Driver, 223

ATTR
edma_software_tcd_t, 299

accessCtr
mpu_access_err_info_t, 701
mpu_error_info_t, 712

accessRight
mpu_master_access_permission_t, 713
mpu_master_access_right_t, 701

accessType
mpu_access_err_info_t, 701
mpu_error_info_t, 712

active_schedule_id
lin_master_data_t, 679

adc_average_config_t, 140
hwAverage, 140
hwAvgEnable, 140

adc_average_t
ADC Driver, 141

adc_calibration_t, 141
userGain, 141
userOffset, 141

adc_callback_info_t, 966
groupIndex, 966
resultBufferTail, 966

adc_chan_config_t, 140
channel, 140
interruptEnable, 141

adc_clk_divide_t
ADC Driver, 141

adc_compare_config_t, 139
compVal1, 140
compVal2, 140
compareEnable, 139
compareGreaterThanEnable, 139
compareRangeFuncEnable, 140

adc_config_t, 159
extension, 160
groupConfigArray, 160
numGroups, 160
sampleTicks, 160

adc_converter_config_t, 138
clockDivide, 138

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

980 INDEX

continuousConvEnable, 138
dmaEnable, 138
inputClock, 138
pretriggerSel, 138
resolution, 138
sampleTime, 139
supplyMonitoringEnable, 139
trigger, 139
triggerSel, 139
voltageRef, 139

adc_delay_type_t
Analog to Digital Converter - Peripheral Abstraction

Layer (ADC PAL), 161
adc_group_config_t, 158

callback, 158
callbackUserData, 158
continuousConvEn, 158
delayArray, 158
delayType, 159
hwTriggerSupport, 159
inputChannelArray, 159
numChannels, 159
numSetsResultBuffer, 159
resultBuffer, 159
triggerSource, 159

adc_input_chan_t
Analog to Digital Converter - Peripheral Abstraction

Layer (ADC PAL), 161
adc_input_clock_t

ADC Driver, 142
adc_inputchannel_t

ADC Driver, 142
adc_instance_t, 966

instIdx, 967
instType, 967

adc_latch_clear_t
ADC Driver, 143

adc_pretrigger_sel_t
ADC Driver, 143

adc_resolution_t
ADC Driver, 143

adc_sw_pretrigger_t
ADC Driver, 143

adc_trigger_sel_t
ADC Driver, 144

adc_trigger_source_t
Analog to Digital Converter - Peripheral Abstraction

Layer (ADC PAL), 161
adc_trigger_t

ADC Driver, 144
adc_voltage_reference_t

ADC Driver, 144
adcPreTriggerIdx

pdb_adc_pretrigger_config_t, 761
addr

mpu_access_err_info_t, 701
mpu_error_info_t, 712

address

edma_scatter_gather_list_t, 295
alarmCallback

rtc_alarm_config_t, 808
alarmIntEnable

rtc_alarm_config_t, 808
alarmTime

rtc_alarm_config_t, 808
alternateClock

scg_clock_mode_config_t, 212
Analog to Digital Converter - Peripheral Abstraction Lay-

er (ADC PAL), 153
ADC_DELAY_TYPE_GROUP_DELAY, 161
ADC_DELAY_TYPE_INDIVIDUAL_DELAY, 161
ADC_DELAY_TYPE_NO_DELAY, 161
ADC_Deinit, 161
ADC_DisableHardwareTrigger, 163
ADC_DisableNotification, 163
ADC_EnableHardwareTrigger, 163
ADC_EnableNotification, 164
ADC_Init, 164
ADC_StartGroupConversion, 164
ADC_StopGroupConversion, 165
adc_delay_type_t, 161
adc_input_chan_t, 161
adc_trigger_source_t, 161

assertLogic
ewm_init_config_t, 325
extension_ewm_for_wdg_t, 947

associated_uncond_frame_ptr
lin_associate_frame_t, 670

attributes
mpu_access_err_info_t, 701
mpu_error_info_t, 712

autoClearTrigger
ftm_pwm_sync_t, 440

autobaudEnable
lin_user_config_t, 564

Automotive Math and Motor Control Library, 166

BDMMode
ftm_user_config_t, 441

BITER
edma_software_tcd_t, 299

BUS_ACTIVITY_SET
Common Core API., 233

BUS_CLK_INDEX
Clock Manager Driver, 220

Backward Compatibility Symbols for S32K144, 167
baud_rate

lin_protocol_state_t, 680
baudRate

flexio_i2c_master_user_config_t, 385
flexio_i2s_master_user_config_t, 395
flexio_spi_master_user_config_t, 412
flexio_uart_user_config_t, 426
i2c_master_t, 536
i2s_user_config_t, 515
lin_user_config_t, 564
lpi2c_baud_rate_params_t, 587

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 981

lpi2c_master_user_config_t, 585
lpuart_user_config_t, 646
spi_master_t, 852
uart_user_config_t, 937

baudrateEvalEnable
lin_state_t, 566

bitCount
flexio_uart_user_config_t, 426
uart_user_config_t, 937

bitCountPerChar
lpuart_state_t, 644
lpuart_user_config_t, 646

bitOrder
flexio_spi_master_user_config_t, 412
flexio_spi_slave_user_config_t, 414
spi_master_t, 852
spi_slave_t, 853

bitcount
lpspi_master_config_t, 614
lpspi_slave_config_t, 619

bitrate
flexcan_user_config_t, 368

bitsPerFrame
lpspi_state_t, 616

bitsPerSec
lpspi_master_config_t, 614

bitsWidth
flexio_i2s_master_user_config_t, 395
flexio_i2s_slave_user_config_t, 396

brownOutCode
Flash Memory (Flash), 351

bus_activity
lin_word_status_str_t, 667

bypassPrescaler
extension_lptmr_for_timer_t, 885
lptmr_config_t, 633

bytesPerFrame
lpspi_state_t, 616

CALLBACK_HANDLER
Low level API, 682

CAN_AbortTransfer
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 269
CAN_CLK_SOURCE_OSC

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 268

CAN_CLK_SOURCE_PERIPH
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 268
CAN_ConfigRemoteResponseBuff

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 269

CAN_ConfigRxBuff
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 270
CAN_ConfigTxBuff

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 270

CAN_DISABLE_MODE
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 269
CAN_Deinit

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 271

CAN_FD_DATA_BITRATE
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 268
CAN_GetBitrate

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 271

CAN_GetDefaultConfig
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 271
CAN_GetTransferStatus

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 271

CAN_Init
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 272
CAN_InstallEventCallback

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 272

CAN_LOOPBACK_MODE
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 269
CAN_MSG_ID_EXT

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 269

CAN_MSG_ID_STD
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 269
CAN_NOMINAL_BITRATE

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 268

CAN_NORMAL_MODE
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 269
CAN_PAYLOAD_SIZE_16

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 268

CAN_PAYLOAD_SIZE_32
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 269
CAN_PAYLOAD_SIZE_64

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 269

CAN_PAYLOAD_SIZE_8
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 268
CAN_Receive

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 272

CAN_ReceiveBlocking
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 273
CAN_Send

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

982 INDEX

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 273

CAN_SendBlocking
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 274
CAN_SetBitrate

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 274

CAN_SetRxFilter
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 274
CHAN0_IDX

FlexTimer (FTM), 442
CHAN1_IDX

FlexTimer (FTM), 442
CHAN2_IDX

FlexTimer (FTM), 442
CHAN3_IDX

FlexTimer (FTM), 442
CHAN4_IDX

FlexTimer (FTM), 442
CHAN5_IDX

FlexTimer (FTM), 442
CHAN6_IDX

FlexTimer (FTM), 442
CHAN7_IDX

FlexTimer (FTM), 442
CHECK_PARITY

LIN Driver, 568
CITER

edma_software_tcd_t, 299
CLEAR_FTFx_FSTAT_ERROR_BITS

Flash Memory (Flash), 338
CLK_SRC_FIRC

Clock Manager Driver, 220
CLK_SRC_FIRC_DIV1

Clock Manager Driver, 220
CLK_SRC_FIRC_DIV2

Clock Manager Driver, 220
CLK_SRC_OFF

Clock Manager Driver, 220
CLK_SRC_SIRC

Clock Manager Driver, 220
CLK_SRC_SIRC_DIV1

Clock Manager Driver, 220
CLK_SRC_SIRC_DIV2

Clock Manager Driver, 220
CLK_SRC_SOSC

Clock Manager Driver, 220
CLK_SRC_SOSC_DIV1

Clock Manager Driver, 220
CLK_SRC_SOSC_DIV2

Clock Manager Driver, 220
CLK_SRC_SPLL

Clock Manager Driver, 221
CLK_SRC_SPLL_DIV1

Clock Manager Driver, 221
CLK_SRC_SPLL_DIV2

Clock Manager Driver, 221
CLOCK_DRV_GetFreq

Clock, 194
CLOCK_DRV_GetSystemClockSource

Clock Manager Driver, 228
CLOCK_DRV_Init

Clock, 194
CLOCK_DRV_SetClockSource

Clock Manager Driver, 228
CLOCK_DRV_SetModuleClock

Clock Manager Driver, 228
CLOCK_DRV_SetSystemClock

Clock Manager Driver, 230
CLOCK_MANAGER_CALLBACK_AFTER

Clock Manager Driver, 222
CLOCK_MANAGER_CALLBACK_BEFORE

Clock Manager Driver, 222
CLOCK_MANAGER_CALLBACK_BEFORE_AFTER

Clock Manager Driver, 222
CLOCK_MANAGER_NOTIFY_AFTER

Clock Manager Driver, 222
CLOCK_MANAGER_NOTIFY_BEFORE

Clock Manager Driver, 222
CLOCK_MANAGER_NOTIFY_RECOVER

Clock Manager Driver, 222
CLOCK_MANAGER_POLICY_AGREEMENT

Clock Manager Driver, 222
CLOCK_MANAGER_POLICY_FORCIBLE

Clock Manager Driver, 222
CLOCK_SYS_GetCurrentConfiguration

Clock Manager Driver, 230
CLOCK_SYS_GetErrorCallback

Clock Manager Driver, 230
CLOCK_SYS_GetFreq

Clock Manager Driver, 230
CLOCK_SYS_Init

Clock Manager Driver, 230
CLOCK_SYS_SetConfiguration

Clock Manager Driver, 231
CLOCK_SYS_UpdateConfiguration

Clock Manager Driver, 231
CLOCK_TRACE_SRC_CORE_CLK

Clock Manager Driver, 222
CMP_AVAILABLE

Comparator Driver, 250
CMP_BOTH_EDGES

Comparator Driver, 251
CMP_CONTINUOUS

Comparator Driver, 250
CMP_COUT

Comparator Driver, 251
CMP_COUTA

Comparator Driver, 251
CMP_DAC

Comparator Driver, 251
CMP_DISABLED

Comparator Driver, 250
CMP_DRV_ClearInputFlags

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 983

Comparator Driver, 252
CMP_DRV_ClearOutputFlags

Comparator Driver, 252
CMP_DRV_ConfigComparator

Comparator Driver, 252
CMP_DRV_ConfigDAC

Comparator Driver, 252
CMP_DRV_ConfigMUX

Comparator Driver, 253
CMP_DRV_ConfigTriggerMode

Comparator Driver, 253
CMP_DRV_GetComparatorConfig

Comparator Driver, 253
CMP_DRV_GetConfigAll

Comparator Driver, 254
CMP_DRV_GetDACConfig

Comparator Driver, 254
CMP_DRV_GetDefaultConfig

Comparator Driver, 254
CMP_DRV_GetInitConfigAll

Comparator Driver, 254
CMP_DRV_GetInitConfigComparator

Comparator Driver, 255
CMP_DRV_GetInitConfigDAC

Comparator Driver, 255
CMP_DRV_GetInitConfigMUX

Comparator Driver, 255
CMP_DRV_GetInitTriggerMode

Comparator Driver, 256
CMP_DRV_GetInputFlags

Comparator Driver, 256
CMP_DRV_GetMUXConfig

Comparator Driver, 256
CMP_DRV_GetOutputFlags

Comparator Driver, 256
CMP_DRV_GetTriggerModeConfig

Comparator Driver, 257
CMP_DRV_Init

Comparator Driver, 257
CMP_DRV_Reset

Comparator Driver, 257
CMP_FALLING_EDGE

Comparator Driver, 251
CMP_HIGH_SPEED

Comparator Driver, 251
CMP_INPUT_FLAGS_MASK

Comparator Driver, 249
CMP_INPUT_FLAGS_SHIFT

Comparator Driver, 249
CMP_INVERT

Comparator Driver, 250
CMP_LEVEL_HYS_0

Comparator Driver, 250
CMP_LEVEL_HYS_1

Comparator Driver, 250
CMP_LEVEL_HYS_2

Comparator Driver, 250
CMP_LEVEL_HYS_3

Comparator Driver, 250
CMP_LOW_SPEED

Comparator Driver, 251
CMP_MINUS_FIXED

Comparator Driver, 249
CMP_MUX

Comparator Driver, 251
CMP_NO_EVENT

Comparator Driver, 251
CMP_NORMAL

Comparator Driver, 250
CMP_PLUS_FIXED

Comparator Driver, 249
CMP_RISING_EDGE

Comparator Driver, 251
CMP_ROUND_ROBIN_CHANNELS_MASK

Comparator Driver, 249
CMP_ROUND_ROBIN_CHANNELS_SHIFT

Comparator Driver, 249
CMP_SAMPLED_FILTRED_EXT_CLK

Comparator Driver, 250
CMP_SAMPLED_FILTRED_INT_CLK

Comparator Driver, 250
CMP_SAMPLED_NONFILTRED_EXT_CLK

Comparator Driver, 250
CMP_SAMPLED_NONFILTRED_INT_CLK

Comparator Driver, 250
CMP_UNAVAILABLE

Comparator Driver, 250
CMP_VIN1

Comparator Driver, 251
CMP_VIN2

Comparator Driver, 251
CMP_WINDOWED

Comparator Driver, 250
CMP_WINDOWED_FILTRED

Comparator Driver, 250
CMP_WINDOWED_RESAMPLED

Comparator Driver, 250
CORE_CLK_INDEX

Clock Manager Driver, 221
CRC Driver, 168

CRC_DRV_Configure, 169
CRC_DRV_Deinit, 169
CRC_DRV_GetConfig, 170
CRC_DRV_GetCrc16, 170
CRC_DRV_GetCrc32, 170
CRC_DRV_GetCrc8, 171
CRC_DRV_GetCrcResult, 171
CRC_DRV_GetDefaultConfig, 171
CRC_DRV_Init, 172
CRC_DRV_WriteData, 172
CRC_TRANSPOSE_BITS, 169
CRC_TRANSPOSE_BITS_AND_BYTES, 169
CRC_TRANSPOSE_BYTES, 169
CRC_TRANSPOSE_NONE, 169
crc_transpose_t, 169

CRC_DRV_Configure

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

984 INDEX

CRC Driver, 169
CRC_DRV_Deinit

CRC Driver, 169
CRC_DRV_GetConfig

CRC Driver, 170
CRC_DRV_GetCrc16

CRC Driver, 170
CRC_DRV_GetCrc32

CRC Driver, 170
CRC_DRV_GetCrc8

CRC Driver, 171
CRC_DRV_GetCrcResult

CRC Driver, 171
CRC_DRV_GetDefaultConfig

CRC Driver, 171
CRC_DRV_Init

CRC Driver, 172
CRC_DRV_WriteData

CRC Driver, 172
CRC_TRANSPOSE_BITS

CRC Driver, 169
CRC_TRANSPOSE_BITS_AND_BYTES

CRC Driver, 169
CRC_TRANSPOSE_BYTES

CRC Driver, 169
CRC_TRANSPOSE_NONE

CRC Driver, 169
CSE_KEY_SIZE_CODE_MAX

Flash Memory (Flash), 338
CSEC_BOOT_MAC

CSEc Driver, 182
CSEC_BOOT_MAC_KEY

CSEc Driver, 182
CSEC_BOOT_NOT_DEFINED

CSEc Driver, 181
CSEC_BOOT_PARALLEL

CSEc Driver, 181
CSEC_BOOT_SERIAL

CSEc Driver, 181
CSEC_BOOT_STRICT

CSEc Driver, 181
CSEC_CALL_SEQ_FIRST

CSEc Driver, 182
CSEC_CALL_SEQ_SUBSEQUENT

CSEc Driver, 182
CSEC_CMD_BOOT_DEFINE

CSEc Driver, 182
CSEC_CMD_BOOT_FAILURE

CSEc Driver, 182
CSEC_CMD_BOOT_OK

CSEc Driver, 182
CSEC_CMD_DBG_AUTH

CSEc Driver, 182
CSEC_CMD_DBG_CHAL

CSEc Driver, 182
CSEC_CMD_DEC_CBC

CSEc Driver, 182
CSEC_CMD_DEC_ECB

CSEc Driver, 182
CSEC_CMD_ENC_CBC

CSEc Driver, 182
CSEC_CMD_ENC_ECB

CSEc Driver, 182
CSEC_CMD_EXPORT_RAM_KEY

CSEc Driver, 182
CSEC_CMD_EXTEND_SEED

CSEc Driver, 182
CSEC_CMD_GENERATE_MAC

CSEc Driver, 182
CSEC_CMD_GET_ID

CSEc Driver, 182
CSEC_CMD_INIT_RNG

CSEc Driver, 182
CSEC_CMD_LOAD_KEY

CSEc Driver, 182
CSEC_CMD_LOAD_PLAIN_KEY

CSEc Driver, 182
CSEC_CMD_MP_COMPRESS

CSEc Driver, 182
CSEC_CMD_RESERVED_1

CSEc Driver, 182
CSEC_CMD_RESERVED_2

CSEc Driver, 182
CSEC_CMD_RESERVED_3

CSEc Driver, 182
CSEC_CMD_RND

CSEc Driver, 182
CSEC_CMD_VERIFY_MAC

CSEc Driver, 182
CSEC_DRV_BootDefine

CSEc Driver, 183
CSEC_DRV_BootFailure

CSEc Driver, 183
CSEC_DRV_BootOK

CSEc Driver, 183
CSEC_DRV_CancelCommand

CSEc Driver, 184
CSEC_DRV_DbgAuth

CSEc Driver, 184
CSEC_DRV_DbgChal

CSEc Driver, 184
CSEC_DRV_DecryptCBC

CSEc Driver, 184
CSEC_DRV_DecryptCBCAsync

CSEc Driver, 185
CSEC_DRV_DecryptECB

CSEc Driver, 185
CSEC_DRV_DecryptECBAsync

CSEc Driver, 186
CSEC_DRV_Deinit

CSEc Driver, 186
CSEC_DRV_EncryptCBC

CSEc Driver, 186
CSEC_DRV_EncryptCBCAsync

CSEc Driver, 186
CSEC_DRV_EncryptECB

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 985

CSEc Driver, 187
CSEC_DRV_EncryptECBAsync

CSEc Driver, 187
CSEC_DRV_ExportRAMKey

CSEc Driver, 188
CSEC_DRV_ExtendSeed

CSEc Driver, 188
CSEC_DRV_GenerateMAC

CSEc Driver, 188
CSEC_DRV_GenerateMACAddrMode

CSEc Driver, 188
CSEC_DRV_GenerateMACAsync

CSEc Driver, 189
CSEC_DRV_GenerateRND

CSEc Driver, 189
CSEC_DRV_GetAsyncCmdStatus

CSEc Driver, 189
CSEC_DRV_GetID

CSEc Driver, 190
CSEC_DRV_GetStatus

CSEc Driver, 190
CSEC_DRV_Init

CSEc Driver, 190
CSEC_DRV_InitRNG

CSEc Driver, 190
CSEC_DRV_InstallCallback

CSEc Driver, 190
CSEC_DRV_LoadKey

CSEc Driver, 191
CSEC_DRV_LoadPlainKey

CSEc Driver, 191
CSEC_DRV_MPCompress

CSEc Driver, 191
CSEC_DRV_VerifyMAC

CSEc Driver, 192
CSEC_DRV_VerifyMACAddrMode

CSEc Driver, 192
CSEC_DRV_VerifyMACAsync

CSEc Driver, 193
CSEC_KEY_1

CSEc Driver, 182
CSEC_KEY_10

CSEc Driver, 183
CSEC_KEY_11

CSEc Driver, 183
CSEC_KEY_12

CSEc Driver, 183
CSEC_KEY_13

CSEc Driver, 183
CSEC_KEY_14

CSEc Driver, 183
CSEC_KEY_15

CSEc Driver, 183
CSEC_KEY_16

CSEc Driver, 183
CSEC_KEY_17

CSEc Driver, 183
CSEC_KEY_2

CSEc Driver, 182
CSEC_KEY_3

CSEc Driver, 183
CSEC_KEY_4

CSEc Driver, 183
CSEC_KEY_5

CSEc Driver, 183
CSEC_KEY_6

CSEc Driver, 183
CSEC_KEY_7

CSEc Driver, 183
CSEC_KEY_8

CSEc Driver, 183
CSEC_KEY_9

CSEc Driver, 183
CSEC_MASTER_ECU

CSEc Driver, 182
CSEC_RAM_KEY

CSEc Driver, 183
CSEC_SECRET_KEY

CSEc Driver, 182
CSEC_STATUS_BOOT_FINISHED

CSEc Driver, 180
CSEC_STATUS_BOOT_INIT

CSEc Driver, 180
CSEC_STATUS_BOOT_OK

CSEc Driver, 180
CSEC_STATUS_BUSY

CSEc Driver, 180
CSEC_STATUS_EXT_DEBUGGER

CSEc Driver, 181
CSEC_STATUS_INT_DEBUGGER

CSEc Driver, 181
CSEC_STATUS_RND_INIT

CSEc Driver, 181
CSEC_STATUS_SECURE_BOOT

CSEc Driver, 181
CSEc Driver, 173

CSEC_BOOT_MAC, 182
CSEC_BOOT_MAC_KEY, 182
CSEC_BOOT_NOT_DEFINED, 181
CSEC_BOOT_PARALLEL, 181
CSEC_BOOT_SERIAL, 181
CSEC_BOOT_STRICT, 181
CSEC_CALL_SEQ_FIRST, 182
CSEC_CALL_SEQ_SUBSEQUENT, 182
CSEC_CMD_BOOT_DEFINE, 182
CSEC_CMD_BOOT_FAILURE, 182
CSEC_CMD_BOOT_OK, 182
CSEC_CMD_DBG_AUTH, 182
CSEC_CMD_DBG_CHAL, 182
CSEC_CMD_DEC_CBC, 182
CSEC_CMD_DEC_ECB, 182
CSEC_CMD_ENC_CBC, 182
CSEC_CMD_ENC_ECB, 182
CSEC_CMD_EXPORT_RAM_KEY, 182
CSEC_CMD_EXTEND_SEED, 182
CSEC_CMD_GENERATE_MAC, 182

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

986 INDEX

CSEC_CMD_GET_ID, 182
CSEC_CMD_INIT_RNG, 182
CSEC_CMD_LOAD_KEY, 182
CSEC_CMD_LOAD_PLAIN_KEY, 182
CSEC_CMD_MP_COMPRESS, 182
CSEC_CMD_RESERVED_1, 182
CSEC_CMD_RESERVED_2, 182
CSEC_CMD_RESERVED_3, 182
CSEC_CMD_RND, 182
CSEC_CMD_VERIFY_MAC, 182
CSEC_DRV_BootDefine, 183
CSEC_DRV_BootFailure, 183
CSEC_DRV_BootOK, 183
CSEC_DRV_CancelCommand, 184
CSEC_DRV_DbgAuth, 184
CSEC_DRV_DbgChal, 184
CSEC_DRV_DecryptCBC, 184
CSEC_DRV_DecryptCBCAsync, 185
CSEC_DRV_DecryptECB, 185
CSEC_DRV_DecryptECBAsync, 186
CSEC_DRV_Deinit, 186
CSEC_DRV_EncryptCBC, 186
CSEC_DRV_EncryptCBCAsync, 186
CSEC_DRV_EncryptECB, 187
CSEC_DRV_EncryptECBAsync, 187
CSEC_DRV_ExportRAMKey, 188
CSEC_DRV_ExtendSeed, 188
CSEC_DRV_GenerateMAC, 188
CSEC_DRV_GenerateMACAddrMode, 188
CSEC_DRV_GenerateMACAsync, 189
CSEC_DRV_GenerateRND, 189
CSEC_DRV_GetAsyncCmdStatus, 189
CSEC_DRV_GetID, 190
CSEC_DRV_GetStatus, 190
CSEC_DRV_Init, 190
CSEC_DRV_InitRNG, 190
CSEC_DRV_InstallCallback, 190
CSEC_DRV_LoadKey, 191
CSEC_DRV_LoadPlainKey, 191
CSEC_DRV_MPCompress, 191
CSEC_DRV_VerifyMAC, 192
CSEC_DRV_VerifyMACAddrMode, 192
CSEC_DRV_VerifyMACAsync, 193
CSEC_KEY_1, 182
CSEC_KEY_10, 183
CSEC_KEY_11, 183
CSEC_KEY_12, 183
CSEC_KEY_13, 183
CSEC_KEY_14, 183
CSEC_KEY_15, 183
CSEC_KEY_16, 183
CSEC_KEY_17, 183
CSEC_KEY_2, 182
CSEC_KEY_3, 183
CSEC_KEY_4, 183
CSEC_KEY_5, 183
CSEC_KEY_6, 183
CSEC_KEY_7, 183

CSEC_KEY_8, 183
CSEC_KEY_9, 183
CSEC_MASTER_ECU, 182
CSEC_RAM_KEY, 183
CSEC_SECRET_KEY, 182
CSEC_STATUS_BOOT_FINISHED, 180
CSEC_STATUS_BOOT_INIT, 180
CSEC_STATUS_BOOT_OK, 180
CSEC_STATUS_BUSY, 180
CSEC_STATUS_EXT_DEBUGGER, 181
CSEC_STATUS_INT_DEBUGGER, 181
CSEC_STATUS_RND_INIT, 181
CSEC_STATUS_SECURE_BOOT, 181
csec_boot_flavor_t, 181
csec_call_sequence_t, 181
csec_cmd_t, 182
csec_key_id_t, 182
csec_status_t, 181

CSR
edma_software_tcd_t, 299

CallBack
Flash Memory (Flash), 351

Callback
lin_state_t, 566

callback
adc_group_config_t, 158
clock_manager_callback_user_config_t, 219
csec_state_t, 179
edma_channel_config_t, 295
edma_chn_state_t, 294
FlexCANState, 365
flexio_i2c_master_user_config_t, 385
flexio_i2s_master_user_config_t, 395
flexio_i2s_slave_user_config_t, 396
flexio_spi_master_user_config_t, 412
flexio_spi_slave_user_config_t, 414
flexio_uart_user_config_t, 426
i2c_master_t, 536
i2c_slave_t, 537
i2s_user_config_t, 515
lpspi_master_config_t, 615
lpspi_slave_config_t, 619
lpspi_state_t, 616
security_user_config_t, 830
spi_master_t, 852
spi_slave_t, 854
timer_chan_config_t, 884

callbackConfig
clock_manager_state_t, 219

callbackData
clock_manager_callback_user_config_t, 219
power_manager_callback_user_config_t, 778

callbackFunction
power_manager_callback_user_config_t, 778

callbackNum
clock_manager_state_t, 219

callbackParam
csec_state_t, 179

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 987

edma_channel_config_t, 295
FlexCANState, 365
flexio_i2c_master_user_config_t, 385
flexio_i2s_master_user_config_t, 395
flexio_i2s_slave_user_config_t, 396
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 414
flexio_uart_user_config_t, 426
i2c_master_t, 536
i2c_slave_t, 537
i2s_user_config_t, 516
lpi2c_master_user_config_t, 585
lpi2c_slave_user_config_t, 586
lpspi_master_config_t, 615
lpspi_slave_config_t, 619
lpspi_state_t, 617
security_user_config_t, 830
spi_master_t, 852
spi_slave_t, 854
timer_chan_config_t, 884

callbackParams
rtc_alarm_config_t, 808
rtc_interrupt_config_t, 808

callbackType
clock_manager_callback_user_config_t, 219
power_manager_callback_user_config_t, 778

callbackUserData
adc_group_config_t, 158

can
sbc_int_config_t, 905

can_bitrate_phase_t
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 268
can_buff_config_t, 265

enableBRS, 265
enableFD, 265
fdPadding, 266
idType, 266
isRemote, 266

can_clk_source_t
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 268
can_fd_payload_size_t

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 268

can_instance_t, 967
instIdx, 967
instType, 967

can_message_t, 266
cs, 266
data, 266
id, 266
length, 266

can_msg_id_type_t
Controller Area Network - Peripheral Abstraction

Layer (CAN PAL), 269
can_operation_modes_t

Controller Area Network - Peripheral Abstraction
Layer (CAN PAL), 269

can_time_segment_t, 264
phaseSeg1, 265
phaseSeg2, 265
preDivider, 265
propSeg, 265
rJumpwidth, 265

can_user_config_t, 266
dataBitrate, 267
enableFD, 267
extension, 267
maxBuffNum, 267
mode, 267
nominalBitrate, 267
payloadSize, 267
peClkSrc, 267

canConf
sbc_can_conf_t, 903

canTransEvnt
sbc_can_conf_t, 903

cbs
sbc_trans_evnt_stat_t, 911

cbse
sbc_trans_evnt_t, 902

cbss
sbc_trans_stat_t, 908

cf
sbc_trans_evnt_stat_t, 911

cfdc
sbc_can_ctr_t, 901

cfe
sbc_trans_evnt_t, 902

cfs
sbc_trans_stat_t, 908

chMode
ftm_output_cmp_ch_param_t, 484
oc_output_ch_param_t, 749

chainChannel
lpit_user_channel_config_t, 601

chanConfigArray
timer_config_t, 884

chanType
timer_chan_config_t, 884

channel
adc_chan_config_t, 140
eim_user_channel_config_t, 315
erm_user_config_t, 320
pwm_channel_t, 798
timer_chan_config_t, 884

channel_extension_ftm_for_ic_t, 527
continuousModeEn, 527

channelCallbackParams
ic_input_ch_param_t, 526
oc_output_ch_param_t, 749

channelCallbacks
ic_input_ch_param_t, 526
oc_output_ch_param_t, 749

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

988 INDEX

channelExtension
ic_input_ch_param_t, 526
oc_output_ch_param_t, 749

channelPriority
edma_channel_config_t, 295

channelType
pwm_channel_t, 798

channelsCallbacks
ftm_input_ch_param_t, 472
ftm_state_t, 439

channelsCallbacksParams
ftm_input_ch_param_t, 472
ftm_state_t, 439

check_timeout
lin_tl_descriptor_t, 674

check_timeout_type
lin_tl_descriptor_t, 674

checkBitMask
eim_user_channel_config_t, 315

checkSum
lin_state_t, 566

chnArbitration
edma_user_config_t, 294

classicPID
lin_user_config_t, 564

clkGate
peripheral_clock_config_t, 214

clkPhase
lpspi_master_config_t, 615
lpspi_slave_config_t, 619

clkPolarity
lpspi_master_config_t, 615
lpspi_slave_config_t, 619

clkPreDiv
pdb_timer_config_t, 760

clkPreMultFactor
pdb_timer_config_t, 760

clkSource
wdg_config_t, 948
wdog_user_config_t, 956

clkSrc
peripheral_clock_config_t, 214

Clock, 194
CLOCK_DRV_GetFreq, 194
CLOCK_DRV_Init, 194

Clock Manager, 195
Clock Manager Driver, 196

ALL_MODES, 223
BUS_CLK_INDEX, 220
CLK_SRC_FIRC, 220
CLK_SRC_FIRC_DIV1, 220
CLK_SRC_FIRC_DIV2, 220
CLK_SRC_OFF, 220
CLK_SRC_SIRC, 220
CLK_SRC_SIRC_DIV1, 220
CLK_SRC_SIRC_DIV2, 220
CLK_SRC_SOSC, 220
CLK_SRC_SOSC_DIV1, 220

CLK_SRC_SOSC_DIV2, 220
CLK_SRC_SPLL, 221
CLK_SRC_SPLL_DIV1, 221
CLK_SRC_SPLL_DIV2, 221
CLOCK_DRV_GetSystemClockSource, 228
CLOCK_DRV_SetClockSource, 228
CLOCK_DRV_SetModuleClock, 228
CLOCK_DRV_SetSystemClock, 230
CLOCK_MANAGER_CALLBACK_AFTER, 222
CLOCK_MANAGER_CALLBACK_BEFORE, 222
CLOCK_MANAGER_CALLBACK_BEFORE_AF←↩

TER, 222
CLOCK_MANAGER_NOTIFY_AFTER, 222
CLOCK_MANAGER_NOTIFY_BEFORE, 222
CLOCK_MANAGER_NOTIFY_RECOVER, 222
CLOCK_MANAGER_POLICY_AGREEMENT, 222
CLOCK_MANAGER_POLICY_FORCIBLE, 222
CLOCK_SYS_GetCurrentConfiguration, 230
CLOCK_SYS_GetErrorCallback, 230
CLOCK_SYS_GetFreq, 230
CLOCK_SYS_Init, 230
CLOCK_SYS_SetConfiguration, 231
CLOCK_SYS_UpdateConfiguration, 231
CLOCK_TRACE_SRC_CORE_CLK, 222
CORE_CLK_INDEX, 221
clock_manager_callback_t, 221
clock_manager_callback_type_t, 221
clock_manager_notify_t, 222
clock_manager_policy_t, 222
clock_trace_src_t, 222
clock_user_config_t, 221
DIVIDE_BY_EIGTH, 222
DIVIDE_BY_FIVE, 222
DIVIDE_BY_FOUR, 222
DIVIDE_BY_ONE, 222
DIVIDE_BY_SEVEN, 222
DIVIDE_BY_SIX, 222
DIVIDE_BY_THREE, 222
DIVIDE_BY_TWO, 222
g_RtcClkInFreq, 232
g_TClkFreq, 232
g_xtal0ClkFreq, 232
HSRUN_MODE, 223
MULTIPLY_BY_ONE, 223
MULTIPLY_BY_TWO, 223
NO_MODE, 223
NUMBER_OF_TCLK_INPUTS, 221
peripheral_clock_divider_t, 222
peripheral_clock_frac_t, 222
peripheral_clock_source_t, 221
peripheralFeaturesList, 232
pwr_modes_t, 223
RUN_MODE, 223
SCG_ASYNC_CLOCK_DISABLE, 223
SCG_ASYNC_CLOCK_DIV_BY_1, 223
SCG_ASYNC_CLOCK_DIV_BY_16, 223
SCG_ASYNC_CLOCK_DIV_BY_2, 223
SCG_ASYNC_CLOCK_DIV_BY_32, 223

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 989

SCG_ASYNC_CLOCK_DIV_BY_4, 223
SCG_ASYNC_CLOCK_DIV_BY_64, 223
SCG_ASYNC_CLOCK_DIV_BY_8, 223
SCG_CLOCKOUT_SRC_FIRC, 223
SCG_CLOCKOUT_SRC_SCG_SLOW, 223
SCG_CLOCKOUT_SRC_SIRC, 223
SCG_CLOCKOUT_SRC_SOSC, 223
SCG_CLOCKOUT_SRC_SPLL, 223
SCG_FIRC_RANGE_48M, 224
SCG_SIRC_RANGE_HIGH, 224
SCG_SOSC_GAIN_HIGH, 224
SCG_SOSC_GAIN_LOW, 224
SCG_SOSC_MONITOR_DISABLE, 224
SCG_SOSC_MONITOR_INT, 224
SCG_SOSC_MONITOR_RESET, 224
SCG_SOSC_RANGE_HIGH, 224
SCG_SOSC_RANGE_MID, 224
SCG_SOSC_REF_EXT, 224
SCG_SOSC_REF_OSC, 224
SCG_SPLL_CLOCK_MULTIPLY_BY_16, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_17, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_18, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_19, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_20, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_21, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_22, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_23, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_24, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_25, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_26, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_27, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_28, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_29, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_30, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_31, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_32, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_33, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_34, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_35, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_36, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_37, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_38, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_39, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_40, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_41, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_42, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_43, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_44, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_45, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_46, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_47, 225
SCG_SPLL_CLOCK_PREDIV_BY_1, 225
SCG_SPLL_CLOCK_PREDIV_BY_2, 225
SCG_SPLL_CLOCK_PREDIV_BY_3, 225
SCG_SPLL_CLOCK_PREDIV_BY_4, 226
SCG_SPLL_CLOCK_PREDIV_BY_5, 226
SCG_SPLL_CLOCK_PREDIV_BY_6, 226
SCG_SPLL_CLOCK_PREDIV_BY_7, 226

SCG_SPLL_CLOCK_PREDIV_BY_8, 226
SCG_SPLL_MONITOR_DISABLE, 226
SCG_SPLL_MONITOR_INT, 226
SCG_SPLL_MONITOR_RESET, 226
SCG_SYSTEM_CLOCK_DIV_BY_1, 226
SCG_SYSTEM_CLOCK_DIV_BY_10, 226
SCG_SYSTEM_CLOCK_DIV_BY_11, 226
SCG_SYSTEM_CLOCK_DIV_BY_12, 226
SCG_SYSTEM_CLOCK_DIV_BY_13, 226
SCG_SYSTEM_CLOCK_DIV_BY_14, 226
SCG_SYSTEM_CLOCK_DIV_BY_15, 226
SCG_SYSTEM_CLOCK_DIV_BY_16, 226
SCG_SYSTEM_CLOCK_DIV_BY_2, 226
SCG_SYSTEM_CLOCK_DIV_BY_3, 226
SCG_SYSTEM_CLOCK_DIV_BY_4, 226
SCG_SYSTEM_CLOCK_DIV_BY_5, 226
SCG_SYSTEM_CLOCK_DIV_BY_6, 226
SCG_SYSTEM_CLOCK_DIV_BY_7, 226
SCG_SYSTEM_CLOCK_DIV_BY_8, 226
SCG_SYSTEM_CLOCK_DIV_BY_9, 226
SCG_SYSTEM_CLOCK_SRC_FIRC, 226
SCG_SYSTEM_CLOCK_SRC_NONE, 226
SCG_SYSTEM_CLOCK_SRC_SIRC, 226
SCG_SYSTEM_CLOCK_SRC_SYS_OSC, 226
SIM_CLKOUT_DIV_BY_1, 227
SIM_CLKOUT_DIV_BY_2, 227
SIM_CLKOUT_DIV_BY_3, 227
SIM_CLKOUT_DIV_BY_4, 227
SIM_CLKOUT_DIV_BY_5, 227
SIM_CLKOUT_DIV_BY_6, 227
SIM_CLKOUT_DIV_BY_7, 227
SIM_CLKOUT_DIV_BY_8, 227
SIM_CLKOUT_SEL_SYSTEM_BUS_CLK, 227
SIM_CLKOUT_SEL_SYSTEM_FIRC_DIV2_CLK,

227
SIM_CLKOUT_SEL_SYSTEM_HCLK, 227
SIM_CLKOUT_SEL_SYSTEM_LPO_128K_CLK,

227
SIM_CLKOUT_SEL_SYSTEM_LPO_CLK, 227
SIM_CLKOUT_SEL_SYSTEM_RTC_CLK, 227
SIM_CLKOUT_SEL_SYSTEM_SCG_CLKOUT,

227
SIM_CLKOUT_SEL_SYSTEM_SIRC_DIV2_CLK,

227
SIM_CLKOUT_SEL_SYSTEM_SOSC_DIV2_CLK,

227
SIM_CLKOUT_SEL_SYSTEM_SPLL_DIV2_CLK,

227
SIM_LPO_CLK_SEL_LPO_128K, 227
SIM_LPO_CLK_SEL_LPO_1K, 227
SIM_LPO_CLK_SEL_LPO_32K, 227
SIM_LPO_CLK_SEL_NO_CLOCK, 227
SIM_RTCCLK_SEL_FIRCDIV1_CLK, 228
SIM_RTCCLK_SEL_LPO_32K, 228
SIM_RTCCLK_SEL_RTC_CLKIN, 228
SIM_RTCCLK_SEL_SOSCDIV1_CLK, 228
SLOW_CLK_INDEX, 221
STOP_MODE, 223

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

990 INDEX

SYS_CLK_MAX_NO, 221
scg_async_clock_div_t, 223
scg_clockout_src_t, 223
scg_firc_range_t, 223
scg_sirc_range_t, 224
scg_sosc_ext_ref_t, 224
scg_sosc_gain_t, 224
scg_sosc_monitor_mode_t, 224
scg_sosc_range_t, 224
scg_spll_clock_multiply_t, 224
scg_spll_clock_prediv_t, 225
scg_spll_monitor_mode_t, 226
scg_system_clock_div_t, 226
scg_system_clock_src_t, 226
sim_clkout_div_t, 226
sim_clkout_src_t, 227
sim_lpoclk_sel_src_t, 227
sim_rtc_clk_sel_src_t, 227
VLPR_MODE, 223
VLPS_MODE, 223
XOSC_EXT_REF, 228
XOSC_INT_OSC, 228
xosc_ref_t, 228

clock_manager_callback_t
Clock Manager Driver, 221

clock_manager_callback_type_t
Clock Manager Driver, 221

clock_manager_callback_user_config_t, 218
callback, 219
callbackData, 219
callbackType, 219

clock_manager_notify_t
Clock Manager Driver, 222

clock_manager_policy_t
Clock Manager Driver, 222

clock_manager_state_t, 219
callbackConfig, 219
callbackNum, 219
clockConfigNum, 219
configTable, 219
curConfigIndex, 219
errorCallbackIndex, 219

clock_manager_user_config_t, 215
pccConfig, 216
pmcConfig, 216
scgConfig, 216
simConfig, 216

clock_notify_struct_t, 218
notifyType, 218
policy, 218
targetClockConfigIndex, 218

clock_source_config_t, 217
div, 217
enable, 217
mul, 217
outputDiv1, 217
outputDiv2, 218
refClk, 218

refFreq, 218
clock_trace_src_t

Clock Manager Driver, 222
clock_user_config_t

Clock Manager Driver, 221
clockConfigNum

clock_manager_state_t, 219
clockDivide

adc_converter_config_t, 138
extension_adc_s32k1xx_t, 160

clockModeConfig
scg_config_t, 213

clockName
peripheral_clock_config_t, 214

clockOutConfig
rtc_init_config_t, 807
scg_config_t, 213
sim_clock_config_t, 206

clockPhase
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 414
spi_master_t, 852
spi_slave_t, 854

clockPolarity
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 414
spi_master_t, 852
spi_slave_t, 854

clockSelect
extension_ftm_for_timer_t, 885
extension_lptmr_for_timer_t, 885
lptmr_config_t, 633
rtc_init_config_t, 807

cmc
sbc_can_ctr_t, 902

cmd
csec_state_t, 179

cmdInProgress
csec_state_t, 179

cmp_anmux_t, 246
negativeInputMux, 246
negativePortMux, 246
positiveInputMux, 247
positivePortMux, 247

cmp_ch_list_t
Comparator Driver, 249

cmp_ch_number_t
Comparator Driver, 249

cmp_comparator_t, 245
dmaTriggerState, 245
filterSampleCount, 245
filterSamplePeriod, 245
hysteresisLevel, 245
inverterState, 245
mode, 246
outputInterruptTrigger, 246
outputSelect, 246
pinState, 246

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 991

powerMode, 246
cmp_dac_t, 247

state, 247
voltage, 247
voltageReferenceSource, 247

cmp_fixed_port_t
Comparator Driver, 249

cmp_hysteresis_t
Comparator Driver, 249

cmp_inverter_t
Comparator Driver, 250

cmp_mode_t
Comparator Driver, 250

cmp_module_t, 248
comparator, 248
dac, 248
mux, 249
triggerMode, 249

cmp_output_enable_t
Comparator Driver, 250

cmp_output_select_t
Comparator Driver, 250

cmp_output_trigger_t
Comparator Driver, 251

cmp_port_mux_t
Comparator Driver, 251

cmp_power_mode_t
Comparator Driver, 251

cmp_trigger_mode_t, 247
fixedChannel, 248
fixedPort, 248
programedState, 248
roundRobinChannelsState, 248
roundRobinInterruptState, 248
roundRobinState, 248
samples, 248

cmp_voltage_reference_t
Comparator Driver, 251

cntByte
lin_state_t, 566

coll_resolv_schd
lin_associate_frame_t, 670

Common Core API., 233
BUS_ACTIVITY_SET, 233
ERROR_IN_RESPONSE, 233
EVENT_TRIGGER_COLLISION_SET, 233
GO_TO_SLEEP_SET, 233
OVERRUN, 233
SAVE_CONFIG_SET, 234
SUCCESSFULL_TRANSFER, 234

Common Transport Layer API, 235
DIAG_SERVICE_CALLBACK_HANDLER, 235
GENERAL_REJECT, 235
LD_ANY_FUNCTION, 236
LD_ANY_MESSAGE, 236
LD_ANY_SUPPLIER, 236
LD_BROADCAST, 236
LD_DATA_ERROR, 236

LD_FUNCTIONAL_NAD, 236
LD_LENGTH_NOT_CORRECT, 236
LD_LENGTH_TOO_SHORT, 236
LD_READ_OK, 236
LD_SET_OK, 236
LIN_PRODUCT_ID, 236
LIN_SERIAL_NUMBER, 237
lin_diag_service_callback, 238
NEGATIVE, 237
POSITIVE, 237
RECEIVING, 237
RES_NEGATIVE, 237
RES_POSITIVE, 237
SERVICE_NOT_SUPPORTED, 237
SERVICE_TARGET_RESET, 237
SUBFUNCTION_NOT_SUPPORTED, 237
TRANSMITTING, 237

compVal1
adc_compare_config_t, 140

compVal2
adc_compare_config_t, 140

comparator
cmp_module_t, 248

Comparator (CMP), 239
Comparator Driver, 243

CMP_AVAILABLE, 250
CMP_BOTH_EDGES, 251
CMP_CONTINUOUS, 250
CMP_COUT, 251
CMP_COUTA, 251
CMP_DAC, 251
CMP_DISABLED, 250
CMP_DRV_ClearInputFlags, 252
CMP_DRV_ClearOutputFlags, 252
CMP_DRV_ConfigComparator, 252
CMP_DRV_ConfigDAC, 252
CMP_DRV_ConfigMUX, 253
CMP_DRV_ConfigTriggerMode, 253
CMP_DRV_GetComparatorConfig, 253
CMP_DRV_GetConfigAll, 254
CMP_DRV_GetDACConfig, 254
CMP_DRV_GetDefaultConfig, 254
CMP_DRV_GetInitConfigAll, 254
CMP_DRV_GetInitConfigComparator, 255
CMP_DRV_GetInitConfigDAC, 255
CMP_DRV_GetInitConfigMUX, 255
CMP_DRV_GetInitTriggerMode, 256
CMP_DRV_GetInputFlags, 256
CMP_DRV_GetMUXConfig, 256
CMP_DRV_GetOutputFlags, 256
CMP_DRV_GetTriggerModeConfig, 257
CMP_DRV_Init, 257
CMP_DRV_Reset, 257
CMP_FALLING_EDGE, 251
CMP_HIGH_SPEED, 251
CMP_INPUT_FLAGS_MASK, 249
CMP_INPUT_FLAGS_SHIFT, 249
CMP_INVERT, 250

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

992 INDEX

CMP_LEVEL_HYS_0, 250
CMP_LEVEL_HYS_1, 250
CMP_LEVEL_HYS_2, 250
CMP_LEVEL_HYS_3, 250
CMP_LOW_SPEED, 251
CMP_MINUS_FIXED, 249
CMP_MUX, 251
CMP_NO_EVENT, 251
CMP_NORMAL, 250
CMP_PLUS_FIXED, 249
CMP_RISING_EDGE, 251
CMP_ROUND_ROBIN_CHANNELS_MASK, 249
CMP_ROUND_ROBIN_CHANNELS_SHIFT, 249
CMP_SAMPLED_FILTRED_EXT_CLK, 250
CMP_SAMPLED_FILTRED_INT_CLK, 250
CMP_SAMPLED_NONFILTRED_EXT_CLK, 250
CMP_SAMPLED_NONFILTRED_INT_CLK, 250
CMP_UNAVAILABLE, 250
CMP_VIN1, 251
CMP_VIN2, 251
CMP_WINDOWED, 250
CMP_WINDOWED_FILTRED, 250
CMP_WINDOWED_RESAMPLED, 250
cmp_ch_list_t, 249
cmp_ch_number_t, 249
cmp_fixed_port_t, 249
cmp_hysteresis_t, 249
cmp_inverter_t, 250
cmp_mode_t, 250
cmp_output_enable_t, 250
cmp_output_select_t, 250
cmp_output_trigger_t, 251
cmp_port_mux_t, 251
cmp_power_mode_t, 251
cmp_voltage_reference_t, 251

compareEnable
adc_compare_config_t, 139

compareGreaterThanEnable
adc_compare_config_t, 139

compareHigh
ewm_init_config_t, 325

compareLow
ewm_init_config_t, 325

compareRangeFuncEnable
adc_compare_config_t, 140

compareValue
lptmr_config_t, 633

comparedValue
ftm_output_cmp_ch_param_t, 484
oc_output_ch_param_t, 749

compensation
rtc_init_config_t, 807

compensationInterval
rtc_init_config_t, 807

complementChecksum
crc_user_config_t, 169

complementaryChannelPolarity
pwm_channel_t, 799

configTable
clock_manager_state_t, 219

configs
power_manager_state_t, 779

configsNumber
power_manager_state_t, 779

configured_NAD_ptr
lin_node_attribute_t, 669

continuousConvEn
adc_group_config_t, 158

continuousConvEnable
adc_converter_config_t, 138

continuousModeEn
channel_extension_ftm_for_ic_t, 527
ftm_input_ch_param_t, 473

continuousModeEnable
pdb_timer_config_t, 760

control
sbc_factories_conf_t, 906

controlRegisterLock
rtc_register_lock_config_t, 810

Controller Area Network - Peripheral Abstraction Layer
(CAN PAL), 259

CAN_AbortTransfer, 269
CAN_CLK_SOURCE_OSC, 268
CAN_CLK_SOURCE_PERIPH, 268
CAN_ConfigRemoteResponseBuff, 269
CAN_ConfigRxBuff, 270
CAN_ConfigTxBuff, 270
CAN_DISABLE_MODE, 269
CAN_Deinit, 271
CAN_FD_DATA_BITRATE, 268
CAN_GetBitrate, 271
CAN_GetDefaultConfig, 271
CAN_GetTransferStatus, 271
CAN_Init, 272
CAN_InstallEventCallback, 272
CAN_LOOPBACK_MODE, 269
CAN_MSG_ID_EXT, 269
CAN_MSG_ID_STD, 269
CAN_NOMINAL_BITRATE, 268
CAN_NORMAL_MODE, 269
CAN_PAYLOAD_SIZE_16, 268
CAN_PAYLOAD_SIZE_32, 269
CAN_PAYLOAD_SIZE_64, 269
CAN_PAYLOAD_SIZE_8, 268
CAN_Receive, 272
CAN_ReceiveBlocking, 273
CAN_Send, 273
CAN_SendBlocking, 274
CAN_SetBitrate, 274
CAN_SetRxFilter, 274
can_bitrate_phase_t, 268
can_clk_source_t, 268
can_fd_payload_size_t, 268
can_msg_id_type_t, 269
can_operation_modes_t, 269

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 993

Controller Area Network with Flexible Data Rate (Flex←↩

CAN), 276
Cooked API, 278

ld_receive_message, 278
ld_rx_status, 278
ld_send_message, 279
ld_tx_status, 279

coscs
sbc_trans_stat_t, 908

count
pcc_config_t, 214

counter
ftm_quad_decoder_state_t, 508

counterDirection
ftm_quad_decoder_state_t, 508

counterUnits
lptmr_config_t, 633

cpnc
sbc_can_ctr_t, 902

cpnerr
sbc_trans_stat_t, 908

cpns
sbc_trans_stat_t, 908

crc_transpose_t
CRC Driver, 169

crc_user_config_t, 168
complementChecksum, 169
seed, 169
writeTranspose, 169

Cryptographic Services Engine (CSEc), 280
cs

can_message_t, 266
flexcan_msgbuff_t, 364

csec_boot_flavor_t
CSEc Driver, 181

csec_call_sequence_t
CSEc Driver, 181

csec_cmd_t
CSEc Driver, 182

csec_key_id_t
CSEc Driver, 182

csec_state_t, 178
callback, 179
callbackParam, 179
cmd, 179
cmdInProgress, 179
errCode, 179
fullSize, 179
index, 179
inputBuff, 179
iv, 179
keyId, 179
mac, 179
macLen, 179
macWritten, 180
msgLen, 180
outputBuff, 180
partSize, 180

seq, 180
verifStatus, 180

csec_status_t
CSEc Driver, 181

cts
sbc_trans_stat_t, 909

curConfigIndex
clock_manager_state_t, 219

current_id
lin_protocol_state_t, 680

currentConfig
power_manager_state_t, 779

currentEventId
lin_state_t, 566

currentId
lin_state_t, 566

currentNodeState
lin_state_t, 566

currentPid
lin_state_t, 566

cw
sbc_trans_evnt_stat_t, 911

cwe
sbc_trans_evnt_t, 902

Cyclic Redundancy Check (CRC), 281

DADDR
edma_software_tcd_t, 299

DAYS_IN_A_LEAP_YEAR
RTC Driver, 810

DAYS_IN_A_YEAR
RTC Driver, 810

DFLASH_IFR_READRESOURCE_ADDRESS
Flash Memory (Flash), 338

DFlashBase
Flash Memory (Flash), 351, 352

DFlashSize
Flash Memory (Flash), 352

DIAG_INTERLEAVE_MODE
Low level API, 685

DIAG_NO_RESPONSE
Low level API, 685

DIAG_NONE
Low level API, 685

DIAG_NOT_START
Low level API, 685

DIAG_ONLY_MODE
Low level API, 685

DIAG_RESPONSE
Low level API, 685

DIAG_SERVICE_CALLBACK_HANDLER
Common Transport Layer API, 235

DIVIDE_BY_EIGTH
Clock Manager Driver, 222

DIVIDE_BY_FIVE
Clock Manager Driver, 222

DIVIDE_BY_FOUR
Clock Manager Driver, 222

DIVIDE_BY_ONE

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

994 INDEX

Clock Manager Driver, 222
DIVIDE_BY_SEVEN

Clock Manager Driver, 222
DIVIDE_BY_SIX

Clock Manager Driver, 222
DIVIDE_BY_THREE

Clock Manager Driver, 222
DIVIDE_BY_TWO

Clock Manager Driver, 222
DLAST_SGA

edma_software_tcd_t, 299
DOFF

edma_software_tcd_t, 300
dac

cmp_module_t, 248
datRate

sbc_can_conf_t, 903
data

can_message_t, 266
flexcan_msgbuff_t, 364

data_length
flexcan_data_info_t, 366

dataBitrate
can_user_config_t, 267

dataLen
flexcan_msgbuff_t, 364

dataMask
eim_user_channel_config_t, 315
sbc_can_conf_t, 903

dataPin
flexio_uart_user_config_t, 426

dataPinRx
extension_flexio_for_uart_t, 938

dataPinTx
extension_flexio_for_uart_t, 938

day
rtc_timedate_t, 806

deadTime
ftm_combined_ch_param_t, 497
ftm_independent_ch_param_t, 496

deadTimePrescaler
ftm_pwm_param_t, 499

deadTimeValue
ftm_pwm_param_t, 499

deadtime
pwm_channel_t, 799

deadtimePrescaler
pwm_ftm_timebase_t, 798

debug
wdg_option_mode_t, 947
wdog_op_mode_t, 956

DefaultISR
Interrupt Manager (Interrupt), 549

delay_integer
lin_schedule_data_t, 672

delayArray
adc_group_config_t, 158

delayType

adc_group_config_t, 159
destAddr

edma_transfer_config_t, 297
destLastAddrAdjust

edma_transfer_config_t, 297
destModulo

edma_transfer_config_t, 298
destOffset

edma_transfer_config_t, 298
destTransferSize

edma_transfer_config_t, 298
diag_IO_control

Diagnostic services, 285
diag_clear_flag

Diagnostic services, 284
diag_fault_memory_clear

Diagnostic services, 284
diag_fault_memory_read

Diagnostic services, 284
diag_get_flag

Diagnostic services, 285
diag_interleave_state

lin_tl_descriptor_t, 674
diag_interleaved_state_t

Low level API, 684
diag_read_data_by_identifier

Diagnostic services, 285
diag_session_control

Diagnostic services, 286
diag_state

lin_tl_descriptor_t, 674
diag_write_data_by_identifier

Diagnostic services, 286
Diagnostic services, 283

diag_IO_control, 285
diag_clear_flag, 284
diag_fault_memory_clear, 284
diag_fault_memory_read, 284
diag_get_flag, 285
diag_read_data_by_identifier, 285
diag_session_control, 286
diag_write_data_by_identifier, 286

diagnostic_class
lin_protocol_user_config_t, 677

diagnostic_mode
lin_protocol_state_t, 680

direction
flexio_uart_user_config_t, 426
pin_settings_config_t, 769

div
clock_source_config_t, 217
module_clk_config_t, 216

div1
scg_firc_config_t, 209
scg_sirc_config_t, 208
scg_sosc_config_t, 207
scg_spll_config_t, 210

div2

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 995

scg_firc_config_t, 209
scg_sirc_config_t, 208
scg_sosc_config_t, 207
scg_spll_config_t, 210

divBus
scg_system_clock_config_t, 206

divCore
scg_system_clock_config_t, 206

divEnable
sim_trace_clock_config_t, 205

divFraction
sim_trace_clock_config_t, 205

divSlow
scg_system_clock_config_t, 206

divider
peripheral_clock_config_t, 214
sim_clock_out_config_t, 202
sim_trace_clock_config_t, 205

dividers
sys_clk_config_t, 217

dlc
sbc_frame_t, 903

dmaChannel
flexio_uart_user_config_t, 426
i2c_slave_t, 537
lpi2c_master_user_config_t, 585
lpi2c_slave_user_config_t, 586

dmaChannel1
i2c_master_t, 536

dmaChannel2
i2c_master_t, 536

dmaEnable
adc_converter_config_t, 138
pdb_timer_config_t, 760

dmaRequest
lptmr_config_t, 633

dmaTriggerState
cmp_comparator_t, 245

Driver and cluster management, 287
l_sys_init, 287

driverType
flexio_i2c_master_user_config_t, 385
flexio_i2s_master_user_config_t, 395
flexio_i2s_slave_user_config_t, 396
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 414
flexio_uart_user_config_t, 426

drv_config_t, 967
isInit, 968
lpspiIntace, 968
watchdogCtr, 968

dstOffsetEnable
edma_loop_transfer_config_t, 296

dummy
lpspi_state_t, 617

duty
pwm_channel_t, 799

EDMA Driver, 288

EDMA_ARBITRATION_FIXED_PRIORITY, 301
EDMA_ARBITRATION_ROUND_ROBIN, 301
EDMA_CHN_DEFAULT_PRIORITY, 301
EDMA_CHN_ERR_INT, 301
EDMA_CHN_ERROR, 302
EDMA_CHN_HALF_MAJOR_LOOP_INT, 301
EDMA_CHN_MAJOR_LOOP_INT, 301
EDMA_CHN_NORMAL, 302
EDMA_CHN_PRIORITY_0, 301
EDMA_CHN_PRIORITY_1, 301
EDMA_CHN_PRIORITY_10, 301
EDMA_CHN_PRIORITY_11, 301
EDMA_CHN_PRIORITY_12, 301
EDMA_CHN_PRIORITY_13, 301
EDMA_CHN_PRIORITY_14, 301
EDMA_CHN_PRIORITY_15, 301
EDMA_CHN_PRIORITY_2, 301
EDMA_CHN_PRIORITY_3, 301
EDMA_CHN_PRIORITY_4, 301
EDMA_CHN_PRIORITY_5, 301
EDMA_CHN_PRIORITY_6, 301
EDMA_CHN_PRIORITY_7, 301
EDMA_CHN_PRIORITY_8, 301
EDMA_CHN_PRIORITY_9, 301
EDMA_DRV_CancelTransfer, 303
EDMA_DRV_ChannelInit, 303
EDMA_DRV_ClearTCD, 304
EDMA_DRV_ConfigLoopTransfer, 304
EDMA_DRV_ConfigMultiBlockTransfer, 304
EDMA_DRV_ConfigScatterGatherTransfer, 305
EDMA_DRV_ConfigSingleBlockTransfer, 306
EDMA_DRV_ConfigureInterrupt, 306
EDMA_DRV_Deinit, 306
EDMA_DRV_DisableRequestsOnTransfer←↩

Complete, 306
EDMA_DRV_GetChannelStatus, 307
EDMA_DRV_GetRemainingMajorIterationsCount,

307
EDMA_DRV_Init, 307
EDMA_DRV_InstallCallback, 308
EDMA_DRV_PushConfigToReg, 308
EDMA_DRV_PushConfigToSTCD, 308
EDMA_DRV_ReleaseChannel, 309
EDMA_DRV_SetChannelRequestAndTrigger, 309
EDMA_DRV_SetDestAddr, 309
EDMA_DRV_SetDestLastAddrAdjustment, 309
EDMA_DRV_SetDestOffset, 310
EDMA_DRV_SetDestWriteChunkSize, 310
EDMA_DRV_SetMajorLoopIterationCount, 310
EDMA_DRV_SetMinorLoopBlockSize, 310
EDMA_DRV_SetScatterGatherLink, 310
EDMA_DRV_SetSrcAddr, 311
EDMA_DRV_SetSrcLastAddrAdjustment, 311
EDMA_DRV_SetSrcOffset, 311
EDMA_DRV_SetSrcReadChunkSize, 311
EDMA_DRV_StartChannel, 311
EDMA_DRV_StopChannel, 312
EDMA_DRV_TriggerSwRequest, 312

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

996 INDEX

EDMA_ERR_LSB_MASK, 300
EDMA_MODULO_128B, 302
EDMA_MODULO_128KB, 302
EDMA_MODULO_128MB, 302
EDMA_MODULO_16B, 302
EDMA_MODULO_16KB, 302
EDMA_MODULO_16MB, 302
EDMA_MODULO_1GB, 302
EDMA_MODULO_1KB, 302
EDMA_MODULO_1MB, 302
EDMA_MODULO_256B, 302
EDMA_MODULO_256KB, 302
EDMA_MODULO_256MB, 302
EDMA_MODULO_2B, 302
EDMA_MODULO_2GB, 302
EDMA_MODULO_2KB, 302
EDMA_MODULO_2MB, 302
EDMA_MODULO_32B, 302
EDMA_MODULO_32KB, 302
EDMA_MODULO_32MB, 302
EDMA_MODULO_4B, 302
EDMA_MODULO_4KB, 302
EDMA_MODULO_4MB, 302
EDMA_MODULO_512B, 302
EDMA_MODULO_512KB, 302
EDMA_MODULO_512MB, 302
EDMA_MODULO_64B, 302
EDMA_MODULO_64KB, 302
EDMA_MODULO_64MB, 302
EDMA_MODULO_8B, 302
EDMA_MODULO_8KB, 302
EDMA_MODULO_8MB, 302
EDMA_MODULO_OFF, 302
EDMA_TRANSFER_MEM2MEM, 303
EDMA_TRANSFER_MEM2PERIPH, 303
EDMA_TRANSFER_PERIPH2MEM, 303
EDMA_TRANSFER_PERIPH2PERIPH, 303
EDMA_TRANSFER_SIZE_1B, 303
EDMA_TRANSFER_SIZE_2B, 303
EDMA_TRANSFER_SIZE_4B, 303
edma_arbitration_algorithm_t, 300
edma_callback_t, 300
edma_channel_interrupt_t, 301
edma_channel_priority_t, 301
edma_chn_status_t, 301
edma_modulo_t, 302
edma_transfer_size_t, 302
edma_transfer_type_t, 303
STCD_ADDR, 300
STCD_SIZE, 300

EDMA_ARBITRATION_FIXED_PRIORITY
EDMA Driver, 301

EDMA_ARBITRATION_ROUND_ROBIN
EDMA Driver, 301

EDMA_CHN_DEFAULT_PRIORITY
EDMA Driver, 301

EDMA_CHN_ERR_INT
EDMA Driver, 301

EDMA_CHN_ERROR
EDMA Driver, 302

EDMA_CHN_HALF_MAJOR_LOOP_INT
EDMA Driver, 301

EDMA_CHN_MAJOR_LOOP_INT
EDMA Driver, 301

EDMA_CHN_NORMAL
EDMA Driver, 302

EDMA_CHN_PRIORITY_0
EDMA Driver, 301

EDMA_CHN_PRIORITY_1
EDMA Driver, 301

EDMA_CHN_PRIORITY_10
EDMA Driver, 301

EDMA_CHN_PRIORITY_11
EDMA Driver, 301

EDMA_CHN_PRIORITY_12
EDMA Driver, 301

EDMA_CHN_PRIORITY_13
EDMA Driver, 301

EDMA_CHN_PRIORITY_14
EDMA Driver, 301

EDMA_CHN_PRIORITY_15
EDMA Driver, 301

EDMA_CHN_PRIORITY_2
EDMA Driver, 301

EDMA_CHN_PRIORITY_3
EDMA Driver, 301

EDMA_CHN_PRIORITY_4
EDMA Driver, 301

EDMA_CHN_PRIORITY_5
EDMA Driver, 301

EDMA_CHN_PRIORITY_6
EDMA Driver, 301

EDMA_CHN_PRIORITY_7
EDMA Driver, 301

EDMA_CHN_PRIORITY_8
EDMA Driver, 301

EDMA_CHN_PRIORITY_9
EDMA Driver, 301

EDMA_DRV_CancelTransfer
EDMA Driver, 303

EDMA_DRV_ChannelInit
EDMA Driver, 303

EDMA_DRV_ClearTCD
EDMA Driver, 304

EDMA_DRV_ConfigLoopTransfer
EDMA Driver, 304

EDMA_DRV_ConfigMultiBlockTransfer
EDMA Driver, 304

EDMA_DRV_ConfigScatterGatherTransfer
EDMA Driver, 305

EDMA_DRV_ConfigSingleBlockTransfer
EDMA Driver, 306

EDMA_DRV_ConfigureInterrupt
EDMA Driver, 306

EDMA_DRV_Deinit
EDMA Driver, 306

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 997

EDMA_DRV_DisableRequestsOnTransferComplete
EDMA Driver, 306

EDMA_DRV_GetChannelStatus
EDMA Driver, 307

EDMA_DRV_GetRemainingMajorIterationsCount
EDMA Driver, 307

EDMA_DRV_Init
EDMA Driver, 307

EDMA_DRV_InstallCallback
EDMA Driver, 308

EDMA_DRV_PushConfigToReg
EDMA Driver, 308

EDMA_DRV_PushConfigToSTCD
EDMA Driver, 308

EDMA_DRV_ReleaseChannel
EDMA Driver, 309

EDMA_DRV_SetChannelRequestAndTrigger
EDMA Driver, 309

EDMA_DRV_SetDestAddr
EDMA Driver, 309

EDMA_DRV_SetDestLastAddrAdjustment
EDMA Driver, 309

EDMA_DRV_SetDestOffset
EDMA Driver, 310

EDMA_DRV_SetDestWriteChunkSize
EDMA Driver, 310

EDMA_DRV_SetMajorLoopIterationCount
EDMA Driver, 310

EDMA_DRV_SetMinorLoopBlockSize
EDMA Driver, 310

EDMA_DRV_SetScatterGatherLink
EDMA Driver, 310

EDMA_DRV_SetSrcAddr
EDMA Driver, 311

EDMA_DRV_SetSrcLastAddrAdjustment
EDMA Driver, 311

EDMA_DRV_SetSrcOffset
EDMA Driver, 311

EDMA_DRV_SetSrcReadChunkSize
EDMA Driver, 311

EDMA_DRV_StartChannel
EDMA Driver, 311

EDMA_DRV_StopChannel
EDMA Driver, 312

EDMA_DRV_TriggerSwRequest
EDMA Driver, 312

EDMA_ERR_LSB_MASK
EDMA Driver, 300

EDMA_MODULO_128B
EDMA Driver, 302

EDMA_MODULO_128KB
EDMA Driver, 302

EDMA_MODULO_128MB
EDMA Driver, 302

EDMA_MODULO_16B
EDMA Driver, 302

EDMA_MODULO_16KB
EDMA Driver, 302

EDMA_MODULO_16MB
EDMA Driver, 302

EDMA_MODULO_1GB
EDMA Driver, 302

EDMA_MODULO_1KB
EDMA Driver, 302

EDMA_MODULO_1MB
EDMA Driver, 302

EDMA_MODULO_256B
EDMA Driver, 302

EDMA_MODULO_256KB
EDMA Driver, 302

EDMA_MODULO_256MB
EDMA Driver, 302

EDMA_MODULO_2B
EDMA Driver, 302

EDMA_MODULO_2GB
EDMA Driver, 302

EDMA_MODULO_2KB
EDMA Driver, 302

EDMA_MODULO_2MB
EDMA Driver, 302

EDMA_MODULO_32B
EDMA Driver, 302

EDMA_MODULO_32KB
EDMA Driver, 302

EDMA_MODULO_32MB
EDMA Driver, 302

EDMA_MODULO_4B
EDMA Driver, 302

EDMA_MODULO_4KB
EDMA Driver, 302

EDMA_MODULO_4MB
EDMA Driver, 302

EDMA_MODULO_512B
EDMA Driver, 302

EDMA_MODULO_512KB
EDMA Driver, 302

EDMA_MODULO_512MB
EDMA Driver, 302

EDMA_MODULO_64B
EDMA Driver, 302

EDMA_MODULO_64KB
EDMA Driver, 302

EDMA_MODULO_64MB
EDMA Driver, 302

EDMA_MODULO_8B
EDMA Driver, 302

EDMA_MODULO_8KB
EDMA Driver, 302

EDMA_MODULO_8MB
EDMA Driver, 302

EDMA_MODULO_OFF
EDMA Driver, 302

EDMA_TRANSFER_MEM2MEM
EDMA Driver, 303

EDMA_TRANSFER_MEM2PERIPH
EDMA Driver, 303

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

998 INDEX

EDMA_TRANSFER_PERIPH2MEM
EDMA Driver, 303

EDMA_TRANSFER_PERIPH2PERIPH
EDMA Driver, 303

EDMA_TRANSFER_SIZE_1B
EDMA Driver, 303

EDMA_TRANSFER_SIZE_2B
EDMA Driver, 303

EDMA_TRANSFER_SIZE_4B
EDMA Driver, 303

EEE_COMPLETE_INTERRUPT_QUICK_WRITE
Flash Memory (Flash), 342

EEE_DISABLE
Flash Memory (Flash), 342

EEE_ENABLE
Flash Memory (Flash), 342

EEE_QUICK_WRITE
Flash Memory (Flash), 342

EEE_STATUS_QUERY
Flash Memory (Flash), 342

EEESize
Flash Memory (Flash), 352

EERAMBase
Flash Memory (Flash), 352

EIM Driver, 313
EIM_CHECKBITMASK_DEFAULT, 315
EIM_DATAMASK_DEFAULT, 315
EIM_DRV_ConfigChannel, 316
EIM_DRV_Deinit, 316
EIM_DRV_GetChannelConfig, 316
EIM_DRV_GetDefaultConfig, 316
EIM_DRV_Init, 317

EIM_CHECKBITMASK_DEFAULT
EIM Driver, 315

EIM_DATAMASK_DEFAULT
EIM Driver, 315

EIM_DRV_ConfigChannel
EIM Driver, 316

EIM_DRV_Deinit
EIM Driver, 316

EIM_DRV_GetChannelConfig
EIM Driver, 316

EIM_DRV_GetDefaultConfig
EIM Driver, 316

EIM_DRV_Init
EIM Driver, 317

ERM Driver, 318
ERM_DRV_ClearEvent, 321
ERM_DRV_Deinit, 321
ERM_DRV_GetErrorDetail, 321
ERM_DRV_GetInterruptConfig, 321
ERM_DRV_Init, 322
ERM_DRV_SetInterruptConfig, 322
ERM_EVENT_NON_CORRECTABLE, 321
ERM_EVENT_NONE, 321
ERM_EVENT_SINGLE_BIT, 321
erm_ecc_event_t, 321

ERM_DRV_ClearEvent

ERM Driver, 321
ERM_DRV_Deinit

ERM Driver, 321
ERM_DRV_GetErrorDetail

ERM Driver, 321
ERM_DRV_GetInterruptConfig

ERM Driver, 321
ERM_DRV_Init

ERM Driver, 322
ERM_DRV_SetInterruptConfig

ERM Driver, 322
ERM_EVENT_NON_CORRECTABLE

ERM Driver, 321
ERM_EVENT_NONE

ERM Driver, 321
ERM_EVENT_SINGLE_BIT

ERM Driver, 321
ERROR_IN_RESPONSE

Common Core API., 233
EVENT_TRIGGER_COLLISION_SET

Common Core API., 233
EWM Driver, 323

EWM_DRV_GetDefaultConfig, 326
EWM_DRV_GetInputPinAssertLogic, 326
EWM_DRV_Init, 326
EWM_DRV_Refresh, 327
EWM_IN_ASSERT_DISABLED, 326
EWM_IN_ASSERT_ON_LOGIC_ONE, 326
EWM_IN_ASSERT_ON_LOGIC_ZERO, 326
ewm_in_assert_logic_t, 326

EWM_DRV_GetDefaultConfig
EWM Driver, 326

EWM_DRV_GetInputPinAssertLogic
EWM Driver, 326

EWM_DRV_Init
EWM Driver, 326

EWM_DRV_Refresh
EWM Driver, 327

EWM_IN_ASSERT_DISABLED
EWM Driver, 326

EWM_IN_ASSERT_ON_LOGIC_ONE
EWM Driver, 326

EWM_IN_ASSERT_ON_LOGIC_ZERO
EWM Driver, 326

eccs
sbc_mtpnv_stat_t, 913

edgeAlignement
ftm_input_ch_param_t, 473

edma_arbitration_algorithm_t
EDMA Driver, 300

edma_callback_t
EDMA Driver, 300

edma_channel_config_t, 294
callback, 295
callbackParam, 295
channelPriority, 295
enableTrigger, 295
virtChnConfig, 295

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 999

edma_channel_interrupt_t
EDMA Driver, 301

edma_channel_priority_t
EDMA Driver, 301

edma_chn_state_t, 294
callback, 294
parameter, 294
status, 294
virtChn, 294

edma_chn_status_t
EDMA Driver, 301

edma_loop_transfer_config_t, 296
dstOffsetEnable, 296
majorLoopChnLinkEnable, 296
majorLoopChnLinkNumber, 296
majorLoopIterationCount, 296
minorLoopChnLinkEnable, 297
minorLoopChnLinkNumber, 297
minorLoopOffset, 297
srcOffsetEnable, 297

edma_modulo_t
EDMA Driver, 302

edma_scatter_gather_list_t, 295
address, 295
length, 295
type, 295

edma_software_tcd_t, 299
ATTR, 299
BITER, 299
CITER, 299
CSR, 299
DADDR, 299
DLAST_SGA, 299
DOFF, 300
NBYTES, 300
SADDR, 300
SLAST, 300
SOFF, 300

edma_state_t, 296
virtChnState, 296

edma_transfer_config_t, 297
destAddr, 297
destLastAddrAdjust, 297
destModulo, 298
destOffset, 298
destTransferSize, 298
interruptEnable, 298
loopTransferConfig, 298
minorByteTransferCount, 298
scatterGatherEnable, 298
scatterGatherNextDescAddr, 298
srcAddr, 298
srcLastAddrAdjust, 298
srcModulo, 299
srcOffset, 299
srcTransferSize, 299

edma_transfer_size_t
EDMA Driver, 302

edma_transfer_type_t
EDMA Driver, 303

edma_user_config_t, 293
chnArbitration, 294
haltOnError, 294

eim_user_channel_config_t, 315
channel, 315
checkBitMask, 315
dataMask, 315
enable, 315

enable
clock_source_config_t, 217
eim_user_channel_config_t, 315
pmc_lpo_clock_config_t, 215
sim_clock_out_config_t, 202

enableBRS
can_buff_config_t, 265

enableComplementaryChannel
pwm_channel_t, 799

enableDma
sim_plat_gate_config_t, 204

enableEim
sim_plat_gate_config_t, 204

enableErm
sim_plat_gate_config_t, 204

enableExternalTrigger
ftm_combined_ch_param_t, 497
ftm_independent_ch_param_t, 496
ftm_output_cmp_ch_param_t, 484

enableExternalTriggerOnNextChn
ftm_combined_ch_param_t, 497

enableFD
can_buff_config_t, 265
can_user_config_t, 267

enableInLowPower
scg_firc_config_t, 209
scg_sirc_config_t, 208
scg_sosc_config_t, 207

enableInStop
scg_firc_config_t, 209
scg_sirc_config_t, 209
scg_sosc_config_t, 207
scg_spll_config_t, 210

enableInitializationTrigger
ftm_user_config_t, 441

enableLpo1k
sim_lpo_clock_config_t, 203

enableLpo32k
sim_lpo_clock_config_t, 203

enableModifiedCombine
ftm_combined_ch_param_t, 497

enableMpu
sim_plat_gate_config_t, 204

enableMscm
sim_plat_gate_config_t, 204

enableNonCorrectable
erm_interrupt_config_t, 320

enableNotification

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1000 INDEX

ftm_state_t, 439
enableQspiRefClk

sim_qspi_ref_clk_gating_t, 204
enableReloadOnTrigger

lpit_user_channel_config_t, 601
enableRunInDebug

lpit_user_config_t, 601
enableRunInDoze

lpit_user_config_t, 601
enableSecondChannelOutput

ftm_combined_ch_param_t, 498
ftm_independent_ch_param_t, 496

enableSingleCorrection
erm_interrupt_config_t, 320

enableStartOnTrigger
lpit_user_channel_config_t, 601

enableStopOnInterrupt
lpit_user_channel_config_t, 602

enableTrigger
edma_channel_config_t, 295

endAddr
mpu_region_config_t, 713
mpu_user_config_t, 702

Enhanced Direct Memory Access (eDMA), 328
erm_ecc_event_t

ERM Driver, 321
erm_interrupt_config_t, 320

enableNonCorrectable, 320
enableSingleCorrection, 320

erm_user_config_t, 320
channel, 320
interruptCfg, 320

errCode
csec_state_t, 179

Error Injection Module (EIM), 329
Error Reporting Module (ERM), 331
error_callback

FlexCANState, 365
error_in_res

lin_word_status_str_t, 667
error_in_response

lin_protocol_state_t, 680
errorCallbackIndex

clock_manager_state_t, 219
power_manager_state_t, 779

errorCallbackParam
FlexCANState, 365

event_trigger_collision_flg
lin_master_data_t, 679
lin_word_status_str_t, 667

events
sbc_status_group_t, 913

ewm_in_assert_logic_t
EWM Driver, 326

ewm_init_config_t, 325
assertLogic, 325
compareHigh, 325
compareLow, 325

interruptEnable, 325
prescaler, 325

extPinSrc
sim_tclk_config_t, 203

extRef
scg_sosc_config_t, 207

extension
adc_config_t, 160
can_user_config_t, 267
i2c_master_t, 536
i2s_user_config_t, 516
ic_config_t, 527
mpu_region_config_t, 713
oc_config_t, 749
spi_master_t, 852
spi_slave_t, 854
timer_config_t, 884
uart_user_config_t, 937
wdg_config_t, 948

extension_adc_s32k1xx_t, 160
clockDivide, 160
inputClock, 160
pdbPrescaler, 160
resolution, 161
supplyMonitoringEnable, 161
voltageRef, 161

extension_ewm_for_wdg_t, 947
assertLogic, 947
prescalerValue, 947

extension_flexcan_rx_fifo_t, 267
idFilterTable, 268
idFormat, 268
numIdFilters, 268

extension_flexio_for_i2c_t, 535
sclPin, 535
sdaPin, 535

extension_flexio_for_i2s_t, 516
rxPin, 516
sckPin, 517
txPin, 517
wsPin, 517

extension_flexio_for_spi_t, 854
misoPin, 855
mosiPin, 855
sckPin, 855
ssPin, 855

extension_flexio_for_uart_t, 938
dataPinRx, 938
dataPinTx, 938

extension_ftm_for_ic_t, 527
ftmClockSource, 528
ftmPrescaler, 528

extension_ftm_for_oc_t, 750
ftmClockSource, 750
ftmPrescaler, 750
maxCountValue, 750

extension_ftm_for_timer_t, 885
clockSelect, 885

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1001

finalValue, 885
prescaler, 885

extension_lptmr_for_timer_t, 884
bypassPrescaler, 885
clockSelect, 885
prescaler, 885

External Watchdog Monitor (EWM), 333

FF_pdu_received
lin_tl_descriptor_t, 674

FLASH_CALLBACK_CS
Flash Memory (Flash), 338

FLASH_DRV_CheckSum
Flash Memory (Flash), 342

FLASH_DRV_ClearReadColisionFlag
Flash Memory (Flash), 343

FLASH_DRV_DisableCmdCompleteInterupt
Flash Memory (Flash), 343

FLASH_DRV_DisableReadColisionInterupt
Flash Memory (Flash), 343

FLASH_DRV_EnableCmdCompleteInterupt
Flash Memory (Flash), 343

FLASH_DRV_EnableReadColisionInterupt
Flash Memory (Flash), 343

FLASH_DRV_EraseAllBlock
Flash Memory (Flash), 344

FLASH_DRV_EraseResume
Flash Memory (Flash), 344

FLASH_DRV_EraseSector
Flash Memory (Flash), 344

FLASH_DRV_EraseSuspend
Flash Memory (Flash), 345

FLASH_DRV_GetCmdCompleteFlag
Flash Memory (Flash), 345

FLASH_DRV_GetDefaultConfig
Flash Memory (Flash), 346

FLASH_DRV_GetPFlashProtection
Flash Memory (Flash), 346

FLASH_DRV_GetReadColisionFlag
Flash Memory (Flash), 346

FLASH_DRV_GetSecurityState
Flash Memory (Flash), 346

FLASH_DRV_Init
Flash Memory (Flash), 347

FLASH_DRV_Program
Flash Memory (Flash), 347

FLASH_DRV_ProgramCheck
Flash Memory (Flash), 347

FLASH_DRV_ProgramOnce
Flash Memory (Flash), 348

FLASH_DRV_ReadOnce
Flash Memory (Flash), 348

FLASH_DRV_SecurityBypass
Flash Memory (Flash), 349

FLASH_DRV_SetPFlashProtection
Flash Memory (Flash), 349

FLASH_DRV_VerifyAllBlock
Flash Memory (Flash), 350

FLASH_DRV_VerifySection

Flash Memory (Flash), 350
FLASH_NOT_SECURE

Flash Memory (Flash), 338
FLASH_SECURE_BACKDOOR_DISABLED

Flash Memory (Flash), 339
FLASH_SECURE_BACKDOOR_ENABLED

Flash Memory (Flash), 339
FLASH_SECURITY_STATE_KEYEN

Flash Memory (Flash), 339
FLASH_SECURITY_STATE_UNSECURED

Flash Memory (Flash), 339
FLEXCAN_DISABLE_MODE

FlexCAN Driver, 369
FLEXCAN_DRV_AbortTransfer

FlexCAN Driver, 371
FLEXCAN_DRV_ConfigRemoteResponseMb

FlexCAN Driver, 371
FLEXCAN_DRV_ConfigRxFifo

FlexCAN Driver, 371
FLEXCAN_DRV_ConfigRxMb

FlexCAN Driver, 372
FLEXCAN_DRV_ConfigTxMb

FlexCAN Driver, 372
FLEXCAN_DRV_Deinit

FlexCAN Driver, 372
FLEXCAN_DRV_GetBitrate

FlexCAN Driver, 372
FLEXCAN_DRV_GetDefaultConfig

FlexCAN Driver, 373
FLEXCAN_DRV_GetErrorStatus

FlexCAN Driver, 373
FLEXCAN_DRV_GetTransferStatus

FlexCAN Driver, 373
FLEXCAN_DRV_Init

FlexCAN Driver, 374
FLEXCAN_DRV_InstallErrorCallback

FlexCAN Driver, 374
FLEXCAN_DRV_InstallEventCallback

FlexCAN Driver, 374
FLEXCAN_DRV_Receive

FlexCAN Driver, 374
FLEXCAN_DRV_ReceiveBlocking

FlexCAN Driver, 375
FLEXCAN_DRV_RxFifo

FlexCAN Driver, 375
FLEXCAN_DRV_RxFifoBlocking

FlexCAN Driver, 375
FLEXCAN_DRV_Send

FlexCAN Driver, 376
FLEXCAN_DRV_SendBlocking

FlexCAN Driver, 376
FLEXCAN_DRV_SetBitrate

FlexCAN Driver, 376
FLEXCAN_DRV_SetRxFifoGlobalMask

FlexCAN Driver, 377
FLEXCAN_DRV_SetRxIndividualMask

FlexCAN Driver, 377
FLEXCAN_DRV_SetRxMaskType

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1002 INDEX

FlexCAN Driver, 377
FLEXCAN_DRV_SetRxMb14Mask

FlexCAN Driver, 377
FLEXCAN_DRV_SetRxMb15Mask

FlexCAN Driver, 378
FLEXCAN_DRV_SetRxMbGlobalMask

FlexCAN Driver, 378
FLEXCAN_EVENT_ERROR

FlexCAN Driver, 369
FLEXCAN_EVENT_RX_COMPLETE

FlexCAN Driver, 369
FLEXCAN_EVENT_RXFIFO_COMPLETE

FlexCAN Driver, 369
FLEXCAN_EVENT_RXFIFO_OVERFLOW

FlexCAN Driver, 369
FLEXCAN_EVENT_RXFIFO_WARNING

FlexCAN Driver, 369
FLEXCAN_EVENT_TX_COMPLETE

FlexCAN Driver, 369
FLEXCAN_FREEZE_MODE

FlexCAN Driver, 369
FLEXCAN_LISTEN_ONLY_MODE

FlexCAN Driver, 369
FLEXCAN_LOOPBACK_MODE

FlexCAN Driver, 369
FLEXCAN_MB_IDLE

FlexCAN Driver, 369
FLEXCAN_MB_RX_BUSY

FlexCAN Driver, 369
FLEXCAN_MB_TX_BUSY

FlexCAN Driver, 369
FLEXCAN_MSG_ID_EXT

FlexCAN Driver, 369
FLEXCAN_MSG_ID_STD

FlexCAN Driver, 369
FLEXCAN_NORMAL_MODE

FlexCAN Driver, 369
FLEXCAN_RX_FIFO_ID_FILTERS_104

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_112

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_120

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_128

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_16

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_24

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_32

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_40

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_48

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_56

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_64

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_72

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_8

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_80

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_88

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FILTERS_96

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FORMAT_A

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FORMAT_B

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FORMAT_C

FlexCAN Driver, 370
FLEXCAN_RX_FIFO_ID_FORMAT_D

FlexCAN Driver, 370
FLEXCAN_RX_MASK_GLOBAL

FlexCAN Driver, 370
FLEXCAN_RX_MASK_INDIVIDUAL

FlexCAN Driver, 370
FLEXCAN_RXFIFO_USING_INTERRUPTS

FlexCAN Driver, 370
FLEXIO_DRIVER_TYPE_DMA

FlexIO Common Driver, 379
FLEXIO_DRIVER_TYPE_INTERRUPTS

FlexIO Common Driver, 379
FLEXIO_DRIVER_TYPE_POLLING

FlexIO Common Driver, 379
FLEXIO_DRV_DeinitDevice

FlexIO Common Driver, 379
FLEXIO_DRV_InitDevice

FlexIO Common Driver, 381
FLEXIO_DRV_Reset

FlexIO Common Driver, 381
FLEXIO_I2C_DRV_GenerateNineClock

FlexIO I2C Driver, 386
FLEXIO_I2C_DRV_GetBusStatus

FlexIO I2C Driver, 386
FLEXIO_I2C_DRV_GetDefaultConfig

FlexIO I2C Driver, 386
FLEXIO_I2C_DRV_MasterDeinit

FlexIO I2C Driver, 387
FLEXIO_I2C_DRV_MasterGetBaudRate

FlexIO I2C Driver, 387
FLEXIO_I2C_DRV_MasterGetStatus

FlexIO I2C Driver, 387
FLEXIO_I2C_DRV_MasterInit

FlexIO I2C Driver, 387
FLEXIO_I2C_DRV_MasterReceiveData

FlexIO I2C Driver, 388
FLEXIO_I2C_DRV_MasterReceiveDataBlocking

FlexIO I2C Driver, 388
FLEXIO_I2C_DRV_MasterSendData

FlexIO I2C Driver, 388
FLEXIO_I2C_DRV_MasterSendDataBlocking

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1003

FlexIO I2C Driver, 389
FLEXIO_I2C_DRV_MasterSetBaudRate

FlexIO I2C Driver, 389
FLEXIO_I2C_DRV_MasterSetSlaveAddr

FlexIO I2C Driver, 390
FLEXIO_I2C_DRV_MasterTransferAbort

FlexIO I2C Driver, 390
FLEXIO_I2C_DRV_StatusGenerateNineClock

FlexIO I2C Driver, 390
FLEXIO_I2S_DRV_MasterDeinit

FlexIO I2S Driver, 397
FLEXIO_I2S_DRV_MasterGetBaudRate

FlexIO I2S Driver, 397
FLEXIO_I2S_DRV_MasterGetDefaultConfig

FlexIO I2S Driver, 398
FLEXIO_I2S_DRV_MasterGetStatus

FlexIO I2S Driver, 398
FLEXIO_I2S_DRV_MasterInit

FlexIO I2S Driver, 398
FLEXIO_I2S_DRV_MasterReceiveData

FlexIO I2S Driver, 399
FLEXIO_I2S_DRV_MasterReceiveDataBlocking

FlexIO I2S Driver, 399
FLEXIO_I2S_DRV_MasterSendData

FlexIO I2S Driver, 399
FLEXIO_I2S_DRV_MasterSendDataBlocking

FlexIO I2S Driver, 400
FLEXIO_I2S_DRV_MasterSetConfig

FlexIO I2S Driver, 400
FLEXIO_I2S_DRV_MasterSetRxBuffer

FlexIO I2S Driver, 400
FLEXIO_I2S_DRV_MasterSetTxBuffer

FlexIO I2S Driver, 401
FLEXIO_I2S_DRV_MasterTransferAbort

FlexIO I2S Driver, 401
FLEXIO_I2S_DRV_SlaveDeinit

FlexIO I2S Driver, 401
FLEXIO_I2S_DRV_SlaveGetDefaultConfig

FlexIO I2S Driver, 402
FLEXIO_I2S_DRV_SlaveGetStatus

FlexIO I2S Driver, 402
FLEXIO_I2S_DRV_SlaveInit

FlexIO I2S Driver, 402
FLEXIO_I2S_DRV_SlaveReceiveData

FlexIO I2S Driver, 403
FLEXIO_I2S_DRV_SlaveReceiveDataBlocking

FlexIO I2S Driver, 403
FLEXIO_I2S_DRV_SlaveSendData

FlexIO I2S Driver, 404
FLEXIO_I2S_DRV_SlaveSendDataBlocking

FlexIO I2S Driver, 404
FLEXIO_I2S_DRV_SlaveSetConfig

FlexIO I2S Driver, 405
FLEXIO_I2S_DRV_SlaveSetRxBuffer

FlexIO I2S Driver, 405
FLEXIO_I2S_DRV_SlaveSetTxBuffer

FlexIO I2S Driver, 406
FLEXIO_I2S_DRV_SlaveTransferAbort

FlexIO I2S Driver, 406
FLEXIO_SPI_DRV_MasterDeinit

FlexIO SPI Driver, 416
FLEXIO_SPI_DRV_MasterGetBaudRate

FlexIO SPI Driver, 416
FLEXIO_SPI_DRV_MasterGetDefaultConfig

FlexIO SPI Driver, 417
FLEXIO_SPI_DRV_MasterGetStatus

FlexIO SPI Driver, 417
FLEXIO_SPI_DRV_MasterInit

FlexIO SPI Driver, 417
FLEXIO_SPI_DRV_MasterSetBaudRate

FlexIO SPI Driver, 417
FLEXIO_SPI_DRV_MasterTransfer

FlexIO SPI Driver, 418
FLEXIO_SPI_DRV_MasterTransferAbort

FlexIO SPI Driver, 418
FLEXIO_SPI_DRV_MasterTransferBlocking

FlexIO SPI Driver, 418
FLEXIO_SPI_DRV_SlaveDeinit

FlexIO SPI Driver, 419
FLEXIO_SPI_DRV_SlaveGetDefaultConfig

FlexIO SPI Driver, 419
FLEXIO_SPI_DRV_SlaveGetStatus

FlexIO SPI Driver, 419
FLEXIO_SPI_DRV_SlaveInit

FlexIO SPI Driver, 420
FLEXIO_SPI_DRV_SlaveTransfer

FlexIO SPI Driver, 420
FLEXIO_SPI_DRV_SlaveTransferAbort

FlexIO SPI Driver, 421
FLEXIO_SPI_DRV_SlaveTransferBlocking

FlexIO SPI Driver, 421
FLEXIO_SPI_TRANSFER_1BYTE

FlexIO SPI Driver, 416
FLEXIO_SPI_TRANSFER_2BYTE

FlexIO SPI Driver, 416
FLEXIO_SPI_TRANSFER_4BYTE

FlexIO SPI Driver, 416
FLEXIO_SPI_TRANSFER_LSB_FIRST

FlexIO SPI Driver, 416
FLEXIO_SPI_TRANSFER_MSB_FIRST

FlexIO SPI Driver, 416
FLEXIO_UART_DIRECTION_RX

FlexIO UART Driver, 427
FLEXIO_UART_DIRECTION_TX

FlexIO UART Driver, 427
FLEXIO_UART_DRV_Deinit

FlexIO UART Driver, 427
FLEXIO_UART_DRV_GetBaudRate

FlexIO UART Driver, 427
FLEXIO_UART_DRV_GetDefaultConfig

FlexIO UART Driver, 427
FLEXIO_UART_DRV_GetStatus

FlexIO UART Driver, 428
FLEXIO_UART_DRV_Init

FlexIO UART Driver, 428
FLEXIO_UART_DRV_ReceiveData

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1004 INDEX

FlexIO UART Driver, 428
FLEXIO_UART_DRV_ReceiveDataBlocking

FlexIO UART Driver, 429
FLEXIO_UART_DRV_SendData

FlexIO UART Driver, 429
FLEXIO_UART_DRV_SendDataBlocking

FlexIO UART Driver, 429
FLEXIO_UART_DRV_SetConfig

FlexIO UART Driver, 430
FLEXIO_UART_DRV_SetRxBuffer

FlexIO UART Driver, 430
FLEXIO_UART_DRV_SetTxBuffer

FlexIO UART Driver, 430
FLEXIO_UART_DRV_TransferAbort

FlexIO UART Driver, 431
FTFx_DPHRASE_SIZE

Flash Memory (Flash), 339
FTFx_ERASE_ALL_BLOCK

Flash Memory (Flash), 339
FTFx_ERASE_ALL_BLOCK_UNSECURE

Flash Memory (Flash), 339
FTFx_ERASE_BLOCK

Flash Memory (Flash), 339
FTFx_ERASE_SECTOR

Flash Memory (Flash), 339
FTFx_FSTAT_ERROR_BITS

Flash Memory (Flash), 339
FTFx_LONGWORD_SIZE

Flash Memory (Flash), 339
FTFx_PFLASH_SWAP

Flash Memory (Flash), 339
FTFx_PHRASE_SIZE

Flash Memory (Flash), 339
FTFx_PROGRAM_CHECK

Flash Memory (Flash), 339
FTFx_PROGRAM_LONGWORD

Flash Memory (Flash), 340
FTFx_PROGRAM_ONCE

Flash Memory (Flash), 340
FTFx_PROGRAM_PARTITION

Flash Memory (Flash), 340
FTFx_PROGRAM_PHRASE

Flash Memory (Flash), 340
FTFx_PROGRAM_SECTION

Flash Memory (Flash), 340
FTFx_READ_ONCE

Flash Memory (Flash), 340
FTFx_READ_RESOURCE

Flash Memory (Flash), 340
FTFx_RSRC_CODE_REG

Flash Memory (Flash), 340
FTFx_SECURITY_BY_PASS

Flash Memory (Flash), 340
FTFx_SET_EERAM

Flash Memory (Flash), 340
FTFx_SWAP_COMPLETE

Flash Memory (Flash), 340
FTFx_SWAP_READY

Flash Memory (Flash), 340
FTFx_SWAP_REPORT_STATUS

Flash Memory (Flash), 340
FTFx_SWAP_SET_IN_COMPLETE

Flash Memory (Flash), 340
FTFx_SWAP_SET_IN_PREPARE

Flash Memory (Flash), 341
FTFx_SWAP_SET_INDICATOR_ADDR

Flash Memory (Flash), 341
FTFx_SWAP_UNINIT

Flash Memory (Flash), 341
FTFx_SWAP_UPDATE

Flash Memory (Flash), 341
FTFx_SWAP_UPDATE_ERASED

Flash Memory (Flash), 341
FTFx_VERIFY_ALL_BLOCK

Flash Memory (Flash), 341
FTFx_VERIFY_BLOCK

Flash Memory (Flash), 341
FTFx_VERIFY_SECTION

Flash Memory (Flash), 341
FTFx_WORD_SIZE

Flash Memory (Flash), 341
FTM_ABSOLUTE_VALUE

FlexTimer Output Compare Driver (FTM_OC), 485
FTM_BDM_MODE_00

FlexTimer (FTM), 445
FTM_BDM_MODE_01

FlexTimer (FTM), 445
FTM_BDM_MODE_10

FlexTimer (FTM), 445
FTM_BDM_MODE_11

FlexTimer (FTM), 445
FTM_BOTH_EDGES

FlexTimer Input Capture Driver (FTM_IC), 474
FTM_CHANNEL0_FLAG

FlexTimer (FTM), 447
FTM_CHANNEL0_INT_ENABLE

FlexTimer (FTM), 446
FTM_CHANNEL1_FLAG

FlexTimer (FTM), 447
FTM_CHANNEL1_INT_ENABLE

FlexTimer (FTM), 446
FTM_CHANNEL2_FLAG

FlexTimer (FTM), 447
FTM_CHANNEL2_INT_ENABLE

FlexTimer (FTM), 446
FTM_CHANNEL3_FLAG

FlexTimer (FTM), 447
FTM_CHANNEL3_INT_ENABLE

FlexTimer (FTM), 446
FTM_CHANNEL4_FLAG

FlexTimer (FTM), 447
FTM_CHANNEL4_INT_ENABLE

FlexTimer (FTM), 446
FTM_CHANNEL5_FLAG

FlexTimer (FTM), 447
FTM_CHANNEL5_INT_ENABLE

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1005

FlexTimer (FTM), 446
FTM_CHANNEL6_FLAG

FlexTimer (FTM), 447
FTM_CHANNEL6_INT_ENABLE

FlexTimer (FTM), 446
FTM_CHANNEL7_FLAG

FlexTimer (FTM), 447
FTM_CHANNEL7_INT_ENABLE

FlexTimer (FTM), 446
FTM_CHANNEL_TRIGGER_FLAG

FlexTimer (FTM), 447
FTM_CLEAR_ON_MATCH

FlexTimer Output Compare Driver (FTM_OC), 485
FTM_CLOCK_DIVID_BY_1

FlexTimer (FTM), 445
FTM_CLOCK_DIVID_BY_128

FlexTimer (FTM), 445
FTM_CLOCK_DIVID_BY_16

FlexTimer (FTM), 445
FTM_CLOCK_DIVID_BY_2

FlexTimer (FTM), 445
FTM_CLOCK_DIVID_BY_32

FlexTimer (FTM), 445
FTM_CLOCK_DIVID_BY_4

FlexTimer (FTM), 445
FTM_CLOCK_DIVID_BY_64

FlexTimer (FTM), 445
FTM_CLOCK_DIVID_BY_8

FlexTimer (FTM), 445
FTM_CLOCK_SOURCE_EXTERNALCLK

FlexTimer (FTM), 445
FTM_CLOCK_SOURCE_FIXEDCLK

FlexTimer (FTM), 445
FTM_CLOCK_SOURCE_NONE

FlexTimer (FTM), 445
FTM_CLOCK_SOURCE_SYSTEMCLK

FlexTimer (FTM), 445
FTM_DEADTIME_DIVID_BY_1

FlexTimer (FTM), 446
FTM_DEADTIME_DIVID_BY_16

FlexTimer (FTM), 446
FTM_DEADTIME_DIVID_BY_4

FlexTimer (FTM), 446
FTM_DISABLE_OPERATION

FlexTimer Input Capture Driver (FTM_IC), 474
FTM_DISABLE_OUTPUT

FlexTimer Output Compare Driver (FTM_OC), 485
FTM_DRV_ClearChSC

FlexTimer (FTM), 448
FTM_DRV_ClearChnEventStatus

FlexTimer (FTM), 447
FTM_DRV_ClearFaultFlagDetected

FlexTimer (FTM), 448
FTM_DRV_ClearStatusFlags

FlexTimer (FTM), 448
FTM_DRV_ControlChannelOutput

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 501

FTM_DRV_ConvertFreqToPeriodTicks
FlexTimer (FTM), 448

FTM_DRV_CounterRead
FlexTimer Module Counter Driver (FTM_MC), 480

FTM_DRV_CounterReset
FlexTimer (FTM), 448

FTM_DRV_CounterStart
FlexTimer Module Counter Driver (FTM_MC), 480

FTM_DRV_CounterStop
FlexTimer Module Counter Driver (FTM_MC), 480

FTM_DRV_Deinit
FlexTimer (FTM), 449

FTM_DRV_DeinitInputCapture
FlexTimer Input Capture Driver (FTM_IC), 475

FTM_DRV_DeinitOutputCompare
FlexTimer Output Compare Driver (FTM_OC), 485

FTM_DRV_DeinitPwm
FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 501
FTM_DRV_DisableFaultInt

FlexTimer (FTM), 449
FTM_DRV_DisableInterrupts

FlexTimer (FTM), 449
FTM_DRV_EnableInterrupts

FlexTimer (FTM), 449
FTM_DRV_FastUpdatePwmChannels

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 501
FTM_DRV_GenerateHardwareTrigger

FlexTimer (FTM), 450
FTM_DRV_GetChInputState

FlexTimer (FTM), 450
FTM_DRV_GetChOutputValue

FlexTimer (FTM), 451
FTM_DRV_GetChnCountVal

FlexTimer (FTM), 450
FTM_DRV_GetChnEdgeLevel

FlexTimer (FTM), 450
FTM_DRV_GetChnEventStatus

FlexTimer (FTM), 451
FTM_DRV_GetClockFilterPs

FlexTimer (FTM), 451
FTM_DRV_GetCounter

FlexTimer (FTM), 452
FTM_DRV_GetCounterInitVal

FlexTimer (FTM), 452
FTM_DRV_GetDefaultConfig

FlexTimer (FTM), 452
FTM_DRV_GetEnabledInterrupts

FlexTimer (FTM), 452
FTM_DRV_GetEventStatus

FlexTimer (FTM), 453
FTM_DRV_GetFrequency

FlexTimer (FTM), 453
FTM_DRV_GetInputCaptureMeasurement

FlexTimer Input Capture Driver (FTM_IC), 475
FTM_DRV_GetMod

FlexTimer (FTM), 453

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1006 INDEX

FTM_DRV_GetStatusFlags
FlexTimer (FTM), 453

FTM_DRV_GetTriggerControled
FlexTimer (FTM), 454

FTM_DRV_Init
FlexTimer (FTM), 454

FTM_DRV_InitCounter
FlexTimer Module Counter Driver (FTM_MC), 480

FTM_DRV_InitInputCapture
FlexTimer Input Capture Driver (FTM_IC), 475

FTM_DRV_InitOutputCompare
FlexTimer Output Compare Driver (FTM_OC), 486

FTM_DRV_InitPwm
FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 502
FTM_DRV_IsChnDma

FlexTimer (FTM), 454
FTM_DRV_IsChnIcrst

FlexTimer (FTM), 455
FTM_DRV_IsFaultFlagDetected

FlexTimer (FTM), 455
FTM_DRV_IsFaultInputEnabled

FlexTimer (FTM), 455
FTM_DRV_IsFtmEnable

FlexTimer (FTM), 456
FTM_DRV_IsWriteProtectionEnabled

FlexTimer (FTM), 456
FTM_DRV_MaskOutputChannels

FlexTimer (FTM), 456
FTM_DRV_QuadDecodeStart

FlexTimer Quadrature Decoder Driver (FTM_QD),
509

FTM_DRV_QuadDecodeStop
FlexTimer Quadrature Decoder Driver (FTM_QD),

509
FTM_DRV_QuadGetState

FlexTimer Quadrature Decoder Driver (FTM_QD),
509

FTM_DRV_SetAllChnSoftwareOutputControl
FlexTimer (FTM), 456

FTM_DRV_SetCaptureTestCmd
FlexTimer (FTM), 457

FTM_DRV_SetChnDmaCmd
FlexTimer (FTM), 457

FTM_DRV_SetChnIcrstCmd
FlexTimer (FTM), 458

FTM_DRV_SetChnOutputInitStateCmd
FlexTimer (FTM), 458

FTM_DRV_SetChnOutputMask
FlexTimer (FTM), 458

FTM_DRV_SetChnSoftwareCtrlCmd
FlexTimer (FTM), 458

FTM_DRV_SetChnSoftwareCtrlVal
FlexTimer (FTM), 459

FTM_DRV_SetClockFilterPs
FlexTimer (FTM), 459

FTM_DRV_SetCountReinitSyncCmd
FlexTimer (FTM), 459

FTM_DRV_SetDualChnInvertCmd
FlexTimer (FTM), 460

FTM_DRV_SetExtPairDeadtimeValue
FlexTimer (FTM), 460

FTM_DRV_SetGlobalLoadCmd
FlexTimer (FTM), 460

FTM_DRV_SetGlobalTimeBaseCmd
FlexTimer (FTM), 460

FTM_DRV_SetGlobalTimeBaseOutputCmd
FlexTimer (FTM), 460

FTM_DRV_SetHalfCycleCmd
FlexTimer (FTM), 462

FTM_DRV_SetHalfCycleReloadPoint
FlexTimer (FTM), 462

FTM_DRV_SetInitTrigOnReloadCmd
FlexTimer (FTM), 462

FTM_DRV_SetInitialCounterValue
FlexTimer (FTM), 462

FTM_DRV_SetInvertingControl
FlexTimer (FTM), 464

FTM_DRV_SetLoadCmd
FlexTimer (FTM), 464

FTM_DRV_SetLoadFreq
FlexTimer (FTM), 464

FTM_DRV_SetModuloCounterValue
FlexTimer (FTM), 464

FTM_DRV_SetOutputlevel
FlexTimer (FTM), 465

FTM_DRV_SetPairDeadtimeCount
FlexTimer (FTM), 465

FTM_DRV_SetPairDeadtimePrescale
FlexTimer (FTM), 465

FTM_DRV_SetPwmLoadChnSelCmd
FlexTimer (FTM), 466

FTM_DRV_SetPwmLoadCmd
FlexTimer (FTM), 466

FTM_DRV_SetSoftOutChnValue
FlexTimer (FTM), 466

FTM_DRV_SetSoftwareOutputChannelControl
FlexTimer (FTM), 467

FTM_DRV_SetSync
FlexTimer (FTM), 467

FTM_DRV_SetTrigModeControlCmd
FlexTimer (FTM), 467

FTM_DRV_StartNewSignalMeasurement
FlexTimer Input Capture Driver (FTM_IC), 476

FTM_DRV_UpdateOutputCompareChannel
FlexTimer Output Compare Driver (FTM_OC), 486

FTM_DRV_UpdatePwmChannel
FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 502
FTM_DRV_UpdatePwmPeriod

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 503
FTM_DUTY_TO_TICKS_SHIFT

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
FTM_EDGE_DETECT

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1007

FlexTimer Input Capture Driver (FTM_IC), 474
FTM_FALLING_EDGE

FlexTimer Input Capture Driver (FTM_IC), 474
FTM_FALLING_EDGE_PERIOD_MEASUREMENT

FlexTimer Input Capture Driver (FTM_IC), 475
FTM_FAULT_CONTROL_AUTO_ALL

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
FTM_FAULT_CONTROL_DISABLED

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
FTM_FAULT_CONTROL_MAN_ALL

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
FTM_FAULT_CONTROL_MAN_EVEN

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
FTM_FAULT_FLAG

FlexTimer (FTM), 447
FTM_FAULT_INT_ENABLE

FlexTimer (FTM), 446
FTM_HIGH_STATE

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 501
FTM_IC_DRV_SetChannelMode

FlexTimer Input Capture Driver (FTM_IC), 476
FTM_LOW_STATE

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 501
FTM_MAIN_DUPLICATED

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 501
FTM_MAIN_INVERTED

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 501
FTM_MAX_DUTY_CYCLE

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
FTM_MC_DRV_GetDefaultConfig

FlexTimer Module Counter Driver (FTM_MC), 481
FTM_MEASURE_FALLING_EDGE_PERIOD

FlexTimer Input Capture Driver (FTM_IC), 474
FTM_MEASURE_PULSE_HIGH

FlexTimer Input Capture Driver (FTM_IC), 474
FTM_MEASURE_PULSE_LOW

FlexTimer Input Capture Driver (FTM_IC), 474
FTM_MEASURE_RISING_EDGE_PERIOD

FlexTimer Input Capture Driver (FTM_IC), 474
FTM_MODE_CEN_ALIGNED_PWM

FlexTimer (FTM), 446
FTM_MODE_EDGE_ALIGNED_PWM

FlexTimer (FTM), 446
FTM_MODE_EDGE_ALIGNED_PWM_AND_INPUT_←↩

CAPTURE
FlexTimer (FTM), 446

FTM_MODE_INPUT_CAPTURE
FlexTimer (FTM), 446

FTM_MODE_NOT_INITIALIZED

FlexTimer (FTM), 446
FTM_MODE_OUTPUT_COMPARE

FlexTimer (FTM), 446
FTM_MODE_QUADRATURE_DECODER

FlexTimer (FTM), 446
FTM_MODE_UP_DOWN_TIMER

FlexTimer (FTM), 446
FTM_MODE_UP_TIMER

FlexTimer (FTM), 446
FTM_NO_MEASUREMENT

FlexTimer Input Capture Driver (FTM_IC), 475
FTM_NO_OPERATION

FlexTimer Input Capture Driver (FTM_IC), 474
FTM_NO_PIN_CONTROL

FlexTimer Input Capture Driver (FTM_IC), 474
FTM_PERIOD_OFF_MEASUREMENT

FlexTimer Input Capture Driver (FTM_IC), 475
FTM_PERIOD_ON_MEASUREMENT

FlexTimer Input Capture Driver (FTM_IC), 475
FTM_POLARITY_HIGH

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
FTM_POLARITY_LOW

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
FTM_PWM_SYNC

FlexTimer (FTM), 447
FTM_PWM_UPDATE_IN_DUTY_CYCLE

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
FTM_PWM_UPDATE_IN_TICKS

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
FTM_QD_DRV_GetDefaultConfig

FlexTimer Quadrature Decoder Driver (FTM_QD),
510

FTM_QUAD_COUNT_AND_DIR
FlexTimer Quadrature Decoder Driver (FTM_QD),

509
FTM_QUAD_PHASE_ENCODE

FlexTimer Quadrature Decoder Driver (FTM_QD),
509

FTM_QUAD_PHASE_INVERT
FlexTimer Quadrature Decoder Driver (FTM_QD),

509
FTM_QUAD_PHASE_NORMAL

FlexTimer Quadrature Decoder Driver (FTM_QD),
509

FTM_RELATIVE_VALUE
FlexTimer Output Compare Driver (FTM_OC), 485

FTM_RELOAD_FLAG
FlexTimer (FTM), 447

FTM_RELOAD_INT_ENABLE
FlexTimer (FTM), 446

FTM_RISING_EDGE
FlexTimer Input Capture Driver (FTM_IC), 474

FTM_RISING_EDGE_PERIOD_MEASUREMENT
FlexTimer Input Capture Driver (FTM_IC), 475

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1008 INDEX

FTM_RMW_CNT
FlexTimer (FTM), 443

FTM_RMW_CNTIN
FlexTimer (FTM), 443

FTM_RMW_CONF
FlexTimer (FTM), 443

FTM_RMW_CnSCV_REG
FlexTimer (FTM), 442

FTM_RMW_DEADTIME
FlexTimer (FTM), 443

FTM_RMW_EXTTRIG_REG
FlexTimer (FTM), 443

FTM_RMW_FILTER
FlexTimer (FTM), 443

FTM_RMW_FLTCTRL
FlexTimer (FTM), 443

FTM_RMW_FMS
FlexTimer (FTM), 443

FTM_RMW_MOD
FlexTimer (FTM), 443

FTM_RMW_MODE
FlexTimer (FTM), 443

FTM_RMW_PAIR0DEADTIME
FlexTimer (FTM), 444

FTM_RMW_PAIR1DEADTIME
FlexTimer (FTM), 444

FTM_RMW_PAIR2DEADTIME
FlexTimer (FTM), 444

FTM_RMW_PAIR3DEADTIME
FlexTimer (FTM), 444

FTM_RMW_POL
FlexTimer (FTM), 444

FTM_RMW_QDCTRL
FlexTimer (FTM), 444

FTM_RMW_SC
FlexTimer (FTM), 444

FTM_RMW_STATUS
FlexTimer (FTM), 444

FTM_RMW_SYNC
FlexTimer (FTM), 444

FTM_SET_ON_MATCH
FlexTimer Output Compare Driver (FTM_OC), 485

FTM_SIGNAL_MEASUREMENT
FlexTimer Input Capture Driver (FTM_IC), 474

FTM_SYSTEM_CLOCK
FlexTimer (FTM), 447

FTM_TIME_OVER_FLOW_FLAG
FlexTimer (FTM), 447

FTM_TIME_OVER_FLOW_INT_ENABLE
FlexTimer (FTM), 446

FTM_TIMESTAMP_BOTH_EDGES
FlexTimer Input Capture Driver (FTM_IC), 474

FTM_TIMESTAMP_FALLING_EDGE
FlexTimer Input Capture Driver (FTM_IC), 474

FTM_TIMESTAMP_RISING_EDGE
FlexTimer Input Capture Driver (FTM_IC), 474

FTM_TOGGLE_ON_MATCH
FlexTimer Output Compare Driver (FTM_OC), 485

FTM_UPDATE_NOW
FlexTimer (FTM), 447

FTM_WAIT_LOADING_POINTS
FlexTimer (FTM), 447

fallingEdgeInterruptCount
lin_state_t, 566

fault_state_signal_ptr
lin_node_attribute_t, 669

faultChannelEnabled
ftm_pwm_ch_fault_param_t, 495

faultConfig
ftm_pwm_param_t, 499

faultFilterEnabled
ftm_pwm_ch_fault_param_t, 495

faultFilterValue
ftm_pwm_fault_param_t, 495

faultMode
ftm_pwm_fault_param_t, 495

fdPadding
can_buff_config_t, 266

fifoSize
lpspi_state_t, 617

filterEn
ftm_input_ch_param_t, 473
ic_input_ch_param_t, 526

filterSampleCount
cmp_comparator_t, 245

filterSamplePeriod
cmp_comparator_t, 245

filterValue
ftm_input_ch_param_t, 473
ic_input_ch_param_t, 526

finalValue
extension_ftm_for_timer_t, 885
ftm_timer_param_t, 479

fircConfig
scg_config_t, 213

firstEdge
ftm_combined_ch_param_t, 498

fixedChannel
cmp_trigger_mode_t, 248

fixedPort
cmp_trigger_mode_t, 248

flag_offset
lin_frame_t, 671
lin_master_data_t, 679

flag_size
lin_frame_t, 671
lin_master_data_t, 679

Flash Memory (Flash), 334, 354
brownOutCode, 351
CLEAR_FTFx_FSTAT_ERROR_BITS, 338
CSE_KEY_SIZE_CODE_MAX, 338
CallBack, 351
DFLASH_IFR_READRESOURCE_ADDRESS,

338
DFlashBase, 351, 352
DFlashSize, 352

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1009

EEE_COMPLETE_INTERRUPT_QUICK_WRITE,
342

EEE_DISABLE, 342
EEE_ENABLE, 342
EEE_QUICK_WRITE, 342
EEE_STATUS_QUERY, 342
EEESize, 352
EERAMBase, 352
FLASH_CALLBACK_CS, 338
FLASH_DRV_CheckSum, 342
FLASH_DRV_ClearReadColisionFlag, 343
FLASH_DRV_DisableCmdCompleteInterupt, 343
FLASH_DRV_DisableReadColisionInterupt, 343
FLASH_DRV_EnableCmdCompleteInterupt, 343
FLASH_DRV_EnableReadColisionInterupt, 343
FLASH_DRV_EraseAllBlock, 344
FLASH_DRV_EraseResume, 344
FLASH_DRV_EraseSector, 344
FLASH_DRV_EraseSuspend, 345
FLASH_DRV_GetCmdCompleteFlag, 345
FLASH_DRV_GetDefaultConfig, 346
FLASH_DRV_GetPFlashProtection, 346
FLASH_DRV_GetReadColisionFlag, 346
FLASH_DRV_GetSecurityState, 346
FLASH_DRV_Init, 347
FLASH_DRV_Program, 347
FLASH_DRV_ProgramCheck, 347
FLASH_DRV_ProgramOnce, 348
FLASH_DRV_ReadOnce, 348
FLASH_DRV_SecurityBypass, 349
FLASH_DRV_SetPFlashProtection, 349
FLASH_DRV_VerifyAllBlock, 350
FLASH_DRV_VerifySection, 350
FLASH_NOT_SECURE, 338
FLASH_SECURE_BACKDOOR_DISABLED, 339
FLASH_SECURE_BACKDOOR_ENABLED, 339
FLASH_SECURITY_STATE_KEYEN, 339
FLASH_SECURITY_STATE_UNSECURED, 339
FTFx_DPHRASE_SIZE, 339
FTFx_ERASE_ALL_BLOCK, 339
FTFx_ERASE_ALL_BLOCK_UNSECURE, 339
FTFx_ERASE_BLOCK, 339
FTFx_ERASE_SECTOR, 339
FTFx_FSTAT_ERROR_BITS, 339
FTFx_LONGWORD_SIZE, 339
FTFx_PFLASH_SWAP, 339
FTFx_PHRASE_SIZE, 339
FTFx_PROGRAM_CHECK, 339
FTFx_PROGRAM_LONGWORD, 340
FTFx_PROGRAM_ONCE, 340
FTFx_PROGRAM_PARTITION, 340
FTFx_PROGRAM_PHRASE, 340
FTFx_PROGRAM_SECTION, 340
FTFx_READ_ONCE, 340
FTFx_READ_RESOURCE, 340
FTFx_RSRC_CODE_REG, 340
FTFx_SECURITY_BY_PASS, 340
FTFx_SET_EERAM, 340

FTFx_SWAP_COMPLETE, 340
FTFx_SWAP_READY, 340
FTFx_SWAP_REPORT_STATUS, 340
FTFx_SWAP_SET_IN_COMPLETE, 340
FTFx_SWAP_SET_IN_PREPARE, 341
FTFx_SWAP_SET_INDICATOR_ADDR, 341
FTFx_SWAP_UNINIT, 341
FTFx_SWAP_UPDATE, 341
FTFx_SWAP_UPDATE_ERASED, 341
FTFx_VERIFY_ALL_BLOCK, 341
FTFx_VERIFY_BLOCK, 341
FTFx_VERIFY_SECTION, 341
FTFx_WORD_SIZE, 341
flash_callback_t, 342
flash_flexRam_function_control_code_t, 342
GET_BIT_0_7, 341
GET_BIT_16_23, 341
GET_BIT_24_31, 341
GET_BIT_8_15, 341
NULL_CALLBACK, 342
numOfRecordReqMaintain, 352
PFlashBase, 352
PFlashSize, 352
RESUME_WAIT_CNT, 342
SUSPEND_WAIT_CNT, 342
sectorEraseCount, 353

flash_callback_t
Flash Memory (Flash), 342

flash_eeprom_status_t, 338
flash_flexRam_function_control_code_t

Flash Memory (Flash), 342
flash_ssd_config_t, 337
flash_user_config_t, 337
FlexCAN Driver, 357

FLEXCAN_DISABLE_MODE, 369
FLEXCAN_DRV_AbortTransfer, 371
FLEXCAN_DRV_ConfigRemoteResponseMb, 371
FLEXCAN_DRV_ConfigRxFifo, 371
FLEXCAN_DRV_ConfigRxMb, 372
FLEXCAN_DRV_ConfigTxMb, 372
FLEXCAN_DRV_Deinit, 372
FLEXCAN_DRV_GetBitrate, 372
FLEXCAN_DRV_GetDefaultConfig, 373
FLEXCAN_DRV_GetErrorStatus, 373
FLEXCAN_DRV_GetTransferStatus, 373
FLEXCAN_DRV_Init, 374
FLEXCAN_DRV_InstallErrorCallback, 374
FLEXCAN_DRV_InstallEventCallback, 374
FLEXCAN_DRV_Receive, 374
FLEXCAN_DRV_ReceiveBlocking, 375
FLEXCAN_DRV_RxFifo, 375
FLEXCAN_DRV_RxFifoBlocking, 375
FLEXCAN_DRV_Send, 376
FLEXCAN_DRV_SendBlocking, 376
FLEXCAN_DRV_SetBitrate, 376
FLEXCAN_DRV_SetRxFifoGlobalMask, 377
FLEXCAN_DRV_SetRxIndividualMask, 377
FLEXCAN_DRV_SetRxMaskType, 377

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1010 INDEX

FLEXCAN_DRV_SetRxMb14Mask, 377
FLEXCAN_DRV_SetRxMb15Mask, 378
FLEXCAN_DRV_SetRxMbGlobalMask, 378
FLEXCAN_EVENT_ERROR, 369
FLEXCAN_EVENT_RX_COMPLETE, 369
FLEXCAN_EVENT_RXFIFO_COMPLETE, 369
FLEXCAN_EVENT_RXFIFO_OVERFLOW, 369
FLEXCAN_EVENT_RXFIFO_WARNING, 369
FLEXCAN_EVENT_TX_COMPLETE, 369
FLEXCAN_FREEZE_MODE, 369
FLEXCAN_LISTEN_ONLY_MODE, 369
FLEXCAN_LOOPBACK_MODE, 369
FLEXCAN_MB_IDLE, 369
FLEXCAN_MB_RX_BUSY, 369
FLEXCAN_MB_TX_BUSY, 369
FLEXCAN_MSG_ID_EXT, 369
FLEXCAN_MSG_ID_STD, 369
FLEXCAN_NORMAL_MODE, 369
FLEXCAN_RX_FIFO_ID_FILTERS_104, 370
FLEXCAN_RX_FIFO_ID_FILTERS_112, 370
FLEXCAN_RX_FIFO_ID_FILTERS_120, 370
FLEXCAN_RX_FIFO_ID_FILTERS_128, 370
FLEXCAN_RX_FIFO_ID_FILTERS_16, 370
FLEXCAN_RX_FIFO_ID_FILTERS_24, 370
FLEXCAN_RX_FIFO_ID_FILTERS_32, 370
FLEXCAN_RX_FIFO_ID_FILTERS_40, 370
FLEXCAN_RX_FIFO_ID_FILTERS_48, 370
FLEXCAN_RX_FIFO_ID_FILTERS_56, 370
FLEXCAN_RX_FIFO_ID_FILTERS_64, 370
FLEXCAN_RX_FIFO_ID_FILTERS_72, 370
FLEXCAN_RX_FIFO_ID_FILTERS_8, 370
FLEXCAN_RX_FIFO_ID_FILTERS_80, 370
FLEXCAN_RX_FIFO_ID_FILTERS_88, 370
FLEXCAN_RX_FIFO_ID_FILTERS_96, 370
FLEXCAN_RX_FIFO_ID_FORMAT_A, 370
FLEXCAN_RX_FIFO_ID_FORMAT_B, 370
FLEXCAN_RX_FIFO_ID_FORMAT_C, 370
FLEXCAN_RX_FIFO_ID_FORMAT_D, 370
FLEXCAN_RX_MASK_GLOBAL, 370
FLEXCAN_RX_MASK_INDIVIDUAL, 370
FLEXCAN_RXFIFO_USING_INTERRUPTS, 370
flexcan_callback_t, 368
flexcan_error_callback_t, 368
flexcan_event_type_t, 368
flexcan_mb_state_t, 369
flexcan_msgbuff_id_type_t, 369
flexcan_operation_modes_t, 369
flexcan_rx_fifo_id_element_format_t, 369
flexcan_rx_fifo_id_filter_num_t, 370
flexcan_rx_mask_type_t, 370
flexcan_rxfifo_transfer_type_t, 370
flexcan_state_t, 368

FlexCANState, 365
callback, 365
callbackParam, 365
error_callback, 365
errorCallbackParam, 365
mbs, 365

transferType, 365
FlexIO Common Driver, 379

FLEXIO_DRIVER_TYPE_DMA, 379
FLEXIO_DRIVER_TYPE_INTERRUPTS, 379
FLEXIO_DRIVER_TYPE_POLLING, 379
FLEXIO_DRV_DeinitDevice, 379
FLEXIO_DRV_InitDevice, 381
FLEXIO_DRV_Reset, 381
flexio_driver_type_t, 379

FlexIO I2C Driver, 382
FLEXIO_I2C_DRV_GenerateNineClock, 386
FLEXIO_I2C_DRV_GetBusStatus, 386
FLEXIO_I2C_DRV_GetDefaultConfig, 386
FLEXIO_I2C_DRV_MasterDeinit, 387
FLEXIO_I2C_DRV_MasterGetBaudRate, 387
FLEXIO_I2C_DRV_MasterGetStatus, 387
FLEXIO_I2C_DRV_MasterInit, 387
FLEXIO_I2C_DRV_MasterReceiveData, 388
FLEXIO_I2C_DRV_MasterReceiveDataBlocking,

388
FLEXIO_I2C_DRV_MasterSendData, 388
FLEXIO_I2C_DRV_MasterSendDataBlocking, 389
FLEXIO_I2C_DRV_MasterSetBaudRate, 389
FLEXIO_I2C_DRV_MasterSetSlaveAddr, 390
FLEXIO_I2C_DRV_MasterTransferAbort, 390
FLEXIO_I2C_DRV_StatusGenerateNineClock,

390
FlexIO I2S Driver, 391

FLEXIO_I2S_DRV_MasterDeinit, 397
FLEXIO_I2S_DRV_MasterGetBaudRate, 397
FLEXIO_I2S_DRV_MasterGetDefaultConfig, 398
FLEXIO_I2S_DRV_MasterGetStatus, 398
FLEXIO_I2S_DRV_MasterInit, 398
FLEXIO_I2S_DRV_MasterReceiveData, 399
FLEXIO_I2S_DRV_MasterReceiveDataBlocking,

399
FLEXIO_I2S_DRV_MasterSendData, 399
FLEXIO_I2S_DRV_MasterSendDataBlocking, 400
FLEXIO_I2S_DRV_MasterSetConfig, 400
FLEXIO_I2S_DRV_MasterSetRxBuffer, 400
FLEXIO_I2S_DRV_MasterSetTxBuffer, 401
FLEXIO_I2S_DRV_MasterTransferAbort, 401
FLEXIO_I2S_DRV_SlaveDeinit, 401
FLEXIO_I2S_DRV_SlaveGetDefaultConfig, 402
FLEXIO_I2S_DRV_SlaveGetStatus, 402
FLEXIO_I2S_DRV_SlaveInit, 402
FLEXIO_I2S_DRV_SlaveReceiveData, 403
FLEXIO_I2S_DRV_SlaveReceiveDataBlocking,

403
FLEXIO_I2S_DRV_SlaveSendData, 404
FLEXIO_I2S_DRV_SlaveSendDataBlocking, 404
FLEXIO_I2S_DRV_SlaveSetConfig, 405
FLEXIO_I2S_DRV_SlaveSetRxBuffer, 405
FLEXIO_I2S_DRV_SlaveSetTxBuffer, 406
FLEXIO_I2S_DRV_SlaveTransferAbort, 406
flexio_i2s_slave_state_t, 397

FlexIO SPI Driver, 409
FLEXIO_SPI_DRV_MasterDeinit, 416

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1011

FLEXIO_SPI_DRV_MasterGetBaudRate, 416
FLEXIO_SPI_DRV_MasterGetDefaultConfig, 417
FLEXIO_SPI_DRV_MasterGetStatus, 417
FLEXIO_SPI_DRV_MasterInit, 417
FLEXIO_SPI_DRV_MasterSetBaudRate, 417
FLEXIO_SPI_DRV_MasterTransfer, 418
FLEXIO_SPI_DRV_MasterTransferAbort, 418
FLEXIO_SPI_DRV_MasterTransferBlocking, 418
FLEXIO_SPI_DRV_SlaveDeinit, 419
FLEXIO_SPI_DRV_SlaveGetDefaultConfig, 419
FLEXIO_SPI_DRV_SlaveGetStatus, 419
FLEXIO_SPI_DRV_SlaveInit, 420
FLEXIO_SPI_DRV_SlaveTransfer, 420
FLEXIO_SPI_DRV_SlaveTransferAbort, 421
FLEXIO_SPI_DRV_SlaveTransferBlocking, 421
FLEXIO_SPI_TRANSFER_1BYTE, 416
FLEXIO_SPI_TRANSFER_2BYTE, 416
FLEXIO_SPI_TRANSFER_4BYTE, 416
FLEXIO_SPI_TRANSFER_LSB_FIRST, 416
FLEXIO_SPI_TRANSFER_MSB_FIRST, 416
flexio_spi_slave_state_t, 415
flexio_spi_transfer_bit_order_t, 416
flexio_spi_transfer_size_t, 416

FlexIO UART Driver, 423
FLEXIO_UART_DIRECTION_RX, 427
FLEXIO_UART_DIRECTION_TX, 427
FLEXIO_UART_DRV_Deinit, 427
FLEXIO_UART_DRV_GetBaudRate, 427
FLEXIO_UART_DRV_GetDefaultConfig, 427
FLEXIO_UART_DRV_GetStatus, 428
FLEXIO_UART_DRV_Init, 428
FLEXIO_UART_DRV_ReceiveData, 428
FLEXIO_UART_DRV_ReceiveDataBlocking, 429
FLEXIO_UART_DRV_SendData, 429
FLEXIO_UART_DRV_SendDataBlocking, 429
FLEXIO_UART_DRV_SetConfig, 430
FLEXIO_UART_DRV_SetRxBuffer, 430
FLEXIO_UART_DRV_SetTxBuffer, 430
FLEXIO_UART_DRV_TransferAbort, 431
flexio_uart_driver_direction_t, 427

FlexTimer (FTM), 432
CHAN0_IDX, 442
CHAN1_IDX, 442
CHAN2_IDX, 442
CHAN3_IDX, 442
CHAN4_IDX, 442
CHAN5_IDX, 442
CHAN6_IDX, 442
CHAN7_IDX, 442
FTM_BDM_MODE_00, 445
FTM_BDM_MODE_01, 445
FTM_BDM_MODE_10, 445
FTM_BDM_MODE_11, 445
FTM_CHANNEL0_FLAG, 447
FTM_CHANNEL0_INT_ENABLE, 446
FTM_CHANNEL1_FLAG, 447
FTM_CHANNEL1_INT_ENABLE, 446
FTM_CHANNEL2_FLAG, 447

FTM_CHANNEL2_INT_ENABLE, 446
FTM_CHANNEL3_FLAG, 447
FTM_CHANNEL3_INT_ENABLE, 446
FTM_CHANNEL4_FLAG, 447
FTM_CHANNEL4_INT_ENABLE, 446
FTM_CHANNEL5_FLAG, 447
FTM_CHANNEL5_INT_ENABLE, 446
FTM_CHANNEL6_FLAG, 447
FTM_CHANNEL6_INT_ENABLE, 446
FTM_CHANNEL7_FLAG, 447
FTM_CHANNEL7_INT_ENABLE, 446
FTM_CHANNEL_TRIGGER_FLAG, 447
FTM_CLOCK_DIVID_BY_1, 445
FTM_CLOCK_DIVID_BY_128, 445
FTM_CLOCK_DIVID_BY_16, 445
FTM_CLOCK_DIVID_BY_2, 445
FTM_CLOCK_DIVID_BY_32, 445
FTM_CLOCK_DIVID_BY_4, 445
FTM_CLOCK_DIVID_BY_64, 445
FTM_CLOCK_DIVID_BY_8, 445
FTM_CLOCK_SOURCE_EXTERNALCLK, 445
FTM_CLOCK_SOURCE_FIXEDCLK, 445
FTM_CLOCK_SOURCE_NONE, 445
FTM_CLOCK_SOURCE_SYSTEMCLK, 445
FTM_DEADTIME_DIVID_BY_1, 446
FTM_DEADTIME_DIVID_BY_16, 446
FTM_DEADTIME_DIVID_BY_4, 446
FTM_DRV_ClearChSC, 448
FTM_DRV_ClearChnEventStatus, 447
FTM_DRV_ClearFaultFlagDetected, 448
FTM_DRV_ClearStatusFlags, 448
FTM_DRV_ConvertFreqToPeriodTicks, 448
FTM_DRV_CounterReset, 448
FTM_DRV_Deinit, 449
FTM_DRV_DisableFaultInt, 449
FTM_DRV_DisableInterrupts, 449
FTM_DRV_EnableInterrupts, 449
FTM_DRV_GenerateHardwareTrigger, 450
FTM_DRV_GetChInputState, 450
FTM_DRV_GetChOutputValue, 451
FTM_DRV_GetChnCountVal, 450
FTM_DRV_GetChnEdgeLevel, 450
FTM_DRV_GetChnEventStatus, 451
FTM_DRV_GetClockFilterPs, 451
FTM_DRV_GetCounter, 452
FTM_DRV_GetCounterInitVal, 452
FTM_DRV_GetDefaultConfig, 452
FTM_DRV_GetEnabledInterrupts, 452
FTM_DRV_GetEventStatus, 453
FTM_DRV_GetFrequency, 453
FTM_DRV_GetMod, 453
FTM_DRV_GetStatusFlags, 453
FTM_DRV_GetTriggerControled, 454
FTM_DRV_Init, 454
FTM_DRV_IsChnDma, 454
FTM_DRV_IsChnIcrst, 455
FTM_DRV_IsFaultFlagDetected, 455
FTM_DRV_IsFaultInputEnabled, 455

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1012 INDEX

FTM_DRV_IsFtmEnable, 456
FTM_DRV_IsWriteProtectionEnabled, 456
FTM_DRV_MaskOutputChannels, 456
FTM_DRV_SetAllChnSoftwareOutputControl, 456
FTM_DRV_SetCaptureTestCmd, 457
FTM_DRV_SetChnDmaCmd, 457
FTM_DRV_SetChnIcrstCmd, 458
FTM_DRV_SetChnOutputInitStateCmd, 458
FTM_DRV_SetChnOutputMask, 458
FTM_DRV_SetChnSoftwareCtrlCmd, 458
FTM_DRV_SetChnSoftwareCtrlVal, 459
FTM_DRV_SetClockFilterPs, 459
FTM_DRV_SetCountReinitSyncCmd, 459
FTM_DRV_SetDualChnInvertCmd, 460
FTM_DRV_SetExtPairDeadtimeValue, 460
FTM_DRV_SetGlobalLoadCmd, 460
FTM_DRV_SetGlobalTimeBaseCmd, 460
FTM_DRV_SetGlobalTimeBaseOutputCmd, 460
FTM_DRV_SetHalfCycleCmd, 462
FTM_DRV_SetHalfCycleReloadPoint, 462
FTM_DRV_SetInitTrigOnReloadCmd, 462
FTM_DRV_SetInitialCounterValue, 462
FTM_DRV_SetInvertingControl, 464
FTM_DRV_SetLoadCmd, 464
FTM_DRV_SetLoadFreq, 464
FTM_DRV_SetModuloCounterValue, 464
FTM_DRV_SetOutputlevel, 465
FTM_DRV_SetPairDeadtimeCount, 465
FTM_DRV_SetPairDeadtimePrescale, 465
FTM_DRV_SetPwmLoadChnSelCmd, 466
FTM_DRV_SetPwmLoadCmd, 466
FTM_DRV_SetSoftOutChnValue, 466
FTM_DRV_SetSoftwareOutputChannelControl,

467
FTM_DRV_SetSync, 467
FTM_DRV_SetTrigModeControlCmd, 467
FTM_FAULT_FLAG, 447
FTM_FAULT_INT_ENABLE, 446
FTM_MODE_CEN_ALIGNED_PWM, 446
FTM_MODE_EDGE_ALIGNED_PWM, 446
FTM_MODE_EDGE_ALIGNED_PWM_AND_IN←↩

PUT_CAPTURE, 446
FTM_MODE_INPUT_CAPTURE, 446
FTM_MODE_NOT_INITIALIZED, 446
FTM_MODE_OUTPUT_COMPARE, 446
FTM_MODE_QUADRATURE_DECODER, 446
FTM_MODE_UP_DOWN_TIMER, 446
FTM_MODE_UP_TIMER, 446
FTM_PWM_SYNC, 447
FTM_RELOAD_FLAG, 447
FTM_RELOAD_INT_ENABLE, 446
FTM_RMW_CNT, 443
FTM_RMW_CNTIN, 443
FTM_RMW_CONF, 443
FTM_RMW_CnSCV_REG, 442
FTM_RMW_DEADTIME, 443
FTM_RMW_EXTTRIG_REG, 443
FTM_RMW_FILTER, 443

FTM_RMW_FLTCTRL, 443
FTM_RMW_FMS, 443
FTM_RMW_MOD, 443
FTM_RMW_MODE, 443
FTM_RMW_PAIR0DEADTIME, 444
FTM_RMW_PAIR1DEADTIME, 444
FTM_RMW_PAIR2DEADTIME, 444
FTM_RMW_PAIR3DEADTIME, 444
FTM_RMW_POL, 444
FTM_RMW_QDCTRL, 444
FTM_RMW_SC, 444
FTM_RMW_STATUS, 444
FTM_RMW_SYNC, 444
FTM_SYSTEM_CLOCK, 447
FTM_TIME_OVER_FLOW_FLAG, 447
FTM_TIME_OVER_FLOW_INT_ENABLE, 446
FTM_UPDATE_NOW, 447
FTM_WAIT_LOADING_POINTS, 447
ftm_bdm_mode_t, 445
ftm_clock_ps_t, 445
ftm_clock_source_t, 445
ftm_config_mode_t, 445
ftm_deadtime_ps_t, 446
ftm_interrupt_option_t, 446
ftm_pwm_sync_mode_t, 446
ftm_reg_update_t, 447
ftm_status_flag_t, 447
ftmStatePtr, 469
g_ftmBase, 469
g_ftmFaultIrqId, 469
g_ftmIrqId, 469
g_ftmOverflowIrqId, 469
g_ftmReloadIrqId, 469

FlexTimer Input Capture Driver (FTM_IC), 470
FTM_BOTH_EDGES, 474
FTM_DISABLE_OPERATION, 474
FTM_DRV_DeinitInputCapture, 475
FTM_DRV_GetInputCaptureMeasurement, 475
FTM_DRV_InitInputCapture, 475
FTM_DRV_StartNewSignalMeasurement, 476
FTM_EDGE_DETECT, 474
FTM_FALLING_EDGE, 474
FTM_FALLING_EDGE_PERIOD_MEASUREM←↩

ENT, 475
FTM_IC_DRV_SetChannelMode, 476
FTM_MEASURE_FALLING_EDGE_PERIOD, 474
FTM_MEASURE_PULSE_HIGH, 474
FTM_MEASURE_PULSE_LOW, 474
FTM_MEASURE_RISING_EDGE_PERIOD, 474
FTM_NO_MEASUREMENT, 475
FTM_NO_OPERATION, 474
FTM_NO_PIN_CONTROL, 474
FTM_PERIOD_OFF_MEASUREMENT, 475
FTM_PERIOD_ON_MEASUREMENT, 475
FTM_RISING_EDGE, 474
FTM_RISING_EDGE_PERIOD_MEASUREME←↩

NT, 475
FTM_SIGNAL_MEASUREMENT, 474

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1013

FTM_TIMESTAMP_BOTH_EDGES, 474
FTM_TIMESTAMP_FALLING_EDGE, 474
FTM_TIMESTAMP_RISING_EDGE, 474
ftm_edge_alignment_mode_t, 474
ftm_ic_op_mode_t, 474
ftm_input_op_mode_t, 474
ftm_signal_measurement_mode_t, 474

FlexTimer Module Counter Driver (FTM_MC), 478
FTM_DRV_CounterRead, 480
FTM_DRV_CounterStart, 480
FTM_DRV_CounterStop, 480
FTM_DRV_InitCounter, 480
FTM_MC_DRV_GetDefaultConfig, 481

FlexTimer Output Compare Driver (FTM_OC), 482
FTM_ABSOLUTE_VALUE, 485
FTM_CLEAR_ON_MATCH, 485
FTM_DISABLE_OUTPUT, 485
FTM_DRV_DeinitOutputCompare, 485
FTM_DRV_InitOutputCompare, 486
FTM_DRV_UpdateOutputCompareChannel, 486
FTM_RELATIVE_VALUE, 485
FTM_SET_ON_MATCH, 485
FTM_TOGGLE_ON_MATCH, 485
ftm_output_compare_mode_t, 485
ftm_output_compare_update_t, 485

FlexTimer Pulse Width Modulation Driver (FTM_PWM),
488

FTM_DRV_ControlChannelOutput, 501
FTM_DRV_DeinitPwm, 501
FTM_DRV_FastUpdatePwmChannels, 501
FTM_DRV_InitPwm, 502
FTM_DRV_UpdatePwmChannel, 502
FTM_DRV_UpdatePwmPeriod, 503
FTM_DUTY_TO_TICKS_SHIFT, 500
FTM_FAULT_CONTROL_AUTO_ALL, 500
FTM_FAULT_CONTROL_DISABLED, 500
FTM_FAULT_CONTROL_MAN_ALL, 500
FTM_FAULT_CONTROL_MAN_EVEN, 500
FTM_HIGH_STATE, 501
FTM_LOW_STATE, 501
FTM_MAIN_DUPLICATED, 501
FTM_MAIN_INVERTED, 501
FTM_MAX_DUTY_CYCLE, 500
FTM_POLARITY_HIGH, 500
FTM_POLARITY_LOW, 500
FTM_PWM_UPDATE_IN_DUTY_CYCLE, 500
FTM_PWM_UPDATE_IN_TICKS, 500
ftm_fault_mode_t, 500
ftm_polarity_t, 500
ftm_pwm_update_option_t, 500
ftm_safe_state_polarity_t, 500
ftm_second_channel_polarity_t, 501

FlexTimer Quadrature Decoder Driver (FTM_QD), 505
FTM_DRV_QuadDecodeStart, 509
FTM_DRV_QuadDecodeStop, 509
FTM_DRV_QuadGetState, 509
FTM_QD_DRV_GetDefaultConfig, 510
FTM_QUAD_COUNT_AND_DIR, 509

FTM_QUAD_PHASE_ENCODE, 509
FTM_QUAD_PHASE_INVERT, 509
FTM_QUAD_PHASE_NORMAL, 509
ftm_quad_decode_mode_t, 508
ftm_quad_phase_polarity_t, 509

flexcan_callback_t
FlexCAN Driver, 368

flexcan_data_info_t, 366
data_length, 366
is_remote, 366
msg_id_type, 366

flexcan_error_callback_t
FlexCAN Driver, 368

flexcan_event_type_t
FlexCAN Driver, 368

flexcan_id_table_t, 366
id, 366
isExtendedFrame, 366
isRemoteFrame, 366

flexcan_mb_handle_t, 364
isBlocking, 364
isRemote, 364
mb_message, 364
mbSema, 364
state, 365

flexcan_mb_state_t
FlexCAN Driver, 369

flexcan_msgbuff_id_type_t
FlexCAN Driver, 369

flexcan_msgbuff_t, 363
cs, 364
data, 364
dataLen, 364
msgId, 364

flexcan_operation_modes_t
FlexCAN Driver, 369

flexcan_rx_fifo_id_element_format_t
FlexCAN Driver, 369

flexcan_rx_fifo_id_filter_num_t
FlexCAN Driver, 370

flexcan_rx_mask_type_t
FlexCAN Driver, 370

flexcan_rxfifo_transfer_type_t
FlexCAN Driver, 370

flexcan_state_t
FlexCAN Driver, 368

flexcan_time_segment_t, 367
phaseSeg1, 367
phaseSeg2, 367
preDivider, 367
propSeg, 367
rJumpwidth, 367

flexcan_user_config_t, 367
bitrate, 368
flexcanMode, 368
is_rx_fifo_needed, 368
max_num_mb, 368
num_id_filters, 368

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1014 INDEX

transfer_type, 368
flexcanMode

flexcan_user_config_t, 368
Flexible I/O (FlexIO), 511
flexio_driver_type_t

FlexIO Common Driver, 379
flexio_i2c_master_state_t, 386
flexio_i2c_master_user_config_t, 385

baudRate, 385
callback, 385
callbackParam, 385
driverType, 385
rxDMAChannel, 385
sclPin, 385
sdaPin, 385
slaveAddress, 386
txDMAChannel, 386

flexio_i2s_master_state_t, 397
flexio_i2s_master_user_config_t, 394

baudRate, 395
bitsWidth, 395
callback, 395
callbackParam, 395
driverType, 395
rxDMAChannel, 395
rxPin, 395
sckPin, 395
txDMAChannel, 395
txPin, 395
wsPin, 395

flexio_i2s_slave_state_t
FlexIO I2S Driver, 397

flexio_i2s_slave_user_config_t, 396
bitsWidth, 396
callback, 396
callbackParam, 396
driverType, 396
rxDMAChannel, 396
rxPin, 396
sckPin, 396
txDMAChannel, 397
txPin, 397
wsPin, 397

flexio_spi_master_state_t, 415
flexio_spi_master_user_config_t, 412

baudRate, 412
bitOrder, 412
callback, 412
callbackParam, 413
clockPhase, 413
clockPolarity, 413
driverType, 413
misoPin, 413
mosiPin, 413
rxDMAChannel, 413
sckPin, 413
ssPin, 413
transferSize, 413

txDMAChannel, 413
flexio_spi_slave_state_t

FlexIO SPI Driver, 415
flexio_spi_slave_user_config_t, 414

bitOrder, 414
callback, 414
callbackParam, 414
clockPhase, 414
clockPolarity, 414
driverType, 414
misoPin, 415
mosiPin, 415
rxDMAChannel, 415
sckPin, 415
ssPin, 415
transferSize, 415
txDMAChannel, 415

flexio_spi_transfer_bit_order_t
FlexIO SPI Driver, 416

flexio_spi_transfer_size_t
FlexIO SPI Driver, 416

flexio_uart_driver_direction_t
FlexIO UART Driver, 427

flexio_uart_state_t, 426
flexio_uart_user_config_t, 425

baudRate, 426
bitCount, 426
callback, 426
callbackParam, 426
dataPin, 426
direction, 426
dmaChannel, 426
driverType, 426

fnmc
sbc_sbc_t, 899

fnms
sbc_wtdog_status_t, 907

frac
peripheral_clock_config_t, 214

frame
sbc_can_conf_t, 903

frame_counter
lin_tl_descriptor_t, 674

frame_data_ptr
lin_frame_t, 671

frame_start
lin_protocol_user_config_t, 677

frame_tbl_ptr
lin_protocol_user_config_t, 677

frame_timeout_cnt
lin_protocol_state_t, 681

frameSize
spi_master_t, 853
spi_slave_t, 854

FreeRTOS, 512
freeRun

lptmr_config_t, 633
freq

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1015

scg_sosc_config_t, 207
frm_id

lin_schedule_data_t, 672
frm_len

lin_frame_t, 671
frm_offset

lin_frame_t, 671
lin_master_data_t, 679

frm_response
lin_frame_t, 671

frm_size
lin_master_data_t, 679

frm_type
lin_frame_t, 671

ftm_bdm_mode_t
FlexTimer (FTM), 445

ftm_clock_ps_t
FlexTimer (FTM), 445

ftm_clock_source_t
FlexTimer (FTM), 445

ftm_combined_ch_param_t, 497
deadTime, 497
enableExternalTrigger, 497
enableExternalTriggerOnNextChn, 497
enableModifiedCombine, 497
enableSecondChannelOutput, 498
firstEdge, 498
hwChannelId, 498
mainChannelPolarity, 498
mainChannelSafeState, 498
secondChannelPolarity, 498
secondChannelSafeState, 498
secondEdge, 498

ftm_config_mode_t
FlexTimer (FTM), 445

ftm_deadtime_ps_t
FlexTimer (FTM), 446

ftm_edge_alignment_mode_t
FlexTimer Input Capture Driver (FTM_IC), 474

ftm_fault_mode_t
FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
ftm_ic_op_mode_t

FlexTimer Input Capture Driver (FTM_IC), 474
ftm_independent_ch_param_t, 496

deadTime, 496
enableExternalTrigger, 496
enableSecondChannelOutput, 496
hwChannelId, 496
polarity, 496
safeState, 497
secondChannelPolarity, 497
uDutyCyclePercent, 497

ftm_input_ch_param_t, 472
channelsCallbacks, 472
channelsCallbacksParams, 472
continuousModeEn, 473
edgeAlignement, 473

filterEn, 473
filterValue, 473
hwChannelId, 473
inputMode, 473
measurementType, 473

ftm_input_op_mode_t
FlexTimer Input Capture Driver (FTM_IC), 474

ftm_input_param_t, 473
inputChConfig, 473
nMaxCountValue, 474
nNumChannels, 474

ftm_interrupt_option_t
FlexTimer (FTM), 446

ftm_output_cmp_ch_param_t, 484
chMode, 484
comparedValue, 484
enableExternalTrigger, 484
hwChannelId, 484

ftm_output_cmp_param_t, 484
maxCountValue, 484
mode, 484
nNumOutputChannels, 485
outputChannelConfig, 485

ftm_output_compare_mode_t
FlexTimer Output Compare Driver (FTM_OC), 485

ftm_output_compare_update_t
FlexTimer Output Compare Driver (FTM_OC), 485

ftm_phase_params_t, 507
phaseFilterVal, 507
phaseInputFilter, 507
phasePolarity, 507

ftm_polarity_t
FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
ftm_pwm_ch_fault_param_t, 495

faultChannelEnabled, 495
faultFilterEnabled, 495
ftmFaultPinPolarity, 495

ftm_pwm_fault_param_t, 495
faultFilterValue, 495
faultMode, 495
ftmFaultChannelParam, 495
pwmFaultInterrupt, 496
pwmOutputStateOnFault, 496

ftm_pwm_param_t, 498
deadTimePrescaler, 499
deadTimeValue, 499
faultConfig, 499
mode, 499
nNumCombinedPwmChannels, 499
nNumIndependentPwmChannels, 499
pwmCombinedChannelConfig, 499
pwmIndependentChannelConfig, 499
uFrequencyHZ, 499

ftm_pwm_sync_mode_t
FlexTimer (FTM), 446

ftm_pwm_sync_t, 439
autoClearTrigger, 440

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1016 INDEX

hardwareSync0, 440
hardwareSync1, 440
hardwareSync2, 440
initCounterSync, 440
inverterSync, 440
maskRegSync, 440
maxLoadingPoint, 440
minLoadingPoint, 440
outRegSync, 441
softwareSync, 441
syncPoint, 441

ftm_pwm_update_option_t
FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
ftm_quad_decode_config_t, 507

initialVal, 507
maxVal, 507
mode, 507
phaseAConfig, 508
phaseBConfig, 508

ftm_quad_decode_mode_t
FlexTimer Quadrature Decoder Driver (FTM_QD),

508
ftm_quad_decoder_state_t, 508

counter, 508
counterDirection, 508
overflowDirection, 508
overflowFlag, 508

ftm_quad_phase_polarity_t
FlexTimer Quadrature Decoder Driver (FTM_QD),

509
ftm_reg_update_t

FlexTimer (FTM), 447
ftm_safe_state_polarity_t

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 500
ftm_second_channel_polarity_t

FlexTimer Pulse Width Modulation Driver (FTM_←↩

PWM), 501
ftm_signal_measurement_mode_t

FlexTimer Input Capture Driver (FTM_IC), 474
ftm_state_t, 438

channelsCallbacks, 439
channelsCallbacksParams, 439
enableNotification, 439
ftmClockSource, 439
ftmModValue, 439
ftmMode, 439
ftmPeriod, 439
ftmSourceClockFrequency, 439
measurementResults, 439

ftm_status_flag_t
FlexTimer (FTM), 447

ftm_timer_param_t, 479
finalValue, 479
initialValue, 479
mode, 480

ftm_user_config_t, 441

BDMMode, 441
enableInitializationTrigger, 441
ftmClockSource, 441
ftmMode, 441
ftmPrescaler, 441
isTofIsrEnabled, 442
syncMethod, 442

ftmClockSource
extension_ftm_for_ic_t, 528
extension_ftm_for_oc_t, 750
ftm_state_t, 439
ftm_user_config_t, 441

ftmFaultChannelParam
ftm_pwm_fault_param_t, 495

ftmFaultPinPolarity
ftm_pwm_ch_fault_param_t, 495

ftmModValue
ftm_state_t, 439

ftmMode
ftm_state_t, 439
ftm_user_config_t, 441

ftmPeriod
ftm_state_t, 439

ftmPrescaler
extension_ftm_for_ic_t, 528
extension_ftm_for_oc_t, 750
ftm_user_config_t, 441

ftmSourceClockFrequency
ftm_state_t, 439

ftmStatePtr
FlexTimer (FTM), 469

fullSize
csec_state_t, 179

function
lin_protocol_user_config_t, 677

function_id
lin_product_id_t, 970

g_RtcClkInFreq
Clock Manager Driver, 232

g_TClkFreq
Clock Manager Driver, 232

g_buffer_backup_data
Low level API, 693

g_ftmBase
FlexTimer (FTM), 469

g_ftmFaultIrqId
FlexTimer (FTM), 469

g_ftmIrqId
FlexTimer (FTM), 469

g_ftmOverflowIrqId
FlexTimer (FTM), 469

g_ftmReloadIrqId
FlexTimer (FTM), 469

g_lin_flag_handle_tbl
Low level API, 693

g_lin_frame_data_buffer
Low level API, 693

g_lin_frame_flag_handle_tbl

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1017

Low level API, 693
g_lin_frame_updating_flag_tbl

Low level API, 693
g_lin_hardware_ifc

Low level API, 693
g_lin_master_data_array

Low level API, 693
g_lin_node_attribute_array

Low level API, 693
g_lin_protocol_state_array

Low level API, 693
g_lin_protocol_user_cfg_array

Low level API, 693
g_lin_tl_descriptor_array

Low level API, 693
g_lin_virtual_ifc

Low level API, 694
g_linLpuartIsrs

LIN Driver, 577
g_lpspiBase

LPSPI Driver, 629
g_lpspiIrqId

LPSPI Driver, 629
g_lpspiStatePtr

LPSPI Driver, 629
g_xtal0ClkFreq

Clock Manager Driver, 232
GENERAL_REJECT

Common Transport Layer API, 235
GET_BIT_0_7

Flash Memory (Flash), 341
GET_BIT_16_23

Flash Memory (Flash), 341
GET_BIT_24_31

Flash Memory (Flash), 341
GET_BIT_8_15

Flash Memory (Flash), 341
GO_TO_SLEEP_SET

Common Core API., 233
GPIO_INPUT_DIRECTION

PINS Driver, 769
GPIO_OUTPUT_DIRECTION

PINS Driver, 769
GPIO_UNSPECIFIED_DIRECTION

PINS Driver, 769
gPowerManagerState

Power Manager, 785
gain

scg_sosc_config_t, 208
gating

module_clk_config_t, 216
glEvnt

sbc_evn_capt_t, 912
go_to_sleep_flg

lin_protocol_state_t, 681
lin_word_status_str_t, 667

gpioBase
pin_settings_config_t, 769

groupConfigArray
adc_config_t, 160

groupIndex
adc_callback_info_t, 966

HOURS_IN_A_DAY
RTC Driver, 810

HSRUN_MODE
Clock Manager Driver, 223

haltOnError
edma_user_config_t, 294

hardwareSync0
ftm_pwm_sync_t, 440

hardwareSync1
ftm_pwm_sync_t, 440

hardwareSync2
ftm_pwm_sync_t, 440

hccrConfig
scg_clock_mode_config_t, 212

hour
rtc_timedate_t, 806

hwAverage
adc_average_config_t, 140

hwAvgEnable
adc_average_config_t, 140

hwChannelId
ftm_combined_ch_param_t, 498
ftm_independent_ch_param_t, 496
ftm_input_ch_param_t, 473
ftm_output_cmp_ch_param_t, 484
ic_input_ch_param_t, 526
oc_output_ch_param_t, 749

hwTriggerSupport
adc_group_config_t, 159

hysteresisLevel
cmp_comparator_t, 245

I2C_GetDefaultMasterConfig
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 538
I2C_GetDefaultSlaveConfig

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 538

I2C_MasterAbortTransfer
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 539
I2C_MasterDeinit

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 539

I2C_MasterGetBaudRate
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 539
I2C_MasterGetTransferStatus

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 539

I2C_MasterInit
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 540
I2C_MasterReceiveData

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1018 INDEX

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 540

I2C_MasterReceiveDataBlocking
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 540
I2C_MasterSendData

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 541

I2C_MasterSendDataBlocking
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 541
I2C_MasterSetBaudRate

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 541

I2C_MasterSetSlaveAddress
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 542
I2C_PAL_FAST_MODE

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 538

I2C_PAL_FASTPLUS_MODE
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 538
I2C_PAL_HIGHSPEED_MODE

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 538

I2C_PAL_STANDARD_MODE
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 538
I2C_PAL_ULTRAFAST_MODE

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 538

I2C_PAL_USING_DMA
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 538
I2C_PAL_USING_INTERRUPTS

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 538

I2C_SlaveAbortTransfer
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 542
I2C_SlaveDeinit

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 542

I2C_SlaveGetTransferStatus
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 542
I2C_SlaveInit

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 542

I2C_SlaveReceiveData
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 543
I2C_SlaveReceiveDataBlocking

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 543

I2C_SlaveSendData
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 543
I2C_SlaveSendDataBlocking

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 544

I2C_SlaveSetRxBuffer
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 544
I2C_SlaveSetTxBuffer

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 544

I2S - Peripheral Abstraction Layer (I2S PAL), 513
I2S_Abort, 517
I2S_Deinit, 518
I2S_GetBaudRate, 518
I2S_GetDefaultConfig, 518
I2S_GetStatus, 518
I2S_Init, 519
I2S_MASTER, 517
I2S_ReceiveData, 519
I2S_ReceiveDataBlocking, 519
I2S_SLAVE, 517
I2S_SendData, 519
I2S_SendDataBlocking, 520
I2S_SetRxBuffer, 520
I2S_SetTxBuffer, 520
I2S_USING_DMA, 517
I2S_USING_INTERRUPT, 517
i2s_mode_t, 517
i2s_transfer_type_t, 517

I2S_Abort
I2S - Peripheral Abstraction Layer (I2S PAL), 517

I2S_Deinit
I2S - Peripheral Abstraction Layer (I2S PAL), 518

I2S_GetBaudRate
I2S - Peripheral Abstraction Layer (I2S PAL), 518

I2S_GetDefaultConfig
I2S - Peripheral Abstraction Layer (I2S PAL), 518

I2S_GetStatus
I2S - Peripheral Abstraction Layer (I2S PAL), 518

I2S_Init
I2S - Peripheral Abstraction Layer (I2S PAL), 519

I2S_MASTER
I2S - Peripheral Abstraction Layer (I2S PAL), 517

I2S_ReceiveData
I2S - Peripheral Abstraction Layer (I2S PAL), 519

I2S_ReceiveDataBlocking
I2S - Peripheral Abstraction Layer (I2S PAL), 519

I2S_SLAVE
I2S - Peripheral Abstraction Layer (I2S PAL), 517

I2S_SendData
I2S - Peripheral Abstraction Layer (I2S PAL), 519

I2S_SendDataBlocking
I2S - Peripheral Abstraction Layer (I2S PAL), 520

I2S_SetRxBuffer
I2S - Peripheral Abstraction Layer (I2S PAL), 520

I2S_SetTxBuffer
I2S - Peripheral Abstraction Layer (I2S PAL), 520

I2S_USING_DMA

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1019

I2S - Peripheral Abstraction Layer (I2S PAL), 517
I2S_USING_INTERRUPT

I2S - Peripheral Abstraction Layer (I2S PAL), 517
i2c_instance_t, 968

instIdx, 968
instType, 968

i2c_master_t, 535
baudRate, 536
callback, 536
callbackParam, 536
dmaChannel1, 536
dmaChannel2, 536
extension, 536
is10bitAddr, 536
operatingMode, 536
slaveAddress, 536
transferType, 536

i2c_operating_mode_t
Inter Integrated Circuit - Peripheral Abstraction

Layer(I2C PAL), 538
i2c_pal_transfer_type_t

Inter Integrated Circuit - Peripheral Abstraction
Layer(I2C PAL), 538

i2c_slave_t, 537
callback, 537
callbackParam, 537
dmaChannel, 537
is10bitAddr, 537
operatingMode, 537
slaveAddress, 537
slaveListening, 537
transferType, 537

i2s_instance_t, 969
instIdx, 969
instType, 969

i2s_mode_t
I2S - Peripheral Abstraction Layer (I2S PAL), 517

i2s_transfer_type_t
I2S - Peripheral Abstraction Layer (I2S PAL), 517

i2s_user_config_t, 515
baudRate, 515
callback, 515
callbackParam, 516
extension, 516
mode, 516
rxDMAChannel, 516
transferType, 516
txDMAChannel, 516
wordWidth, 516

IC_DISABLE_OPERATION
Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 528
IC_Deinit

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 528
IC_DisableNotification

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 529

IC_EnableNotification
Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 529
IC_GetMeasurement

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 529
IC_Init

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 529
IC_MEASURE_FALLING_EDGE_PERIOD

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 528
IC_MEASURE_PULSE_HIGH

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 528
IC_MEASURE_PULSE_LOW

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 528
IC_MEASURE_RISING_EDGE_PERIOD

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 528
IC_SetChannelMode

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 530
IC_StartChannel

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 530
IC_StopChannel

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 530
IC_TIMESTAMP_BOTH_EDGES

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 528
IC_TIMESTAMP_FALLING_EDGE

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 528
IC_TIMESTAMP_RISING_EDGE

Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 528
INT_SYS_DisableIRQ

Interrupt Manager (Interrupt), 549
INT_SYS_DisableIRQGlobal

Interrupt Manager (Interrupt), 549
INT_SYS_EnableIRQ

Interrupt Manager (Interrupt), 550
INT_SYS_EnableIRQGlobal

Interrupt Manager (Interrupt), 550
INT_SYS_GetPriority

Interrupt Manager (Interrupt), 550
INT_SYS_InstallHandler

Interrupt Manager (Interrupt), 550
INT_SYS_SetPriority

Interrupt Manager (Interrupt), 550
ic_config_t, 526

extension, 527
inputChConfig, 527
nNumChannels, 527

ic_input_ch_param_t, 526

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1020 INDEX

channelCallbackParams, 526
channelCallbacks, 526
channelExtension, 526
filterEn, 526
filterValue, 526
hwChannelId, 526
inputCaptureMode, 526

ic_instance_t, 969
instIdx, 970
instType, 970

ic_option_mode_t
Input Capture - Peripheral Abstraction Layer (I←↩

C PAL), 528
ic_pal_state_t, 528
id

can_message_t, 266
flexcan_id_table_t, 366

idFilterTable
extension_flexcan_rx_fifo_t, 268

idFormat
extension_flexcan_rx_fifo_t, 268

idType
can_buff_config_t, 266

ide
sbc_frame_t, 903

identif
sbc_can_conf_t, 904

idle_timeout_cnt
lin_protocol_state_t, 681

inOutMappingConfig
trgmux_user_config_t, 874

index
csec_state_t, 179

initCounterSync
ftm_pwm_sync_t, 440

initValue
pin_settings_config_t, 769

initial_NAD
lin_node_attribute_t, 669

initialVal
ftm_quad_decode_config_t, 507

initialValue
ftm_timer_param_t, 479

Initialization, 521
ld_init, 521

initialize
pmc_lpo_clock_config_t, 215
scg_clock_mode_config_t, 212
scg_clockout_config_t, 212
scg_firc_config_t, 210
scg_rtc_config_t, 211
scg_sirc_config_t, 209
scg_sosc_config_t, 208
scg_spll_config_t, 211
sim_clock_out_config_t, 202
sim_lpo_clock_config_t, 203
sim_plat_gate_config_t, 204
sim_tclk_config_t, 203

sim_trace_clock_config_t, 205
Input Capture - Peripheral Abstraction Layer (IC PAL),

522
IC_DISABLE_OPERATION, 528
IC_Deinit, 528
IC_DisableNotification, 529
IC_EnableNotification, 529
IC_GetMeasurement, 529
IC_Init, 529
IC_MEASURE_FALLING_EDGE_PERIOD, 528
IC_MEASURE_PULSE_HIGH, 528
IC_MEASURE_PULSE_LOW, 528
IC_MEASURE_RISING_EDGE_PERIOD, 528
IC_SetChannelMode, 530
IC_StartChannel, 530
IC_StopChannel, 530
IC_TIMESTAMP_BOTH_EDGES, 528
IC_TIMESTAMP_FALLING_EDGE, 528
IC_TIMESTAMP_RISING_EDGE, 528
ic_option_mode_t, 528

inputBuff
csec_state_t, 179

inputCaptureMode
ic_input_ch_param_t, 526

inputChConfig
ftm_input_param_t, 473
ic_config_t, 527

inputChannelArray
adc_group_config_t, 159

inputClock
adc_converter_config_t, 138
extension_adc_s32k1xx_t, 160

inputMode
ftm_input_ch_param_t, 473

insertDeadtime
pwm_channel_t, 799

instIdx
adc_instance_t, 967
can_instance_t, 967
i2c_instance_t, 968
i2s_instance_t, 969
ic_instance_t, 970
mpu_instance_t, 971
oc_instance_t, 972
pwm_instance_t, 972
spi_instance_t, 973
timing_instance_t, 974
uart_instance_t, 975
wdg_instance_t, 975

instType
adc_instance_t, 967
can_instance_t, 967
i2c_instance_t, 968
i2s_instance_t, 969
ic_instance_t, 970
mpu_instance_t, 971
oc_instance_t, 972
pwm_instance_t, 973

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1021

spi_instance_t, 973
timing_instance_t, 974
uart_instance_t, 975
wdg_instance_t, 975

intEnable
pdb_timer_config_t, 760
wdg_config_t, 948
wdog_user_config_t, 956

Inter Integrated Circuit - Peripheral Abstraction Layer(←↩

I2C PAL), 531
I2C_GetDefaultMasterConfig, 538
I2C_GetDefaultSlaveConfig, 538
I2C_MasterAbortTransfer, 539
I2C_MasterDeinit, 539
I2C_MasterGetBaudRate, 539
I2C_MasterGetTransferStatus, 539
I2C_MasterInit, 540
I2C_MasterReceiveData, 540
I2C_MasterReceiveDataBlocking, 540
I2C_MasterSendData, 541
I2C_MasterSendDataBlocking, 541
I2C_MasterSetBaudRate, 541
I2C_MasterSetSlaveAddress, 542
I2C_PAL_FAST_MODE, 538
I2C_PAL_FASTPLUS_MODE, 538
I2C_PAL_HIGHSPEED_MODE, 538
I2C_PAL_STANDARD_MODE, 538
I2C_PAL_ULTRAFAST_MODE, 538
I2C_PAL_USING_DMA, 538
I2C_PAL_USING_INTERRUPTS, 538
I2C_SlaveAbortTransfer, 542
I2C_SlaveDeinit, 542
I2C_SlaveGetTransferStatus, 542
I2C_SlaveInit, 542
I2C_SlaveReceiveData, 543
I2C_SlaveReceiveDataBlocking, 543
I2C_SlaveSendData, 543
I2C_SlaveSendDataBlocking, 544
I2C_SlaveSetRxBuffer, 544
I2C_SlaveSetTxBuffer, 544
i2c_operating_mode_t, 538
i2c_pal_transfer_type_t, 538

Interface management, 546
l_ifc_goto_sleep, 546
l_ifc_init, 546
l_ifc_read_status, 547
l_ifc_wake_up, 547

interleave_timeout_counter
lin_tl_descriptor_t, 675

Interrupt Manager (Interrupt), 548
DefaultISR, 549
INT_SYS_DisableIRQ, 549
INT_SYS_DisableIRQGlobal, 549
INT_SYS_EnableIRQ, 550
INT_SYS_EnableIRQGlobal, 550
INT_SYS_GetPriority, 550
INT_SYS_InstallHandler, 550
INT_SYS_SetPriority, 550

isr_t, 549
Interrupt vector numbers for S32K144, 553
interruptCfg

erm_user_config_t, 320
interruptEnable

adc_chan_config_t, 141
edma_transfer_config_t, 298
ewm_init_config_t, 325
lptmr_config_t, 634

inverterState
cmp_comparator_t, 245

inverterSync
ftm_pwm_sync_t, 440

is10bitAddr
i2c_master_t, 536
i2c_slave_t, 537
lpi2c_master_user_config_t, 585
lpi2c_slave_user_config_t, 586

is_remote
flexcan_data_info_t, 366

is_rx_fifo_needed
flexcan_user_config_t, 368

isBlocking
flexcan_mb_handle_t, 364
lpspi_state_t, 617

isBusBusy
lin_state_t, 566

isExtendedFrame
flexcan_id_table_t, 366

isInit
drv_config_t, 968

isInterruptEnabled
lpit_user_channel_config_t, 602

isPcsContinuous
lpspi_master_config_t, 615
lpspi_state_t, 617

isRemote
can_buff_config_t, 266
flexcan_mb_handle_t, 364

isRemoteFrame
flexcan_id_table_t, 366

isRxBlocking
lin_state_t, 566
lpuart_state_t, 644

isRxBusy
lin_state_t, 566
lpuart_state_t, 644

isTofIsrEnabled
ftm_user_config_t, 442

isTransferInProgress
lpspi_state_t, 617

isTxBlocking
lin_state_t, 567
lpuart_state_t, 644

isTxBusy
lin_state_t, 567
lpuart_state_t, 644

isr_t

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1022 INDEX

Interrupt Manager (Interrupt), 549
iv

csec_state_t, 179

J2602 Specific API, 554
J2602 Transport Layer specific API, 555

keyId
csec_state_t, 179

l_diagnostic_mode_t
Low level API, 685

l_ifc_goto_sleep
Interface management, 546

l_ifc_init
Interface management, 546

l_ifc_read_status
Interface management, 547

l_ifc_wake_up
Interface management, 547

l_sch_set
Schedule management, 827

l_sch_tick
Schedule management, 827

l_sys_init
Driver and cluster management, 287

l_sys_irq_disable
User provided call-outs, 945

l_sys_irq_restore
User provided call-outs, 945

LD_ANY_FUNCTION
Common Transport Layer API, 236

LD_ANY_MESSAGE
Common Transport Layer API, 236

LD_ANY_SUPPLIER
Common Transport Layer API, 236

LD_BROADCAST
Common Transport Layer API, 236

LD_CHECK_N_AS_TIMEOUT
Low level API, 687

LD_CHECK_N_CR_TIMEOUT
Low level API, 687

LD_COMPLETED
Low level API, 687

LD_DATA_AVAILABLE
Low level API, 685

LD_DATA_ERROR
Common Transport Layer API, 236

LD_DIAG_IDLE
Low level API, 686

LD_DIAG_RX_FUNCTIONAL
Low level API, 686

LD_DIAG_RX_INTERLEAVED
Low level API, 686

LD_DIAG_RX_PHY
Low level API, 686

LD_DIAG_TX_FUNCTIONAL
Low level API, 686

LD_DIAG_TX_INTERLEAVED

Low level API, 686
LD_DIAG_TX_PHY

Low level API, 686
LD_FAILED

Low level API, 687
LD_FUNCTIONAL_NAD

Common Transport Layer API, 236
LD_IN_PROGRESS

Low level API, 687
LD_LENGTH_NOT_CORRECT

Common Transport Layer API, 236
LD_LENGTH_TOO_SHORT

Common Transport Layer API, 236
LD_N_AS_TIMEOUT

Low level API, 687
LD_N_CR_TIMEOUT

Low level API, 687
LD_NEGATIVE

Low level API, 686
LD_NEGATIVE_RESPONSE

Low level API, 682
LD_NO_CHECK_TIMEOUT

Low level API, 687
LD_NO_DATA

Low level API, 685
LD_NO_MSG

Low level API, 687
LD_NO_RESPONSE

Low level API, 686
LD_OVERWRITTEN

Low level API, 686
LD_POSITIVE_RESPONSE

Low level API, 682
LD_QUEUE_AVAILABLE

Low level API, 685
LD_QUEUE_EMPTY

Low level API, 685
LD_QUEUE_FULL

Low level API, 685
LD_READ_OK

Common Transport Layer API, 236
LD_RECEIVE_ERROR

Low level API, 685
LD_REQUEST_FINISHED

Low level API, 688
LD_SERVICE_BUSY

Low level API, 688
LD_SERVICE_ERROR

Low level API, 688
LD_SERVICE_IDLE

Low level API, 688
LD_SET_OK

Common Transport Layer API, 236
LD_SUCCESS

Low level API, 686
LD_TRANSFER_ERROR

Low level API, 685
LD_TRANSMIT_ERROR

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1023

Low level API, 685
LD_WRONG_SN

Low level API, 687
LIN 2.1 Specific API, 556

lin_collision_resolve, 556
lin_make_res_evnt_frame, 556
lin_update_err_signal, 557
lin_update_rx_evnt_frame, 557
lin_update_word_status_lin21, 557

LIN Core API, 558
LIN Driver, 559

CHECK_PARITY, 568
g_linLpuartIsrs, 577
LIN_BAUDRATE_ADJUSTED, 568
LIN_CHECKSUM_ERROR, 568
LIN_DRV_AbortTransferData, 569
LIN_DRV_AutoBaudCapture, 569
LIN_DRV_Deinit, 570
LIN_DRV_DisableIRQ, 570
LIN_DRV_EnableIRQ, 570
LIN_DRV_GetCurrentNodeState, 570
LIN_DRV_GetDefaultConfig, 571
LIN_DRV_GetReceiveStatus, 571
LIN_DRV_GetTransmitStatus, 571
LIN_DRV_GoToSleepMode, 572
LIN_DRV_GotoIdleState, 572
LIN_DRV_IRQHandler, 573
LIN_DRV_Init, 572
LIN_DRV_InstallCallback, 572
LIN_DRV_MakeChecksumByte, 573
LIN_DRV_MasterSendHeader, 573
LIN_DRV_ProcessParity, 574
LIN_DRV_ReceiveFrameData, 574
LIN_DRV_ReceiveFrameDataBlocking, 575
LIN_DRV_SendFrameData, 575
LIN_DRV_SendFrameDataBlocking, 576
LIN_DRV_SendWakeupSignal, 576
LIN_DRV_SetTimeoutCounter, 577
LIN_DRV_TimeoutService, 577
LIN_FRAME_ERROR, 568
LIN_NO_EVENT, 568
LIN_NODE_STATE_IDLE, 569
LIN_NODE_STATE_RECV_DATA, 569
LIN_NODE_STATE_RECV_DATA_COMPLETED,

569
LIN_NODE_STATE_RECV_PID, 569
LIN_NODE_STATE_RECV_SYNC, 569
LIN_NODE_STATE_SEND_BREAK_FIELD, 569
LIN_NODE_STATE_SEND_DATA, 569
LIN_NODE_STATE_SEND_DATA_COMPLETED,

569
LIN_NODE_STATE_SEND_PID, 569
LIN_NODE_STATE_SLEEP_MODE, 569
LIN_NODE_STATE_UNINIT, 569
LIN_PID_ERROR, 568
LIN_PID_OK, 568
LIN_READBACK_ERROR, 568
LIN_RECV_BREAK_FIELD_OK, 568

LIN_RX_COMPLETED, 569
LIN_RX_OVERRUN, 569
LIN_SYNC_ERROR, 568
LIN_SYNC_OK, 568
LIN_TX_COMPLETED, 568
LIN_WAKEUP_SIGNAL, 568
lin_callback_t, 568
lin_event_id_t, 568
lin_node_state_t, 569
lin_timer_get_time_interval_t, 568
MAKE_PARITY, 568
MASTER, 568
SLAVE, 568

LIN Stack, 578
LIN_BAUDRATE_ADJUSTED

LIN Driver, 568
LIN_CHECKSUM_ERROR

LIN Driver, 568
LIN_DIAGNOSTIC_CLASS_I

Low level API, 685
LIN_DIAGNOSTIC_CLASS_II

Low level API, 685
LIN_DIAGNOSTIC_CLASS_III

Low level API, 685
LIN_DRV_AbortTransferData

LIN Driver, 569
LIN_DRV_AutoBaudCapture

LIN Driver, 569
LIN_DRV_Deinit

LIN Driver, 570
LIN_DRV_DisableIRQ

LIN Driver, 570
LIN_DRV_EnableIRQ

LIN Driver, 570
LIN_DRV_GetCurrentNodeState

LIN Driver, 570
LIN_DRV_GetDefaultConfig

LIN Driver, 571
LIN_DRV_GetReceiveStatus

LIN Driver, 571
LIN_DRV_GetTransmitStatus

LIN Driver, 571
LIN_DRV_GoToSleepMode

LIN Driver, 572
LIN_DRV_GotoIdleState

LIN Driver, 572
LIN_DRV_IRQHandler

LIN Driver, 573
LIN_DRV_Init

LIN Driver, 572
LIN_DRV_InstallCallback

LIN Driver, 572
LIN_DRV_MakeChecksumByte

LIN Driver, 573
LIN_DRV_MasterSendHeader

LIN Driver, 573
LIN_DRV_ProcessParity

LIN Driver, 574

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1024 INDEX

LIN_DRV_ReceiveFrameData
LIN Driver, 574

LIN_DRV_ReceiveFrameDataBlocking
LIN Driver, 575

LIN_DRV_SendFrameData
LIN Driver, 575

LIN_DRV_SendFrameDataBlocking
LIN Driver, 576

LIN_DRV_SendWakeupSignal
LIN Driver, 576

LIN_DRV_SetTimeoutCounter
LIN Driver, 577

LIN_DRV_TimeoutService
LIN Driver, 577

LIN_FRAME_ERROR
LIN Driver, 568

LIN_FRM_DIAG
Low level API, 686

LIN_FRM_EVNT
Low level API, 686

LIN_FRM_SPRDC
Low level API, 686

LIN_FRM_UNCD
Low level API, 686

LIN_LLD_BUS_ACTIVITY_TIMEOUT
Low level API, 687

LIN_LLD_CHECKSUM_ERR
Low level API, 687

LIN_LLD_ERROR
Low level API, 682

LIN_LLD_FRAME_ERR
Low level API, 687

LIN_LLD_NODATA_TIMEOUT
Low level API, 687

LIN_LLD_OK
Low level API, 682

LIN_LLD_PID_ERR
Low level API, 687

LIN_LLD_PID_OK
Low level API, 687

LIN_LLD_READBACK_ERR
Low level API, 687

LIN_LLD_RX_COMPLETED
Low level API, 687

LIN_LLD_TX_COMPLETED
Low level API, 687

LIN_MASTER
Low level API, 682

LIN_NO_EVENT
LIN Driver, 568

LIN_NODE_STATE_IDLE
LIN Driver, 569

LIN_NODE_STATE_RECV_DATA
LIN Driver, 569

LIN_NODE_STATE_RECV_DATA_COMPLETED
LIN Driver, 569

LIN_NODE_STATE_RECV_PID
LIN Driver, 569

LIN_NODE_STATE_RECV_SYNC
LIN Driver, 569

LIN_NODE_STATE_SEND_BREAK_FIELD
LIN Driver, 569

LIN_NODE_STATE_SEND_DATA
LIN Driver, 569

LIN_NODE_STATE_SEND_DATA_COMPLETED
LIN Driver, 569

LIN_NODE_STATE_SEND_PID
LIN Driver, 569

LIN_NODE_STATE_SLEEP_MODE
LIN Driver, 569

LIN_NODE_STATE_UNINIT
LIN Driver, 569

LIN_PID_ERROR
LIN Driver, 568

LIN_PID_OK
LIN Driver, 568

LIN_PRODUCT_ID
Common Transport Layer API, 236

LIN_PROTOCOL_13
Low level API, 687

LIN_PROTOCOL_20
Low level API, 687

LIN_PROTOCOL_21
Low level API, 687

LIN_PROTOCOL_J2602
Low level API, 687

LIN_READ_USR_DEF_MAX
Low level API, 682

LIN_READ_USR_DEF_MIN
Low level API, 682

LIN_READBACK_ERROR
LIN Driver, 568

LIN_RECV_BREAK_FIELD_OK
LIN Driver, 568

LIN_RES_PUB
Low level API, 686

LIN_RES_SUB
Low level API, 686

LIN_RX_COMPLETED
LIN Driver, 569

LIN_RX_OVERRUN
LIN Driver, 569

LIN_SCH_TBL_COLL_RESOLV
Low level API, 688

LIN_SCH_TBL_DIAG
Low level API, 688

LIN_SCH_TBL_GO_TO_SLEEP
Low level API, 688

LIN_SCH_TBL_NORM
Low level API, 688

LIN_SCH_TBL_NULL
Low level API, 688

LIN_SERIAL_NUMBER
Common Transport Layer API, 237

LIN_SLAVE
Low level API, 683

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1025

LIN_SYNC_ERROR
LIN Driver, 568

LIN_SYNC_OK
LIN Driver, 568

LIN_TL_CALLBACK_HANDLER
Low level API, 683

LIN_TX_COMPLETED
LIN Driver, 568

LIN_WAKEUP_SIGNAL
LIN Driver, 568

LK0C
UJA116xA SBC Driver, 918

LK1C
UJA116xA SBC Driver, 918

LK2C
UJA116xA SBC Driver, 918

LK3C
UJA116xA SBC Driver, 918

LK4C
UJA116xA SBC Driver, 918

LK5C
UJA116xA SBC Driver, 918

LK6C
UJA116xA SBC Driver, 918

LKAC
UJA116xA SBC Driver, 918

LPI2C Driver, 581
LPI2C_DRV_MasterAbortTransferData, 587
LPI2C_DRV_MasterDeinit, 588
LPI2C_DRV_MasterGetBaudRate, 588
LPI2C_DRV_MasterGetDefaultConfig, 588
LPI2C_DRV_MasterGetTransferStatus, 588
LPI2C_DRV_MasterIRQHandler, 589
LPI2C_DRV_MasterInit, 589
LPI2C_DRV_MasterReceiveData, 589
LPI2C_DRV_MasterReceiveDataBlocking, 590
LPI2C_DRV_MasterSendData, 590
LPI2C_DRV_MasterSendDataBlocking, 590
LPI2C_DRV_MasterSetBaudRate, 591
LPI2C_DRV_MasterSetSlaveAddr, 591
LPI2C_DRV_SetMasterBusIdleTimeout, 591
LPI2C_DRV_SlaveAbortTransferData, 592
LPI2C_DRV_SlaveDeinit, 592
LPI2C_DRV_SlaveGetDefaultConfig, 592
LPI2C_DRV_SlaveGetTransferStatus, 592
LPI2C_DRV_SlaveIRQHandler, 594
LPI2C_DRV_SlaveInit, 592
LPI2C_DRV_SlaveReceiveData, 594
LPI2C_DRV_SlaveReceiveDataBlocking, 594
LPI2C_DRV_SlaveSendData, 595
LPI2C_DRV_SlaveSendDataBlocking, 595
LPI2C_DRV_SlaveSetRxBuffer, 595
LPI2C_DRV_SlaveSetTxBuffer, 596
LPI2C_FAST_MODE, 587
LPI2C_STANDARD_MODE, 587
LPI2C_USING_DMA, 587
LPI2C_USING_INTERRUPTS, 587
lpi2c_mode_t, 587

lpi2c_transfer_type_t, 587
LPI2C_DRV_MasterAbortTransferData

LPI2C Driver, 587
LPI2C_DRV_MasterDeinit

LPI2C Driver, 588
LPI2C_DRV_MasterGetBaudRate

LPI2C Driver, 588
LPI2C_DRV_MasterGetDefaultConfig

LPI2C Driver, 588
LPI2C_DRV_MasterGetTransferStatus

LPI2C Driver, 588
LPI2C_DRV_MasterIRQHandler

LPI2C Driver, 589
LPI2C_DRV_MasterInit

LPI2C Driver, 589
LPI2C_DRV_MasterReceiveData

LPI2C Driver, 589
LPI2C_DRV_MasterReceiveDataBlocking

LPI2C Driver, 590
LPI2C_DRV_MasterSendData

LPI2C Driver, 590
LPI2C_DRV_MasterSendDataBlocking

LPI2C Driver, 590
LPI2C_DRV_MasterSetBaudRate

LPI2C Driver, 591
LPI2C_DRV_MasterSetSlaveAddr

LPI2C Driver, 591
LPI2C_DRV_SetMasterBusIdleTimeout

LPI2C Driver, 591
LPI2C_DRV_SlaveAbortTransferData

LPI2C Driver, 592
LPI2C_DRV_SlaveDeinit

LPI2C Driver, 592
LPI2C_DRV_SlaveGetDefaultConfig

LPI2C Driver, 592
LPI2C_DRV_SlaveGetTransferStatus

LPI2C Driver, 592
LPI2C_DRV_SlaveIRQHandler

LPI2C Driver, 594
LPI2C_DRV_SlaveInit

LPI2C Driver, 592
LPI2C_DRV_SlaveReceiveData

LPI2C Driver, 594
LPI2C_DRV_SlaveReceiveDataBlocking

LPI2C Driver, 594
LPI2C_DRV_SlaveSendData

LPI2C Driver, 595
LPI2C_DRV_SlaveSendDataBlocking

LPI2C Driver, 595
LPI2C_DRV_SlaveSetRxBuffer

LPI2C Driver, 595
LPI2C_DRV_SlaveSetTxBuffer

LPI2C Driver, 596
LPI2C_FAST_MODE

LPI2C Driver, 587
LPI2C_STANDARD_MODE

LPI2C Driver, 587
LPI2C_USING_DMA

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1026 INDEX

LPI2C Driver, 587
LPI2C_USING_INTERRUPTS

LPI2C Driver, 587
LPIT Driver, 597

LPIT_DRV_ClearInterruptFlagTimerChannels, 603
LPIT_DRV_Deinit, 604
LPIT_DRV_DisableTimerChannelInterrupt, 604
LPIT_DRV_EnableTimerChannelInterrupt, 604
LPIT_DRV_GetCurrentTimerCount, 605
LPIT_DRV_GetCurrentTimerUs, 605
LPIT_DRV_GetDefaultChanConfig, 605
LPIT_DRV_GetDefaultConfig, 606
LPIT_DRV_GetInterruptFlagTimerChannels, 606
LPIT_DRV_GetTimerPeriodByCount, 606
LPIT_DRV_GetTimerPeriodByUs, 608
LPIT_DRV_Init, 608
LPIT_DRV_InitChannel, 608
LPIT_DRV_SetTimerPeriodByCount, 609
LPIT_DRV_SetTimerPeriodByUs, 609
LPIT_DRV_SetTimerPeriodInDual16ModeBy←↩

Count, 610
LPIT_DRV_SetTimerPeriodInDual16ModeByUs,

610
LPIT_DRV_StartTimerChannels, 610
LPIT_DRV_StopTimerChannels, 611
LPIT_DUAL_PERIODIC_COUNTER, 603
LPIT_INPUT_CAPTURE, 603
LPIT_PERIOD_UNITS_COUNTS, 603
LPIT_PERIOD_UNITS_MICROSECONDS, 603
LPIT_PERIODIC_COUNTER, 603
LPIT_TRIGGER_ACCUMULATOR, 603
LPIT_TRIGGER_SOURCE_EXTERNAL, 603
LPIT_TRIGGER_SOURCE_INTERNAL, 603
lpit_period_units_t, 603
lpit_timer_modes_t, 603
lpit_trigger_source_t, 603
MAX_PERIOD_COUNT, 602
MAX_PERIOD_COUNT_16_BIT, 602
MAX_PERIOD_COUNT_IN_DUAL_16BIT_MO←↩

DE, 602
LPIT_DRV_ClearInterruptFlagTimerChannels

LPIT Driver, 603
LPIT_DRV_Deinit

LPIT Driver, 604
LPIT_DRV_DisableTimerChannelInterrupt

LPIT Driver, 604
LPIT_DRV_EnableTimerChannelInterrupt

LPIT Driver, 604
LPIT_DRV_GetCurrentTimerCount

LPIT Driver, 605
LPIT_DRV_GetCurrentTimerUs

LPIT Driver, 605
LPIT_DRV_GetDefaultChanConfig

LPIT Driver, 605
LPIT_DRV_GetDefaultConfig

LPIT Driver, 606
LPIT_DRV_GetInterruptFlagTimerChannels

LPIT Driver, 606

LPIT_DRV_GetTimerPeriodByCount
LPIT Driver, 606

LPIT_DRV_GetTimerPeriodByUs
LPIT Driver, 608

LPIT_DRV_Init
LPIT Driver, 608

LPIT_DRV_InitChannel
LPIT Driver, 608

LPIT_DRV_SetTimerPeriodByCount
LPIT Driver, 609

LPIT_DRV_SetTimerPeriodByUs
LPIT Driver, 609

LPIT_DRV_SetTimerPeriodInDual16ModeByCount
LPIT Driver, 610

LPIT_DRV_SetTimerPeriodInDual16ModeByUs
LPIT Driver, 610

LPIT_DRV_StartTimerChannels
LPIT Driver, 610

LPIT_DRV_StopTimerChannels
LPIT Driver, 611

LPIT_DUAL_PERIODIC_COUNTER
LPIT Driver, 603

LPIT_INPUT_CAPTURE
LPIT Driver, 603

LPIT_PERIOD_UNITS_COUNTS
LPIT Driver, 603

LPIT_PERIOD_UNITS_MICROSECONDS
LPIT Driver, 603

LPIT_PERIODIC_COUNTER
LPIT Driver, 603

LPIT_TRIGGER_ACCUMULATOR
LPIT Driver, 603

LPIT_TRIGGER_SOURCE_EXTERNAL
LPIT Driver, 603

LPIT_TRIGGER_SOURCE_INTERNAL
LPIT Driver, 603

LPSPI Driver, 612
g_lpspiBase, 629
g_lpspiIrqId, 629
g_lpspiStatePtr, 629
LPSPI0_IRQHandler, 621
LPSPI1_IRQHandler, 621
LPSPI2_IRQHandler, 621
LPSPI_ACTIVE_HIGH, 620
LPSPI_ACTIVE_LOW, 620
LPSPI_CLOCK_PHASE_1ST_EDGE, 620
LPSPI_CLOCK_PHASE_2ND_EDGE, 620
LPSPI_DRV_DisableTEIEInterrupts, 621
LPSPI_DRV_FillupTxBuffer, 621
LPSPI_DRV_IRQHandler, 621
LPSPI_DRV_MasterAbortTransfer, 622
LPSPI_DRV_MasterConfigureBus, 622
LPSPI_DRV_MasterDeinit, 623
LPSPI_DRV_MasterGetDefaultConfig, 623
LPSPI_DRV_MasterGetTransferStatus, 623
LPSPI_DRV_MasterIRQHandler, 624
LPSPI_DRV_MasterInit, 623
LPSPI_DRV_MasterSetDelay, 624

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1027

LPSPI_DRV_MasterTransfer, 625
LPSPI_DRV_MasterTransferBlocking, 625
LPSPI_DRV_ReadRXBuffer, 626
LPSPI_DRV_SetPcs, 626
LPSPI_DRV_SlaveAbortTransfer, 626
LPSPI_DRV_SlaveDeinit, 627
LPSPI_DRV_SlaveGetDefaultConfig, 627
LPSPI_DRV_SlaveGetTransferStatus, 627
LPSPI_DRV_SlaveIRQHandler, 628
LPSPI_DRV_SlaveInit, 627
LPSPI_DRV_SlaveTransfer, 628
LPSPI_DRV_SlaveTransferBlocking, 628
LPSPI_PCS0, 620
LPSPI_PCS1, 620
LPSPI_PCS2, 621
LPSPI_PCS3, 621
LPSPI_RECEIVE_FAIL, 621
LPSPI_SCK_ACTIVE_HIGH, 620
LPSPI_SCK_ACTIVE_LOW, 620
LPSPI_TRANSFER_OK, 621
LPSPI_TRANSMIT_FAIL, 621
LPSPI_USING_DMA, 620
LPSPI_USING_INTERRUPTS, 620
lpspi_clock_phase_t, 620
lpspi_sck_polarity_t, 620
lpspi_signal_polarity_t, 620
lpspi_transfer_type, 620
lpspi_which_pcs_t, 620
transfer_status_t, 621

LPSPI0_IRQHandler
LPSPI Driver, 621

LPSPI1_IRQHandler
LPSPI Driver, 621

LPSPI2_IRQHandler
LPSPI Driver, 621

LPSPI_ACTIVE_HIGH
LPSPI Driver, 620

LPSPI_ACTIVE_LOW
LPSPI Driver, 620

LPSPI_CLOCK_PHASE_1ST_EDGE
LPSPI Driver, 620

LPSPI_CLOCK_PHASE_2ND_EDGE
LPSPI Driver, 620

LPSPI_DRV_DisableTEIEInterrupts
LPSPI Driver, 621

LPSPI_DRV_FillupTxBuffer
LPSPI Driver, 621

LPSPI_DRV_IRQHandler
LPSPI Driver, 621

LPSPI_DRV_MasterAbortTransfer
LPSPI Driver, 622

LPSPI_DRV_MasterConfigureBus
LPSPI Driver, 622

LPSPI_DRV_MasterDeinit
LPSPI Driver, 623

LPSPI_DRV_MasterGetDefaultConfig
LPSPI Driver, 623

LPSPI_DRV_MasterGetTransferStatus

LPSPI Driver, 623
LPSPI_DRV_MasterIRQHandler

LPSPI Driver, 624
LPSPI_DRV_MasterInit

LPSPI Driver, 623
LPSPI_DRV_MasterSetDelay

LPSPI Driver, 624
LPSPI_DRV_MasterTransfer

LPSPI Driver, 625
LPSPI_DRV_MasterTransferBlocking

LPSPI Driver, 625
LPSPI_DRV_ReadRXBuffer

LPSPI Driver, 626
LPSPI_DRV_SetPcs

LPSPI Driver, 626
LPSPI_DRV_SlaveAbortTransfer

LPSPI Driver, 626
LPSPI_DRV_SlaveDeinit

LPSPI Driver, 627
LPSPI_DRV_SlaveGetDefaultConfig

LPSPI Driver, 627
LPSPI_DRV_SlaveGetTransferStatus

LPSPI Driver, 627
LPSPI_DRV_SlaveIRQHandler

LPSPI Driver, 628
LPSPI_DRV_SlaveInit

LPSPI Driver, 627
LPSPI_DRV_SlaveTransfer

LPSPI Driver, 628
LPSPI_DRV_SlaveTransferBlocking

LPSPI Driver, 628
LPSPI_PCS0

LPSPI Driver, 620
LPSPI_PCS1

LPSPI Driver, 620
LPSPI_PCS2

LPSPI Driver, 621
LPSPI_PCS3

LPSPI Driver, 621
LPSPI_RECEIVE_FAIL

LPSPI Driver, 621
LPSPI_SCK_ACTIVE_HIGH

LPSPI Driver, 620
LPSPI_SCK_ACTIVE_LOW

LPSPI Driver, 620
LPSPI_TRANSFER_OK

LPSPI Driver, 621
LPSPI_TRANSMIT_FAIL

LPSPI Driver, 621
LPSPI_USING_DMA

LPSPI Driver, 620
LPSPI_USING_INTERRUPTS

LPSPI Driver, 620
LPTMR Driver, 630

LPTMR_CLOCKSOURCE_1KHZ_LPO, 634
LPTMR_CLOCKSOURCE_PCC, 634
LPTMR_CLOCKSOURCE_RTC, 634
LPTMR_CLOCKSOURCE_SIRCDIV2, 634

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1028 INDEX

LPTMR_COUNTER_UNITS_MICROSECONDS,
634

LPTMR_COUNTER_UNITS_TICKS, 634
LPTMR_DRV_ClearCompareFlag, 636
LPTMR_DRV_Deinit, 636
LPTMR_DRV_GetCompareFlag, 636
LPTMR_DRV_GetCompareValueByCount, 636
LPTMR_DRV_GetCompareValueByUs, 636
LPTMR_DRV_GetConfig, 637
LPTMR_DRV_GetCounterValueByCount, 637
LPTMR_DRV_Init, 637
LPTMR_DRV_InitConfigStruct, 637
LPTMR_DRV_IsRunning, 637
LPTMR_DRV_SetCompareValueByCount, 638
LPTMR_DRV_SetCompareValueByUs, 638
LPTMR_DRV_SetConfig, 638
LPTMR_DRV_SetInterrupt, 639
LPTMR_DRV_SetPinConfiguration, 639
LPTMR_DRV_StartCounter, 639
LPTMR_DRV_StopCounter, 639
LPTMR_PINPOLARITY_FALLING, 635
LPTMR_PINPOLARITY_RISING, 635
LPTMR_PINSELECT_ALT2, 635
LPTMR_PINSELECT_ALT3, 635
LPTMR_PINSELECT_TRGMUX, 635
LPTMR_PRESCALE_1024_GLITCHFILTER_512,

635
LPTMR_PRESCALE_128_GLITCHFILTER_64,

635
LPTMR_PRESCALE_16384_GLITCHFILTER_←↩

8192, 635
LPTMR_PRESCALE_16_GLITCHFILTER_8, 635
LPTMR_PRESCALE_2, 635
LPTMR_PRESCALE_2048_GLITCHFILTER_←↩

1024, 635
LPTMR_PRESCALE_256_GLITCHFILTER_128,

635
LPTMR_PRESCALE_32768_GLITCHFILTER_←↩

16384, 635
LPTMR_PRESCALE_32_GLITCHFILTER_16, 635
LPTMR_PRESCALE_4096_GLITCHFILTER_←↩

2048, 635
LPTMR_PRESCALE_4_GLITCHFILTER_2, 635
LPTMR_PRESCALE_512_GLITCHFILTER_256,

635
LPTMR_PRESCALE_64_GLITCHFILTER_32, 635
LPTMR_PRESCALE_65536_GLITCHFILTER_←↩

32768, 635
LPTMR_PRESCALE_8192_GLITCHFILTER_←↩

4096, 635
LPTMR_PRESCALE_8_GLITCHFILTER_4, 635
LPTMR_WORKMODE_PULSECOUNTER, 636
LPTMR_WORKMODE_TIMER, 636
lptmr_clocksource_t, 634
lptmr_counter_units_t, 634
lptmr_pinpolarity_t, 634
lptmr_pinselect_t, 635
lptmr_prescaler_t, 635

lptmr_workmode_t, 635
LPTMR_CLOCKSOURCE_1KHZ_LPO

LPTMR Driver, 634
LPTMR_CLOCKSOURCE_PCC

LPTMR Driver, 634
LPTMR_CLOCKSOURCE_RTC

LPTMR Driver, 634
LPTMR_CLOCKSOURCE_SIRCDIV2

LPTMR Driver, 634
LPTMR_COUNTER_UNITS_MICROSECONDS

LPTMR Driver, 634
LPTMR_COUNTER_UNITS_TICKS

LPTMR Driver, 634
LPTMR_DRV_ClearCompareFlag

LPTMR Driver, 636
LPTMR_DRV_Deinit

LPTMR Driver, 636
LPTMR_DRV_GetCompareFlag

LPTMR Driver, 636
LPTMR_DRV_GetCompareValueByCount

LPTMR Driver, 636
LPTMR_DRV_GetCompareValueByUs

LPTMR Driver, 636
LPTMR_DRV_GetConfig

LPTMR Driver, 637
LPTMR_DRV_GetCounterValueByCount

LPTMR Driver, 637
LPTMR_DRV_Init

LPTMR Driver, 637
LPTMR_DRV_InitConfigStruct

LPTMR Driver, 637
LPTMR_DRV_IsRunning

LPTMR Driver, 637
LPTMR_DRV_SetCompareValueByCount

LPTMR Driver, 638
LPTMR_DRV_SetCompareValueByUs

LPTMR Driver, 638
LPTMR_DRV_SetConfig

LPTMR Driver, 638
LPTMR_DRV_SetInterrupt

LPTMR Driver, 639
LPTMR_DRV_SetPinConfiguration

LPTMR Driver, 639
LPTMR_DRV_StartCounter

LPTMR Driver, 639
LPTMR_DRV_StopCounter

LPTMR Driver, 639
LPTMR_PINPOLARITY_FALLING

LPTMR Driver, 635
LPTMR_PINPOLARITY_RISING

LPTMR Driver, 635
LPTMR_PINSELECT_ALT2

LPTMR Driver, 635
LPTMR_PINSELECT_ALT3

LPTMR Driver, 635
LPTMR_PINSELECT_TRGMUX

LPTMR Driver, 635
LPTMR_PRESCALE_1024_GLITCHFILTER_512

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1029

LPTMR Driver, 635
LPTMR_PRESCALE_128_GLITCHFILTER_64

LPTMR Driver, 635
LPTMR_PRESCALE_16384_GLITCHFILTER_8192

LPTMR Driver, 635
LPTMR_PRESCALE_16_GLITCHFILTER_8

LPTMR Driver, 635
LPTMR_PRESCALE_2

LPTMR Driver, 635
LPTMR_PRESCALE_2048_GLITCHFILTER_1024

LPTMR Driver, 635
LPTMR_PRESCALE_256_GLITCHFILTER_128

LPTMR Driver, 635
LPTMR_PRESCALE_32768_GLITCHFILTER_16384

LPTMR Driver, 635
LPTMR_PRESCALE_32_GLITCHFILTER_16

LPTMR Driver, 635
LPTMR_PRESCALE_4096_GLITCHFILTER_2048

LPTMR Driver, 635
LPTMR_PRESCALE_4_GLITCHFILTER_2

LPTMR Driver, 635
LPTMR_PRESCALE_512_GLITCHFILTER_256

LPTMR Driver, 635
LPTMR_PRESCALE_64_GLITCHFILTER_32

LPTMR Driver, 635
LPTMR_PRESCALE_65536_GLITCHFILTER_32768

LPTMR Driver, 635
LPTMR_PRESCALE_8192_GLITCHFILTER_4096

LPTMR Driver, 635
LPTMR_PRESCALE_8_GLITCHFILTER_4

LPTMR Driver, 635
LPTMR_WORKMODE_PULSECOUNTER

LPTMR Driver, 636
LPTMR_WORKMODE_TIMER

LPTMR Driver, 636
LPUART Driver, 640

LPUART_10_BITS_PER_CHAR, 647
LPUART_8_BITS_PER_CHAR, 647
LPUART_9_BITS_PER_CHAR, 647
LPUART_DRV_AbortReceivingData, 647
LPUART_DRV_AbortSendingData, 648
LPUART_DRV_Deinit, 648
LPUART_DRV_GetBaudRate, 648
LPUART_DRV_GetDefaultConfig, 648
LPUART_DRV_GetReceiveStatus, 649
LPUART_DRV_GetTransmitStatus, 649
LPUART_DRV_Init, 650
LPUART_DRV_InstallRxCallback, 650
LPUART_DRV_InstallTxCallback, 650
LPUART_DRV_ReceiveData, 651
LPUART_DRV_ReceiveDataBlocking, 651
LPUART_DRV_ReceiveDataPolling, 651
LPUART_DRV_SendData, 652
LPUART_DRV_SendDataBlocking, 652
LPUART_DRV_SendDataPolling, 652
LPUART_DRV_SetBaudRate, 653
LPUART_DRV_SetRxBuffer, 653
LPUART_DRV_SetTxBuffer, 653

LPUART_ONE_STOP_BIT, 647
LPUART_PARITY_DISABLED, 647
LPUART_PARITY_EVEN, 647
LPUART_PARITY_ODD, 647
LPUART_TWO_STOP_BIT, 647
LPUART_USING_DMA, 647
LPUART_USING_INTERRUPTS, 647
lpuart_bit_count_per_char_t, 647
lpuart_parity_mode_t, 647
lpuart_stop_bit_count_t, 647
lpuart_transfer_type_t, 647

LPUART_10_BITS_PER_CHAR
LPUART Driver, 647

LPUART_8_BITS_PER_CHAR
LPUART Driver, 647

LPUART_9_BITS_PER_CHAR
LPUART Driver, 647

LPUART_DRV_AbortReceivingData
LPUART Driver, 647

LPUART_DRV_AbortSendingData
LPUART Driver, 648

LPUART_DRV_Deinit
LPUART Driver, 648

LPUART_DRV_GetBaudRate
LPUART Driver, 648

LPUART_DRV_GetDefaultConfig
LPUART Driver, 648

LPUART_DRV_GetReceiveStatus
LPUART Driver, 649

LPUART_DRV_GetTransmitStatus
LPUART Driver, 649

LPUART_DRV_Init
LPUART Driver, 650

LPUART_DRV_InstallRxCallback
LPUART Driver, 650

LPUART_DRV_InstallTxCallback
LPUART Driver, 650

LPUART_DRV_ReceiveData
LPUART Driver, 651

LPUART_DRV_ReceiveDataBlocking
LPUART Driver, 651

LPUART_DRV_ReceiveDataPolling
LPUART Driver, 651

LPUART_DRV_SendData
LPUART Driver, 652

LPUART_DRV_SendDataBlocking
LPUART Driver, 652

LPUART_DRV_SendDataPolling
LPUART Driver, 652

LPUART_DRV_SetBaudRate
LPUART Driver, 653

LPUART_DRV_SetRxBuffer
LPUART Driver, 653

LPUART_DRV_SetTxBuffer
LPUART Driver, 653

LPUART_ONE_STOP_BIT
LPUART Driver, 647

LPUART_PARITY_DISABLED

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1030 INDEX

LPUART Driver, 647
LPUART_PARITY_EVEN

LPUART Driver, 647
LPUART_PARITY_ODD

LPUART Driver, 647
LPUART_TWO_STOP_BIT

LPUART Driver, 647
LPUART_USING_DMA

LPUART Driver, 647
LPUART_USING_INTERRUPTS

LPUART Driver, 647
language_version

lin_protocol_user_config_t, 677
last_RSID

lin_tl_descriptor_t, 675
last_cfg_result

lin_tl_descriptor_t, 675
last_pid

lin_protocol_state_t, 681
lin_word_status_str_t, 667

ld_assign_NAD
Node configuration, 729

ld_assign_NAD_j2602
Node configuration, 727

ld_assign_frame_id_range
Node configuration, 729

ld_check_response
Node configuration, 731

ld_check_response_j2602
Node configuration, 727

ld_conditional_change_NAD
Node configuration, 731

ld_error_code
lin_tl_descriptor_t, 675

ld_get_raw
Raw API, 819

ld_init
Initialization, 521

ld_is_ready
Node configuration, 731

ld_is_ready_j2602
Node configuration, 727

ld_put_raw
Raw API, 819

ld_queue_status_t
Low level API, 685

ld_raw_rx_status
Raw API, 819

ld_raw_tx_status
Raw API, 820

ld_read_by_id
Node identification, 734

ld_read_by_id_callout
Low level API, 689

ld_read_configuration
Node configuration, 732

ld_receive_message
Cooked API, 278

ld_reconfig_msg_ID
Node configuration, 728

ld_return_data
lin_tl_descriptor_t, 675

ld_rx_status
Cooked API, 278

ld_save_configuration
Node configuration, 732

ld_send_message
Cooked API, 279

ld_set_configuration
Node configuration, 732

ld_tx_status
Cooked API, 279

length
can_message_t, 266
edma_scatter_gather_list_t, 295

lhc
sbc_int_config_t, 905

lin_associate_frame_t, 670
associated_uncond_frame_ptr, 670
coll_resolv_schd, 670
num_of_associated_uncond_frames, 671

lin_calc_max_header_timeout_cnt
Low level API, 689

lin_calc_max_res_timeout_cnt
Low level API, 689

lin_callback_t
LIN Driver, 568

lin_collision_resolve
LIN 2.1 Specific API, 556

lin_diag_service_callback
Common Transport Layer API, 238

lin_diagnostic_class_t
Low level API, 685

lin_diagnostic_state_t
Low level API, 685

lin_event_id_t
LIN Driver, 568

lin_frame_response_t
Low level API, 686

lin_frame_t, 671
flag_offset, 671
flag_size, 671
frame_data_ptr, 671
frm_len, 671
frm_offset, 671
frm_response, 671
frm_type, 671

lin_frame_type_t
Low level API, 686

lin_last_cfg_result_t
Low level API, 686

lin_lld_deinit
Low level API, 689

lin_lld_event_id_t
Low level API, 686

lin_lld_get_state

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1031

Low level API, 689
lin_lld_ignore_response

Low level API, 690
lin_lld_init

Low level API, 690
lin_lld_int_disable

Low level API, 690
lin_lld_int_enable

Low level API, 690
lin_lld_rx_response

Low level API, 691
lin_lld_set_low_power_mode

Low level API, 691
lin_lld_set_response

Low level API, 691
lin_lld_timeout_service

Low level API, 691
lin_lld_tx_header

Low level API, 692
lin_lld_tx_wake_up

Low level API, 692
lin_make_res_evnt_frame

LIN 2.1 Specific API, 556
lin_master_data_t, 678

active_schedule_id, 679
event_trigger_collision_flg, 679
flag_offset, 679
flag_size, 679
frm_offset, 679
frm_size, 679
master_data_buffer, 679
previous_schedule_id, 679
schedule_start_entry_ptr, 679
send_functional_request_flg, 680
send_slave_res_flg, 680

lin_message_status_t
Low level API, 687

lin_message_timeout_type_t
Low level API, 687

lin_node_attribute_t, 668
configured_NAD_ptr, 669
fault_state_signal_ptr, 669
initial_NAD, 669
N_As_timeout, 669
N_Cr_timeout, 669
num_frame_have_esignal, 669
num_of_fault_state_signal, 669
number_support_sid, 669
P2_min, 669
product_id, 669
resp_err_frm_id_ptr, 669
response_error, 670
response_error_bit_offset_ptr, 670
response_error_byte_offset_ptr, 670
ST_min, 670
serial_number, 670
service_flags_ptr, 670
service_supported_ptr, 670

lin_node_state_t
LIN Driver, 569

lin_pid_resp_callback_handler
Low level API, 692

lin_process_parity
Low level API, 693

lin_product_id_t, 970
function_id, 970
supplier_id, 970
variant, 970

lin_protocol_handle_t
Low level API, 687

lin_protocol_state_t, 680
baud_rate, 680
current_id, 680
diagnostic_mode, 680
error_in_response, 680
frame_timeout_cnt, 681
go_to_sleep_flg, 681
idle_timeout_cnt, 681
last_pid, 681
next_transmit_tick, 681
num_of_processed_frame, 681
overrun_flg, 681
response_buffer_ptr, 681
response_length, 681
save_config_flg, 681
successful_transfer, 681
transmit_error_resp_sig_flg, 682
word_status, 682

lin_protocol_user_config_t, 676
diagnostic_class, 677
frame_start, 677
frame_tbl_ptr, 677
function, 677
language_version, 677
lin_user_config_ptr, 677
list_identifiers_RAM_ptr, 677
list_identifiers_ROM_ptr, 677
master_ifc_handle, 677
max_idle_timeout_cnt, 678
max_message_length, 678
num_of_schedules, 678
number_of_configurable_frames, 678
protocol_version, 678
schedule_start, 678
schedule_tbl, 678
slave_ifc_handle, 678
tl_rx_queue_data_ptr, 678
tl_tx_queue_data_ptr, 678

lin_sch_tbl_type_t
Low level API, 687

lin_schedule_data_t, 672
delay_integer, 672
frm_id, 672
tl_queue_data, 672

lin_schedule_t, 672
num_slots, 672

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1032 INDEX

ptr_sch_data_ptr, 672
sch_tbl_type, 672

lin_serial_number_t, 668
serial_0, 668
serial_1, 668
serial_2, 668
serial_3, 668

lin_service_status_t
Low level API, 688

lin_state_t, 565
baudrateEvalEnable, 566
Callback, 566
checkSum, 566
cntByte, 566
currentEventId, 566
currentId, 566
currentNodeState, 566
currentPid, 566
fallingEdgeInterruptCount, 566
isBusBusy, 566
isRxBlocking, 566
isRxBusy, 566
isTxBlocking, 567
isTxBusy, 567
linSourceClockFreq, 567
rxBuff, 567
rxCompleted, 567
rxSize, 567
timeoutCounter, 567
timeoutCounterFlag, 567
txBuff, 567
txCompleted, 567
txSize, 567

lin_timer_get_time_interval_t
LIN Driver, 568

lin_tl_callback_handler
Low level API, 693

lin_tl_callback_return_t
Low level API, 688

lin_tl_descriptor_t, 673
check_timeout, 674
check_timeout_type, 674
diag_interleave_state, 674
diag_state, 674
FF_pdu_received, 674
frame_counter, 674
interleave_timeout_counter, 675
last_RSID, 675
last_cfg_result, 675
ld_error_code, 675
ld_return_data, 675
num_of_pdu, 675
product_id_ptr, 675
receive_NAD_ptr, 675
receive_message_length_ptr, 675
receive_message_ptr, 675
rx_msg_size, 675
rx_msg_status, 676

service_status, 676
slave_resp_cnt, 676
tl_rx_queue, 676
tl_tx_queue, 676
tx_msg_size, 676
tx_msg_status, 676

lin_tl_event_id_t
Low level API, 688

lin_tl_pdu_data_t
Low level API, 684

lin_tl_queue_t
Low level API, 684

lin_transport_layer_queue_t, 673
queue_current_size, 673
queue_header, 673
queue_max_size, 673
queue_status, 673
queue_tail, 673
tl_pdu_ptr, 673

lin_update_err_signal
LIN 2.1 Specific API, 557

lin_update_rx_evnt_frame
LIN 2.1 Specific API, 557

lin_update_word_status_lin21
LIN 2.1 Specific API, 557

lin_user_config_ptr
lin_protocol_user_config_t, 677

lin_user_config_t, 564
autobaudEnable, 564
baudRate, 564
classicPID, 564
nodeFunction, 565
numOfClassicPID, 565
timerGetTimeIntervalCallback, 565

lin_word_status_str_t, 666
bus_activity, 667
error_in_res, 667
event_trigger_collision_flg, 667
go_to_sleep_flg, 667
last_pid, 667
overrun, 667
reserved, 667
save_config_flg, 667
successful_transfer, 667

linSourceClockFreq
lin_state_t, 567

list_identifiers_RAM_ptr
lin_protocol_user_config_t, 677

list_identifiers_ROM_ptr
lin_protocol_user_config_t, 677

loadValueMode
pdb_timer_config_t, 760

Local Interconnect Network (LIN), 655
lockMask

sbc_int_config_t, 905
lockRegisterLock

rtc_register_lock_config_t, 810
lockTargetModuleReg

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1033

trgmux_inout_mapping_config_t, 873
locked

scg_firc_config_t, 210
scg_sirc_config_t, 209
scg_sosc_config_t, 208
scg_spll_config_t, 211

loopTransferConfig
edma_transfer_config_t, 298

Low level API, 663
CALLBACK_HANDLER, 682
DIAG_INTERLEAVE_MODE, 685
DIAG_NO_RESPONSE, 685
DIAG_NONE, 685
DIAG_NOT_START, 685
DIAG_ONLY_MODE, 685
DIAG_RESPONSE, 685
diag_interleaved_state_t, 684
g_buffer_backup_data, 693
g_lin_flag_handle_tbl, 693
g_lin_frame_data_buffer, 693
g_lin_frame_flag_handle_tbl, 693
g_lin_frame_updating_flag_tbl, 693
g_lin_hardware_ifc, 693
g_lin_master_data_array, 693
g_lin_node_attribute_array, 693
g_lin_protocol_state_array, 693
g_lin_protocol_user_cfg_array, 693
g_lin_tl_descriptor_array, 693
g_lin_virtual_ifc, 694
l_diagnostic_mode_t, 685
LD_CHECK_N_AS_TIMEOUT, 687
LD_CHECK_N_CR_TIMEOUT, 687
LD_COMPLETED, 687
LD_DATA_AVAILABLE, 685
LD_DIAG_IDLE, 686
LD_DIAG_RX_FUNCTIONAL, 686
LD_DIAG_RX_INTERLEAVED, 686
LD_DIAG_RX_PHY, 686
LD_DIAG_TX_FUNCTIONAL, 686
LD_DIAG_TX_INTERLEAVED, 686
LD_DIAG_TX_PHY, 686
LD_FAILED, 687
LD_IN_PROGRESS, 687
LD_N_AS_TIMEOUT, 687
LD_N_CR_TIMEOUT, 687
LD_NEGATIVE, 686
LD_NEGATIVE_RESPONSE, 682
LD_NO_CHECK_TIMEOUT, 687
LD_NO_DATA, 685
LD_NO_MSG, 687
LD_NO_RESPONSE, 686
LD_OVERWRITTEN, 686
LD_POSITIVE_RESPONSE, 682
LD_QUEUE_AVAILABLE, 685
LD_QUEUE_EMPTY, 685
LD_QUEUE_FULL, 685
LD_RECEIVE_ERROR, 685
LD_REQUEST_FINISHED, 688

LD_SERVICE_BUSY, 688
LD_SERVICE_ERROR, 688
LD_SERVICE_IDLE, 688
LD_SUCCESS, 686
LD_TRANSFER_ERROR, 685
LD_TRANSMIT_ERROR, 685
LD_WRONG_SN, 687
LIN_DIAGNOSTIC_CLASS_I, 685
LIN_DIAGNOSTIC_CLASS_II, 685
LIN_DIAGNOSTIC_CLASS_III, 685
LIN_FRM_DIAG, 686
LIN_FRM_EVNT, 686
LIN_FRM_SPRDC, 686
LIN_FRM_UNCD, 686
LIN_LLD_BUS_ACTIVITY_TIMEOUT, 687
LIN_LLD_CHECKSUM_ERR, 687
LIN_LLD_ERROR, 682
LIN_LLD_FRAME_ERR, 687
LIN_LLD_NODATA_TIMEOUT, 687
LIN_LLD_OK, 682
LIN_LLD_PID_ERR, 687
LIN_LLD_PID_OK, 687
LIN_LLD_READBACK_ERR, 687
LIN_LLD_RX_COMPLETED, 687
LIN_LLD_TX_COMPLETED, 687
LIN_MASTER, 682
LIN_PROTOCOL_13, 687
LIN_PROTOCOL_20, 687
LIN_PROTOCOL_21, 687
LIN_PROTOCOL_J2602, 687
LIN_READ_USR_DEF_MAX, 682
LIN_READ_USR_DEF_MIN, 682
LIN_RES_PUB, 686
LIN_RES_SUB, 686
LIN_SCH_TBL_COLL_RESOLV, 688
LIN_SCH_TBL_DIAG, 688
LIN_SCH_TBL_GO_TO_SLEEP, 688
LIN_SCH_TBL_NORM, 688
LIN_SCH_TBL_NULL, 688
LIN_SLAVE, 683
LIN_TL_CALLBACK_HANDLER, 683
ld_queue_status_t, 685
ld_read_by_id_callout, 689
lin_calc_max_header_timeout_cnt, 689
lin_calc_max_res_timeout_cnt, 689
lin_diagnostic_class_t, 685
lin_diagnostic_state_t, 685
lin_frame_response_t, 686
lin_frame_type_t, 686
lin_last_cfg_result_t, 686
lin_lld_deinit, 689
lin_lld_event_id_t, 686
lin_lld_get_state, 689
lin_lld_ignore_response, 690
lin_lld_init, 690
lin_lld_int_disable, 690
lin_lld_int_enable, 690
lin_lld_rx_response, 691

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1034 INDEX

lin_lld_set_low_power_mode, 691
lin_lld_set_response, 691
lin_lld_timeout_service, 691
lin_lld_tx_header, 692
lin_lld_tx_wake_up, 692
lin_message_status_t, 687
lin_message_timeout_type_t, 687
lin_pid_resp_callback_handler, 692
lin_process_parity, 693
lin_protocol_handle_t, 687
lin_sch_tbl_type_t, 687
lin_service_status_t, 688
lin_tl_callback_handler, 693
lin_tl_callback_return_t, 688
lin_tl_event_id_t, 688
lin_tl_pdu_data_t, 684
lin_tl_queue_t, 684
PCI_RES_ASSIGN_FRAME_ID_RANGE, 683
PCI_RES_READ_BY_IDENTIFY, 683
PCI_RES_SAVE_CONFIGURATION, 683
PCI_SAVE_CONFIGURATION, 683
SERIVCE_FAULT_MEMORY_CLEAR, 683
SERVICE_ASSIGN_FRAME_ID, 683
SERVICE_ASSIGN_FRAME_ID_RANGE, 683
SERVICE_ASSIGN_NAD, 683
SERVICE_CONDITIONAL_CHANGE_NAD, 683
SERVICE_FAULT_MEMORY_READ, 684
SERVICE_IO_CONTROL_BY_IDENTIFY, 684
SERVICE_READ_BY_IDENTIFY, 684
SERVICE_READ_DATA_BY_IDENTIFY, 684
SERVICE_SAVE_CONFIGURATION, 684
SERVICE_SESSION_CONTROL, 684
SERVICE_WRITE_DATA_BY_IDENTIFY, 684
TL_ACTION_ID_IGNORE, 688
TL_ACTION_NONE, 688
TL_ERROR, 688
TL_HANDLER_INTERLEAVE_MODE, 688
TL_MAKE_RES_DATA, 688
TL_RECEIVE_MESSAGE, 688
TL_RX_COMPLETED, 688
TL_SLAVE_GET_ACTION, 688
TL_TIMEOUT_SERVICE, 688
TL_TX_COMPLETED, 688
timerGetTimeIntervalCallbackArr, 694

Low Power Inter-Integrated Circuit (LPI2C), 656
Low Power Interrupt Timer (LPIT), 657
Low Power Serial Peripheral Interface (LPSPI), 658
Low Power Timer (LPTMR), 661
Low Power Universal Asynchronous Receiver-←↩

Transmitter (LPUART), 662
lpi2c_baud_rate_params_t, 586

baudRate, 587
lpi2c_master_state_t, 587
lpi2c_master_user_config_t, 584

baudRate, 585
callbackParam, 585
dmaChannel, 585
is10bitAddr, 585

masterCallback, 585
operatingMode, 585
slaveAddress, 585
transferType, 585

lpi2c_mode_t
LPI2C Driver, 587

lpi2c_slave_state_t, 587
lpi2c_slave_user_config_t, 585

callbackParam, 586
dmaChannel, 586
is10bitAddr, 586
operatingMode, 586
slaveAddress, 586
slaveCallback, 586
slaveListening, 586
transferType, 586

lpi2c_transfer_type_t
LPI2C Driver, 587

lpit_period_units_t
LPIT Driver, 603

lpit_timer_modes_t
LPIT Driver, 603

lpit_trigger_source_t
LPIT Driver, 603

lpit_user_channel_config_t, 601
chainChannel, 601
enableReloadOnTrigger, 601
enableStartOnTrigger, 601
enableStopOnInterrupt, 602
isInterruptEnabled, 602
period, 602
periodUnits, 602
timerMode, 602
triggerSelect, 602
triggerSource, 602

lpit_user_config_t, 601
enableRunInDebug, 601
enableRunInDoze, 601

lpoClockConfig
pmc_config_t, 215
sim_clock_config_t, 206

lpspi_clock_phase_t
LPSPI Driver, 620

lpspi_master_config_t, 614
bitcount, 614
bitsPerSec, 614
callback, 615
callbackParam, 615
clkPhase, 615
clkPolarity, 615
isPcsContinuous, 615
lpspiSrcClk, 615
lsbFirst, 615
pcsPolarity, 615
rxDMAChannel, 615
transferType, 615
txDMAChannel, 615
whichPcs, 616

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1035

lpspi_sck_polarity_t
LPSPI Driver, 620

lpspi_signal_polarity_t
LPSPI Driver, 620

lpspi_slave_config_t, 618
bitcount, 619
callback, 619
callbackParam, 619
clkPhase, 619
clkPolarity, 619
lsbFirst, 619
pcsPolarity, 619
rxDMAChannel, 619
transferType, 619
txDMAChannel, 619
whichPcs, 620

lpspi_state_t, 616
bitsPerFrame, 616
bytesPerFrame, 616
callback, 616
callbackParam, 617
dummy, 617
fifoSize, 617
isBlocking, 617
isPcsContinuous, 617
isTransferInProgress, 617
lpspiSemaphore, 617
lpspiSrcClk, 617
lsb, 617
rxBuff, 617
rxCount, 617
rxDMAChannel, 618
rxFrameCnt, 618
status, 618
transferType, 618
txBuff, 618
txCount, 618
txDMAChannel, 618
txFrameCnt, 618

lpspi_transfer_type
LPSPI Driver, 620

lpspi_which_pcs_t
LPSPI Driver, 620

lpspiIntace
drv_config_t, 968

lpspiSemaphore
lpspi_state_t, 617

lpspiSrcClk
lpspi_master_config_t, 615
lpspi_state_t, 617

lptmr_clocksource_t
LPTMR Driver, 634

lptmr_config_t, 633
bypassPrescaler, 633
clockSelect, 633
compareValue, 633
counterUnits, 633
dmaRequest, 633

freeRun, 633
interruptEnable, 634
pinPolarity, 634
pinSelect, 634
prescaler, 634
workMode, 634

lptmr_counter_units_t
LPTMR Driver, 634

lptmr_pinpolarity_t
LPTMR Driver, 634

lptmr_pinselect_t
LPTMR Driver, 635

lptmr_prescaler_t
LPTMR Driver, 635

lptmr_workmode_t
LPTMR Driver, 635

lpuart_bit_count_per_char_t
LPUART Driver, 647

lpuart_parity_mode_t
LPUART Driver, 647

lpuart_state_t, 643
bitCountPerChar, 644
isRxBlocking, 644
isRxBusy, 644
isTxBlocking, 644
isTxBusy, 644
receiveStatus, 644
rxBuff, 644
rxCallback, 644
rxCallbackParam, 645
rxComplete, 645
rxSize, 645
transferType, 645
transmitStatus, 645
txBuff, 645
txCallback, 645
txCallbackParam, 645
txComplete, 645
txSize, 645

lpuart_stop_bit_count_t
LPUART Driver, 647

lpuart_transfer_type_t
LPUART Driver, 647

lpuart_user_config_t, 646
baudRate, 646
bitCountPerChar, 646
parityMode, 646
rxDMAChannel, 646
stopBitCount, 646
transferType, 646
txDMAChannel, 646

lsb
lpspi_state_t, 617

lsbFirst
lpspi_master_config_t, 615
lpspi_slave_config_t, 619

MAKE_PARITY
LIN Driver, 568

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1036 INDEX

MASTER
LIN Driver, 568

MAX_PERIOD_COUNT
LPIT Driver, 602

MAX_PERIOD_COUNT_16_BIT
LPIT Driver, 602

MAX_PERIOD_COUNT_IN_DUAL_16BIT_MODE
LPIT Driver, 602

MINS_IN_A_HOUR
RTC Driver, 810

MPU Driver, 695
MPU_DATA_ACCESS_IN_SUPERVISOR_MO←↩

DE, 706
MPU_DATA_ACCESS_IN_USER_MODE, 706
MPU_DRV_Deinit, 706
MPU_DRV_EnableRegion, 706
MPU_DRV_GetDefaultRegionConfig, 706
MPU_DRV_GetDetailErrorAccessInfo, 706
MPU_DRV_Init, 707
MPU_DRV_SetMasterAccessRights, 707
MPU_DRV_SetRegionAddr, 707
MPU_DRV_SetRegionConfig, 708
MPU_ERR_TYPE_READ, 705
MPU_ERR_TYPE_WRITE, 705
MPU_INSTRUCTION_ACCESS_IN_SUPERVIS←↩

OR_MODE, 706
MPU_INSTRUCTION_ACCESS_IN_USER_MO←↩

DE, 706
MPU_NONE, 705
MPU_R, 705
MPU_RW, 705
MPU_SUPERVISOR_RW_USER_NONE, 705
MPU_SUPERVISOR_RW_USER_R, 705
MPU_SUPERVISOR_RW_USER_RW, 705
MPU_SUPERVISOR_RW_USER_RWX, 705
MPU_SUPERVISOR_RW_USER_RX, 705
MPU_SUPERVISOR_RW_USER_W, 705
MPU_SUPERVISOR_RW_USER_WX, 705
MPU_SUPERVISOR_RW_USER_X, 705
MPU_SUPERVISOR_RWX_USER_NONE, 704
MPU_SUPERVISOR_RWX_USER_R, 705
MPU_SUPERVISOR_RWX_USER_RW, 705
MPU_SUPERVISOR_RWX_USER_RWX, 705
MPU_SUPERVISOR_RWX_USER_RX, 705
MPU_SUPERVISOR_RWX_USER_W, 704
MPU_SUPERVISOR_RWX_USER_WX, 704
MPU_SUPERVISOR_RWX_USER_X, 704
MPU_SUPERVISOR_RX_USER_NONE, 705
MPU_SUPERVISOR_RX_USER_R, 705
MPU_SUPERVISOR_RX_USER_RW, 705
MPU_SUPERVISOR_RX_USER_RWX, 705
MPU_SUPERVISOR_RX_USER_RX, 705
MPU_SUPERVISOR_RX_USER_W, 705
MPU_SUPERVISOR_RX_USER_WX, 705
MPU_SUPERVISOR_RX_USER_X, 705
MPU_SUPERVISOR_USER_NONE, 705
MPU_SUPERVISOR_USER_R, 705
MPU_SUPERVISOR_USER_RW, 705

MPU_SUPERVISOR_USER_RWX, 705
MPU_SUPERVISOR_USER_RX, 705
MPU_SUPERVISOR_USER_W, 705
MPU_SUPERVISOR_USER_WX, 705
MPU_SUPERVISOR_USER_X, 705
MPU_W, 705
mpu_access_rights_t, 702
mpu_err_access_type_t, 705
mpu_err_attributes_t, 705

MPU PAL, 709
MPU_Deinit, 717
MPU_ERROR_SUPERVISOR_MODE_DATA_A←↩

CCESS, 717
MPU_ERROR_SUPERVISOR_MODE_INSTRU←↩

CTION_ACCESS, 717
MPU_ERROR_TYPE_READ, 716
MPU_ERROR_TYPE_WRITE, 716
MPU_ERROR_USER_MODE_DATA_ACCESS,

717
MPU_ERROR_USER_MODE_INSTRUCTION_←↩

ACCESS, 717
MPU_EnableRegion, 717
MPU_GetDefautRegionConfig, 718
MPU_GetError, 718
MPU_Init, 718
MPU_UpdateRegion, 719
mpu_access_permission_t, 714
mpu_error_access_type_t, 716
mpu_error_attributes_t, 716
mpu_inst_type_t, 717

MPU_DATA_ACCESS_IN_SUPERVISOR_MODE
MPU Driver, 706

MPU_DATA_ACCESS_IN_USER_MODE
MPU Driver, 706

MPU_DRV_Deinit
MPU Driver, 706

MPU_DRV_EnableRegion
MPU Driver, 706

MPU_DRV_GetDefaultRegionConfig
MPU Driver, 706

MPU_DRV_GetDetailErrorAccessInfo
MPU Driver, 706

MPU_DRV_Init
MPU Driver, 707

MPU_DRV_SetMasterAccessRights
MPU Driver, 707

MPU_DRV_SetRegionAddr
MPU Driver, 707

MPU_DRV_SetRegionConfig
MPU Driver, 708

MPU_Deinit
MPU PAL, 717

MPU_ERR_TYPE_READ
MPU Driver, 705

MPU_ERR_TYPE_WRITE
MPU Driver, 705

MPU_ERROR_SUPERVISOR_MODE_DATA_ACCE←↩

SS

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1037

MPU PAL, 717
MPU_ERROR_SUPERVISOR_MODE_INSTRUCTIO←↩

N_ACCESS
MPU PAL, 717

MPU_ERROR_TYPE_READ
MPU PAL, 716

MPU_ERROR_TYPE_WRITE
MPU PAL, 716

MPU_ERROR_USER_MODE_DATA_ACCESS
MPU PAL, 717

MPU_ERROR_USER_MODE_INSTRUCTION_ACC←↩

ESS
MPU PAL, 717

MPU_EnableRegion
MPU PAL, 717

MPU_GetDefautRegionConfig
MPU PAL, 718

MPU_GetError
MPU PAL, 718

MPU_INSTRUCTION_ACCESS_IN_SUPERVISOR_←↩

MODE
MPU Driver, 706

MPU_INSTRUCTION_ACCESS_IN_USER_MODE
MPU Driver, 706

MPU_Init
MPU PAL, 718

MPU_NONE
MPU Driver, 705

MPU_R
MPU Driver, 705

MPU_RW
MPU Driver, 705

MPU_SUPERVISOR_RW_USER_NONE
MPU Driver, 705

MPU_SUPERVISOR_RW_USER_R
MPU Driver, 705

MPU_SUPERVISOR_RW_USER_RW
MPU Driver, 705

MPU_SUPERVISOR_RW_USER_RWX
MPU Driver, 705

MPU_SUPERVISOR_RW_USER_RX
MPU Driver, 705

MPU_SUPERVISOR_RW_USER_W
MPU Driver, 705

MPU_SUPERVISOR_RW_USER_WX
MPU Driver, 705

MPU_SUPERVISOR_RW_USER_X
MPU Driver, 705

MPU_SUPERVISOR_RWX_USER_NONE
MPU Driver, 704

MPU_SUPERVISOR_RWX_USER_R
MPU Driver, 705

MPU_SUPERVISOR_RWX_USER_RW
MPU Driver, 705

MPU_SUPERVISOR_RWX_USER_RWX
MPU Driver, 705

MPU_SUPERVISOR_RWX_USER_RX
MPU Driver, 705

MPU_SUPERVISOR_RWX_USER_W
MPU Driver, 704

MPU_SUPERVISOR_RWX_USER_WX
MPU Driver, 704

MPU_SUPERVISOR_RWX_USER_X
MPU Driver, 704

MPU_SUPERVISOR_RX_USER_NONE
MPU Driver, 705

MPU_SUPERVISOR_RX_USER_R
MPU Driver, 705

MPU_SUPERVISOR_RX_USER_RW
MPU Driver, 705

MPU_SUPERVISOR_RX_USER_RWX
MPU Driver, 705

MPU_SUPERVISOR_RX_USER_RX
MPU Driver, 705

MPU_SUPERVISOR_RX_USER_W
MPU Driver, 705

MPU_SUPERVISOR_RX_USER_WX
MPU Driver, 705

MPU_SUPERVISOR_RX_USER_X
MPU Driver, 705

MPU_SUPERVISOR_USER_NONE
MPU Driver, 705

MPU_SUPERVISOR_USER_R
MPU Driver, 705

MPU_SUPERVISOR_USER_RW
MPU Driver, 705

MPU_SUPERVISOR_USER_RWX
MPU Driver, 705

MPU_SUPERVISOR_USER_RX
MPU Driver, 705

MPU_SUPERVISOR_USER_W
MPU Driver, 705

MPU_SUPERVISOR_USER_WX
MPU Driver, 705

MPU_SUPERVISOR_USER_X
MPU Driver, 705

MPU_UpdateRegion
MPU PAL, 719

MPU_W
MPU Driver, 705

MULTIPLY_BY_ONE
Clock Manager Driver, 223

MULTIPLY_BY_TWO
Clock Manager Driver, 223

mac
csec_state_t, 179

macLen
csec_state_t, 179

macWritten
csec_state_t, 180

mainChannelPolarity
ftm_combined_ch_param_t, 498

mainChannelSafeState
ftm_combined_ch_param_t, 498

mainS
sbc_status_group_t, 913

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1038 INDEX

majorLoopChnLinkEnable
edma_loop_transfer_config_t, 296

majorLoopChnLinkNumber
edma_loop_transfer_config_t, 296

majorLoopIterationCount
edma_loop_transfer_config_t, 296

mask
sbc_can_conf_t, 904

maskRegSync
ftm_pwm_sync_t, 440

master
mpu_access_err_info_t, 701
mpu_error_info_t, 712

master_data_buffer
lin_master_data_t, 679

master_ifc_handle
lin_protocol_user_config_t, 677

masterAccRight
mpu_region_config_t, 713
mpu_user_config_t, 702

masterCallback
lpi2c_master_user_config_t, 585

masterNum
mpu_master_access_permission_t, 713
mpu_master_access_right_t, 701

max_idle_timeout_cnt
lin_protocol_user_config_t, 678

max_message_length
lin_protocol_user_config_t, 678

max_num_mb
flexcan_user_config_t, 368

maxBuffNum
can_user_config_t, 267

maxCountValue
extension_ftm_for_oc_t, 750
ftm_output_cmp_param_t, 484

maxLoadingPoint
ftm_pwm_sync_t, 440

maxVal
ftm_quad_decode_config_t, 507

mb_message
flexcan_mb_handle_t, 364

mbSema
flexcan_mb_handle_t, 364

mbs
FlexCANState, 365

measurementResults
ftm_state_t, 439

measurementType
ftm_input_ch_param_t, 473

Memory Protection Unit (MPU), 720
Memory Protection Unit Peripheral Abstraction Layer (←↩

MPU PAL), 722
minLoadingPoint

ftm_pwm_sync_t, 440
minorByteTransferCount

edma_transfer_config_t, 298
minorLoopChnLinkEnable

edma_loop_transfer_config_t, 297
minorLoopChnLinkNumber

edma_loop_transfer_config_t, 297
minorLoopOffset

edma_loop_transfer_config_t, 297
minutes

rtc_timedate_t, 806
misoPin

extension_flexio_for_spi_t, 855
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 415

mode
can_user_config_t, 267
cmp_comparator_t, 246
ftm_output_cmp_param_t, 484
ftm_pwm_param_t, 499
ftm_quad_decode_config_t, 507
ftm_timer_param_t, 480
i2s_user_config_t, 516
sbc_int_config_t, 905

modeControl
sbc_wtdog_ctr_t, 898

module_clk_config_t, 216
div, 216
gating, 216
mul, 216
source, 216

monitorMode
scg_sosc_config_t, 208
scg_spll_config_t, 211

month
rtc_timedate_t, 806

mosiPin
extension_flexio_for_spi_t, 855
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 415

mpu_access_err_info_t, 700
accessCtr, 701
accessType, 701
addr, 701
attributes, 701
master, 701

mpu_access_permission_t
MPU PAL, 714

mpu_access_rights_t
MPU Driver, 702

mpu_err_access_type_t
MPU Driver, 705

mpu_err_attributes_t
MPU Driver, 705

mpu_error_access_type_t
MPU PAL, 716

mpu_error_attributes_t
MPU PAL, 716

mpu_error_info_t, 712
accessCtr, 712
accessType, 712
addr, 712

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1039

attributes, 712
master, 712
overrun, 712
processId, 712

mpu_inst_type_t
MPU PAL, 717

mpu_instance_t, 971
instIdx, 971
instType, 971

mpu_master_access_permission_t, 712
accessRight, 713
masterNum, 713

mpu_master_access_right_t, 701
accessRight, 701
masterNum, 701

mpu_region_config_t, 713
endAddr, 713
extension, 713
masterAccRight, 713
processIdEnable, 713
processIdMask, 714
processIdentifier, 714
startAddr, 714

mpu_user_config_t, 701
endAddr, 702
masterAccRight, 702
startAddr, 702

msg_id_type
flexcan_data_info_t, 366

msgId
flexcan_msgbuff_t, 364

msgLen
csec_state_t, 180

mul
clock_source_config_t, 217
module_clk_config_t, 216

mult
scg_spll_config_t, 211

mux
cmp_module_t, 249
pin_settings_config_t, 769

N_As_timeout
lin_node_attribute_t, 669

N_Cr_timeout
lin_node_attribute_t, 669

NBYTES
edma_software_tcd_t, 300

NEGATIVE
Common Transport Layer API, 237

nMaxCountValue
ftm_input_param_t, 474

nNumChannels
ftm_input_param_t, 474
ic_config_t, 527
oc_config_t, 750

nNumCombinedPwmChannels
ftm_pwm_param_t, 499

nNumIndependentPwmChannels

ftm_pwm_param_t, 499
nNumOutputChannels

ftm_output_cmp_param_t, 485
NO_MODE

Clock Manager Driver, 223
NULL_CALLBACK

Flash Memory (Flash), 342
NUMBER_OF_TCLK_INPUTS

Clock Manager Driver, 221
negativeInputMux

cmp_anmux_t, 246
negativePortMux

cmp_anmux_t, 246
next_transmit_tick

lin_protocol_state_t, 681
nms

sbc_main_status_t, 907
Node configuration, 727, 729

ld_assign_NAD, 729
ld_assign_NAD_j2602, 727
ld_assign_frame_id_range, 729
ld_check_response, 731
ld_check_response_j2602, 727
ld_conditional_change_NAD, 731
ld_is_ready, 731
ld_is_ready_j2602, 727
ld_read_configuration, 732
ld_reconfig_msg_ID, 728
ld_save_configuration, 732
ld_set_configuration, 732

Node identification, 734
ld_read_by_id, 734

nodeFunction
lin_user_config_t, 565

nominalBitrate
can_user_config_t, 267

nominalPeriod
sbc_wtdog_ctr_t, 898

nonSupervisorAccessEnable
rtc_init_config_t, 807

Notification, 735
notifyType

clock_notify_struct_t, 218
power_manager_notify_struct_t, 778

num_frame_have_esignal
lin_node_attribute_t, 669

num_id_filters
flexcan_user_config_t, 368

num_of_associated_uncond_frames
lin_associate_frame_t, 671

num_of_fault_state_signal
lin_node_attribute_t, 669

num_of_pdu
lin_tl_descriptor_t, 675

num_of_processed_frame
lin_protocol_state_t, 681

num_of_schedules
lin_protocol_user_config_t, 678

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1040 INDEX

num_slots
lin_schedule_t, 672

numChan
timer_config_t, 884

numChannels
adc_group_config_t, 159

numGroups
adc_config_t, 160

numIdFilters
extension_flexcan_rx_fifo_t, 268

numInOutMappingConfigs
trgmux_user_config_t, 874

numOfClassicPID
lin_user_config_t, 565

numOfRecordReqMaintain
Flash Memory (Flash), 352

numSetsResultBuffer
adc_group_config_t, 159

number_of_configurable_frames
lin_protocol_user_config_t, 678

number_support_sid
lin_node_attribute_t, 669

numberOfPwmChannels
pwm_global_config_t, 800

numberOfRepeats
rtc_alarm_config_t, 808

nvmps
sbc_mtpnv_stat_t, 913

OC_ABSOLUTE_VALUE
Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 751
OC_CLEAR_ON_MATCH

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 750
OC_DISABLE_OUTPUT

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 750
OC_Deinit

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 751
OC_DisableNotification

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 751
OC_EnableNotification

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 751
OC_Init

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 751
OC_RELATIVE_VALUE

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 751
OC_SET_ON_MATCH

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 750
OC_SetCompareValue

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 752

OC_SetOutputAction
Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 752
OC_SetOutputState

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 753
OC_StartChannel

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 753
OC_StopChannel

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 753
OC_TOGGLE_ON_MATCH

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 750
OS Interface (OSIF), 736

OSIF_GetMilliseconds, 738
OSIF_MutexCreate, 738
OSIF_MutexDestroy, 740
OSIF_MutexLock, 740
OSIF_MutexUnlock, 740
OSIF_SemaCreate, 740
OSIF_SemaDestroy, 742
OSIF_SemaPost, 742
OSIF_SemaWait, 742
OSIF_TimeDelay, 742
OSIF_WAIT_FOREVER, 738

OSIF_GetMilliseconds
OS Interface (OSIF), 738

OSIF_MutexCreate
OS Interface (OSIF), 738

OSIF_MutexDestroy
OS Interface (OSIF), 740

OSIF_MutexLock
OS Interface (OSIF), 740

OSIF_MutexUnlock
OS Interface (OSIF), 740

OSIF_SemaCreate
OS Interface (OSIF), 740

OSIF_SemaDestroy
OS Interface (OSIF), 742

OSIF_SemaPost
OS Interface (OSIF), 742

OSIF_SemaWait
OS Interface (OSIF), 742

OSIF_TimeDelay
OS Interface (OSIF), 742

OSIF_WAIT_FOREVER
OS Interface (OSIF), 738

OVERRUN
Common Core API., 233

oc_config_t, 749
extension, 749
nNumChannels, 750
outputChConfig, 750

oc_instance_t, 971
instIdx, 972
instType, 972

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1041

oc_option_mode_t
Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 750
oc_option_update_t

Output Compare - Peripheral Abstraction Layer (←↩

OC PAL), 750
oc_output_ch_param_t, 748

chMode, 749
channelCallbackParams, 749
channelCallbacks, 749
channelExtension, 749
comparedValue, 749
hwChannelId, 749

oc_pal_state_t, 972
opMode

wdg_config_t, 948
wdog_user_config_t, 956

operatingMode
i2c_master_t, 536
i2c_slave_t, 537
lpi2c_master_user_config_t, 585
lpi2c_slave_user_config_t, 586

otw
sbc_sys_evnt_stat_t, 910

otws
sbc_main_status_t, 907

outRegSync
ftm_pwm_sync_t, 441

Output Compare - Peripheral Abstraction Layer (OC P←↩

AL), 745
OC_ABSOLUTE_VALUE, 751
OC_CLEAR_ON_MATCH, 750
OC_DISABLE_OUTPUT, 750
OC_Deinit, 751
OC_DisableNotification, 751
OC_EnableNotification, 751
OC_Init, 751
OC_RELATIVE_VALUE, 751
OC_SET_ON_MATCH, 750
OC_SetCompareValue, 752
OC_SetOutputAction, 752
OC_SetOutputState, 753
OC_StartChannel, 753
OC_StopChannel, 753
OC_TOGGLE_ON_MATCH, 750
oc_option_mode_t, 750
oc_option_update_t, 750

outputBuff
csec_state_t, 180

outputChConfig
oc_config_t, 750

outputChannelConfig
ftm_output_cmp_param_t, 485

outputDiv1
clock_source_config_t, 217

outputDiv2
clock_source_config_t, 218

outputInterruptTrigger

cmp_comparator_t, 246
outputSelect

cmp_comparator_t, 246
overflowDirection

ftm_quad_decoder_state_t, 508
overflowFlag

ftm_quad_decoder_state_t, 508
overflowIntEnable

rtc_interrupt_config_t, 809
overrun

lin_word_status_str_t, 667
mpu_error_info_t, 712

overrun_flg
lin_protocol_state_t, 681

owte
sbc_sys_evnt_t, 901

P2_min
lin_node_attribute_t, 669

PCI_RES_ASSIGN_FRAME_ID_RANGE
Low level API, 683

PCI_RES_READ_BY_IDENTIFY
Low level API, 683

PCI_RES_SAVE_CONFIGURATION
Low level API, 683

PCI_SAVE_CONFIGURATION
Low level API, 683

PDB Driver, 756
PDB_CLK_PREDIV_BY_1, 761
PDB_CLK_PREDIV_BY_128, 762
PDB_CLK_PREDIV_BY_16, 761
PDB_CLK_PREDIV_BY_2, 761
PDB_CLK_PREDIV_BY_32, 761
PDB_CLK_PREDIV_BY_4, 761
PDB_CLK_PREDIV_BY_64, 761
PDB_CLK_PREDIV_BY_8, 761
PDB_CLK_PREMULT_FACT_AS_1, 762
PDB_CLK_PREMULT_FACT_AS_10, 762
PDB_CLK_PREMULT_FACT_AS_20, 762
PDB_CLK_PREMULT_FACT_AS_40, 762
PDB_DRV_ClearAdcPreTriggerFlags, 762
PDB_DRV_ClearAdcPreTriggerSeqErrFlags, 763
PDB_DRV_ClearTimerIntFlag, 763
PDB_DRV_ConfigAdcPreTrigger, 763
PDB_DRV_Deinit, 763
PDB_DRV_Disable, 763
PDB_DRV_Enable, 764
PDB_DRV_GetAdcPreTriggerFlags, 764
PDB_DRV_GetAdcPreTriggerSeqErrFlags, 764
PDB_DRV_GetDefaultConfig, 764
PDB_DRV_GetTimerIntFlag, 765
PDB_DRV_GetTimerValue, 765
PDB_DRV_Init, 765
PDB_DRV_LoadValuesCmd, 765
PDB_DRV_SetAdcPreTriggerDelayValue, 766
PDB_DRV_SetCmpPulseOutDelayForHigh, 766
PDB_DRV_SetCmpPulseOutDelayForLow, 766
PDB_DRV_SetCmpPulseOutEnable, 766
PDB_DRV_SetTimerModulusValue, 767

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1042 INDEX

PDB_DRV_SetValueForTimerInterrupt, 767
PDB_DRV_SoftTriggerCmd, 767
PDB_LOAD_VAL_AT_MODULO_COUNTER, 762
PDB_LOAD_VAL_AT_MODULO_COUNTER_O←↩

R_NEXT_TRIGGER, 762
PDB_LOAD_VAL_AT_NEXT_TRIGGER, 762
PDB_LOAD_VAL_IMMEDIATELY, 762
PDB_SOFTWARE_TRIGGER, 762
PDB_TRIGGER_IN0, 762
pdb_clk_prescaler_div_t, 761
pdb_clk_prescaler_mult_factor_t, 762
pdb_load_value_mode_t, 762
pdb_trigger_src_t, 762

PDB_CLK_PREDIV_BY_1
PDB Driver, 761

PDB_CLK_PREDIV_BY_128
PDB Driver, 762

PDB_CLK_PREDIV_BY_16
PDB Driver, 761

PDB_CLK_PREDIV_BY_2
PDB Driver, 761

PDB_CLK_PREDIV_BY_32
PDB Driver, 761

PDB_CLK_PREDIV_BY_4
PDB Driver, 761

PDB_CLK_PREDIV_BY_64
PDB Driver, 761

PDB_CLK_PREDIV_BY_8
PDB Driver, 761

PDB_CLK_PREMULT_FACT_AS_1
PDB Driver, 762

PDB_CLK_PREMULT_FACT_AS_10
PDB Driver, 762

PDB_CLK_PREMULT_FACT_AS_20
PDB Driver, 762

PDB_CLK_PREMULT_FACT_AS_40
PDB Driver, 762

PDB_DRV_ClearAdcPreTriggerFlags
PDB Driver, 762

PDB_DRV_ClearAdcPreTriggerSeqErrFlags
PDB Driver, 763

PDB_DRV_ClearTimerIntFlag
PDB Driver, 763

PDB_DRV_ConfigAdcPreTrigger
PDB Driver, 763

PDB_DRV_Deinit
PDB Driver, 763

PDB_DRV_Disable
PDB Driver, 763

PDB_DRV_Enable
PDB Driver, 764

PDB_DRV_GetAdcPreTriggerFlags
PDB Driver, 764

PDB_DRV_GetAdcPreTriggerSeqErrFlags
PDB Driver, 764

PDB_DRV_GetDefaultConfig
PDB Driver, 764

PDB_DRV_GetTimerIntFlag

PDB Driver, 765
PDB_DRV_GetTimerValue

PDB Driver, 765
PDB_DRV_Init

PDB Driver, 765
PDB_DRV_LoadValuesCmd

PDB Driver, 765
PDB_DRV_SetAdcPreTriggerDelayValue

PDB Driver, 766
PDB_DRV_SetCmpPulseOutDelayForHigh

PDB Driver, 766
PDB_DRV_SetCmpPulseOutDelayForLow

PDB Driver, 766
PDB_DRV_SetCmpPulseOutEnable

PDB Driver, 766
PDB_DRV_SetTimerModulusValue

PDB Driver, 767
PDB_DRV_SetValueForTimerInterrupt

PDB Driver, 767
PDB_DRV_SoftTriggerCmd

PDB Driver, 767
PDB_LOAD_VAL_AT_MODULO_COUNTER

PDB Driver, 762
PDB_LOAD_VAL_AT_MODULO_COUNTER_OR_N←↩

EXT_TRIGGER
PDB Driver, 762

PDB_LOAD_VAL_AT_NEXT_TRIGGER
PDB Driver, 762

PDB_LOAD_VAL_IMMEDIATELY
PDB Driver, 762

PDB_SOFTWARE_TRIGGER
PDB Driver, 762

PDB_TRIGGER_IN0
PDB Driver, 762

PFlashBase
Flash Memory (Flash), 352

PFlashSize
Flash Memory (Flash), 352

PINS Driver, 768
GPIO_INPUT_DIRECTION, 769
GPIO_OUTPUT_DIRECTION, 769
GPIO_UNSPECIFIED_DIRECTION, 769
PINS_DRV_ClearPins, 770
PINS_DRV_GetPinsOutput, 770
PINS_DRV_Init, 770
PINS_DRV_ReadPins, 770
PINS_DRV_SetPins, 771
PINS_DRV_TogglePins, 771
PINS_DRV_WritePin, 771
PINS_DRV_WritePins, 772
pins_level_type_t, 769
port_data_direction_t, 769

PINS_DRV_ClearPins
PINS Driver, 770

PINS_DRV_GetPinsOutput
PINS Driver, 770

PINS_DRV_Init
PINS Driver, 770

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1043

PINS_DRV_ReadPins
PINS Driver, 770

PINS_DRV_SetPins
PINS Driver, 771

PINS_DRV_TogglePins
PINS Driver, 771

PINS_DRV_WritePin
PINS Driver, 771

PINS_DRV_WritePins
PINS Driver, 772

POSITIVE
Common Transport Layer API, 237

POWER_MANAGER_CALLBACK_AFTER
Power Manager, 780

POWER_MANAGER_CALLBACK_BEFORE
Power Manager, 780

POWER_MANAGER_CALLBACK_BEFORE_AFTER
Power Manager, 780

POWER_MANAGER_MAX
Power_s32k1xx, 790

POWER_MANAGER_NOTIFY_AFTER
Power Manager, 781

POWER_MANAGER_NOTIFY_BEFORE
Power Manager, 781

POWER_MANAGER_NOTIFY_RECOVER
Power Manager, 781

POWER_MANAGER_POLICY_AGREEMENT
Power Manager, 781

POWER_MANAGER_POLICY_FORCIBLE
Power Manager, 781

POWER_MANAGER_RUN
Power_s32k1xx, 790

POWER_MANAGER_VLPR
Power_s32k1xx, 790

POWER_MANAGER_VLPS
Power_s32k1xx, 790

POWER_SYS_Deinit
Power Manager, 781

POWER_SYS_DoDeinit
Power_s32k1xx, 792

POWER_SYS_DoGetDefaultConfig
Power_s32k1xx, 792

POWER_SYS_DoInit
Power_s32k1xx, 792

POWER_SYS_DoSetMode
Power_s32k1xx, 792

POWER_SYS_GetCurrentMode
Power Manager, 781

POWER_SYS_GetDefaultConfig
Power Manager, 781

POWER_SYS_GetErrorCallback
Power Manager, 781

POWER_SYS_GetErrorCallbackIndex
Power Manager, 782

POWER_SYS_GetLastMode
Power Manager, 782

POWER_SYS_GetLastModeConfig
Power Manager, 782

POWER_SYS_GetResetSrcStatusCmd
Power_s32k1xx, 792

POWER_SYS_Init
Power Manager, 783

POWER_SYS_SetMode
Power Manager, 783

PWM_ACTIVE_HIGH
Pulse-width modulation - Peripheral Abstraction

Layer (PWM PAL), 800
PWM_ACTIVE_LOW

Pulse-width modulation - Peripheral Abstraction
Layer (PWM PAL), 800

PWM_CENTER_ALIGNED
Pulse-width modulation - Peripheral Abstraction

Layer (PWM PAL), 800
PWM_DUPLICATED

Pulse-width modulation - Peripheral Abstraction
Layer (PWM PAL), 800

PWM_Deinit
Pulse-width modulation - Peripheral Abstraction

Layer (PWM PAL), 800
PWM_EDGE_ALIGNED

Pulse-width modulation - Peripheral Abstraction
Layer (PWM PAL), 800

PWM_INVERTED
Pulse-width modulation - Peripheral Abstraction

Layer (PWM PAL), 800
PWM_Init

Pulse-width modulation - Peripheral Abstraction
Layer (PWM PAL), 801

PWM_OverwriteOutputChannels
Pulse-width modulation - Peripheral Abstraction

Layer (PWM PAL), 801
PWM_UpdateDuty

Pulse-width modulation - Peripheral Abstraction
Layer (PWM PAL), 801

PWM_UpdatePeriod
Pulse-width modulation - Peripheral Abstraction

Layer (PWM PAL), 801
parameter

edma_chn_state_t, 294
parityMode

lpuart_user_config_t, 646
uart_user_config_t, 937

partSize
csec_state_t, 180

payloadSize
can_user_config_t, 267

pcc_config_t, 214
count, 214
peripheralClocks, 214

pccConfig
clock_manager_user_config_t, 216

pcsPolarity
lpspi_master_config_t, 615
lpspi_slave_config_t, 619

pdb_adc_pretrigger_config_t, 761
adcPreTriggerIdx, 761

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1044 INDEX

preTriggerBackToBackEnable, 761
preTriggerEnable, 761
preTriggerOutputEnable, 761

pdb_clk_prescaler_div_t
PDB Driver, 761

pdb_clk_prescaler_mult_factor_t
PDB Driver, 762

pdb_load_value_mode_t
PDB Driver, 762

pdb_timer_config_t, 760
clkPreDiv, 760
clkPreMultFactor, 760
continuousModeEnable, 760
dmaEnable, 760
intEnable, 760
loadValueMode, 760
seqErrIntEnable, 760
triggerInput, 760

pdb_trigger_src_t
PDB Driver, 762

pdbPrescaler
extension_adc_s32k1xx_t, 160

pdc
sbc_regulator_t, 900

peClkSrc
can_user_config_t, 267

percentWindow
wdg_config_t, 948

period
lpit_user_channel_config_t, 602
pwm_channel_t, 799

periodUnits
lpit_user_channel_config_t, 602

Peripheral access layer for S32K144, 773
peripheral_clock_config_t, 213

clkGate, 214
clkSrc, 214
clockName, 214
divider, 214
frac, 214

peripheral_clock_divider_t
Clock Manager Driver, 222

peripheral_clock_frac_t
Clock Manager Driver, 222

peripheral_clock_source_t
Clock Manager Driver, 221

peripheralClocks
pcc_config_t, 214

peripheralFeaturesList
Clock Manager Driver, 232

phaseAConfig
ftm_quad_decode_config_t, 508

phaseBConfig
ftm_quad_decode_config_t, 508

phaseFilterVal
ftm_phase_params_t, 507

phaseInputFilter
ftm_phase_params_t, 507

phasePolarity
ftm_phase_params_t, 507

phaseSeg1
can_time_segment_t, 265
flexcan_time_segment_t, 367

phaseSeg2
can_time_segment_t, 265
flexcan_time_segment_t, 367

pin_settings_config_t, 768
direction, 769
gpioBase, 769
initValue, 769
mux, 769
pinPortIdx, 769

pinPolarity
lptmr_config_t, 634

pinPortIdx
pin_settings_config_t, 769

pinSelect
lptmr_config_t, 634

pinState
cmp_comparator_t, 246

Pins Driver (PINS), 774
pins_level_type_t

PINS Driver, 769
platGateConfig

sim_clock_config_t, 206
pmc_config_t, 215

lpoClockConfig, 215
pmc_lpo_clock_config_t, 214

enable, 215
initialize, 215
trimValue, 215

pmcConfig
clock_manager_user_config_t, 216

pncok
sbc_can_ctr_t, 902

pndm
sbc_frame_t, 903

pnfde
sbc_trans_evnt_stat_t, 911

po
sbc_sys_evnt_stat_t, 910

polarity
ftm_independent_ch_param_t, 496
pwm_channel_t, 799

policy
clock_notify_struct_t, 218
power_manager_notify_struct_t, 778

port_data_direction_t
PINS Driver, 769

positiveInputMux
cmp_anmux_t, 247

positivePortMux
cmp_anmux_t, 247

Power Manager, 776
gPowerManagerState, 785
POWER_MANAGER_CALLBACK_AFTER, 780

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1045

POWER_MANAGER_CALLBACK_BEFORE, 780
POWER_MANAGER_CALLBACK_BEFORE_A←↩

FTER, 780
POWER_MANAGER_NOTIFY_AFTER, 781
POWER_MANAGER_NOTIFY_BEFORE, 781
POWER_MANAGER_NOTIFY_RECOVER, 781
POWER_MANAGER_POLICY_AGREEMEN←↩

T, 781
POWER_MANAGER_POLICY_FORCIBLE, 781
POWER_SYS_Deinit, 781
POWER_SYS_GetCurrentMode, 781
POWER_SYS_GetDefaultConfig, 781
POWER_SYS_GetErrorCallback, 781
POWER_SYS_GetErrorCallbackIndex, 782
POWER_SYS_GetLastMode, 782
POWER_SYS_GetLastModeConfig, 782
POWER_SYS_Init, 783
POWER_SYS_SetMode, 783
power_manager_callback_data_t, 779
power_manager_callback_t, 780
power_manager_callback_type_t, 780
power_manager_notify_t, 780
power_manager_policy_t, 781

Power Manager Driver, 786
power_manager_callback_data_t

Power Manager, 779
power_manager_callback_t

Power Manager, 780
power_manager_callback_type_t

Power Manager, 780
power_manager_callback_user_config_t, 778

callbackData, 778
callbackFunction, 778
callbackType, 778

power_manager_modes_t
Power_s32k1xx, 790

power_manager_notify_struct_t, 777
notifyType, 778
policy, 778
targetPowerConfigIndex, 778
targetPowerConfigPtr, 778

power_manager_notify_t
Power Manager, 780

power_manager_policy_t
Power Manager, 781

power_manager_state_t, 778
configs, 779
configsNumber, 779
currentConfig, 779
errorCallbackIndex, 779
staticCallbacks, 779
staticCallbacksNumber, 779

power_manager_user_config_t, 789
powerMode, 789
sleepOnExitValue, 789

power_mode_stat_t
Power_s32k1xx, 790

Power_s32k1xx, 788

POWER_MANAGER_MAX, 790
POWER_MANAGER_RUN, 790
POWER_MANAGER_VLPR, 790
POWER_MANAGER_VLPS, 790
POWER_SYS_DoDeinit, 792
POWER_SYS_DoGetDefaultConfig, 792
POWER_SYS_DoInit, 792
POWER_SYS_DoSetMode, 792
POWER_SYS_GetResetSrcStatusCmd, 792
power_manager_modes_t, 790
power_mode_stat_t, 790
RCM_CORE_LOCKUP, 791
RCM_EXTERNAL_PIN, 791
RCM_LOSS_OF_CLK, 791
RCM_LOSS_OF_LOCK, 791
RCM_LOW_VOLT_DETECT, 791
RCM_POWER_ON, 791
RCM_SJTAG, 791
RCM_SMDM_AP, 791
RCM_SOFTWARE, 791
RCM_SRC_NAME_MAX, 791
RCM_STOP_MODE_ACK_ERR, 791
RCM_WATCH_DOG, 791
rcm_source_names_t, 790
SMC_HSRUN, 791
SMC_RESERVED_RUN, 791
SMC_RESERVED_STOP1, 791
SMC_RUN, 791
SMC_STOP, 791
SMC_STOP1, 791
SMC_STOP2, 791
SMC_STOP_RESERVED, 791
SMC_VLPR, 791
SMC_VLPS, 791
STAT_HSRUN, 790
STAT_INVALID, 790
STAT_RUN, 790
STAT_STOP, 790
STAT_VLPR, 790
STAT_VLPS, 790
STAT_VLPW, 790
smc_run_mode_t, 791
smc_stop_mode_t, 791
smc_stop_option_t, 791

powerMode
cmp_comparator_t, 246
power_manager_user_config_t, 789

powerModeName
smc_power_mode_config_t, 789

preDivider
can_time_segment_t, 265
flexcan_time_segment_t, 367

preTriggerBackToBackEnable
pdb_adc_pretrigger_config_t, 761

preTriggerEnable
pdb_adc_pretrigger_config_t, 761

preTriggerOutputEnable
pdb_adc_pretrigger_config_t, 761

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1046 INDEX

prediv
scg_spll_config_t, 211

prescaler
ewm_init_config_t, 325
extension_ftm_for_timer_t, 885
extension_lptmr_for_timer_t, 885
lptmr_config_t, 634
pwm_ftm_timebase_t, 798

prescalerEnable
wdg_config_t, 948
wdog_user_config_t, 957

prescalerValue
extension_ewm_for_wdg_t, 947

pretriggerSel
adc_converter_config_t, 138

previous_schedule_id
lin_master_data_t, 679

processId
mpu_error_info_t, 712

processIdEnable
mpu_region_config_t, 713

processIdMask
mpu_region_config_t, 714

processIdentifier
mpu_region_config_t, 714

product_id
lin_node_attribute_t, 669

product_id_ptr
lin_tl_descriptor_t, 675

programedState
cmp_trigger_mode_t, 248

Programmable Delay Block (PDB), 794
propSeg

can_time_segment_t, 265
flexcan_time_segment_t, 367

protocol_version
lin_protocol_user_config_t, 678

ptr_sch_data_ptr
lin_schedule_t, 672

Pulse-width modulation - Peripheral Abstraction Layer
(PWM PAL), 795

PWM_ACTIVE_HIGH, 800
PWM_ACTIVE_LOW, 800
PWM_CENTER_ALIGNED, 800
PWM_DUPLICATED, 800
PWM_Deinit, 800
PWM_EDGE_ALIGNED, 800
PWM_INVERTED, 800
PWM_Init, 801
PWM_OverwriteOutputChannels, 801
PWM_UpdateDuty, 801
PWM_UpdatePeriod, 801
pwm_channel_type_t, 800
pwm_complementarty_mode_t, 800
pwm_polarity_t, 800

pwm_channel_t, 798
channel, 798
channelType, 798

complementaryChannelPolarity, 799
deadtime, 799
duty, 799
enableComplementaryChannel, 799
insertDeadtime, 799
period, 799
polarity, 799
timebase, 799

pwm_channel_type_t
Pulse-width modulation - Peripheral Abstraction

Layer (PWM PAL), 800
pwm_complementarty_mode_t

Pulse-width modulation - Peripheral Abstraction
Layer (PWM PAL), 800

pwm_ftm_timebase_t, 798
deadtimePrescaler, 798
prescaler, 798
sourceClock, 798

pwm_global_config_t, 799
numberOfPwmChannels, 800
pwmChannels, 800

pwm_instance_t, 972
instIdx, 972
instType, 973

pwm_polarity_t
Pulse-width modulation - Peripheral Abstraction

Layer (PWM PAL), 800
pwmChannels

pwm_global_config_t, 800
pwmCombinedChannelConfig

ftm_pwm_param_t, 499
pwmFaultInterrupt

ftm_pwm_fault_param_t, 496
pwmIndependentChannelConfig

ftm_pwm_param_t, 499
pwmOutputStateOnFault

ftm_pwm_fault_param_t, 496
pwr_modes_t

Clock Manager Driver, 223

qspiRefClkGating
sim_clock_config_t, 206

queue_current_size
lin_transport_layer_queue_t, 673

queue_header
lin_transport_layer_queue_t, 673

queue_max_size
lin_transport_layer_queue_t, 673

queue_status
lin_transport_layer_queue_t, 673

queue_tail
lin_transport_layer_queue_t, 673

RCM_CORE_LOCKUP
Power_s32k1xx, 791

RCM_EXTERNAL_PIN
Power_s32k1xx, 791

RCM_LOSS_OF_CLK
Power_s32k1xx, 791

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1047

RCM_LOSS_OF_LOCK
Power_s32k1xx, 791

RCM_LOW_VOLT_DETECT
Power_s32k1xx, 791

RCM_POWER_ON
Power_s32k1xx, 791

RCM_SJTAG
Power_s32k1xx, 791

RCM_SMDM_AP
Power_s32k1xx, 791

RCM_SOFTWARE
Power_s32k1xx, 791

RCM_SRC_NAME_MAX
Power_s32k1xx, 791

RCM_STOP_MODE_ACK_ERR
Power_s32k1xx, 791

RCM_WATCH_DOG
Power_s32k1xx, 791

READ_ON_EVEN_EDGE
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 855
READ_ON_ODD_EDGE

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 855

RECEIVING
Common Transport Layer API, 237

RES_NEGATIVE
Common Transport Layer API, 237

RES_POSITIVE
Common Transport Layer API, 237

RESUME_WAIT_CNT
Flash Memory (Flash), 342

rJumpwidth
can_time_segment_t, 265
flexcan_time_segment_t, 367

RTC Driver, 804
DAYS_IN_A_LEAP_YEAR, 810
DAYS_IN_A_YEAR, 810
HOURS_IN_A_DAY, 810
MINS_IN_A_HOUR, 810
RTC_CLK_SRC_LPO_1KHZ, 811
RTC_CLK_SRC_OSC_32KHZ, 811
RTC_CLKOUT_DISABLED, 811
RTC_CLKOUT_SRC_32KHZ, 811
RTC_CLKOUT_SRC_TSIC, 811
RTC_CTRL_REG_LOCK, 811
RTC_DRV_ConfigureAlarm, 812
RTC_DRV_ConfigureFaultInt, 812
RTC_DRV_ConfigureRegisterLock, 812
RTC_DRV_ConfigureSecondsInt, 813
RTC_DRV_ConfigureTimeCompensation, 813
RTC_DRV_ConvertSecondsToTimeDate, 813
RTC_DRV_ConvertTimeDateToSeconds, 813
RTC_DRV_Deinit, 814
RTC_DRV_GetAlarmConfig, 814
RTC_DRV_GetCurrentTimeDate, 814
RTC_DRV_GetDefaultConfig, 814
RTC_DRV_GetNextAlarmTime, 815

RTC_DRV_GetRegisterLock, 815
RTC_DRV_GetTimeCompensation, 815
RTC_DRV_IRQHandler, 816
RTC_DRV_Init, 815
RTC_DRV_IsAlarmPending, 816
RTC_DRV_IsTimeDateCorrectFormat, 816
RTC_DRV_IsYearLeap, 816
RTC_DRV_SecondsIRQHandler, 817
RTC_DRV_SetTimeDate, 817
RTC_DRV_StartCounter, 817
RTC_DRV_StopCounter, 817
RTC_INT_128HZ, 812
RTC_INT_16HZ, 812
RTC_INT_1HZ, 811
RTC_INT_2HZ, 811
RTC_INT_32HZ, 812
RTC_INT_4HZ, 811
RTC_INT_64HZ, 812
RTC_INT_8HZ, 812
RTC_LOCK_REG_LOCK, 811
RTC_STATUS_REG_LOCK, 811
RTC_TCL_REG_LOCK, 811
rtc_clk_out_config_t, 811
rtc_clk_select_t, 811
rtc_lock_register_select_t, 811
rtc_second_int_cfg_t, 811
SECONDS_IN_A_DAY, 810
SECONDS_IN_A_HOUR, 810
SECONDS_IN_A_MIN, 810
YEAR_RANGE_END, 811
YEAR_RANGE_START, 811

RTC_CLK_SRC_LPO_1KHZ
RTC Driver, 811

RTC_CLK_SRC_OSC_32KHZ
RTC Driver, 811

RTC_CLKOUT_DISABLED
RTC Driver, 811

RTC_CLKOUT_SRC_32KHZ
RTC Driver, 811

RTC_CLKOUT_SRC_TSIC
RTC Driver, 811

RTC_CTRL_REG_LOCK
RTC Driver, 811

RTC_DRV_ConfigureAlarm
RTC Driver, 812

RTC_DRV_ConfigureFaultInt
RTC Driver, 812

RTC_DRV_ConfigureRegisterLock
RTC Driver, 812

RTC_DRV_ConfigureSecondsInt
RTC Driver, 813

RTC_DRV_ConfigureTimeCompensation
RTC Driver, 813

RTC_DRV_ConvertSecondsToTimeDate
RTC Driver, 813

RTC_DRV_ConvertTimeDateToSeconds
RTC Driver, 813

RTC_DRV_Deinit

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1048 INDEX

RTC Driver, 814
RTC_DRV_GetAlarmConfig

RTC Driver, 814
RTC_DRV_GetCurrentTimeDate

RTC Driver, 814
RTC_DRV_GetDefaultConfig

RTC Driver, 814
RTC_DRV_GetNextAlarmTime

RTC Driver, 815
RTC_DRV_GetRegisterLock

RTC Driver, 815
RTC_DRV_GetTimeCompensation

RTC Driver, 815
RTC_DRV_IRQHandler

RTC Driver, 816
RTC_DRV_Init

RTC Driver, 815
RTC_DRV_IsAlarmPending

RTC Driver, 816
RTC_DRV_IsTimeDateCorrectFormat

RTC Driver, 816
RTC_DRV_IsYearLeap

RTC Driver, 816
RTC_DRV_SecondsIRQHandler

RTC Driver, 817
RTC_DRV_SetTimeDate

RTC Driver, 817
RTC_DRV_StartCounter

RTC Driver, 817
RTC_DRV_StopCounter

RTC Driver, 817
RTC_INT_128HZ

RTC Driver, 812
RTC_INT_16HZ

RTC Driver, 812
RTC_INT_1HZ

RTC Driver, 811
RTC_INT_2HZ

RTC Driver, 811
RTC_INT_32HZ

RTC Driver, 812
RTC_INT_4HZ

RTC Driver, 811
RTC_INT_64HZ

RTC Driver, 812
RTC_INT_8HZ

RTC Driver, 812
RTC_LOCK_REG_LOCK

RTC Driver, 811
RTC_STATUS_REG_LOCK

RTC Driver, 811
RTC_TCL_REG_LOCK

RTC Driver, 811
RUN_MODE

Clock Manager Driver, 223
range

scg_firc_config_t, 210
scg_sirc_config_t, 209

scg_sosc_config_t, 208
Raw API, 819

ld_get_raw, 819
ld_put_raw, 819
ld_raw_rx_status, 819
ld_raw_tx_status, 820

rccrConfig
scg_clock_mode_config_t, 212

rcm_source_names_t
Power_s32k1xx, 790

Real Time Clock Driver (RTC), 821
receive_NAD_ptr

lin_tl_descriptor_t, 675
receive_message_length_ptr

lin_tl_descriptor_t, 675
receive_message_ptr

lin_tl_descriptor_t, 675
receiveStatus

lpuart_state_t, 644
refClk

clock_source_config_t, 218
refFreq

clock_source_config_t, 218
regulator

sbc_regulator_ctr_t, 904
scg_firc_config_t, 210

regulatorCtr
sbc_int_config_t, 905

repeatForever
rtc_alarm_config_t, 808

repetitionInterval
rtc_alarm_config_t, 808

reserved
lin_word_status_str_t, 667

resolution
adc_converter_config_t, 138
extension_adc_s32k1xx_t, 161

resp_err_frm_id_ptr
lin_node_attribute_t, 669

response_buffer_ptr
lin_protocol_state_t, 681

response_error
lin_node_attribute_t, 670

response_error_bit_offset_ptr
lin_node_attribute_t, 670

response_error_byte_offset_ptr
lin_node_attribute_t, 670

response_length
lin_protocol_state_t, 681

resultBuffer
adc_group_config_t, 159

resultBufferTail
adc_callback_info_t, 966

rlc
sbc_start_up_t, 900

roundRobinChannelsState
cmp_trigger_mode_t, 248

roundRobinInterruptState

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1049

cmp_trigger_mode_t, 248
roundRobinState

cmp_trigger_mode_t, 248
rss

sbc_main_status_t, 907
rtc_alarm_config_t, 807

alarmCallback, 808
alarmIntEnable, 808
alarmTime, 808
callbackParams, 808
numberOfRepeats, 808
repeatForever, 808
repetitionInterval, 808

rtc_clk_out_config_t
RTC Driver, 811

rtc_clk_select_t
RTC Driver, 811

rtc_init_config_t, 806
clockOutConfig, 807
clockSelect, 807
compensation, 807
compensationInterval, 807
nonSupervisorAccessEnable, 807
updateEnable, 807

rtc_interrupt_config_t, 808
callbackParams, 808
overflowIntEnable, 809
rtcCallback, 809
timeInvalidIntEnable, 809

rtc_lock_register_select_t
RTC Driver, 811

rtc_register_lock_config_t, 809
controlRegisterLock, 810
lockRegisterLock, 810
statusRegisterLock, 810
timeCompensationRegisterLock, 810

rtc_second_int_cfg_t
RTC Driver, 811

rtc_seconds_int_config_t, 809
rtcSecondsCallback, 809
secondIntConfig, 809
secondIntEnable, 809
secondsCallbackParams, 809

rtc_timedate_t, 806
day, 806
hour, 806
minutes, 806
month, 806
seconds, 806
year, 806

rtcCallback
rtc_interrupt_config_t, 809

rtcClkInFreq
scg_rtc_config_t, 211

rtcConfig
scg_config_t, 213

rtcSecondsCallback
rtc_seconds_int_config_t, 809

rx_msg_size
lin_tl_descriptor_t, 675

rx_msg_status
lin_tl_descriptor_t, 676

rxBuff
lin_state_t, 567
lpspi_state_t, 617
lpuart_state_t, 644

rxCallback
lpuart_state_t, 644
uart_user_config_t, 937

rxCallbackParam
lpuart_state_t, 645
uart_user_config_t, 937

rxComplete
lpuart_state_t, 645

rxCompleted
lin_state_t, 567

rxCount
lpspi_state_t, 617

rxDMAChannel
flexio_i2c_master_user_config_t, 385
flexio_i2s_master_user_config_t, 395
flexio_i2s_slave_user_config_t, 396
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 415
i2s_user_config_t, 516
lpspi_master_config_t, 615
lpspi_slave_config_t, 619
lpspi_state_t, 618
lpuart_user_config_t, 646
spi_master_t, 853
spi_slave_t, 854
uart_user_config_t, 937

rxFrameCnt
lpspi_state_t, 618

rxPin
extension_flexio_for_i2s_t, 516
flexio_i2s_master_user_config_t, 395
flexio_i2s_slave_user_config_t, 396

rxSize
lin_state_t, 567
lpuart_state_t, 645

S32K144 SoC Header file, 825
S32K144 System Files, 826
SADDR

edma_software_tcd_t, 300
SAVE_CONFIG_SET

Common Core API., 234
SBC_UJA_CAN

UJA116xA SBC Driver, 920
SBC_UJA_CAN_CFDC_DIS

UJA116xA SBC Driver, 915
SBC_UJA_CAN_CFDC_EN

UJA116xA SBC Driver, 915
SBC_UJA_CAN_CMC_ACMODE_DA

UJA116xA SBC Driver, 915
SBC_UJA_CAN_CMC_ACMODE_DD

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1050 INDEX

UJA116xA SBC Driver, 915
SBC_UJA_CAN_CMC_LISTEN

UJA116xA SBC Driver, 915
SBC_UJA_CAN_CMC_OFMODE

UJA116xA SBC Driver, 915
SBC_UJA_CAN_CPNC_DIS

UJA116xA SBC Driver, 916
SBC_UJA_CAN_CPNC_EN

UJA116xA SBC Driver, 916
SBC_UJA_CAN_PNCOK_DIS

UJA116xA SBC Driver, 916
SBC_UJA_CAN_PNCOK_EN

UJA116xA SBC Driver, 916
SBC_UJA_COUNT_DMASK

UJA116xA SBC Driver, 914
SBC_UJA_COUNT_ID_REG

UJA116xA SBC Driver, 914
SBC_UJA_COUNT_MASK

UJA116xA SBC Driver, 914
SBC_UJA_DAT_MASK_0

UJA116xA SBC Driver, 920
SBC_UJA_DAT_MASK_1

UJA116xA SBC Driver, 920
SBC_UJA_DAT_MASK_2

UJA116xA SBC Driver, 920
SBC_UJA_DAT_MASK_3

UJA116xA SBC Driver, 920
SBC_UJA_DAT_MASK_4

UJA116xA SBC Driver, 920
SBC_UJA_DAT_MASK_5

UJA116xA SBC Driver, 920
SBC_UJA_DAT_MASK_6

UJA116xA SBC Driver, 920
SBC_UJA_DAT_MASK_7

UJA116xA SBC Driver, 920
SBC_UJA_DAT_RATE

UJA116xA SBC Driver, 920
SBC_UJA_DAT_RATE_CDR_1000KB

UJA116xA SBC Driver, 916
SBC_UJA_DAT_RATE_CDR_100KB

UJA116xA SBC Driver, 916
SBC_UJA_DAT_RATE_CDR_125KB

UJA116xA SBC Driver, 916
SBC_UJA_DAT_RATE_CDR_250KB

UJA116xA SBC Driver, 916
SBC_UJA_DAT_RATE_CDR_500KB

UJA116xA SBC Driver, 916
SBC_UJA_DAT_RATE_CDR_50KB

UJA116xA SBC Driver, 916
SBC_UJA_FAIL_SAFE

UJA116xA SBC Driver, 920
SBC_UJA_FAIL_SAFE_LHC_FLOAT

UJA116xA SBC Driver, 916
SBC_UJA_FAIL_SAFE_LHC_LOW

UJA116xA SBC Driver, 916
SBC_UJA_FRAME_CTR

UJA116xA SBC Driver, 920
SBC_UJA_FRAME_CTR_IDE_11B

UJA116xA SBC Driver, 917
SBC_UJA_FRAME_CTR_IDE_29B

UJA116xA SBC Driver, 917
SBC_UJA_FRAME_CTR_PNDM_DCARE

UJA116xA SBC Driver, 917
SBC_UJA_FRAME_CTR_PNDM_EVAL

UJA116xA SBC Driver, 917
SBC_UJA_GL_EVNT_STAT

UJA116xA SBC Driver, 920
SBC_UJA_GL_EVNT_STAT_SUPE

UJA116xA SBC Driver, 917
SBC_UJA_GL_EVNT_STAT_SUPE_NO

UJA116xA SBC Driver, 917
SBC_UJA_GL_EVNT_STAT_SYSE

UJA116xA SBC Driver, 917
SBC_UJA_GL_EVNT_STAT_SYSE_NO

UJA116xA SBC Driver, 917
SBC_UJA_GL_EVNT_STAT_TRXE

UJA116xA SBC Driver, 917
SBC_UJA_GL_EVNT_STAT_TRXE_NO

UJA116xA SBC Driver, 917
SBC_UJA_GL_EVNT_STAT_WPE

UJA116xA SBC Driver, 918
SBC_UJA_GL_EVNT_STAT_WPE_NO

UJA116xA SBC Driver, 918
SBC_UJA_IDENTIF

UJA116xA SBC Driver, 921
SBC_UJA_IDENTIF_0

UJA116xA SBC Driver, 920
SBC_UJA_IDENTIF_1

UJA116xA SBC Driver, 920
SBC_UJA_IDENTIF_2

UJA116xA SBC Driver, 920
SBC_UJA_IDENTIF_3

UJA116xA SBC Driver, 920
SBC_UJA_LOCK

UJA116xA SBC Driver, 920
SBC_UJA_MAIN

UJA116xA SBC Driver, 920
SBC_UJA_MAIN_NMS_NORMAL

UJA116xA SBC Driver, 918
SBC_UJA_MAIN_NMS_PWR_UP

UJA116xA SBC Driver, 918
SBC_UJA_MAIN_OTWS_ABOVE

UJA116xA SBC Driver, 918
SBC_UJA_MAIN_OTWS_BELOW

UJA116xA SBC Driver, 918
SBC_UJA_MAIN_RSS_CAN_WAKEUP

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_DIAG_WAKEUP

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_ILLEG_SLP

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_ILLEG_WATCH

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_LFT_OVERTM

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_OFF_MODE

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1051

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_OVF_SLP

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_RSTN_PULDW

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_SLP_WAKEUP

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_V1_UNDERV

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_WAKE_SLP

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_WATCH_OVF

UJA116xA SBC Driver, 919
SBC_UJA_MAIN_RSS_WATCH_TRIG

UJA116xA SBC Driver, 919
SBC_UJA_MASK_0

UJA116xA SBC Driver, 920
SBC_UJA_MASK_1

UJA116xA SBC Driver, 920
SBC_UJA_MASK_2

UJA116xA SBC Driver, 920
SBC_UJA_MASK_3

UJA116xA SBC Driver, 920
SBC_UJA_MEMORY_0

UJA116xA SBC Driver, 920
SBC_UJA_MEMORY_1

UJA116xA SBC Driver, 920
SBC_UJA_MEMORY_2

UJA116xA SBC Driver, 920
SBC_UJA_MEMORY_3

UJA116xA SBC Driver, 920
SBC_UJA_MODE

UJA116xA SBC Driver, 920
SBC_UJA_MODE_MC_NORMAL

UJA116xA SBC Driver, 919
SBC_UJA_MODE_MC_SLEEP

UJA116xA SBC Driver, 919
SBC_UJA_MODE_MC_STANDBY

UJA116xA SBC Driver, 919
SBC_UJA_MTPNV_CRC

UJA116xA SBC Driver, 921
SBC_UJA_MTPNV_STAT

UJA116xA SBC Driver, 921
SBC_UJA_MTPNV_STAT_ECCS

UJA116xA SBC Driver, 919
SBC_UJA_MTPNV_STAT_ECCS_NO

UJA116xA SBC Driver, 919
SBC_UJA_MTPNV_STAT_NVMPS

UJA116xA SBC Driver, 919
SBC_UJA_MTPNV_STAT_NVMPS_NO

UJA116xA SBC Driver, 919
SBC_UJA_REGULATOR

UJA116xA SBC Driver, 920
SBC_UJA_REGULATOR_PDC_HV

UJA116xA SBC Driver, 921
SBC_UJA_REGULATOR_PDC_LV

UJA116xA SBC Driver, 921
SBC_UJA_REGULATOR_V1RTC_60

UJA116xA SBC Driver, 921
SBC_UJA_REGULATOR_V1RTC_70

UJA116xA SBC Driver, 921
SBC_UJA_REGULATOR_V1RTC_80

UJA116xA SBC Driver, 921
SBC_UJA_REGULATOR_V1RTC_90

UJA116xA SBC Driver, 921
SBC_UJA_REGULATOR_V2C_N

UJA116xA SBC Driver, 921
SBC_UJA_REGULATOR_V2C_N_S_R

UJA116xA SBC Driver, 921
SBC_UJA_REGULATOR_V2C_N_S_S_R

UJA116xA SBC Driver, 921
SBC_UJA_REGULATOR_V2C_OFF

UJA116xA SBC Driver, 921
SBC_UJA_SBC

UJA116xA SBC Driver, 921
SBC_UJA_SBC_FNMC_DIS

UJA116xA SBC Driver, 922
SBC_UJA_SBC_FNMC_EN

UJA116xA SBC Driver, 922
SBC_UJA_SBC_SDMC_DIS

UJA116xA SBC Driver, 922
SBC_UJA_SBC_SDMC_EN

UJA116xA SBC Driver, 922
SBC_UJA_SBC_SLPC_AC

UJA116xA SBC Driver, 922
SBC_UJA_SBC_SLPC_IG

UJA116xA SBC Driver, 922
SBC_UJA_SBC_V1RTSUC_60

UJA116xA SBC Driver, 922
SBC_UJA_SBC_V1RTSUC_70

UJA116xA SBC Driver, 922
SBC_UJA_SBC_V1RTSUC_80

UJA116xA SBC Driver, 922
SBC_UJA_SBC_V1RTSUC_90

UJA116xA SBC Driver, 922
SBC_UJA_START_UP

UJA116xA SBC Driver, 921
SBC_UJA_START_UP_RLC_01_01p5

UJA116xA SBC Driver, 923
SBC_UJA_START_UP_RLC_03p6_05

UJA116xA SBC Driver, 923
SBC_UJA_START_UP_RLC_10_12p5

UJA116xA SBC Driver, 923
SBC_UJA_START_UP_RLC_20_25p0

UJA116xA SBC Driver, 923
SBC_UJA_START_UP_V2SUC_00

UJA116xA SBC Driver, 923
SBC_UJA_START_UP_V2SUC_11

UJA116xA SBC Driver, 923
SBC_UJA_SUP_EVNT_STAT

UJA116xA SBC Driver, 920
SBC_UJA_SUP_EVNT_STAT_V1U

UJA116xA SBC Driver, 923
SBC_UJA_SUP_EVNT_STAT_V1U_NO

UJA116xA SBC Driver, 923
SBC_UJA_SUP_EVNT_STAT_V2O

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1052 INDEX

UJA116xA SBC Driver, 923
SBC_UJA_SUP_EVNT_STAT_V2O_NO

UJA116xA SBC Driver, 923
SBC_UJA_SUP_EVNT_STAT_V2U

UJA116xA SBC Driver, 923
SBC_UJA_SUP_EVNT_STAT_V2U_NO

UJA116xA SBC Driver, 923
SBC_UJA_SUPPLY_EVNT

UJA116xA SBC Driver, 920
SBC_UJA_SUPPLY_EVNT_V1UE_DIS

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_EVNT_V1UE_EN

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_EVNT_V2OE_DIS

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_EVNT_V2OE_EN

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_EVNT_V2UE_DIS

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_EVNT_V2UE_EN

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_STAT

UJA116xA SBC Driver, 920
SBC_UJA_SUPPLY_STAT_V1S_VAB

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_STAT_V1S_VBE

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_STAT_V2S_DIS

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_STAT_V2S_VAB

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_STAT_V2S_VBE

UJA116xA SBC Driver, 924
SBC_UJA_SUPPLY_STAT_V2S_VOK

UJA116xA SBC Driver, 924
SBC_UJA_SYS_EVNT_OTWE_DIS

UJA116xA SBC Driver, 925
SBC_UJA_SYS_EVNT_OTWE_EN

UJA116xA SBC Driver, 925
SBC_UJA_SYS_EVNT_SPIFE_DIS

UJA116xA SBC Driver, 925
SBC_UJA_SYS_EVNT_SPIFE_EN

UJA116xA SBC Driver, 925
SBC_UJA_SYS_EVNT_STAT

UJA116xA SBC Driver, 920
SBC_UJA_SYS_EVNT_STAT_OTW

UJA116xA SBC Driver, 925
SBC_UJA_SYS_EVNT_STAT_OTW_NO

UJA116xA SBC Driver, 925
SBC_UJA_SYS_EVNT_STAT_PO

UJA116xA SBC Driver, 925
SBC_UJA_SYS_EVNT_STAT_PO_NO

UJA116xA SBC Driver, 925
SBC_UJA_SYS_EVNT_STAT_SPIF

UJA116xA SBC Driver, 925
SBC_UJA_SYS_EVNT_STAT_SPIF_NO

UJA116xA SBC Driver, 925
SBC_UJA_SYS_EVNT_STAT_WDF

UJA116xA SBC Driver, 926
SBC_UJA_SYS_EVNT_STAT_WDF_NO

UJA116xA SBC Driver, 926
SBC_UJA_SYSTEM_EVNT

UJA116xA SBC Driver, 920
SBC_UJA_TIMEOUT

UJA116xA SBC Driver, 914
SBC_UJA_TRANS_EVNT

UJA116xA SBC Driver, 920
SBC_UJA_TRANS_EVNT_CBSE_DIS

UJA116xA SBC Driver, 926
SBC_UJA_TRANS_EVNT_CBSE_EN

UJA116xA SBC Driver, 926
SBC_UJA_TRANS_EVNT_CFE_DIS

UJA116xA SBC Driver, 926
SBC_UJA_TRANS_EVNT_CFE_EN

UJA116xA SBC Driver, 926
SBC_UJA_TRANS_EVNT_CWE_DIS

UJA116xA SBC Driver, 926
SBC_UJA_TRANS_EVNT_CWE_EN

UJA116xA SBC Driver, 926
SBC_UJA_TRANS_EVNT_STAT

UJA116xA SBC Driver, 920
SBC_UJA_TRANS_EVNT_STAT_CBS

UJA116xA SBC Driver, 926
SBC_UJA_TRANS_EVNT_STAT_CBS_NO

UJA116xA SBC Driver, 926
SBC_UJA_TRANS_EVNT_STAT_CF

UJA116xA SBC Driver, 927
SBC_UJA_TRANS_EVNT_STAT_CF_NO

UJA116xA SBC Driver, 927
SBC_UJA_TRANS_EVNT_STAT_CW

UJA116xA SBC Driver, 927
SBC_UJA_TRANS_EVNT_STAT_CW_NO

UJA116xA SBC Driver, 927
SBC_UJA_TRANS_EVNT_STAT_PNFDE

UJA116xA SBC Driver, 927
SBC_UJA_TRANS_EVNT_STAT_PNFDE_NO

UJA116xA SBC Driver, 927
SBC_UJA_TRANS_STAT

UJA116xA SBC Driver, 920
SBC_UJA_TRANS_STAT_CBSS_ACT

UJA116xA SBC Driver, 927
SBC_UJA_TRANS_STAT_CBSS_INACT

UJA116xA SBC Driver, 927
SBC_UJA_TRANS_STAT_CFS_NO_TXD

UJA116xA SBC Driver, 928
SBC_UJA_TRANS_STAT_CFS_TXD

UJA116xA SBC Driver, 928
SBC_UJA_TRANS_STAT_COSCS_NRUN

UJA116xA SBC Driver, 928
SBC_UJA_TRANS_STAT_COSCS_RUN

UJA116xA SBC Driver, 928
SBC_UJA_TRANS_STAT_CPNERR_DET

UJA116xA SBC Driver, 928
SBC_UJA_TRANS_STAT_CPNERR_NO_DET

UJA116xA SBC Driver, 928
SBC_UJA_TRANS_STAT_CPNS_ERR

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1053

UJA116xA SBC Driver, 928
SBC_UJA_TRANS_STAT_CPNS_OK

UJA116xA SBC Driver, 928
SBC_UJA_TRANS_STAT_CTS_ACT

UJA116xA SBC Driver, 928
SBC_UJA_TRANS_STAT_CTS_INACT

UJA116xA SBC Driver, 928
SBC_UJA_TRANS_STAT_VCS_AB

UJA116xA SBC Driver, 929
SBC_UJA_TRANS_STAT_VCS_BE

UJA116xA SBC Driver, 929
SBC_UJA_WAKE_EN

UJA116xA SBC Driver, 920
SBC_UJA_WAKE_EN_WPFE_DIS

UJA116xA SBC Driver, 929
SBC_UJA_WAKE_EN_WPFE_EN

UJA116xA SBC Driver, 929
SBC_UJA_WAKE_EN_WPRE_DIS

UJA116xA SBC Driver, 929
SBC_UJA_WAKE_EN_WPRE_EN

UJA116xA SBC Driver, 929
SBC_UJA_WAKE_EVNT_STAT

UJA116xA SBC Driver, 921
SBC_UJA_WAKE_EVNT_STAT_WPF

UJA116xA SBC Driver, 929
SBC_UJA_WAKE_EVNT_STAT_WPF_NO

UJA116xA SBC Driver, 929
SBC_UJA_WAKE_EVNT_STAT_WPR

UJA116xA SBC Driver, 929
SBC_UJA_WAKE_EVNT_STAT_WPR_NO

UJA116xA SBC Driver, 929
SBC_UJA_WAKE_STAT

UJA116xA SBC Driver, 920
SBC_UJA_WAKE_STAT_WPVS_AB

UJA116xA SBC Driver, 930
SBC_UJA_WAKE_STAT_WPVS_BE

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR

UJA116xA SBC Driver, 920
SBC_UJA_WTDOG_CTR_NWP_1024

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR_NWP_128

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR_NWP_16

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR_NWP_256

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR_NWP_32

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR_NWP_4096

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR_NWP_64

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR_NWP_8

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR_WMC_AUTO

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR_WMC_TIME

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_CTR_WMC_WIND

UJA116xA SBC Driver, 930
SBC_UJA_WTDOG_STAT

UJA116xA SBC Driver, 920
SBC_UJA_WTDOG_STAT_FNMS_N_NORMAL

UJA116xA SBC Driver, 931
SBC_UJA_WTDOG_STAT_FNMS_NORMAL

UJA116xA SBC Driver, 931
SBC_UJA_WTDOG_STAT_SDMS_N_NORMAL

UJA116xA SBC Driver, 931
SBC_UJA_WTDOG_STAT_SDMS_NORMAL

UJA116xA SBC Driver, 931
SBC_UJA_WTDOG_STAT_WDS_FIH

UJA116xA SBC Driver, 931
SBC_UJA_WTDOG_STAT_WDS_OFF

UJA116xA SBC Driver, 931
SBC_UJA_WTDOG_STAT_WDS_SEH

UJA116xA SBC Driver, 931
SCG_ASYNC_CLOCK_DISABLE

Clock Manager Driver, 223
SCG_ASYNC_CLOCK_DIV_BY_1

Clock Manager Driver, 223
SCG_ASYNC_CLOCK_DIV_BY_16

Clock Manager Driver, 223
SCG_ASYNC_CLOCK_DIV_BY_2

Clock Manager Driver, 223
SCG_ASYNC_CLOCK_DIV_BY_32

Clock Manager Driver, 223
SCG_ASYNC_CLOCK_DIV_BY_4

Clock Manager Driver, 223
SCG_ASYNC_CLOCK_DIV_BY_64

Clock Manager Driver, 223
SCG_ASYNC_CLOCK_DIV_BY_8

Clock Manager Driver, 223
SCG_CLOCKOUT_SRC_FIRC

Clock Manager Driver, 223
SCG_CLOCKOUT_SRC_SCG_SLOW

Clock Manager Driver, 223
SCG_CLOCKOUT_SRC_SIRC

Clock Manager Driver, 223
SCG_CLOCKOUT_SRC_SOSC

Clock Manager Driver, 223
SCG_CLOCKOUT_SRC_SPLL

Clock Manager Driver, 223
SCG_FIRC_RANGE_48M

Clock Manager Driver, 224
SCG_SIRC_RANGE_HIGH

Clock Manager Driver, 224
SCG_SOSC_GAIN_HIGH

Clock Manager Driver, 224
SCG_SOSC_GAIN_LOW

Clock Manager Driver, 224
SCG_SOSC_MONITOR_DISABLE

Clock Manager Driver, 224
SCG_SOSC_MONITOR_INT

Clock Manager Driver, 224
SCG_SOSC_MONITOR_RESET

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1054 INDEX

Clock Manager Driver, 224
SCG_SOSC_RANGE_HIGH

Clock Manager Driver, 224
SCG_SOSC_RANGE_MID

Clock Manager Driver, 224
SCG_SOSC_REF_EXT

Clock Manager Driver, 224
SCG_SOSC_REF_OSC

Clock Manager Driver, 224
SCG_SPLL_CLOCK_MULTIPLY_BY_16

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_17

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_18

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_19

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_20

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_21

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_22

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_23

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_24

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_25

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_26

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_27

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_28

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_29

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_30

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_31

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_32

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_33

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_34

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_35

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_36

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_37

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_38

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_39

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_40

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_41

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_42

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_43

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_44

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_45

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_46

Clock Manager Driver, 225
SCG_SPLL_CLOCK_MULTIPLY_BY_47

Clock Manager Driver, 225
SCG_SPLL_CLOCK_PREDIV_BY_1

Clock Manager Driver, 225
SCG_SPLL_CLOCK_PREDIV_BY_2

Clock Manager Driver, 225
SCG_SPLL_CLOCK_PREDIV_BY_3

Clock Manager Driver, 225
SCG_SPLL_CLOCK_PREDIV_BY_4

Clock Manager Driver, 226
SCG_SPLL_CLOCK_PREDIV_BY_5

Clock Manager Driver, 226
SCG_SPLL_CLOCK_PREDIV_BY_6

Clock Manager Driver, 226
SCG_SPLL_CLOCK_PREDIV_BY_7

Clock Manager Driver, 226
SCG_SPLL_CLOCK_PREDIV_BY_8

Clock Manager Driver, 226
SCG_SPLL_MONITOR_DISABLE

Clock Manager Driver, 226
SCG_SPLL_MONITOR_INT

Clock Manager Driver, 226
SCG_SPLL_MONITOR_RESET

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_1

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_10

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_11

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_12

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_13

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_14

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_15

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_16

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_2

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_3

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_4

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1055

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_5

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_6

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_7

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_8

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_DIV_BY_9

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_SRC_FIRC

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_SRC_NONE

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_SRC_SIRC

Clock Manager Driver, 226
SCG_SYSTEM_CLOCK_SRC_SYS_OSC

Clock Manager Driver, 226
SECONDS_IN_A_DAY

RTC Driver, 810
SECONDS_IN_A_HOUR

RTC Driver, 810
SECONDS_IN_A_MIN

RTC Driver, 810
SECURITY_BOOT_MAC

Security PAL, 832
SECURITY_BOOT_MAC_KEY

Security PAL, 832
SECURITY_BOOT_NOT_DEFINED

Security PAL, 831
SECURITY_BOOT_PARALLEL

Security PAL, 830
SECURITY_BOOT_SERIAL

Security PAL, 830
SECURITY_BOOT_STRICT

Security PAL, 830
SECURITY_BootDefine

Security PAL, 832
SECURITY_BootFailure

Security PAL, 832
SECURITY_BootOk

Security PAL, 833
SECURITY_CMD_BOOT_DEFINE

Security PAL, 831
SECURITY_CMD_BOOT_FAILURE

Security PAL, 831
SECURITY_CMD_BOOT_OK

Security PAL, 831
SECURITY_CMD_DBG_AUTH

Security PAL, 831
SECURITY_CMD_DBG_CHAL

Security PAL, 831
SECURITY_CMD_DEC_CBC

Security PAL, 831
SECURITY_CMD_DEC_ECB

Security PAL, 831
SECURITY_CMD_ENC_CBC

Security PAL, 831
SECURITY_CMD_ENC_ECB

Security PAL, 831
SECURITY_CMD_EXPORT_RAM_KEY

Security PAL, 831
SECURITY_CMD_EXTEND_SEED

Security PAL, 831
SECURITY_CMD_GENERATE_MAC

Security PAL, 831
SECURITY_CMD_GET_ID

Security PAL, 831
SECURITY_CMD_INIT_RNG

Security PAL, 831
SECURITY_CMD_LOAD_KEY

Security PAL, 831
SECURITY_CMD_LOAD_PLAIN_KEY

Security PAL, 831
SECURITY_CMD_MP_COMPRESS

Security PAL, 831
SECURITY_CMD_RESERVED_1

Security PAL, 831
SECURITY_CMD_RESERVED_2

Security PAL, 831
SECURITY_CMD_RESERVED_3

Security PAL, 831
SECURITY_CMD_RND

Security PAL, 831
SECURITY_CMD_VERIFY_MAC

Security PAL, 831
SECURITY_CancelCommand

Security PAL, 833
SECURITY_DbgAuth

Security PAL, 833
SECURITY_DbgChal

Security PAL, 833
SECURITY_DecryptCbc

Security PAL, 834
SECURITY_DecryptCbcBlocking

Security PAL, 834
SECURITY_DecryptEcb

Security PAL, 835
SECURITY_DecryptEcbBlocking

Security PAL, 835
SECURITY_Deinit

Security PAL, 835
SECURITY_EncryptCbc

Security PAL, 836
SECURITY_EncryptCbcBlocking

Security PAL, 836
SECURITY_EncryptEcb

Security PAL, 836
SECURITY_EncryptEcbBlocking

Security PAL, 837
SECURITY_ExportRamKey

Security PAL, 837
SECURITY_ExtendSeed

Security PAL, 838
SECURITY_GenerateMac

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1056 INDEX

Security PAL, 838
SECURITY_GenerateMacBlocking

Security PAL, 838
SECURITY_GenerateRnd

Security PAL, 840
SECURITY_GenerateTrnd

Security PAL, 840
SECURITY_GetAsyncCmdStatus

Security PAL, 840
SECURITY_GetDefaultConfig

Security PAL, 841
SECURITY_GetId

Security PAL, 841
SECURITY_INSTANCE0

Security PAL, 831
SECURITY_Init

Security PAL, 841
SECURITY_InitRng

Security PAL, 841
SECURITY_KEY_1

Security PAL, 832
SECURITY_KEY_10

Security PAL, 832
SECURITY_KEY_11

Security PAL, 832
SECURITY_KEY_12

Security PAL, 832
SECURITY_KEY_13

Security PAL, 832
SECURITY_KEY_14

Security PAL, 832
SECURITY_KEY_15

Security PAL, 832
SECURITY_KEY_16

Security PAL, 832
SECURITY_KEY_17

Security PAL, 832
SECURITY_KEY_2

Security PAL, 832
SECURITY_KEY_3

Security PAL, 832
SECURITY_KEY_4

Security PAL, 832
SECURITY_KEY_5

Security PAL, 832
SECURITY_KEY_6

Security PAL, 832
SECURITY_KEY_7

Security PAL, 832
SECURITY_KEY_8

Security PAL, 832
SECURITY_KEY_9

Security PAL, 832
SECURITY_LoadKey

Security PAL, 843
SECURITY_LoadPlainKey

Security PAL, 843
SECURITY_MASTER_ECU

Security PAL, 831
SECURITY_MPCompress

Security PAL, 843
SECURITY_RAM_KEY

Security PAL, 832
SECURITY_SECRET_KEY

Security PAL, 831
SECURITY_SecureBoot

Security PAL, 844
SECURITY_VerifyMac

Security PAL, 844
SECURITY_VerifyMacBlocking

Security PAL, 845
SERIVCE_FAULT_MEMORY_CLEAR

Low level API, 683
SERVICE_ASSIGN_FRAME_ID

Low level API, 683
SERVICE_ASSIGN_FRAME_ID_RANGE

Low level API, 683
SERVICE_ASSIGN_NAD

Low level API, 683
SERVICE_CONDITIONAL_CHANGE_NAD

Low level API, 683
SERVICE_FAULT_MEMORY_READ

Low level API, 684
SERVICE_IO_CONTROL_BY_IDENTIFY

Low level API, 684
SERVICE_NOT_SUPPORTED

Common Transport Layer API, 237
SERVICE_READ_BY_IDENTIFY

Low level API, 684
SERVICE_READ_DATA_BY_IDENTIFY

Low level API, 684
SERVICE_SAVE_CONFIGURATION

Low level API, 684
SERVICE_SESSION_CONTROL

Low level API, 684
SERVICE_TARGET_RESET

Common Transport Layer API, 237
SERVICE_WRITE_DATA_BY_IDENTIFY

Low level API, 684
SIM_CLKOUT_DIV_BY_1

Clock Manager Driver, 227
SIM_CLKOUT_DIV_BY_2

Clock Manager Driver, 227
SIM_CLKOUT_DIV_BY_3

Clock Manager Driver, 227
SIM_CLKOUT_DIV_BY_4

Clock Manager Driver, 227
SIM_CLKOUT_DIV_BY_5

Clock Manager Driver, 227
SIM_CLKOUT_DIV_BY_6

Clock Manager Driver, 227
SIM_CLKOUT_DIV_BY_7

Clock Manager Driver, 227
SIM_CLKOUT_DIV_BY_8

Clock Manager Driver, 227
SIM_CLKOUT_SEL_SYSTEM_BUS_CLK

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1057

Clock Manager Driver, 227
SIM_CLKOUT_SEL_SYSTEM_FIRC_DIV2_CLK

Clock Manager Driver, 227
SIM_CLKOUT_SEL_SYSTEM_HCLK

Clock Manager Driver, 227
SIM_CLKOUT_SEL_SYSTEM_LPO_128K_CLK

Clock Manager Driver, 227
SIM_CLKOUT_SEL_SYSTEM_LPO_CLK

Clock Manager Driver, 227
SIM_CLKOUT_SEL_SYSTEM_RTC_CLK

Clock Manager Driver, 227
SIM_CLKOUT_SEL_SYSTEM_SCG_CLKOUT

Clock Manager Driver, 227
SIM_CLKOUT_SEL_SYSTEM_SIRC_DIV2_CLK

Clock Manager Driver, 227
SIM_CLKOUT_SEL_SYSTEM_SOSC_DIV2_CLK

Clock Manager Driver, 227
SIM_CLKOUT_SEL_SYSTEM_SPLL_DIV2_CLK

Clock Manager Driver, 227
SIM_LPO_CLK_SEL_LPO_128K

Clock Manager Driver, 227
SIM_LPO_CLK_SEL_LPO_1K

Clock Manager Driver, 227
SIM_LPO_CLK_SEL_LPO_32K

Clock Manager Driver, 227
SIM_LPO_CLK_SEL_NO_CLOCK

Clock Manager Driver, 227
SIM_RTCCLK_SEL_FIRCDIV1_CLK

Clock Manager Driver, 228
SIM_RTCCLK_SEL_LPO_32K

Clock Manager Driver, 228
SIM_RTCCLK_SEL_RTC_CLKIN

Clock Manager Driver, 228
SIM_RTCCLK_SEL_SOSCDIV1_CLK

Clock Manager Driver, 228
SLAST

edma_software_tcd_t, 300
SLAVE

LIN Driver, 568
SLOW_CLK_INDEX

Clock Manager Driver, 221
SMC_HSRUN

Power_s32k1xx, 791
SMC_RESERVED_RUN

Power_s32k1xx, 791
SMC_RESERVED_STOP1

Power_s32k1xx, 791
SMC_RUN

Power_s32k1xx, 791
SMC_STOP

Power_s32k1xx, 791
SMC_STOP1

Power_s32k1xx, 791
SMC_STOP2

Power_s32k1xx, 791
SMC_STOP_RESERVED

Power_s32k1xx, 791
SMC_VLPR

Power_s32k1xx, 791
SMC_VLPS

Power_s32k1xx, 791
SOFF

edma_software_tcd_t, 300
SPI_ACTIVE_HIGH

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 855

SPI_ACTIVE_LOW
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 855
SPI_GetDefaultMasterConfig

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 856

SPI_GetDefaultSlaveConfig
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 856
SPI_GetStatus

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 856

SPI_MasterDeinit
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 857
SPI_MasterInit

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 857

SPI_MasterSetDelay
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 857
SPI_MasterTransfer

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 857

SPI_MasterTransferBlocking
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 858
SPI_SetSS

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 858

SPI_SlaveDeinit
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 858
SPI_SlaveInit

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 859

SPI_SlaveTransfer
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 859
SPI_SlaveTransferBlocking

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 859

SPI_TRANSFER_LSB_FIRST
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 856
SPI_TRANSFER_MSB_FIRST

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 856

SPI_USING_DMA
Serial Peripheral Interface - Peripheral Abstraction

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1058 INDEX

Layer(SPI PAL), 856
SPI_USING_INTERRUPTS

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 856

ST_min
lin_node_attribute_t, 670

STAT_HSRUN
Power_s32k1xx, 790

STAT_INVALID
Power_s32k1xx, 790

STAT_RUN
Power_s32k1xx, 790

STAT_STOP
Power_s32k1xx, 790

STAT_VLPR
Power_s32k1xx, 790

STAT_VLPS
Power_s32k1xx, 790

STAT_VLPW
Power_s32k1xx, 790

STCD_ADDR
EDMA Driver, 300

STCD_SIZE
EDMA Driver, 300

STOP_MODE
Clock Manager Driver, 223

SUBFUNCTION_NOT_SUPPORTED
Common Transport Layer API, 237

SUCCESSFULL_TRANSFER
Common Core API., 234

SUSPEND_WAIT_CNT
Flash Memory (Flash), 342

SYS_CLK_MAX_NO
Clock Manager Driver, 221

safeState
ftm_independent_ch_param_t, 497

sampleTicks
adc_config_t, 160

sampleTime
adc_converter_config_t, 139

samples
cmp_trigger_mode_t, 248

save_config_flg
lin_protocol_state_t, 681
lin_word_status_str_t, 667

sbc_can_cfdc_t
UJA116xA SBC Driver, 915

sbc_can_cmc_t
UJA116xA SBC Driver, 915

sbc_can_conf_t, 903
canConf, 903
canTransEvnt, 903
datRate, 903
dataMask, 903
frame, 903
identif, 904
mask, 904

sbc_can_cpnc_t

UJA116xA SBC Driver, 915
sbc_can_ctr_t, 901

cfdc, 901
cmc, 902
cpnc, 902
pncok, 902

sbc_can_pncok_t
UJA116xA SBC Driver, 916

sbc_dat_rate_t
UJA116xA SBC Driver, 916

sbc_data_mask_t
UJA116xA SBC Driver, 914

sbc_evn_capt_t, 912
glEvnt, 912
supEvnt, 912
sysEvnt, 912
transEvnt, 912
wakePinEvnt, 912

sbc_factories_conf_t, 906
control, 906
startUp, 906

sbc_fail_safe_lhc_t
UJA116xA SBC Driver, 916

sbc_fail_safe_rcc_t
UJA116xA SBC Driver, 914

sbc_frame_ctr_dlc_t
UJA116xA SBC Driver, 914

sbc_frame_ctr_ide_t
UJA116xA SBC Driver, 916

sbc_frame_ctr_pndm_t
UJA116xA SBC Driver, 917

sbc_frame_t, 902
dlc, 903
ide, 903
pndm, 903

sbc_gl_evnt_stat_supe_t
UJA116xA SBC Driver, 917

sbc_gl_evnt_stat_syse_t
UJA116xA SBC Driver, 917

sbc_gl_evnt_stat_t, 909
supe, 909
syse, 909
trxe, 909
wpe, 909

sbc_gl_evnt_stat_trxe_t
UJA116xA SBC Driver, 917

sbc_gl_evnt_stat_wpe_t
UJA116xA SBC Driver, 917

sbc_identif_mask_t
UJA116xA SBC Driver, 915

sbc_identifier_t
UJA116xA SBC Driver, 915

sbc_int_config_t, 905
can, 905
lhc, 905
lockMask, 905
mode, 905
regulatorCtr, 905

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1059

sysEvnt, 905
wakePin, 906
watchdog, 906

sbc_lock_t
UJA116xA SBC Driver, 918

sbc_main_nms_t
UJA116xA SBC Driver, 918

sbc_main_otws_t
UJA116xA SBC Driver, 918

sbc_main_rss_t
UJA116xA SBC Driver, 918

sbc_main_status_t, 906
nms, 907
otws, 907
rss, 907

sbc_mode_mc_t
UJA116xA SBC Driver, 919

sbc_mtpnv_stat_eccs_t
UJA116xA SBC Driver, 919

sbc_mtpnv_stat_nvmps_t
UJA116xA SBC Driver, 919

sbc_mtpnv_stat_t, 912
eccs, 913
nvmps, 913
wrcnts, 913

sbc_mtpnv_stat_wrcnts_t
UJA116xA SBC Driver, 915

sbc_register_t
UJA116xA SBC Driver, 919

sbc_regulator_ctr_t, 904
regulator, 904
supplyEvnt, 905

sbc_regulator_pdc_t
UJA116xA SBC Driver, 921

sbc_regulator_t, 900
pdc, 900
v1rtc, 900
v2c, 900

sbc_regulator_v1rtc_t
UJA116xA SBC Driver, 921

sbc_regulator_v2c_t
UJA116xA SBC Driver, 921

sbc_sbc_fnmc_t
UJA116xA SBC Driver, 921

sbc_sbc_sdmc_t
UJA116xA SBC Driver, 922

sbc_sbc_slpc_t
UJA116xA SBC Driver, 922

sbc_sbc_t, 899
fnmc, 899
sdmc, 899
slpc, 899
v1rtsuc, 899

sbc_sbc_v1rtsuc_t
UJA116xA SBC Driver, 922

sbc_start_up_rlc_t
UJA116xA SBC Driver, 922

sbc_start_up_t, 899

rlc, 900
v2suc, 900

sbc_start_up_v2suc_t
UJA116xA SBC Driver, 923

sbc_status_group_t, 913
events, 913
mainS, 913
supply, 913
trans, 913
wakePin, 914
wtdog, 914

sbc_sup_evnt_stat_t, 910
v1u, 910
v2o, 910
v2u, 910

sbc_sup_evnt_stat_v1u_t
UJA116xA SBC Driver, 923

sbc_sup_evnt_stat_v2o_t
UJA116xA SBC Driver, 923

sbc_sup_evnt_stat_v2u_t
UJA116xA SBC Driver, 923

sbc_supply_evnt_t, 900
v1ue, 900
v2oe, 901
v2ue, 901

sbc_supply_evnt_v1ue_t
UJA116xA SBC Driver, 923

sbc_supply_evnt_v2oe_t
UJA116xA SBC Driver, 924

sbc_supply_evnt_v2ue_t
UJA116xA SBC Driver, 924

sbc_supply_stat_v1s_t
UJA116xA SBC Driver, 924

sbc_supply_stat_v2s_t
UJA116xA SBC Driver, 924

sbc_supply_status_t, 907
v1s, 908
v2s, 908

sbc_sys_evnt_otwe_t
UJA116xA SBC Driver, 924

sbc_sys_evnt_spife_t
UJA116xA SBC Driver, 925

sbc_sys_evnt_stat_otw_t
UJA116xA SBC Driver, 925

sbc_sys_evnt_stat_po_t
UJA116xA SBC Driver, 925

sbc_sys_evnt_stat_spif_t
UJA116xA SBC Driver, 925

sbc_sys_evnt_stat_t, 909
otw, 910
po, 910
spif, 910
wdf, 910

sbc_sys_evnt_stat_wdf_t
UJA116xA SBC Driver, 925

sbc_sys_evnt_t, 901
owte, 901
spife, 901

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1060 INDEX

sbc_trans_evnt_cbse_t
UJA116xA SBC Driver, 926

sbc_trans_evnt_cfe_t
UJA116xA SBC Driver, 926

sbc_trans_evnt_cwe_t
UJA116xA SBC Driver, 926

sbc_trans_evnt_stat_cbs_t
UJA116xA SBC Driver, 926

sbc_trans_evnt_stat_cf_t
UJA116xA SBC Driver, 927

sbc_trans_evnt_stat_cw_t
UJA116xA SBC Driver, 927

sbc_trans_evnt_stat_pnfde_t
UJA116xA SBC Driver, 927

sbc_trans_evnt_stat_t, 911
cbs, 911
cf, 911
cw, 911
pnfde, 911

sbc_trans_evnt_t, 902
cbse, 902
cfe, 902
cwe, 902

sbc_trans_stat_cbss_t
UJA116xA SBC Driver, 927

sbc_trans_stat_cfs_t
UJA116xA SBC Driver, 927

sbc_trans_stat_coscs_t
UJA116xA SBC Driver, 928

sbc_trans_stat_cpnerr_t
UJA116xA SBC Driver, 928

sbc_trans_stat_cpns_t
UJA116xA SBC Driver, 928

sbc_trans_stat_cts_t
UJA116xA SBC Driver, 928

sbc_trans_stat_t, 908
cbss, 908
cfs, 908
coscs, 908
cpnerr, 908
cpns, 908
cts, 909
vcs, 909

sbc_trans_stat_vcs_t
UJA116xA SBC Driver, 928

sbc_wake_en_wpfe_t
UJA116xA SBC Driver, 929

sbc_wake_en_wpre_t
UJA116xA SBC Driver, 929

sbc_wake_evnt_stat_t, 911
wpf, 911
wpr, 911

sbc_wake_evnt_stat_wpf_t
UJA116xA SBC Driver, 929

sbc_wake_evnt_stat_wpr_t
UJA116xA SBC Driver, 929

sbc_wake_stat_wpvs_t
UJA116xA SBC Driver, 929

sbc_wake_t, 904
wpfe, 904
wpre, 904

sbc_wtdog_ctr_nwp_t
UJA116xA SBC Driver, 930

sbc_wtdog_ctr_t, 898
modeControl, 898
nominalPeriod, 898

sbc_wtdog_ctr_wmc_t
UJA116xA SBC Driver, 930

sbc_wtdog_stat_fnms_t
UJA116xA SBC Driver, 930

sbc_wtdog_stat_sdms_t
UJA116xA SBC Driver, 931

sbc_wtdog_stat_wds_t
UJA116xA SBC Driver, 931

sbc_wtdog_status_t, 907
fnms, 907
sdms, 907
wds, 907

scatterGatherEnable
edma_transfer_config_t, 298

scatterGatherNextDescAddr
edma_transfer_config_t, 298

scg_async_clock_div_t
Clock Manager Driver, 223

scg_clock_mode_config_t, 211
alternateClock, 212
hccrConfig, 212
initialize, 212
rccrConfig, 212
vccrConfig, 212

scg_clockout_config_t, 212
initialize, 212
source, 212

scg_clockout_src_t
Clock Manager Driver, 223

scg_config_t, 212
clockModeConfig, 213
clockOutConfig, 213
fircConfig, 213
rtcConfig, 213
sircConfig, 213
soscConfig, 213
spllConfig, 213

scg_firc_config_t, 209
div1, 209
div2, 209
enableInLowPower, 209
enableInStop, 209
initialize, 210
locked, 210
range, 210
regulator, 210

scg_firc_range_t
Clock Manager Driver, 223

scg_rtc_config_t, 211
initialize, 211

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1061

rtcClkInFreq, 211
scg_sirc_config_t, 208

div1, 208
div2, 208
enableInLowPower, 208
enableInStop, 209
initialize, 209
locked, 209
range, 209

scg_sirc_range_t
Clock Manager Driver, 224

scg_sosc_config_t, 207
div1, 207
div2, 207
enableInLowPower, 207
enableInStop, 207
extRef, 207
freq, 207
gain, 208
initialize, 208
locked, 208
monitorMode, 208
range, 208

scg_sosc_ext_ref_t
Clock Manager Driver, 224

scg_sosc_gain_t
Clock Manager Driver, 224

scg_sosc_monitor_mode_t
Clock Manager Driver, 224

scg_sosc_range_t
Clock Manager Driver, 224

scg_spll_clock_multiply_t
Clock Manager Driver, 224

scg_spll_clock_prediv_t
Clock Manager Driver, 225

scg_spll_config_t, 210
div1, 210
div2, 210
enableInStop, 210
initialize, 211
locked, 211
monitorMode, 211
mult, 211
prediv, 211
src, 211

scg_spll_monitor_mode_t
Clock Manager Driver, 226

scg_system_clock_config_t, 206
divBus, 206
divCore, 206
divSlow, 206
src, 207

scg_system_clock_div_t
Clock Manager Driver, 226

scg_system_clock_src_t
Clock Manager Driver, 226

scgConfig
clock_manager_user_config_t, 216

sch_tbl_type
lin_schedule_t, 672

Schedule management, 827
l_sch_set, 827
l_sch_tick, 827

schedule_start
lin_protocol_user_config_t, 678

schedule_start_entry_ptr
lin_master_data_t, 679

schedule_tbl
lin_protocol_user_config_t, 678

sckPin
extension_flexio_for_i2s_t, 517
extension_flexio_for_spi_t, 855
flexio_i2s_master_user_config_t, 395
flexio_i2s_slave_user_config_t, 396
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 415

sclPin
extension_flexio_for_i2c_t, 535
flexio_i2c_master_user_config_t, 385

sdaPin
extension_flexio_for_i2c_t, 535
flexio_i2c_master_user_config_t, 385

sdmc
sbc_sbc_t, 899

sdms
sbc_wtdog_status_t, 907

secondChannelPolarity
ftm_combined_ch_param_t, 498
ftm_independent_ch_param_t, 497

secondChannelSafeState
ftm_combined_ch_param_t, 498

secondEdge
ftm_combined_ch_param_t, 498

secondIntConfig
rtc_seconds_int_config_t, 809

secondIntEnable
rtc_seconds_int_config_t, 809

seconds
rtc_timedate_t, 806

secondsCallbackParams
rtc_seconds_int_config_t, 809

sectorEraseCount
Flash Memory (Flash), 353

Security PAL, 828
SECURITY_BOOT_MAC, 832
SECURITY_BOOT_MAC_KEY, 832
SECURITY_BOOT_NOT_DEFINED, 831
SECURITY_BOOT_PARALLEL, 830
SECURITY_BOOT_SERIAL, 830
SECURITY_BOOT_STRICT, 830
SECURITY_BootDefine, 832
SECURITY_BootFailure, 832
SECURITY_BootOk, 833
SECURITY_CMD_BOOT_DEFINE, 831
SECURITY_CMD_BOOT_FAILURE, 831
SECURITY_CMD_BOOT_OK, 831

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1062 INDEX

SECURITY_CMD_DBG_AUTH, 831
SECURITY_CMD_DBG_CHAL, 831
SECURITY_CMD_DEC_CBC, 831
SECURITY_CMD_DEC_ECB, 831
SECURITY_CMD_ENC_CBC, 831
SECURITY_CMD_ENC_ECB, 831
SECURITY_CMD_EXPORT_RAM_KEY, 831
SECURITY_CMD_EXTEND_SEED, 831
SECURITY_CMD_GENERATE_MAC, 831
SECURITY_CMD_GET_ID, 831
SECURITY_CMD_INIT_RNG, 831
SECURITY_CMD_LOAD_KEY, 831
SECURITY_CMD_LOAD_PLAIN_KEY, 831
SECURITY_CMD_MP_COMPRESS, 831
SECURITY_CMD_RESERVED_1, 831
SECURITY_CMD_RESERVED_2, 831
SECURITY_CMD_RESERVED_3, 831
SECURITY_CMD_RND, 831
SECURITY_CMD_VERIFY_MAC, 831
SECURITY_CancelCommand, 833
SECURITY_DbgAuth, 833
SECURITY_DbgChal, 833
SECURITY_DecryptCbc, 834
SECURITY_DecryptCbcBlocking, 834
SECURITY_DecryptEcb, 835
SECURITY_DecryptEcbBlocking, 835
SECURITY_Deinit, 835
SECURITY_EncryptCbc, 836
SECURITY_EncryptCbcBlocking, 836
SECURITY_EncryptEcb, 836
SECURITY_EncryptEcbBlocking, 837
SECURITY_ExportRamKey, 837
SECURITY_ExtendSeed, 838
SECURITY_GenerateMac, 838
SECURITY_GenerateMacBlocking, 838
SECURITY_GenerateRnd, 840
SECURITY_GenerateTrnd, 840
SECURITY_GetAsyncCmdStatus, 840
SECURITY_GetDefaultConfig, 841
SECURITY_GetId, 841
SECURITY_INSTANCE0, 831
SECURITY_Init, 841
SECURITY_InitRng, 841
SECURITY_KEY_1, 832
SECURITY_KEY_10, 832
SECURITY_KEY_11, 832
SECURITY_KEY_12, 832
SECURITY_KEY_13, 832
SECURITY_KEY_14, 832
SECURITY_KEY_15, 832
SECURITY_KEY_16, 832
SECURITY_KEY_17, 832
SECURITY_KEY_2, 832
SECURITY_KEY_3, 832
SECURITY_KEY_4, 832
SECURITY_KEY_5, 832
SECURITY_KEY_6, 832
SECURITY_KEY_7, 832

SECURITY_KEY_8, 832
SECURITY_KEY_9, 832
SECURITY_LoadKey, 843
SECURITY_LoadPlainKey, 843
SECURITY_MASTER_ECU, 831
SECURITY_MPCompress, 843
SECURITY_RAM_KEY, 832
SECURITY_SECRET_KEY, 831
SECURITY_SecureBoot, 844
SECURITY_VerifyMac, 844
SECURITY_VerifyMacBlocking, 845
security_boot_flavor_t, 830
security_cmd_t, 831
security_instance_t, 831
security_key_id_t, 831

Security Peripheral Abstraction Layer - SECURITY PAL,
846

security_boot_flavor_t
Security PAL, 830

security_cmd_t
Security PAL, 831

security_instance_t
Security PAL, 831

security_key_id_t
Security PAL, 831

security_user_config_t, 830
callback, 830
callbackParam, 830

seed
crc_user_config_t, 169

send_functional_request_flg
lin_master_data_t, 680

send_slave_res_flg
lin_master_data_t, 680

seq
csec_state_t, 180

seqErrIntEnable
pdb_timer_config_t, 760

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 849

READ_ON_EVEN_EDGE, 855
READ_ON_ODD_EDGE, 855
SPI_ACTIVE_HIGH, 855
SPI_ACTIVE_LOW, 855
SPI_GetDefaultMasterConfig, 856
SPI_GetDefaultSlaveConfig, 856
SPI_GetStatus, 856
SPI_MasterDeinit, 857
SPI_MasterInit, 857
SPI_MasterSetDelay, 857
SPI_MasterTransfer, 857
SPI_MasterTransferBlocking, 858
SPI_SetSS, 858
SPI_SlaveDeinit, 858
SPI_SlaveInit, 859
SPI_SlaveTransfer, 859
SPI_SlaveTransferBlocking, 859
SPI_TRANSFER_LSB_FIRST, 856

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1063

SPI_TRANSFER_MSB_FIRST, 856
SPI_USING_DMA, 856
SPI_USING_INTERRUPTS, 856
spi_clock_phase_t, 855
spi_polarity_t, 855
spi_transfer_bit_order_t, 855
spi_transfer_type_t, 856

serial_0
lin_serial_number_t, 668

serial_1
lin_serial_number_t, 668

serial_2
lin_serial_number_t, 668

serial_3
lin_serial_number_t, 668

serial_number
lin_node_attribute_t, 670

service_flags_ptr
lin_node_attribute_t, 670

service_status
lin_tl_descriptor_t, 676

service_supported_ptr
lin_node_attribute_t, 670

Signal interaction, 861
sim_clkout_div_t

Clock Manager Driver, 226
sim_clkout_src_t

Clock Manager Driver, 227
sim_clock_config_t, 205

clockOutConfig, 206
lpoClockConfig, 206
platGateConfig, 206
qspiRefClkGating, 206
tclkConfig, 206
traceClockConfig, 206

sim_clock_out_config_t, 202
divider, 202
enable, 202
initialize, 202
source, 202

sim_lpo_clock_config_t, 202
enableLpo1k, 203
enableLpo32k, 203
initialize, 203
sourceLpoClk, 203
sourceRtcClk, 203

sim_lpoclk_sel_src_t
Clock Manager Driver, 227

sim_plat_gate_config_t, 203
enableDma, 204
enableEim, 204
enableErm, 204
enableMpu, 204
enableMscm, 204
initialize, 204

sim_qspi_ref_clk_gating_t, 204
enableQspiRefClk, 204

sim_rtc_clk_sel_src_t

Clock Manager Driver, 227
sim_tclk_config_t, 203

extPinSrc, 203
initialize, 203
tclkFreq, 203

sim_trace_clock_config_t, 205
divEnable, 205
divFraction, 205
divider, 205
initialize, 205
source, 205

simConfig
clock_manager_user_config_t, 216

sircConfig
scg_config_t, 213

slave_ifc_handle
lin_protocol_user_config_t, 678

slave_resp_cnt
lin_tl_descriptor_t, 676

slaveAddress
flexio_i2c_master_user_config_t, 386
i2c_master_t, 536
i2c_slave_t, 537
lpi2c_master_user_config_t, 585
lpi2c_slave_user_config_t, 586

slaveCallback
lpi2c_slave_user_config_t, 586

slaveListening
i2c_slave_t, 537
lpi2c_slave_user_config_t, 586

sleepOnExitValue
power_manager_user_config_t, 789

slpc
sbc_sbc_t, 899

smc_power_mode_config_t, 789
powerModeName, 789

smc_power_mode_protection_config_t, 789
vlpProt, 789

smc_run_mode_t
Power_s32k1xx, 791

smc_stop_mode_t
Power_s32k1xx, 791

smc_stop_option_t
Power_s32k1xx, 791

SoC Header file (SoC Header), 862
SoC Support, 863
softwareSync

ftm_pwm_sync_t, 441
soscConfig

scg_config_t, 213
source

module_clk_config_t, 216
scg_clockout_config_t, 212
sim_clock_out_config_t, 202
sim_trace_clock_config_t, 205

sourceClock
pwm_ftm_timebase_t, 798

sourceLpoClk

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1064 INDEX

sim_lpo_clock_config_t, 203
sourceRtcClk

sim_lpo_clock_config_t, 203
spi_clock_phase_t

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 855

spi_instance_t, 973
instIdx, 973
instType, 973

spi_master_t, 852
baudRate, 852
bitOrder, 852
callback, 852
callbackParam, 852
clockPhase, 852
clockPolarity, 852
extension, 852
frameSize, 853
rxDMAChannel, 853
ssPin, 853
ssPolarity, 853
transferType, 853
txDMAChannel, 853

spi_polarity_t
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 855
spi_slave_t, 853

bitOrder, 853
callback, 854
callbackParam, 854
clockPhase, 854
clockPolarity, 854
extension, 854
frameSize, 854
rxDMAChannel, 854
ssPolarity, 854
transferType, 854
txDMAChannel, 854

spi_transfer_bit_order_t
Serial Peripheral Interface - Peripheral Abstraction

Layer(SPI PAL), 855
spi_transfer_type_t

Serial Peripheral Interface - Peripheral Abstraction
Layer(SPI PAL), 856

spif
sbc_sys_evnt_stat_t, 910

spife
sbc_sys_evnt_t, 901

spllConfig
scg_config_t, 213

src
scg_spll_config_t, 211
scg_system_clock_config_t, 207
sys_clk_config_t, 217

srcAddr
edma_transfer_config_t, 298

srcLastAddrAdjust
edma_transfer_config_t, 298

srcModulo
edma_transfer_config_t, 299

srcOffset
edma_transfer_config_t, 299

srcOffsetEnable
edma_loop_transfer_config_t, 297

srcTransferSize
edma_transfer_config_t, 299

ssPin
extension_flexio_for_spi_t, 855
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 415
spi_master_t, 853

ssPolarity
spi_master_t, 853
spi_slave_t, 854

startAddr
mpu_region_config_t, 714
mpu_user_config_t, 702

startUp
sbc_factories_conf_t, 906

state
cmp_dac_t, 247
flexcan_mb_handle_t, 365

staticCallbacks
power_manager_state_t, 779

staticCallbacksNumber
power_manager_state_t, 779

status
edma_chn_state_t, 294
lpspi_state_t, 618

statusRegisterLock
rtc_register_lock_config_t, 810

stop
wdg_option_mode_t, 947
wdog_op_mode_t, 956

stopBitCount
lpuart_user_config_t, 646
uart_user_config_t, 938

Structural Core Self Test, 865
successful_transfer

lin_protocol_state_t, 681
lin_word_status_str_t, 667

supEvnt
sbc_evn_capt_t, 912

supe
sbc_gl_evnt_stat_t, 909

supplier_id
lin_product_id_t, 970

supply
sbc_status_group_t, 913

supplyEvnt
sbc_regulator_ctr_t, 905

supplyMonitoringEnable
adc_converter_config_t, 139
extension_adc_s32k1xx_t, 161

syncMethod
ftm_user_config_t, 442

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1065

syncPoint
ftm_pwm_sync_t, 441

sys_clk_config_t, 216
dividers, 217
src, 217

sysEvnt
sbc_evn_capt_t, 912
sbc_int_config_t, 905

syse
sbc_gl_evnt_stat_t, 909

System Basis Chip Driver (SBC) - UJA116xA Family, 867

TIMER_CHAN_TYPE_CONTINUOUS
Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 886
TIMER_CHAN_TYPE_ONESHOT

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 886
TIMER_RESOLUTION_TYPE_MICROSECOND

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 886
TIMER_RESOLUTION_TYPE_MILISECOND

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 886
TIMER_RESOLUTION_TYPE_NANOSECOND

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 886
TIMING_Deinit

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 886
TIMING_DisableNotification

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 886
TIMING_EnableNotification

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 886
TIMING_GetElapsed

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 887
TIMING_GetMaxPeriod

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 887
TIMING_GetRemaining

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 887
TIMING_GetResolution

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 888
TIMING_Init

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 888
TIMING_InstallCallback

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 888
TIMING_StartChannel

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 889
TIMING_StopChannel

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 889
TL_ACTION_ID_IGNORE

Low level API, 688
TL_ACTION_NONE

Low level API, 688
TL_ERROR

Low level API, 688
TL_HANDLER_INTERLEAVE_MODE

Low level API, 688
TL_MAKE_RES_DATA

Low level API, 688
TL_RECEIVE_MESSAGE

Low level API, 688
TL_RX_COMPLETED

Low level API, 688
TL_SLAVE_GET_ACTION

Low level API, 688
TL_TIMEOUT_SERVICE

Low level API, 688
TL_TX_COMPLETED

Low level API, 688
TRANSMITTING

Common Transport Layer API, 237
TRGMUX Driver, 872

TRGMUX_DRV_Deinit, 875
TRGMUX_DRV_GenSWTrigger, 875
TRGMUX_DRV_GetLockForTargetModule, 875
TRGMUX_DRV_GetTrigSourceForTargetModule,

875
TRGMUX_DRV_Init, 876
TRGMUX_DRV_SetLockForTargetModule, 876
TRGMUX_DRV_SetTrigSourceForTargetModule,

876
trgmux_target_module_t, 874
trgmux_trigger_source_t, 874

TRGMUX_DRV_Deinit
TRGMUX Driver, 875

TRGMUX_DRV_GenSWTrigger
TRGMUX Driver, 875

TRGMUX_DRV_GetLockForTargetModule
TRGMUX Driver, 875

TRGMUX_DRV_GetTrigSourceForTargetModule
TRGMUX Driver, 875

TRGMUX_DRV_Init
TRGMUX Driver, 876

TRGMUX_DRV_SetLockForTargetModule
TRGMUX Driver, 876

TRGMUX_DRV_SetTrigSourceForTargetModule
TRGMUX Driver, 876

targetClockConfigIndex
clock_notify_struct_t, 218

targetModule
trgmux_inout_mapping_config_t, 873

targetPowerConfigIndex
power_manager_notify_struct_t, 778

targetPowerConfigPtr
power_manager_notify_struct_t, 778

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1066 INDEX

tclkConfig
sim_clock_config_t, 206

tclkFreq
sim_tclk_config_t, 203

timeCompensationRegisterLock
rtc_register_lock_config_t, 810

timeInvalidIntEnable
rtc_interrupt_config_t, 809

timebase
pwm_channel_t, 799

timeoutCounter
lin_state_t, 567

timeoutCounterFlag
lin_state_t, 567

timeoutValue
wdg_config_t, 948
wdog_user_config_t, 957

timer_chan_config_t, 883
callback, 884
callbackParam, 884
chanType, 884
channel, 884

timer_chan_state_t, 973
timer_chan_type_t

Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 886
timer_config_t, 884

chanConfigArray, 884
extension, 884
numChan, 884

timer_resolution_type_t
Timing - Peripheral Abstraction Layer (TIMING P←↩

AL), 886
timerGetTimeIntervalCallback

lin_user_config_t, 565
timerGetTimeIntervalCallbackArr

Low level API, 694
timerMode

lpit_user_channel_config_t, 602
Timing - Peripheral Abstraction Layer (TIMING PAL),

879
TIMER_CHAN_TYPE_CONTINUOUS, 886
TIMER_CHAN_TYPE_ONESHOT, 886
TIMER_RESOLUTION_TYPE_MICROSECOND,

886
TIMER_RESOLUTION_TYPE_MILISECOND, 886
TIMER_RESOLUTION_TYPE_NANOSECOND,

886
TIMING_Deinit, 886
TIMING_DisableNotification, 886
TIMING_EnableNotification, 886
TIMING_GetElapsed, 887
TIMING_GetMaxPeriod, 887
TIMING_GetRemaining, 887
TIMING_GetResolution, 888
TIMING_Init, 888
TIMING_InstallCallback, 888
TIMING_StartChannel, 889

TIMING_StopChannel, 889
timer_chan_type_t, 886
timer_resolution_type_t, 886

timing_instance_t, 974
instIdx, 974
instType, 974

tl_pdu_ptr
lin_transport_layer_queue_t, 673

tl_queue_data
lin_schedule_data_t, 672

tl_rx_queue
lin_tl_descriptor_t, 676

tl_rx_queue_data_ptr
lin_protocol_user_config_t, 678

tl_tx_queue
lin_tl_descriptor_t, 676

tl_tx_queue_data_ptr
lin_protocol_user_config_t, 678

traceClockConfig
sim_clock_config_t, 206

trans
sbc_status_group_t, 913

transEvnt
sbc_evn_capt_t, 912

transfer_status_t
LPSPI Driver, 621

transfer_type
flexcan_user_config_t, 368

transferSize
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 415

transferType
FlexCANState, 365
i2c_master_t, 536
i2c_slave_t, 537
i2s_user_config_t, 516
lpi2c_master_user_config_t, 585
lpi2c_slave_user_config_t, 586
lpspi_master_config_t, 615
lpspi_slave_config_t, 619
lpspi_state_t, 618
lpuart_state_t, 645
lpuart_user_config_t, 646
spi_master_t, 853
spi_slave_t, 854
uart_user_config_t, 938

transmit_error_resp_sig_flg
lin_protocol_state_t, 682

transmitStatus
lpuart_state_t, 645

Transport layer API, 890
trgmux_inout_mapping_config_t, 873

lockTargetModuleReg, 873
targetModule, 873
triggerSource, 874

trgmux_target_module_t
TRGMUX Driver, 874

trgmux_trigger_source_t

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1067

TRGMUX Driver, 874
trgmux_user_config_t, 874

inOutMappingConfig, 874
numInOutMappingConfigs, 874

trigger
adc_converter_config_t, 139

triggerInput
pdb_timer_config_t, 760

triggerMode
cmp_module_t, 249

triggerSel
adc_converter_config_t, 139

triggerSelect
lpit_user_channel_config_t, 602

triggerSource
adc_group_config_t, 159
lpit_user_channel_config_t, 602
trgmux_inout_mapping_config_t, 874

trimValue
pmc_lpo_clock_config_t, 215

trxe
sbc_gl_evnt_stat_t, 909

tx_msg_size
lin_tl_descriptor_t, 676

tx_msg_status
lin_tl_descriptor_t, 676

txBuff
lin_state_t, 567
lpspi_state_t, 618
lpuart_state_t, 645

txCallback
lpuart_state_t, 645
uart_user_config_t, 938

txCallbackParam
lpuart_state_t, 645
uart_user_config_t, 938

txComplete
lpuart_state_t, 645

txCompleted
lin_state_t, 567

txCount
lpspi_state_t, 618

txDMAChannel
flexio_i2c_master_user_config_t, 386
flexio_i2s_master_user_config_t, 395
flexio_i2s_slave_user_config_t, 397
flexio_spi_master_user_config_t, 413
flexio_spi_slave_user_config_t, 415
i2s_user_config_t, 516
lpspi_master_config_t, 615
lpspi_slave_config_t, 619
lpspi_state_t, 618
lpuart_user_config_t, 646
spi_master_t, 853
spi_slave_t, 854
uart_user_config_t, 938

txFrameCnt
lpspi_state_t, 618

txPin
extension_flexio_for_i2s_t, 517
flexio_i2s_master_user_config_t, 395
flexio_i2s_slave_user_config_t, 397

txSize
lin_state_t, 567
lpuart_state_t, 645

type
edma_scatter_gather_list_t, 295

UART_10_BITS_PER_CHAR
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 939
UART_15_BITS_PER_CHAR

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 939

UART_16_BITS_PER_CHAR
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 939
UART_7_BITS_PER_CHAR

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 939

UART_8_BITS_PER_CHAR
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 939
UART_9_BITS_PER_CHAR

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 939

UART_AbortReceivingData
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 939
UART_AbortSendingData

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 940

UART_Deinit
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 940
UART_GetBaudRate

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 940

UART_GetDefaultConfig
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 940
UART_GetReceiveStatus

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 941

UART_GetTransmitStatus
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 941
UART_Init

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 942

UART_ONE_STOP_BIT
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 939
UART_PARITY_DISABLED

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 939

UART_PARITY_EVEN

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1068 INDEX

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 939

UART_PARITY_ODD
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 939
UART_ReceiveData

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 942

UART_ReceiveDataBlocking
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 942
UART_SendData

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 943

UART_SendDataBlocking
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 943
UART_SetBaudRate

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 943

UART_SetRxBuffer
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 944
UART_SetTxBuffer

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 944

UART_TWO_STOP_BIT
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 939
UART_USING_DMA

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 939

UART_USING_INTERRUPTS
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 939
uDutyCyclePercent

ftm_independent_ch_param_t, 497
uFrequencyHZ

ftm_pwm_param_t, 499
UJA116xA SBC Driver, 891

LK0C, 918
LK1C, 918
LK2C, 918
LK3C, 918
LK4C, 918
LK5C, 918
LK6C, 918
LKAC, 918
SBC_UJA_CAN, 920
SBC_UJA_CAN_CFDC_DIS, 915
SBC_UJA_CAN_CFDC_EN, 915
SBC_UJA_CAN_CMC_ACMODE_DA, 915
SBC_UJA_CAN_CMC_ACMODE_DD, 915
SBC_UJA_CAN_CMC_LISTEN, 915
SBC_UJA_CAN_CMC_OFMODE, 915
SBC_UJA_CAN_CPNC_DIS, 916
SBC_UJA_CAN_CPNC_EN, 916
SBC_UJA_CAN_PNCOK_DIS, 916

SBC_UJA_CAN_PNCOK_EN, 916
SBC_UJA_COUNT_DMASK, 914
SBC_UJA_COUNT_ID_REG, 914
SBC_UJA_COUNT_MASK, 914
SBC_UJA_DAT_MASK_0, 920
SBC_UJA_DAT_MASK_1, 920
SBC_UJA_DAT_MASK_2, 920
SBC_UJA_DAT_MASK_3, 920
SBC_UJA_DAT_MASK_4, 920
SBC_UJA_DAT_MASK_5, 920
SBC_UJA_DAT_MASK_6, 920
SBC_UJA_DAT_MASK_7, 920
SBC_UJA_DAT_RATE, 920
SBC_UJA_DAT_RATE_CDR_1000KB, 916
SBC_UJA_DAT_RATE_CDR_100KB, 916
SBC_UJA_DAT_RATE_CDR_125KB, 916
SBC_UJA_DAT_RATE_CDR_250KB, 916
SBC_UJA_DAT_RATE_CDR_500KB, 916
SBC_UJA_DAT_RATE_CDR_50KB, 916
SBC_UJA_FAIL_SAFE, 920
SBC_UJA_FAIL_SAFE_LHC_FLOAT, 916
SBC_UJA_FAIL_SAFE_LHC_LOW, 916
SBC_UJA_FRAME_CTR, 920
SBC_UJA_FRAME_CTR_IDE_11B, 917
SBC_UJA_FRAME_CTR_IDE_29B, 917
SBC_UJA_FRAME_CTR_PNDM_DCARE, 917
SBC_UJA_FRAME_CTR_PNDM_EVAL, 917
SBC_UJA_GL_EVNT_STAT, 920
SBC_UJA_GL_EVNT_STAT_SUPE, 917
SBC_UJA_GL_EVNT_STAT_SUPE_NO, 917
SBC_UJA_GL_EVNT_STAT_SYSE, 917
SBC_UJA_GL_EVNT_STAT_SYSE_NO, 917
SBC_UJA_GL_EVNT_STAT_TRXE, 917
SBC_UJA_GL_EVNT_STAT_TRXE_NO, 917
SBC_UJA_GL_EVNT_STAT_WPE, 918
SBC_UJA_GL_EVNT_STAT_WPE_NO, 918
SBC_UJA_IDENTIF, 921
SBC_UJA_IDENTIF_0, 920
SBC_UJA_IDENTIF_1, 920
SBC_UJA_IDENTIF_2, 920
SBC_UJA_IDENTIF_3, 920
SBC_UJA_LOCK, 920
SBC_UJA_MAIN, 920
SBC_UJA_MAIN_NMS_NORMAL, 918
SBC_UJA_MAIN_NMS_PWR_UP, 918
SBC_UJA_MAIN_OTWS_ABOVE, 918
SBC_UJA_MAIN_OTWS_BELOW, 918
SBC_UJA_MAIN_RSS_CAN_WAKEUP, 919
SBC_UJA_MAIN_RSS_DIAG_WAKEUP, 919
SBC_UJA_MAIN_RSS_ILLEG_SLP, 919
SBC_UJA_MAIN_RSS_ILLEG_WATCH, 919
SBC_UJA_MAIN_RSS_LFT_OVERTM, 919
SBC_UJA_MAIN_RSS_OFF_MODE, 919
SBC_UJA_MAIN_RSS_OVF_SLP, 919
SBC_UJA_MAIN_RSS_RSTN_PULDW, 919
SBC_UJA_MAIN_RSS_SLP_WAKEUP, 919
SBC_UJA_MAIN_RSS_V1_UNDERV, 919
SBC_UJA_MAIN_RSS_WAKE_SLP, 919

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1069

SBC_UJA_MAIN_RSS_WATCH_OVF, 919
SBC_UJA_MAIN_RSS_WATCH_TRIG, 919
SBC_UJA_MASK_0, 920
SBC_UJA_MASK_1, 920
SBC_UJA_MASK_2, 920
SBC_UJA_MASK_3, 920
SBC_UJA_MEMORY_0, 920
SBC_UJA_MEMORY_1, 920
SBC_UJA_MEMORY_2, 920
SBC_UJA_MEMORY_3, 920
SBC_UJA_MODE, 920
SBC_UJA_MODE_MC_NORMAL, 919
SBC_UJA_MODE_MC_SLEEP, 919
SBC_UJA_MODE_MC_STANDBY, 919
SBC_UJA_MTPNV_CRC, 921
SBC_UJA_MTPNV_STAT, 921
SBC_UJA_MTPNV_STAT_ECCS, 919
SBC_UJA_MTPNV_STAT_ECCS_NO, 919
SBC_UJA_MTPNV_STAT_NVMPS, 919
SBC_UJA_MTPNV_STAT_NVMPS_NO, 919
SBC_UJA_REGULATOR, 920
SBC_UJA_REGULATOR_PDC_HV, 921
SBC_UJA_REGULATOR_PDC_LV, 921
SBC_UJA_REGULATOR_V1RTC_60, 921
SBC_UJA_REGULATOR_V1RTC_70, 921
SBC_UJA_REGULATOR_V1RTC_80, 921
SBC_UJA_REGULATOR_V1RTC_90, 921
SBC_UJA_REGULATOR_V2C_N, 921
SBC_UJA_REGULATOR_V2C_N_S_R, 921
SBC_UJA_REGULATOR_V2C_N_S_S_R, 921
SBC_UJA_REGULATOR_V2C_OFF, 921
SBC_UJA_SBC, 921
SBC_UJA_SBC_FNMC_DIS, 922
SBC_UJA_SBC_FNMC_EN, 922
SBC_UJA_SBC_SDMC_DIS, 922
SBC_UJA_SBC_SDMC_EN, 922
SBC_UJA_SBC_SLPC_AC, 922
SBC_UJA_SBC_SLPC_IG, 922
SBC_UJA_SBC_V1RTSUC_60, 922
SBC_UJA_SBC_V1RTSUC_70, 922
SBC_UJA_SBC_V1RTSUC_80, 922
SBC_UJA_SBC_V1RTSUC_90, 922
SBC_UJA_START_UP, 921
SBC_UJA_START_UP_RLC_01_01p5, 923
SBC_UJA_START_UP_RLC_03p6_05, 923
SBC_UJA_START_UP_RLC_10_12p5, 923
SBC_UJA_START_UP_RLC_20_25p0, 923
SBC_UJA_START_UP_V2SUC_00, 923
SBC_UJA_START_UP_V2SUC_11, 923
SBC_UJA_SUP_EVNT_STAT, 920
SBC_UJA_SUP_EVNT_STAT_V1U, 923
SBC_UJA_SUP_EVNT_STAT_V1U_NO, 923
SBC_UJA_SUP_EVNT_STAT_V2O, 923
SBC_UJA_SUP_EVNT_STAT_V2O_NO, 923
SBC_UJA_SUP_EVNT_STAT_V2U, 923
SBC_UJA_SUP_EVNT_STAT_V2U_NO, 923
SBC_UJA_SUPPLY_EVNT, 920
SBC_UJA_SUPPLY_EVNT_V1UE_DIS, 924

SBC_UJA_SUPPLY_EVNT_V1UE_EN, 924
SBC_UJA_SUPPLY_EVNT_V2OE_DIS, 924
SBC_UJA_SUPPLY_EVNT_V2OE_EN, 924
SBC_UJA_SUPPLY_EVNT_V2UE_DIS, 924
SBC_UJA_SUPPLY_EVNT_V2UE_EN, 924
SBC_UJA_SUPPLY_STAT, 920
SBC_UJA_SUPPLY_STAT_V1S_VAB, 924
SBC_UJA_SUPPLY_STAT_V1S_VBE, 924
SBC_UJA_SUPPLY_STAT_V2S_DIS, 924
SBC_UJA_SUPPLY_STAT_V2S_VAB, 924
SBC_UJA_SUPPLY_STAT_V2S_VBE, 924
SBC_UJA_SUPPLY_STAT_V2S_VOK, 924
SBC_UJA_SYS_EVNT_OTWE_DIS, 925
SBC_UJA_SYS_EVNT_OTWE_EN, 925
SBC_UJA_SYS_EVNT_SPIFE_DIS, 925
SBC_UJA_SYS_EVNT_SPIFE_EN, 925
SBC_UJA_SYS_EVNT_STAT, 920
SBC_UJA_SYS_EVNT_STAT_OTW, 925
SBC_UJA_SYS_EVNT_STAT_OTW_NO, 925
SBC_UJA_SYS_EVNT_STAT_PO, 925
SBC_UJA_SYS_EVNT_STAT_PO_NO, 925
SBC_UJA_SYS_EVNT_STAT_SPIF, 925
SBC_UJA_SYS_EVNT_STAT_SPIF_NO, 925
SBC_UJA_SYS_EVNT_STAT_WDF, 926
SBC_UJA_SYS_EVNT_STAT_WDF_NO, 926
SBC_UJA_SYSTEM_EVNT, 920
SBC_UJA_TIMEOUT, 914
SBC_UJA_TRANS_EVNT, 920
SBC_UJA_TRANS_EVNT_CBSE_DIS, 926
SBC_UJA_TRANS_EVNT_CBSE_EN, 926
SBC_UJA_TRANS_EVNT_CFE_DIS, 926
SBC_UJA_TRANS_EVNT_CFE_EN, 926
SBC_UJA_TRANS_EVNT_CWE_DIS, 926
SBC_UJA_TRANS_EVNT_CWE_EN, 926
SBC_UJA_TRANS_EVNT_STAT, 920
SBC_UJA_TRANS_EVNT_STAT_CBS, 926
SBC_UJA_TRANS_EVNT_STAT_CBS_NO, 926
SBC_UJA_TRANS_EVNT_STAT_CF, 927
SBC_UJA_TRANS_EVNT_STAT_CF_NO, 927
SBC_UJA_TRANS_EVNT_STAT_CW, 927
SBC_UJA_TRANS_EVNT_STAT_CW_NO, 927
SBC_UJA_TRANS_EVNT_STAT_PNFDE, 927
SBC_UJA_TRANS_EVNT_STAT_PNFDE_NO,

927
SBC_UJA_TRANS_STAT, 920
SBC_UJA_TRANS_STAT_CBSS_ACT, 927
SBC_UJA_TRANS_STAT_CBSS_INACT, 927
SBC_UJA_TRANS_STAT_CFS_NO_TXD, 928
SBC_UJA_TRANS_STAT_CFS_TXD, 928
SBC_UJA_TRANS_STAT_COSCS_NRUN, 928
SBC_UJA_TRANS_STAT_COSCS_RUN, 928
SBC_UJA_TRANS_STAT_CPNERR_DET, 928
SBC_UJA_TRANS_STAT_CPNERR_NO_DET,

928
SBC_UJA_TRANS_STAT_CPNS_ERR, 928
SBC_UJA_TRANS_STAT_CPNS_OK, 928
SBC_UJA_TRANS_STAT_CTS_ACT, 928
SBC_UJA_TRANS_STAT_CTS_INACT, 928

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1070 INDEX

SBC_UJA_TRANS_STAT_VCS_AB, 929
SBC_UJA_TRANS_STAT_VCS_BE, 929
SBC_UJA_WAKE_EN, 920
SBC_UJA_WAKE_EN_WPFE_DIS, 929
SBC_UJA_WAKE_EN_WPFE_EN, 929
SBC_UJA_WAKE_EN_WPRE_DIS, 929
SBC_UJA_WAKE_EN_WPRE_EN, 929
SBC_UJA_WAKE_EVNT_STAT, 921
SBC_UJA_WAKE_EVNT_STAT_WPF, 929
SBC_UJA_WAKE_EVNT_STAT_WPF_NO, 929
SBC_UJA_WAKE_EVNT_STAT_WPR, 929
SBC_UJA_WAKE_EVNT_STAT_WPR_NO, 929
SBC_UJA_WAKE_STAT, 920
SBC_UJA_WAKE_STAT_WPVS_AB, 930
SBC_UJA_WAKE_STAT_WPVS_BE, 930
SBC_UJA_WTDOG_CTR, 920
SBC_UJA_WTDOG_CTR_NWP_1024, 930
SBC_UJA_WTDOG_CTR_NWP_128, 930
SBC_UJA_WTDOG_CTR_NWP_16, 930
SBC_UJA_WTDOG_CTR_NWP_256, 930
SBC_UJA_WTDOG_CTR_NWP_32, 930
SBC_UJA_WTDOG_CTR_NWP_4096, 930
SBC_UJA_WTDOG_CTR_NWP_64, 930
SBC_UJA_WTDOG_CTR_NWP_8, 930
SBC_UJA_WTDOG_CTR_WMC_AUTO, 930
SBC_UJA_WTDOG_CTR_WMC_TIME, 930
SBC_UJA_WTDOG_CTR_WMC_WIND, 930
SBC_UJA_WTDOG_STAT, 920
SBC_UJA_WTDOG_STAT_FNMS_N_NORMAL,

931
SBC_UJA_WTDOG_STAT_FNMS_NORMAL, 931
SBC_UJA_WTDOG_STAT_SDMS_N_NORMAL,

931
SBC_UJA_WTDOG_STAT_SDMS_NORMAL, 931
SBC_UJA_WTDOG_STAT_WDS_FIH, 931
SBC_UJA_WTDOG_STAT_WDS_OFF, 931
SBC_UJA_WTDOG_STAT_WDS_SEH, 931
sbc_can_cfdc_t, 915
sbc_can_cmc_t, 915
sbc_can_cpnc_t, 915
sbc_can_pncok_t, 916
sbc_dat_rate_t, 916
sbc_data_mask_t, 914
sbc_fail_safe_lhc_t, 916
sbc_fail_safe_rcc_t, 914
sbc_frame_ctr_dlc_t, 914
sbc_frame_ctr_ide_t, 916
sbc_frame_ctr_pndm_t, 917
sbc_gl_evnt_stat_supe_t, 917
sbc_gl_evnt_stat_syse_t, 917
sbc_gl_evnt_stat_trxe_t, 917
sbc_gl_evnt_stat_wpe_t, 917
sbc_identif_mask_t, 915
sbc_identifier_t, 915
sbc_lock_t, 918
sbc_main_nms_t, 918
sbc_main_otws_t, 918
sbc_main_rss_t, 918

sbc_mode_mc_t, 919
sbc_mtpnv_stat_eccs_t, 919
sbc_mtpnv_stat_nvmps_t, 919
sbc_mtpnv_stat_wrcnts_t, 915
sbc_register_t, 919
sbc_regulator_pdc_t, 921
sbc_regulator_v1rtc_t, 921
sbc_regulator_v2c_t, 921
sbc_sbc_fnmc_t, 921
sbc_sbc_sdmc_t, 922
sbc_sbc_slpc_t, 922
sbc_sbc_v1rtsuc_t, 922
sbc_start_up_rlc_t, 922
sbc_start_up_v2suc_t, 923
sbc_sup_evnt_stat_v1u_t, 923
sbc_sup_evnt_stat_v2o_t, 923
sbc_sup_evnt_stat_v2u_t, 923
sbc_supply_evnt_v1ue_t, 923
sbc_supply_evnt_v2oe_t, 924
sbc_supply_evnt_v2ue_t, 924
sbc_supply_stat_v1s_t, 924
sbc_supply_stat_v2s_t, 924
sbc_sys_evnt_otwe_t, 924
sbc_sys_evnt_spife_t, 925
sbc_sys_evnt_stat_otw_t, 925
sbc_sys_evnt_stat_po_t, 925
sbc_sys_evnt_stat_spif_t, 925
sbc_sys_evnt_stat_wdf_t, 925
sbc_trans_evnt_cbse_t, 926
sbc_trans_evnt_cfe_t, 926
sbc_trans_evnt_cwe_t, 926
sbc_trans_evnt_stat_cbs_t, 926
sbc_trans_evnt_stat_cf_t, 927
sbc_trans_evnt_stat_cw_t, 927
sbc_trans_evnt_stat_pnfde_t, 927
sbc_trans_stat_cbss_t, 927
sbc_trans_stat_cfs_t, 927
sbc_trans_stat_coscs_t, 928
sbc_trans_stat_cpnerr_t, 928
sbc_trans_stat_cpns_t, 928
sbc_trans_stat_cts_t, 928
sbc_trans_stat_vcs_t, 928
sbc_wake_en_wpfe_t, 929
sbc_wake_en_wpre_t, 929
sbc_wake_evnt_stat_wpf_t, 929
sbc_wake_evnt_stat_wpr_t, 929
sbc_wake_stat_wpvs_t, 929
sbc_wtdog_ctr_nwp_t, 930
sbc_wtdog_ctr_wmc_t, 930
sbc_wtdog_stat_fnms_t, 930
sbc_wtdog_stat_sdms_t, 931
sbc_wtdog_stat_wds_t, 931

uart_bit_count_per_char_t
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 938
uart_instance_t, 974

instIdx, 975
instType, 975

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1071

uart_parity_mode_t
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 939
uart_stop_bit_count_t

Universal Asynchronous Receiver/Transmitter - Pe-
ripheral Abstraction Layer (UART PAL), 939

uart_transfer_type_t
Universal Asynchronous Receiver/Transmitter - Pe-

ripheral Abstraction Layer (UART PAL), 939
uart_user_config_t, 937

baudRate, 937
bitCount, 937
extension, 937
parityMode, 937
rxCallback, 937
rxCallbackParam, 937
rxDMAChannel, 937
stopBitCount, 938
transferType, 938
txCallback, 938
txCallbackParam, 938
txDMAChannel, 938

Universal Asynchronous Receiver/Transmitter - Periph-
eral Abstraction Layer (UART PAL), 932

UART_10_BITS_PER_CHAR, 939
UART_15_BITS_PER_CHAR, 939
UART_16_BITS_PER_CHAR, 939
UART_7_BITS_PER_CHAR, 939
UART_8_BITS_PER_CHAR, 939
UART_9_BITS_PER_CHAR, 939
UART_AbortReceivingData, 939
UART_AbortSendingData, 940
UART_Deinit, 940
UART_GetBaudRate, 940
UART_GetDefaultConfig, 940
UART_GetReceiveStatus, 941
UART_GetTransmitStatus, 941
UART_Init, 942
UART_ONE_STOP_BIT, 939
UART_PARITY_DISABLED, 939
UART_PARITY_EVEN, 939
UART_PARITY_ODD, 939
UART_ReceiveData, 942
UART_ReceiveDataBlocking, 942
UART_SendData, 943
UART_SendDataBlocking, 943
UART_SetBaudRate, 943
UART_SetRxBuffer, 944
UART_SetTxBuffer, 944
UART_TWO_STOP_BIT, 939
UART_USING_DMA, 939
UART_USING_INTERRUPTS, 939
uart_bit_count_per_char_t, 938
uart_parity_mode_t, 939
uart_stop_bit_count_t, 939
uart_transfer_type_t, 939

updateEnable
rtc_init_config_t, 807

wdog_user_config_t, 957
User provided call-outs, 945

l_sys_irq_disable, 945
l_sys_irq_restore, 945

userGain
adc_calibration_t, 141

userOffset
adc_calibration_t, 141

v1rtc
sbc_regulator_t, 900

v1rtsuc
sbc_sbc_t, 899

v1s
sbc_supply_status_t, 908

v1u
sbc_sup_evnt_stat_t, 910

v1ue
sbc_supply_evnt_t, 900

v2c
sbc_regulator_t, 900

v2o
sbc_sup_evnt_stat_t, 910

v2oe
sbc_supply_evnt_t, 901

v2s
sbc_supply_status_t, 908

v2suc
sbc_start_up_t, 900

v2u
sbc_sup_evnt_stat_t, 910

v2ue
sbc_supply_evnt_t, 901

VLPR_MODE
Clock Manager Driver, 223

VLPS_MODE
Clock Manager Driver, 223

variant
lin_product_id_t, 970

vccrConfig
scg_clock_mode_config_t, 212

vcs
sbc_trans_stat_t, 909

verifStatus
csec_state_t, 180

virtChn
edma_chn_state_t, 294

virtChnConfig
edma_channel_config_t, 295

virtChnState
edma_state_t, 296

vlpProt
smc_power_mode_protection_config_t, 789

voltage
cmp_dac_t, 247

voltageRef
adc_converter_config_t, 139
extension_adc_s32k1xx_t, 161

voltageReferenceSource

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1072 INDEX

cmp_dac_t, 247

WDG PAL, 946
WDG_ClearIntFlag, 949
WDG_Deinit, 949
WDG_GetCounter, 950
WDG_GetDefaultConfig, 950
WDG_IN_ASSERT_DISABLED, 949
WDG_IN_ASSERT_ON_LOGIC_ONE, 949
WDG_IN_ASSERT_ON_LOGIC_ZERO, 949
WDG_Init, 950
WDG_PAL_BUS_CLOCK, 949
WDG_PAL_LPO_CLOCK, 949
WDG_PAL_SIRC_CLOCK, 949
WDG_PAL_SOSC_CLOCK, 949
WDG_Refresh, 951
WDG_SetInt, 951
WDG_SetTimeout, 951
WDG_SetWindow, 951
wdg_clock_source_t, 948
wdg_in_assert_logic_t, 949
wdg_inst_type_t, 949

WDG_ClearIntFlag
WDG PAL, 949

WDG_Deinit
WDG PAL, 949

WDG_GetCounter
WDG PAL, 950

WDG_GetDefaultConfig
WDG PAL, 950

WDG_IN_ASSERT_DISABLED
WDG PAL, 949

WDG_IN_ASSERT_ON_LOGIC_ONE
WDG PAL, 949

WDG_IN_ASSERT_ON_LOGIC_ZERO
WDG PAL, 949

WDG_Init
WDG PAL, 950

WDG_PAL_BUS_CLOCK
WDG PAL, 949

WDG_PAL_LPO_CLOCK
WDG PAL, 949

WDG_PAL_SIRC_CLOCK
WDG PAL, 949

WDG_PAL_SOSC_CLOCK
WDG PAL, 949

WDG_Refresh
WDG PAL, 951

WDG_SetInt
WDG PAL, 951

WDG_SetTimeout
WDG PAL, 951

WDG_SetWindow
WDG PAL, 951

WDOG Driver, 953
WDOG_BUS_CLOCK, 957
WDOG_DEBUG_MODE, 957
WDOG_DRV_ClearIntFlag, 958
WDOG_DRV_Deinit, 958

WDOG_DRV_GetConfig, 958
WDOG_DRV_GetCounter, 958
WDOG_DRV_GetDefaultConfig, 959
WDOG_DRV_GetTestMode, 959
WDOG_DRV_Init, 959
WDOG_DRV_SetInt, 959
WDOG_DRV_SetMode, 960
WDOG_DRV_SetTestMode, 960
WDOG_DRV_SetTimeout, 960
WDOG_DRV_SetWindow, 961
WDOG_DRV_Trigger, 961
WDOG_LPO_CLOCK, 957
WDOG_SIRC_CLOCK, 957
WDOG_SOSC_CLOCK, 957
WDOG_STOP_MODE, 957
WDOG_TST_DISABLED, 958
WDOG_TST_HIGH, 958
WDOG_TST_LOW, 958
WDOG_TST_USER, 958
WDOG_WAIT_MODE, 957
wdog_clk_source_t, 957
wdog_set_mode_t, 957
wdog_test_mode_t, 957

WDOG_BUS_CLOCK
WDOG Driver, 957

WDOG_DEBUG_MODE
WDOG Driver, 957

WDOG_DRV_ClearIntFlag
WDOG Driver, 958

WDOG_DRV_Deinit
WDOG Driver, 958

WDOG_DRV_GetConfig
WDOG Driver, 958

WDOG_DRV_GetCounter
WDOG Driver, 958

WDOG_DRV_GetDefaultConfig
WDOG Driver, 959

WDOG_DRV_GetTestMode
WDOG Driver, 959

WDOG_DRV_Init
WDOG Driver, 959

WDOG_DRV_SetInt
WDOG Driver, 959

WDOG_DRV_SetMode
WDOG Driver, 960

WDOG_DRV_SetTestMode
WDOG Driver, 960

WDOG_DRV_SetTimeout
WDOG Driver, 960

WDOG_DRV_SetWindow
WDOG Driver, 961

WDOG_DRV_Trigger
WDOG Driver, 961

WDOG_LPO_CLOCK
WDOG Driver, 957

WDOG_SIRC_CLOCK
WDOG Driver, 957

WDOG_SOSC_CLOCK

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

INDEX 1073

WDOG Driver, 957
WDOG_STOP_MODE

WDOG Driver, 957
WDOG_TST_DISABLED

WDOG Driver, 958
WDOG_TST_HIGH

WDOG Driver, 958
WDOG_TST_LOW

WDOG Driver, 958
WDOG_TST_USER

WDOG Driver, 958
WDOG_WAIT_MODE

WDOG Driver, 957
wait

wdg_option_mode_t, 947
wdog_op_mode_t, 956

wakePin
sbc_int_config_t, 906
sbc_status_group_t, 914

wakePinEvnt
sbc_evn_capt_t, 912

watchdog
sbc_int_config_t, 906

Watchdog Peripheral Abstraction Layer (WDG PAL), 962
Watchdog timer (WDOG), 965
watchdogCtr

drv_config_t, 968
wdf

sbc_sys_evnt_stat_t, 910
wdg_clock_source_t

WDG PAL, 948
wdg_config_t, 947

clkSource, 948
extension, 948
intEnable, 948
opMode, 948
percentWindow, 948
prescalerEnable, 948
timeoutValue, 948
winEnable, 948

wdg_in_assert_logic_t
WDG PAL, 949

wdg_inst_type_t
WDG PAL, 949

wdg_instance_t, 975
instIdx, 975
instType, 975

wdg_option_mode_t, 947
debug, 947
stop, 947
wait, 947

wdog_clk_source_t
WDOG Driver, 957

wdog_op_mode_t, 956
debug, 956
stop, 956
wait, 956

wdog_set_mode_t

WDOG Driver, 957
wdog_test_mode_t

WDOG Driver, 957
wdog_user_config_t, 956

clkSource, 956
intEnable, 956
opMode, 956
prescalerEnable, 957
timeoutValue, 957
updateEnable, 957
winEnable, 957
windowValue, 957

wds
sbc_wtdog_status_t, 907

whichPcs
lpspi_master_config_t, 616
lpspi_slave_config_t, 620

winEnable
wdg_config_t, 948
wdog_user_config_t, 957

windowValue
wdog_user_config_t, 957

word_status
lin_protocol_state_t, 682

wordWidth
i2s_user_config_t, 516

workMode
lptmr_config_t, 634

wpe
sbc_gl_evnt_stat_t, 909

wpf
sbc_wake_evnt_stat_t, 911

wpfe
sbc_wake_t, 904

wpr
sbc_wake_evnt_stat_t, 911

wpre
sbc_wake_t, 904

wrcnts
sbc_mtpnv_stat_t, 913

writeTranspose
crc_user_config_t, 169

wsPin
extension_flexio_for_i2s_t, 517
flexio_i2s_master_user_config_t, 395
flexio_i2s_slave_user_config_t, 397

wtdog
sbc_status_group_t, 914

XOSC_EXT_REF
Clock Manager Driver, 228

XOSC_INT_OSC
Clock Manager Driver, 228

xosc_ref_t
Clock Manager Driver, 228

YEAR_RANGE_END
RTC Driver, 811

YEAR_RANGE_START

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

1074 INDEX

RTC Driver, 811
year

rtc_timedate_t, 806

Generated on Fri Jun 11 2021 08:14:09 for S32SDK User Manual by Doxygen

	1 S32 SDK
	2 Components
	3 PAL vs PD usage
	4 Supported Platforms
	5 Installation
	6 Build Tools
	7 IDE Support
	8 Configuration
	9 Acronyms and Abbreviations
	10 MISRA Compliance
	11 Development guidelines
	12 Error detection and reporting
	13 Examples and Demos
	13.1 Introduction
	13.2 Usage
	13.2.1 How to build
	13.2.2 How to debug
	13.2.3 Using terminal emulator

	13.3 Demo Applications
	13.3.1 ADC Low Power
	13.3.2 CSEC BOOT PROTECTION
	13.3.3 Hello World - Makefile
	13.3.4 FreeMASTER
	13.3.5 FreeRTOS
	13.3.6 Hello World
	13.3.7 AMMCLib
	13.3.8 Structural Core Self Test Example
	13.3.9 Hello World
	13.3.10 LIN MASTER
	13.3.11 LIN SLAVE

	13.4 Driver Examples
	13.4.1 Analog Driver Examples
	13.4.2 ADC Hardware Trigger
	13.4.3 ADC PAL example
	13.4.4 ADC Software Trigger
	13.4.5 CMP DAC
	13.4.6 Communication Driver Examples
	13.4.7 LIN MASTER BAREMETAL
	13.4.8 LIN SLAVE BAREMETAL
	13.4.9 LPI2C MASTER
	13.4.10 LPI2C SLAVE
	13.4.11 LPSPI Transfer
	13.4.12 LPSPI DMA
	13.4.13 SPI PAL
	13.4.14 UART PAL
	13.4.15 LPUART
	13.4.16 I2C PAL
	13.4.17 I2S PAL MASTER
	13.4.18 I2S PAL SLAVE
	13.4.19 FLEXIO I2C
	13.4.20 FLEXIO I2S MASTER
	13.4.21 FLEXIO SPI
	13.4.22 FLEXIO I2S SLAVE
	13.4.23 FLEXIO UART
	13.4.24 CAN PAL
	13.4.25 System Driver Examples
	13.4.26 CRC Checksum
	13.4.27 MPU PAL Memory Protection
	13.4.28 MPU Memory Protect Unit
	13.4.29 CSEc key configuration
	13.4.30 FLASH Partitioning
	13.4.31 EIM INJECTION
	13.4.32 ERM REPORT
	13.4.33 EWM Interrupt
	13.4.34 SECURITY PAL
	13.4.35 WDOG Interrupt
	13.4.36 Trigger MUX Control
	13.4.37 EDMA transfer
	13.4.38 Power Mode Switch
	13.4.39 WDG PAL Interrupt
	13.4.40 Timer Driver Examples
	13.4.41 FTM Combined PWM
	13.4.42 FTM Periodic Interrupt
	13.4.43 FTM PWM
	13.4.44 FTM Signal Measurement
	13.4.45 IC PAL
	13.4.46 LPTMR Periodic Interrupt
	13.4.47 LPTMR Periodic Interrupt
	13.4.48 PDB Periodic Interrupt
	13.4.49 RTC Alarm
	13.4.50 TIMING PAL
	13.4.51 PWM PAL
	13.4.52 OC PAL
	13.4.53 LPIT Periodic Interrupt

	14 Module Index
	14.1 Modules

	15 Data Structure Index
	15.1 Data Structures

	16 Module Documentation
	16.1 ADC Driver
	16.1.1 Detailed Description
	16.1.2 Data Structure Documentation
	16.1.3 Enumeration Type Documentation
	16.1.4 Function Documentation

	16.2 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL)
	16.2.1 Detailed Description
	16.2.2 Data Structure Documentation
	16.2.3 Typedef Documentation
	16.2.4 Enumeration Type Documentation
	16.2.5 Function Documentation

	16.3 Automotive Math and Motor Control Library
	16.4 Backward Compatibility Symbols for S32K144
	16.5 CRC Driver
	16.5.1 Detailed Description
	16.5.2 Data Structure Documentation
	16.5.3 Enumeration Type Documentation
	16.5.4 Function Documentation

	16.6 CSEc Driver
	16.6.1 Detailed Description
	16.6.2 Data Structure Documentation
	16.6.3 Macro Definition Documentation
	16.6.4 Typedef Documentation
	16.6.5 Enumeration Type Documentation
	16.6.6 Function Documentation

	16.7 Clock
	16.7.1 Detailed Description
	16.7.2 Function Documentation

	16.8 Clock Manager
	16.8.1 Detailed Description

	16.9 Clock Manager Driver
	16.9.1 Detailed Description
	16.9.2 Data Structure Documentation
	16.9.3 Macro Definition Documentation
	16.9.4 Typedef Documentation
	16.9.5 Enumeration Type Documentation
	16.9.6 Function Documentation
	16.9.7 Variable Documentation

	16.10 Common Core API.
	16.10.1 Detailed Description
	16.10.2 Macro Definition Documentation

	16.11 Common Transport Layer API
	16.11.1 Detailed Description
	16.11.2 Macro Definition Documentation
	16.11.3 Function Documentation

	16.12 Comparator (CMP)
	16.12.1 Detailed Description

	16.13 Comparator Driver
	16.13.1 Detailed Description
	16.13.2 Data Structure Documentation
	16.13.3 Macro Definition Documentation
	16.13.4 Typedef Documentation
	16.13.5 Enumeration Type Documentation
	16.13.6 Function Documentation

	16.14 Controller Area Network - Peripheral Abstraction Layer (CAN PAL)
	16.14.1 Detailed Description
	16.14.2 Data Structure Documentation
	16.14.3 Enumeration Type Documentation
	16.14.4 Function Documentation

	16.15 Controller Area Network with Flexible Data Rate (FlexCAN)
	16.15.1 Detailed Description

	16.16 Cooked API
	16.16.1 Detailed Description
	16.16.2 Function Documentation

	16.17 Cryptographic Services Engine (CSEc)
	16.17.1 Detailed Description

	16.18 Cyclic Redundancy Check (CRC)
	16.18.1 Detailed Description

	16.19 Diagnostic services
	16.19.1 Detailed Description
	16.19.2 Function Documentation

	16.20 Driver and cluster management
	16.20.1 Detailed Description
	16.20.2 Function Documentation

	16.21 EDMA Driver
	16.21.1 Detailed Description
	16.21.2 Data Structure Documentation
	16.21.3 Macro Definition Documentation
	16.21.4 Typedef Documentation
	16.21.5 Enumeration Type Documentation
	16.21.6 Function Documentation

	16.22 EIM Driver
	16.22.1 Detailed Description
	16.22.2 Data Structure Documentation
	16.22.3 Macro Definition Documentation
	16.22.4 Function Documentation

	16.23 ERM Driver
	16.23.1 Detailed Description
	16.23.2 ERM Driver Initialization
	16.23.3 ERM Driver Operation
	16.23.4 Data Structure Documentation
	16.23.5 Enumeration Type Documentation
	16.23.6 Function Documentation

	16.24 EWM Driver
	16.24.1 Detailed Description
	16.24.2 Data Structure Documentation
	16.24.3 Enumeration Type Documentation
	16.24.4 Function Documentation

	16.25 Enhanced Direct Memory Access (eDMA)
	16.25.1 Detailed Description

	16.26 Error Injection Module (EIM)
	16.26.1 Detailed Description

	16.27 Error Reporting Module (ERM)
	16.27.1 Detailed Description

	16.28 External Watchdog Monitor (EWM)
	16.28.1 Detailed Description

	16.29 Flash Memory (Flash)
	16.29.1 Detailed Description
	16.29.2 Data Structure Documentation
	16.29.3 Macro Definition Documentation
	16.29.4 Typedef Documentation
	16.29.5 Enumeration Type Documentation
	16.29.6 Function Documentation
	16.29.7 Variable Documentation

	16.30 Flash Memory (Flash)
	16.30.1 Detailed Description

	16.31 FlexCAN Driver
	16.31.1 Detailed Description
	16.31.2 Data Structure Documentation
	16.31.3 Typedef Documentation
	16.31.4 Enumeration Type Documentation
	16.31.5 Function Documentation

	16.32 FlexIO Common Driver
	16.32.1 Detailed Description
	16.32.2 Enumeration Type Documentation
	16.32.3 Function Documentation

	16.33 FlexIO I2C Driver
	16.33.1 Detailed Description
	16.33.2 Data Structure Documentation
	16.33.3 Function Documentation

	16.34 FlexIO I2S Driver
	16.34.1 Detailed Description
	16.34.2 Data Structure Documentation
	16.34.3 Typedef Documentation
	16.34.4 Function Documentation

	16.35 FlexIO SPI Driver
	16.35.1 Detailed Description
	16.35.2 Data Structure Documentation
	16.35.3 Typedef Documentation
	16.35.4 Enumeration Type Documentation
	16.35.5 Function Documentation

	16.36 FlexIO UART Driver
	16.36.1 Detailed Description
	16.36.2 Data Structure Documentation
	16.36.3 Enumeration Type Documentation
	16.36.4 Function Documentation

	16.37 FlexTimer (FTM)
	16.37.1 Detailed Description
	16.37.2 Data Structure Documentation
	16.37.3 Macro Definition Documentation
	16.37.4 Enumeration Type Documentation
	16.37.5 Function Documentation
	16.37.6 Variable Documentation

	16.38 FlexTimer Input Capture Driver (FTM_IC)
	16.38.1 Detailed Description
	16.38.2 Data Structure Documentation
	16.38.3 Enumeration Type Documentation
	16.38.4 Function Documentation

	16.39 FlexTimer Module Counter Driver (FTM_MC)
	16.39.1 Detailed Description
	16.39.2 Data Structure Documentation
	16.39.3 Function Documentation

	16.40 FlexTimer Output Compare Driver (FTM_OC)
	16.40.1 Detailed Description
	16.40.2 Data Structure Documentation
	16.40.3 Enumeration Type Documentation
	16.40.4 Function Documentation

	16.41 FlexTimer Pulse Width Modulation Driver (FTM_PWM)
	16.41.1 Detailed Description
	16.41.2 Data Structure Documentation
	16.41.3 Macro Definition Documentation
	16.41.4 Enumeration Type Documentation
	16.41.5 Function Documentation

	16.42 FlexTimer Quadrature Decoder Driver (FTM_QD)
	16.42.1 Detailed Description
	16.42.2 Data Structure Documentation
	16.42.3 Enumeration Type Documentation
	16.42.4 Function Documentation

	16.43 Flexible I/O (FlexIO)
	16.43.1 Detailed Description

	16.44 FreeRTOS
	16.45 I2S - Peripheral Abstraction Layer (I2S PAL)
	16.45.1 Detailed Description
	16.45.2 Data Structure Documentation
	16.45.3 Enumeration Type Documentation
	16.45.4 Function Documentation

	16.46 Initialization
	16.46.1 Detailed Description
	16.46.2 Function Documentation

	16.47 Input Capture - Peripheral Abstraction Layer (IC PAL)
	16.47.1 Detailed Description
	16.47.2 Data Structure Documentation
	16.47.3 Enumeration Type Documentation
	16.47.4 Function Documentation

	16.48 Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL)
	16.48.1 Detailed Description
	16.48.2 Data Structure Documentation
	16.48.3 Enumeration Type Documentation
	16.48.4 Function Documentation

	16.49 Interface management
	16.49.1 Detailed Description
	16.49.2 Function Documentation

	16.50 Interrupt Manager (Interrupt)
	16.50.1 Detailed Description
	16.50.2 Typedef Documentation
	16.50.3 Function Documentation

	16.51 Interrupt vector numbers for S32K144
	16.52 J2602 Specific API
	16.53 J2602 Transport Layer specific API
	16.53.1 Detailed Description

	16.54 LIN 2.1 Specific API
	16.54.1 Detailed Description
	16.54.2 Function Documentation

	16.55 LIN Core API
	16.55.1 Detailed Description

	16.56 LIN Driver
	16.56.1 Detailed Description
	16.56.2 LIN Driver Overview
	16.56.3 LIN Driver Device structures
	16.56.4 LIN Driver Initialization
	16.56.5 LIN Data Transfers
	16.56.6 Autobaud feature
	16.56.7 Data Structure Documentation
	16.56.8 Macro Definition Documentation
	16.56.9 Typedef Documentation
	16.56.10 Enumeration Type Documentation
	16.56.11 Function Documentation
	16.56.12 Variable Documentation

	16.57 LIN Stack
	16.57.1 Detailed Description

	16.58 LPI2C Driver
	16.58.1 Detailed Description
	16.58.2 Data Structure Documentation
	16.58.3 Enumeration Type Documentation
	16.58.4 Function Documentation

	16.59 LPIT Driver
	16.59.1 Detailed Description
	16.59.2 Data Structure Documentation
	16.59.3 Macro Definition Documentation
	16.59.4 Enumeration Type Documentation
	16.59.5 Function Documentation

	16.60 LPSPI Driver
	16.60.1 Detailed Description
	16.60.2 Data Structure Documentation
	16.60.3 Enumeration Type Documentation
	16.60.4 Function Documentation
	16.60.5 Variable Documentation

	16.61 LPTMR Driver
	16.61.1 Detailed Description
	16.61.2 Data Structure Documentation
	16.61.3 Enumeration Type Documentation
	16.61.4 Function Documentation

	16.62 LPUART Driver
	16.62.1 Detailed Description
	16.62.2 Data Structure Documentation
	16.62.3 Enumeration Type Documentation
	16.62.4 Function Documentation

	16.63 Local Interconnect Network (LIN)
	16.63.1 Detailed Description

	16.64 Low Power Inter-Integrated Circuit (LPI2C)
	16.64.1 Detailed Description

	16.65 Low Power Interrupt Timer (LPIT)
	16.65.1 Detailed Description

	16.66 Low Power Serial Peripheral Interface (LPSPI)
	16.66.1 Detailed Description

	16.67 Low Power Timer (LPTMR)
	16.67.1 Detailed Description

	16.68 Low Power Universal Asynchronous Receiver-Transmitter (LPUART)
	16.68.1 Detailed Description

	16.69 Low level API
	16.69.1 Detailed Description
	16.69.2 Data Structure Documentation
	16.69.3 Macro Definition Documentation
	16.69.4 Typedef Documentation
	16.69.5 Enumeration Type Documentation
	16.69.6 Function Documentation
	16.69.7 Variable Documentation

	16.70 MPU Driver
	16.70.1 Detailed Description
	16.70.2 Data Structure Documentation
	16.70.3 Enumeration Type Documentation
	16.70.4 Function Documentation

	16.71 MPU PAL
	16.71.1 Detailed Description
	16.71.2 Data Structure Documentation
	16.71.3 Typedef Documentation
	16.71.4 Enumeration Type Documentation
	16.71.5 Function Documentation

	16.72 Memory Protection Unit (MPU)
	16.72.1 Detailed Description

	16.73 Memory Protection Unit Peripheral Abstraction Layer (MPU PAL)
	16.73.1 Detailed Description

	16.74 Node configuration
	16.74.1 Detailed Description
	16.74.2 Function Documentation

	16.75 Node configuration
	16.75.1 Detailed Description
	16.75.2 Function Documentation

	16.76 Node identification
	16.76.1 Detailed Description
	16.76.2 Function Documentation

	16.77 Notification
	16.78 OS Interface (OSIF)
	16.78.1 Detailed Description
	16.78.2 Macro Definition Documentation
	16.78.3 Function Documentation

	16.79 Output Compare - Peripheral Abstraction Layer (OC PAL)
	16.79.1 Detailed Description
	16.79.2 Data Structure Documentation
	16.79.3 Enumeration Type Documentation
	16.79.4 Function Documentation

	16.80 PDB Driver
	16.80.1 Detailed Description
	16.80.2 Data Structure Documentation
	16.80.3 Enumeration Type Documentation
	16.80.4 Function Documentation

	16.81 PINS Driver
	16.81.1 Detailed Description
	16.81.2 Data Structure Documentation
	16.81.3 Typedef Documentation
	16.81.4 Enumeration Type Documentation
	16.81.5 Function Documentation

	16.82 Peripheral access layer for S32K144
	16.83 Pins Driver (PINS)
	16.83.1 Detailed Description

	16.84 Power Manager
	16.84.1 Detailed Description
	16.84.2 Data Structure Documentation
	16.84.3 Typedef Documentation
	16.84.4 Enumeration Type Documentation
	16.84.5 Function Documentation
	16.84.6 Variable Documentation

	16.85 Power Manager Driver
	16.86 Power_s32k1xx
	16.86.1 Detailed Description
	16.86.2 Data Structure Documentation
	16.86.3 Enumeration Type Documentation
	16.86.4 Function Documentation

	16.87 Programmable Delay Block (PDB)
	16.87.1 Detailed Description

	16.88 Pulse-width modulation - Peripheral Abstraction Layer (PWM PAL)
	16.88.1 Detailed Description
	16.88.2 Data Structure Documentation
	16.88.3 Enumeration Type Documentation
	16.88.4 Function Documentation

	16.89 RTC Driver
	16.89.1 Detailed Description
	16.89.2 Data Structure Documentation
	16.89.3 Macro Definition Documentation
	16.89.4 Enumeration Type Documentation
	16.89.5 Function Documentation

	16.90 Raw API
	16.90.1 Detailed Description
	16.90.2 Function Documentation

	16.91 Real Time Clock Driver (RTC)
	16.91.1 Detailed Description

	16.92 S32K144 SoC Header file
	16.92.1 Detailed Description

	16.93 S32K144 System Files
	16.94 Schedule management
	16.94.1 Detailed Description
	16.94.2 Function Documentation

	16.95 Security PAL
	16.95.1 Detailed Description
	16.95.2 Data Structure Documentation
	16.95.3 Enumeration Type Documentation
	16.95.4 Function Documentation

	16.96 Security Peripheral Abstraction Layer - SECURITY PAL
	16.96.1 Detailed Description

	16.97 Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL)
	16.97.1 Detailed Description
	16.97.2 Data Structure Documentation
	16.97.3 Enumeration Type Documentation
	16.97.4 Function Documentation

	16.98 Signal interaction
	16.99 SoC Header file (SoC Header)
	16.99.1 Detailed Description

	16.100 SoC Support
	16.100.1 Detailed Description

	16.101 Structural Core Self Test
	16.102 System Basis Chip Driver (SBC) - UJA116xA Family
	16.102.1 Detailed Description

	16.103 TRGMUX Driver
	16.103.1 Detailed Description
	16.103.2 Data Structure Documentation
	16.103.3 Typedef Documentation
	16.103.4 Function Documentation

	16.104 Timing - Peripheral Abstraction Layer (TIMING PAL)
	16.104.1 Detailed Description
	16.104.2 Data Structure Documentation
	16.104.3 Enumeration Type Documentation
	16.104.4 Function Documentation

	16.105 Transport layer API
	16.105.1 Detailed Description

	16.106 UJA116xA SBC Driver
	16.106.1 Detailed Description
	16.106.2 Data Structure Documentation
	16.106.3 Macro Definition Documentation
	16.106.4 Typedef Documentation
	16.106.5 Enumeration Type Documentation

	16.107 Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL)
	16.107.1 Detailed Description
	16.107.2 Data Structure Documentation
	16.107.3 Enumeration Type Documentation
	16.107.4 Function Documentation

	16.108 User provided call-outs
	16.108.1 Detailed Description
	16.108.2 Function Documentation

	16.109 WDG PAL
	16.109.1 Detailed Description
	16.109.2 Data Structure Documentation
	16.109.3 Enumeration Type Documentation
	16.109.4 Function Documentation

	16.110 WDOG Driver
	16.110.1 Detailed Description
	16.110.2 Data Structure Documentation
	16.110.3 Enumeration Type Documentation
	16.110.4 Function Documentation

	16.111 Watchdog Peripheral Abstraction Layer (WDG PAL)
	16.111.1 Detailed Description

	16.112 Watchdog timer (WDOG)
	16.112.1 Detailed Description

	17 Data Structure Documentation
	17.1 adc_callback_info_t Struct Reference
	17.1.1 Detailed Description
	17.1.2 Field Documentation

	17.2 adc_instance_t Struct Reference
	17.2.1 Detailed Description
	17.2.2 Field Documentation

	17.3 can_instance_t Struct Reference
	17.3.1 Detailed Description
	17.3.2 Field Documentation

	17.4 drv_config_t Struct Reference
	17.4.1 Detailed Description
	17.4.2 Field Documentation

	17.5 i2c_instance_t Struct Reference
	17.5.1 Detailed Description
	17.5.2 Field Documentation

	17.6 i2s_instance_t Struct Reference
	17.6.1 Detailed Description
	17.6.2 Field Documentation

	17.7 ic_instance_t Struct Reference
	17.7.1 Detailed Description
	17.7.2 Field Documentation

	17.8 lin_product_id_t Struct Reference
	17.8.1 Detailed Description
	17.8.2 Field Documentation

	17.9 mpu_instance_t Struct Reference
	17.9.1 Detailed Description
	17.9.2 Field Documentation

	17.10 oc_instance_t Struct Reference
	17.10.1 Detailed Description
	17.10.2 Field Documentation

	17.11 oc_pal_state_t Struct Reference
	17.11.1 Detailed Description

	17.12 pwm_instance_t Struct Reference
	17.12.1 Detailed Description
	17.12.2 Field Documentation

	17.13 spi_instance_t Struct Reference
	17.13.1 Detailed Description
	17.13.2 Field Documentation

	17.14 timer_chan_state_t Struct Reference
	17.14.1 Detailed Description

	17.15 timing_instance_t Struct Reference
	17.15.1 Detailed Description
	17.15.2 Field Documentation

	17.16 uart_instance_t Struct Reference
	17.16.1 Detailed Description
	17.16.2 Field Documentation

	17.17 wdg_instance_t Struct Reference
	17.17.1 Detailed Description
	17.17.2 Field Documentation

	Index

