S32SDK User Manual
S32K1xx RTM 4.0.2

Generated by Doxygen 1.8.10

Fri Jun 11 2021 08:16:16

i CONTENTS
Contents

1 S32SDK 1

2 Components 2

3 PAL vs PD usage 4

4 Supported Platforms 5

5 Installation 5

6 Build Tools 5

7 IDE Support 6

8 Configuration 7

9 Acronyms and Abbreviations 7

10 MISRA Compliance 7

11 Development guidelines 8

12 Error detection and reporting 8

13 Examples and Demos 9

13.1 Introduction L e e 9

13.2 USAQE o 9

13.2.1 Howtobuild e 9

13.2.2 Howtodebug e 0

13.2.3 Usingterminalemulator 11

13.3 Demo Applications L e e e e e 12

13.3.1 HelloWorld e 13

13.3.2 Hello World - IAR Embedded Workbench 14

13.3.3 Hello World - Makefile 15

13.3.4 FlexCAN Encrypted o e 16

13.3.5 CSEC BOOT PROTECTION e e e e 18

13.3.6 FreeMASTER e 21

13.3.7 FreeRTOS e 23

13.3.8 ADC Low Power e 25

13.3.9 AMMCLIb e 27

13.3.10LINMASTER e 29

13.3. 11 LINSLAVE . . . o e 32

13.3.12 Structural Core Self Test Example 34

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

CONTENTS iii

13.4 Driver Examples e 35
13.4.1 Analog Driver Examples e 35
13.4.2 ADC Hardware Trigger o i e 36
13.4.3 ADC PALexample o 38
13.4.4 ADC Software Trigger o v o i e e e 40
1345 CMPDAC o 41
13.4.6 Communication Driver Examples 43
13.4.7 FLEXIOSPI e 44
13.4.8 LPUART Echo e 46
13.4.9 UARTPALECHO e e e 48
13.410 CANPAL e 49
13.411 LPSPITransfer e 51
13.4.12LPSPIDMA 53
13413 SPIPAL e e 55
13.41412C PAL e 57
13.4.1512S PALMASTER e 58
13.4.1612S PAL SLAVE e 60
13.417FLEXIOI2C e 62
13418 FLEXIO I2S MASTER e 64
13419 FLEXIOI2S SLAVE o e 66
13.4.20 FLEXIO UART 68
13.4.21 LPI2C MASTER e e 70
13.4.22LPI2C SLAVE e 71
13.4.23LIN MASTER BAREMETAL e e 74
13.4.24 LIN SLAVE BAREMETAL 76
13.425SBC UJAT16X o o o e s e e e e 77
13.4.26 System Driver Examples 79
13.4.27CRC Checksum e 80
13.4.28 CSEc key configuration L 82
13.429 EDMA transfer L e 84
13.430 EWM Interrupt e 86
13.4.31 FLASH Partitioning e 88
13.4.32 MPU Memory Protect Unit 90
13.4.33 MPU PAL Memory Protection 93
13.4.34 Power Mode Switch 95
13.4.35WDOG Interrupt e 98
13.4.36 EIMINJECTION e e e e e e 99
13.4.37ERM REPORT e 101
13.4.38WDG PAL Interrupt e e 102
13.4.39 Trigger MUX Control 104

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

iv CONTENTS
13.440 SECURITY PAL e e e 105

13.4.41 Timer Driver Examples e 107

13.4.42 FTM Combined PWM e 108
13.4.43FTM Periodic Interrupt 110
13.444FTM PWM . . L e e e e 112
13.4.45FTM Signal Measurement e 114

13446 1C PAL e 117

13.4.47 LPTMR Periodic Interrupt 119

13.4.48 LPTMR Pulse Counter e e 120

13.4.49 PDB Periodic Interrupt 123

13450 RTC Alarm e e 124

13451 TIMING PAL e 127
13.4.52PWM PAL e e e 128

13453 0C PAL . . . o 130

13.4.54 LPIT Periodic Interrupt e 131

14 Module Index 133
14.1 Modules L e e e e e 133

15 Data Structure Index 137
15.1 Data Structures L e 137

16 Module Documentation 138
16.1 00. Library internals e e e e 138
16.1.1 Detailed Description e 138

16.1.2 Internals. e 138

16.1.3 Data Structure Documentation 141

16.1.4 Enumeration Type Documentation 147

16.1.5 Function Documentation 148

16.1.6 Variable Documentation 150

16.2 01. CAN & CAN partial networking configuration 151
16.2.1 Detailed Description e 151

16.2.2 Introduction L e e 151

16.2.3 Data Structure Documentation 152

16.2.4 Typedef Documentation 155

16.2.5 Enumeration Type Documentation 156

16.2.6 Function Documentation 157

16.3 01. Mode handling e e e e 160
16.3.1 Detailed Description L 160

16.3.2 Introduction L e 160

16.3.3 Enumeration Type Documentation 160

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

CONTENTS v

16.3.4 Function Documentation 161
16.4 01. Primary control o e e e e e e e 162
16.4.1 Detailed Description 162
16.5 01. Regulator configuration e 163
16.5.1 Detailed Description e 163
16.5.2 Introduction L e 163
16.5.3 Data Structure Documentation L 163
16.5.4 Enumeration Type Documentation 164
16.5.5 Function Documentation 165
16.6 02. Battery monitor configurationo 166
16.6.1 Detailed Description e 166
16.6.2 Introduction 166
16.6.3 Data Structure Documentation 166
16.6.4 Typedef Documentation 168
16.6.5 Enumeration Type Documentation 168
16.6.6 Function Documentation 169
16.7 02. LIN configuration 170
16.7.1 Detailed Description 170
16.7.2 Introduction 170
16.7.3 Data Structure Documentation 170
16.7.4 Enumeration Type Documentation L 171
16.7.5 Function Documentation L 172
16.8 02. Supply control e e 174
16.8.1 Detailed Description e 174
16.9 02. Watchdog o e e e e 175
16.9.1 Detailed Description e 175
16.9.2 Introduction L 175
16.9.3 Data Structure Documentation L 176
16.9.4 Enumeration Type Documentation L o 176
16.9.5 Function Documentation 177
16.1003. Fail-safe configuration L 179
16.10.1 Detailed Description e e 179
16.10.2Introduction L L 179
16.10.3 Data Structure Documentation 180
16.10.4 Typedef Documentation 181
16.10.5 Enumeration Type Documentation 181
16.10.6 Function Documentation 182
16.1103. SMPS configuration e 183
16.11.1 Detailed Description 183
16.11.2Introduction L e 183

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

vi

CONTENTS

16.11.3 Data Structure Documentation 183
16.11.4 Typedef Documentation 184
16.11.5 Enumeration Type Documentation 184
16.11.6 Function Documentation 185
16.1203. Transceiver control L L e 186
16.12.1 Detailed Description e 186
16.1304. HVIO bank 0 & 1 control e e 187
16.13.1 Detailed Description 187
16.13.2Introduction e 187
16.13.3 Data Structure Documentation L 188
16.13.4 Typedef Documentation 190
16.13.5 Enumeration Type Documentation 190
16.13.6 Function Documentation 191
16.1404. Lock control e e e e e e 194
16.14.1 Detailed Description 194
16.14.2Introduction e 194
16.14.3 Data Structure Documentation 194
16.14.4 Typedef Documentation L 196
16.14.5 Function Documentation L 196
16.1505. Timercontrol e e e e e e 197
16.15.1 Detailed Description e 197
16.15.2Introduction L L L 197
16.15.3 Data Structure Documentation 197
16.15.4 Typedef Documentation L 198
16.15.5 Enumeration Type Documentation L 198
16.15.6 Function Documentation L 199
16.1606. Interrupts e e e e e e e 201
16.16.1 Detailed Description e e 201
16.16.2 Introduction L L e 201
16.16.3 Function Documentation 201
16.1707. MTPNV and ID e e 205
16.17.1 Detailed Description e e 205
16.17.21Introduction L 205
16.17.3 Data Structure Documentation 208
16.17.4 Function Documentation 210
16.18ADC Driver e 212
16.18.1 Detailed Description e 212
16.18.2 Data Structure Documentation L. 217
16.18.3 Enumeration Type Documentationo L oL 220
16.18.4 Function Documentation 224

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

CONTENTS vii

16.19Analog to Digital Converter - Peripheral Abstraction Layer ADCPAL) 230
16.19.1 Detailed Description 230
16.19.2 Data Structure Documentation L L 235
16.19.3 Typedef Documentation L L 238
16.19.4 Enumeration Type Documentation 238
16.19.5 Function Documentation 238

16.20Automotive Math and Motor Control Library 243

16.21Backward Compatibility Symbols for S32K144 oo 244

16.22Bank N fail interrupt enable configuration options (0x38/0x48) 245
16.22.1 Detailed Description e 245
16.22.2 Macro Definition Documentation L 246

16.23Bank N wake-up interrupt enable configuration options (0x37/0x47) 248
16.23.1 Detailed Description e e 248
16.23.2 Macro Definition Documentation L L L 249

16.24CRC Driver o e 251
16.24.1 Detailed Description 251
16.24.2 Data Structure Documentation 251
16.24.3 Enumeration Type Documentation L Lo 252
16.24.4 Function Documentation 252

16.25CSECDriver e e 256
16.25.1 Detailed Description e 256
16.25.2 Data Structure Documentation L 261
16.25.3 Macro Definition Documentation L 263
16.25.4 Typedef Documentation L 264
16.25.5 Enumeration Type Documentation L o 264
16.25.6 Function Documentation 266

16.26CI0CK e 277
16.26.1 Detailed Description e e 277
16.26.2 Function Documentation L 277

16.27Clock Manager e e e e e e e 278
16.27.1 Detailed Description 278

16.28Clock Manager Driver e 279
16.28.1 Detailed Description L 279
16.28.2 Data Structure Documentation L 285
16.28.3 Macro Definition Documentation 303
16.28.4 Typedef Documentation 304
16.28.5 Enumeration Type Documentation L L o 304
16.28.6 Function Documentation 311
16.28.7 Variable Documentation L 316

16.29Common Core APL. L e 317

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

viii CONTENTS

16.29.1 Detailed Description e e e 317
16.29.2 Macro Definition Documentation Lo 317
16.30Common Transport Layer APl e 319
16.30.1 Detailed Description 319
16.30.2 Macro Definition Documentation 319
16.30.3 Function Documentation 322
16.31Comparator (CMP) e e e 323
16.31.1 Detailed Description 323
16.32Comparator Driver e e e 327
16.32.1 Detailed Description e 327
16.32.2 Data Structure Documentation 329
16.32.3 Macro Definition Documentation 333
16.32.4 Typedef Documentation 333
16.32.5 Enumeration Type Documentation L L 333
16.32.6 Function Documentation 336
16.33Controller Area Network - Peripheral Abstraction Layer (CAN PAL) 343
16.33.1 Detailed Description e 343
16.33.2 Data Structure Documentation L L 348
16.33.3 Enumeration Type Documentation Lo oL 352
16.33.4 Function Documentation 353
16.34Controller Area Network with Flexible Data Rate (FIexCAN) 360
16.34.1 Detailed Description 360
16.35C00ked APl L e e 362
16.35.1 Detailed Description e 362
16.35.2 Function Documentation L 362
16.36Cryptographic Services Engine (CSEC) L 364
16.36.1 Detailed Description 364
16.37Cyclic Redundancy Check (CRC) 365
16.37.1 Detailed Description e 365
16.38Diagnostic SErvices e e e e e e e e e 367
16.38.1 Detailed Description 367
16.38.2 Function Documentation L 368
16.39Driver and cluster management L 371
16.39.1 Detailed Description 371
16.39.2 Function Documentation 371
16.40EDMA Driver o e e 372
16.40.1 Detailed Description e 372
16.40.2 Data Structure Documentation L 377
16.40.3 Macro Definition Documentation Lo 384
16.40.4 Typedef Documentation 384

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

CONTENTS ix

16.40.5 Enumeration Type Documentation o 384
16.40.6 Function Documentation 387
16.41EIM Driver o e e e e e e e 397
16.41.1 Detailed Description 397
16.41.2 Data Structure Documentation 399
16.41.3 Macro Definition Documentation L 399
16.41.4 Function Documentation L 400
16.42ERM Driver o e 402
16.42.1 Detailed Description e e 402
16.42.2 ERM Driver Initialization 402
16.42.3 ERM Driver Operation o e e 402
16.42.4 Data Structure Documentation 404
16.42.5 Enumeration Type Documentation 405
16.42.6 Function Documentation L 405
16.43EWM Driver e e e e e e e 407
16.43.1 Detailed Description 407
16.43.2 Data Structure Documentation 409
16.43.3 Enumeration Type Documentation Lo L 410
16.43.4 Function Documentation 410
16.44Enhanced Direct Memory Access (eDMA) L 412
16.44.1 Detailed Description e 412
16.45Error Injection Module (EIM) L 413
16.45.1 Detailed Description 413
16.46Error Reporting Module (ERM) 415
16.46.1 Detailed Description e 415
16.47External Watchdog Monitor (EWM) o 417
16.47.1 Detailed Description e 417
16.48Flash Memory (Flash) 418
16.48.1 Detailed Description 418
16.48.2 Data Structure Documentation 421
16.48.3 Macro Definition Documentation o 422
16.48.4 Typedef Documentation L 426
16.48.5 Enumeration Type Documentation L Lo 426
16.48.6 Function Documentation 426
16.48.7 Variable Documentation L 435
16.49Flash Memory (Flash) 438
16.49.1 Detailed Description L 438
16.50FIeXCAN Driver o o e e e 441
16.50.1 Detailed Description 441
16.50.2 Data Structure Documentation 447

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

CONTENTS

16.50.3 Typedef Documentation 452
16.50.4 Enumeration Type Documentation o 452
16.50.5 Function Documentation 455
16.51FlexIO Common Driver e e e 463
16.51.1 Detailed Description e e 463
16.51.2 Enumeration Type Documentation 463
16.51.3 Function Documentation L 463
16.52FIexIO 12C Driver o o o e e 466
16.52.1 Detailed Description e 466
16.52.2 Data Structure Documentation 469
16.52.3 Function Documentation 470
16.53FIexIO 12S Driver e e 475
16.53.1 Detailed Description e 475
16.53.2 Data Structure Documentation L L 478
16.53.3 Typedef Documentation L 481
16.53.4 Function Documentation 481
16.54FlexIO SPIDriver e e 493
16.54.1 Detailed Description L 493
16.54.2 Data Structure Documentation L 496
16.54.3 Typedef Documentation 499
16.54.4 Enumeration Type Documentation L 500
16.54.5 Function Documentation 500
16.55FIexIO UART Driver o o e e e e e 507
16.55.1 Detailed Description e e 507
16.55.2 Data Structure Documentation 509
16.55.3 Enumeration Type Documentation L o 511
16.55.4 Function Documentation 511
16.56FlexTimer (FTM) e e 516
16.56.1 Detailed Description 516
16.56.2 Data Structure Documentation 522
16.56.3 Macro Definition Documentation 526
16.56.4 Enumeration Type Documentation 529
16.56.5 Function Documentation 531
16.56.6 Variable Documentation L 553
16.57FlexTimer Input Capture Driver (FTM_IC) o o e 554
16.57.1 Detailed Description e e 554
16.57.2 Data Structure Documentation L L 556
16.57.3 Enumeration Type Documentationo 558
16.57.4 Function Documentation 559
16.58FlexTimer Module Counter Driver (FTM_MC) o .. 562

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

CONTENTS Xi

16.58.1 Detailed Description e e 562
16.58.2 Data Structure Documentation 563
16.58.3 Function Documentation 564
16.59FlexTimer Output Compare Driver (FTM_OC) i 566
16.59.1 Detailed Description e e 566
16.59.2 Data Structure Documentation 568
16.59.3 Enumeration Type Documentation L 569
16.59.4 Function Documentation 569
16.60FlexTimer Pulse Width Modulation Driver (FTM_PWM) 572
16.60.1 Detailed Description e 572
16.60.2 Data Structure Documentation 579
16.60.3 Macro Definition Documentation L o 584
16.60.4 Enumeration Type Documentation 584
16.60.5 Function Documentation L 585
16.61FlexTimer Quadrature Decoder Driver (FTM_QD) 589
16.61.1 Detailed Description 589
16.61.2 Data Structure Documentation 591
16.61.3 Enumeration Type Documentation 592
16.61.4 Function Documentation 593
16.62Flexible I/O (FIexIO) e 595
16.62.1 Detailed Description e 595
16.63FreeRTOS e e e 596
16.64HVIO high-side configuration options (0X71) o 597
16.64.1 Detailed Description e e 597
16.64.2 Macro Definition Documentation Lo 598
16.65HVIO low-side configuration options (OX72) o e 600
16.65.1 Detailed Description 600
16.65.2 Macro Definition Documentation Lo 601
16.6612S - Peripheral Abstraction Layer (I2S PAL) o 603
16.66.1 Detailed Description 603
16.66.2 Data Structure Documentation 605
16.66.3 Enumeration Type Documentation 607
16.66.4 Function Documentation L 607
16.67Initialization L e e e 611
16.67.1 Detailed Description 611
16.67.2 Function Documentation L 611
16.68Input Capture - Peripheral Abstraction Layer (ICPAL) 612
16.68.1 Detailed Description 612
16.68.2 Data Structure Documentation 616
16.68.3 Enumeration Type Documentation L o 618

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

Xii CONTENTS

16.68.4 Function Documentation L 618
16.69Inter Integrated Circuit - Peripheral Abstraction Layer(I2C PAL) 621
16.69.1 Detailed Description L 621
16.69.2 Data Structure Documentation 625
16.69.3 Enumeration Type Documentation 628
16.69.4 Function Documentation 628
16.70Interface management L L L e e e e 636
16.70.1 Detailed Description 636
16.70.2 Function Documentation L 636
16.71Interrupt Manager (Interrupt) L e e e e 638
16.71.1 Detailed Description e 638
16.71.2 Typedef Documentation 639
16.71.3 Function Documentation 639
16.72Interrupt vector numbers for S32K144o 643
16.73J2602 Specific APl e e e e e 644
16.74J2602 Transport Layer specific APl 645
16.74.1 Detailed Description e 645
16.75LIN 2.1 Specific APl 646
16.75.1 Detailed Description L 646
16.75.2 Function Documentation 646
16.76LIN Core APl o 648
16.76.1 Detailed Description 648
16.77LIN Driver e e e e e e e e e 649
16.77.1 Detailed Description e e 649
16.77.2LIN Driver Overview e e e 649
16.77.3LIN Driver Device structures e 649
16.77.4 LIN Driver Initialization 650
16.77.5LIN Data Transfers e 651
16.77.6 Autobaud feature L 651
16.77.7 Data Structure Documentation 654
16.77.8 Macro Definition Documentation 658
16.77.9 Typedef Documentation 658
16.77.1€numeration Type Documentation o o 658
16.77.1Function Documentation 659
16.77.12%/ariable Documentation L 667
16.78LIN Stack e 668
16.78.1 Detailed Description L 668
16.79LPI2C Driver o o o e e 671
16.79.1 Detailed Description 671
16.79.2 Data Structure Documentation L 674

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

CONTENTS xiii

16.79.3 Enumeration Type Documentation 677
16.79.4 Function Documentation L 677
16.80LPIT Driver e e e e e e e 687
16.80.1 Detailed Description e 687
16.80.2 Data Structure Documentation 691
16.80.3 Macro Definition Documentation L o 692
16.80.4 Enumeration Type Documentation Lo 693
16.80.5 Function Documentation 693
16.81LPSPIDriver. e e 702
16.81.1 Detailed Description e 702
16.81.2 Data Structure Documentation 704
16.81.3 Enumeration Type Documentationo L oL 710
16.81.4 Function Documentation 711
16.81.5 Variable Documentation L 719
16.82LPTMR Driver o e e e e e e e e e e 720
16.82.1 Detailed Description 720
16.82.2 Data Structure Documentation 723
16.82.3 Enumeration Type Documentation L L o 724
16.82.4 Function Documentation 726
16.83LPUART Driver o e e 730
16.83.1 Detailed Description e 730
16.83.2 Data Structure Documentation L 733
16.83.3 Enumeration Type Documentationo 737
16.83.4 Function Documentation 737
16.84Local Interconnect Network (LIN) o e 745
16.84.1 Detailed Description e 745
16.85Low Power Inter-Integrated Circuit (LPI2C)o 746
16.85.1 Detailed Description e e 746
16.86Low Power Interrupt Timer (LPIT) o o e 747
16.86.1 Detailed Description 747
16.87Low Power Serial Peripheral Interface (LPSPI) o oo 748
16.87.1 Detailed Description e e 748
16.88Low Power Timer (LPTMR) e e e 751
16.88.1 Detailed Description 751
16.89Low Power Universal Asynchronous Receiver-Transmitter (LPUART) 752
16.89.1 Detailed Description e 752
16.90Low level APl . . . o . e e e e e 753
16.90.1 Detailed Description 753
16.90.2 Data Structure Documentation 756
16.90.3 Macro Definition Documentation 772

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

xiv CONTENTS
16.90.4 Typedef Documentation e 774
16.90.5 Enumeration Type Documentation Lo 774
16.90.6 Function Documentation L 779
16.90.7 Variable Documentation 783

16.9TMPU Driver o e e 785
16.91.1 Detailed Description e 785
16.91.2 Data Structure Documentation 790
16.91.3 Enumeration Type Documentationo 792
16.91.4 Function Documentation 796

16.92MPU PAL . . . o 799
16.92.1 Detailed Description 799
16.92.2 Data Structure Documentation L 802
16.92.3 Typedef Documentation 804
16.92.4 Enumeration Type Documentation Lo L 806
16.92.5 Function Documentation 807

16.93Memory Protection Unit (MPU) o e 810
16.93.1 Detailed Description e 810

16.94Memory Protection Unit Peripheral Abstraction Layer (MPU PAL) 812
16.94.1 Detailed Description 812

16.95Node configuration 817
16.95.1 Detailed Description e 817
16.95.2 Function Documentation 817

16.96Node configuration 819
16.96.1 Detailed Description e e 819
16.96.2 Function Documentation L 819

16.97Node identification L L e e e 824
16.97.1 Detailed Description 824
16.97.2 Function Documentation 824

16.98Notification. L 825

16.990S Interface (OSIF) o o e e 826
16.99.1 Detailed Description 826
16.99.2 Macro Definition Documentation 828
16.99.3 Function Documentation L 828

16.10@utput Compare - Peripheral Abstraction Layer (OC PAL) 835
16.100. Detailed Description 835
16.100.Data Structure Documentation Lo 838
16.100.Enumeration Type Documentation L 840
16.100.4unction Documentation L 841

16.10PDB Driver e 846
16.101. Detailed Description e 846

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

CONTENTS Xv

16.101.Data Structure Documentation 850
16.101.Enumeration Type Documentation 851
16.101.4unction Documentation L 852
16.10PINS Driver e 858
16.102. Detailed Description e e 858
16.102.Data Structure Documentation 858
16.102.3ypedef Documentation L 859
16.102.£numeration Type Documentation o 859
16.102.5-unction Documentation L 860
16.108eripheral access layer for S32K144 e 863
16.10Rins Driver (PINS) o e e 864
16.104.Detailed Description 864
16.10Bower Manager L e e 866
16.105.Detailed Description L 866
16.105.Data Structure Documentation L 867
16.105.3ypedef Documentation 869
16.105.£numeration Type Documentation 870
16.105.5-unction Documentation L 871
16.105.68/ariable Documentation L 875
16.10@ower Manager Driver e e e 876
16.10PowWer_S32KTIXX ot e 878
16.107.Detailed Description L 878
16.107.Data Structure Documentation L 879
16.107.Enumeration Type Documentation 880
16.107.4unction Documentation L 882
16.108rogrammable Delay Block (PDB) 884
16.108.Detailed Description 884
16.10Qulse-width modulation - Peripheral Abstraction Layer (PWM PAL) 885
16.109.Detailed Description e 885
16.109.Data Structure Documentation 888
16.109.Enumeration Type Documentation 890
16.109.4unction Documentation 890
16.T1RTC Driver o e e e e e e 894
16.110.Detailed Description 894
16.110.Data Structure Documentation 896
16.110.Macro Definition Documentation Lo 900
16.110.£numeration Type Documentation L 901
16.110.5-unction Documentation 902
16.11Raw APL . . . L s 909
16.111.Detailed Description e 909

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

XVi CONTENTS
16.111.Function Documentation L 909
16.11Real Time Clock Driver (RTC) o o e e e e s e e e e e e e e e 911
16.112. Detailed Description L 911
16.11Registeraddress map L e e e e e e e 915
16.113.Detailed Description e 915
16.113.Macro Definition Documentation L Lo 919
16.11832K144 SoC Headerfile o e 928
16.114.Detailed Description 928
16.11832K144 System Files o 929
16.116BC configuration control options (0X74) i i e e e e 930
16.116.Detailed Description 930
16.116.Macro Definition Documentation 931
16.11B8chedule management L 933
16.117.Detailed Description L 933
16.117.Function Documentation 933
16.118ecurity PAL e e 934
16.118.Detailed Description e 934
16.118.Data Structure Documentation L L 936
16.118.&numeration Type Documentation 936
16.118.4unction Documentation 938
16.118ecurity Peripheral Abstraction Layer - SECURITY PAL 952
16.119.Detailed Description L 952
16.128erial Peripheral Interface - Peripheral Abstraction Layer(SPIPAL) 955
16.120.Detailed Description e e 955
16.120.Data Structure Documentation 958
16.120.Enumeration Type Documentation Lo 961
16.120.4unction Documentation 962
16.128ignal interaction L L 967
16.1280C Header file (SoC Header) e 968
16.122. Detailed Description e 968
16.1230C SUPPOrt o o e e e 969
16.123.Detailed Description e 969
16.12&tart-up control configuration options (0x73) Lo 971
16.124.Detailed Description 971
16.124.Macro Definition Documentation o 972
16.128tructural Core Self Test L e 974
16.126upply interrupt enable configuration options (0x1C)o 976
16.126.Detailed Description e 976
16.126.Macro Definition Documentation Lo 977
16.12Bystem Basis Chip Driver (SBC) - UJA116xAFamily 979

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

CONTENTS xvii

16.127.Detailed Description e 979
16.128ystem Basis Chip library (SBC) - UJA113x Family 984
16.128.Detailed Description L 984
16.128.2ntroduction L L L 984
16.128ystem interrupt enable configuration options (0x04) 985
16.129.Detailed Description e 985
16.129.Macro Definition Documentation L L 985
16.1B0RGMUX Driver o o e e 986
16.130.Detailed Description e e 986
16.130.Data Structure Documentation 987
16.130.3ypedef Documentation L 988
16.130.4unction Documentation 989
16.13Timing - Peripheral Abstraction Layer (TIMING PAL) 993
16.131.Detailed Description L 993
16.131.Data Structure Documentation L 997
16.131.Enumeration Type Documentation 1000
16.131.4unction Documentation L 1000
16.132ransceiver interrupt enable configuration options (0x23) 1004
16.132. Detailed Description e 1004
16.132.Macro Definition Documentation Lo 1005
16.133ransport layer APl L e e e 1006
16.133.Detailed Description L 1006
16.13WJAT16XA SBC Driver e e 1007
16.134. Detailed Description e e 1007
16.134.Data Structure Documentation 1014
16.134.3acro Definition Documentation L L 1030
16.134.4ypedef Documentation 1030
16.134.Fnumeration Type Documentation Lo 1031
16.138niversal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL) 1048
16.135.Detailed Description e 1048
16.135.Data Structure Documentation L 1053
16.135.Enumeration Type Documentation 1054
16.135.4unction Documentation L 1055
16.138)ser provided call-outs L e e e 1061
16.136.Detailed Description 1061
16.136.Function Documentation L 1061
16.13WDG PAL o e e e 1062
16.137.Detailed Description 1062
16.137.Data Structure Documentation 1063
16.137.&numeration Type Documentation 1064

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

xviii CONTENTS

16.137.4unction Documentation 1065
16.138VDOG Driver e e e e e e e e 1069
16.138.Detailed Description e e 1069
16.138.Data Structure Documentation L 1072
16.138.Enumeration Type Documentation 1073
16.138.4unction Documentation L 1074
16.138%atchdog Peripheral Abstraction Layer WDG PAL) 1078
16.139.Detailed Description e 1078
16.140Vatchdog timer (WDOG) o e 1081
16.140.Detailed Description 1081

17 Data Structure Documentation 1082
17.1 adc_callback info_t Struct Reference 1082
17.1.1 Detailed Description 1082
17.1.2 Field Documentation e 1082

17.2 adc_instance_t Struct Reference 1082
17.2.1 Detailed Description e 1082
17.2.2 Field Documentation 1083

17.3 can_instance_t Struct Reference 1083
17.3.1 Detailed Description 1083
17.3.2 Field Documentation e 1083

17.4 drv_config_t Struct Reference e 1083
17.4.1 Detailed Description 1084
17.4.2 Field Documentation 1084

17.5 i2c_instance_t Struct Reference 1084
17.5.1 Detailed Description 1084
17.5.2 Field Documentation 1084

17.6 i2s_instance_t Struct Reference 1085
17.6.1 Detailed Description L 1085
17.6.2 Field Documentation e 1085

17.7 ic_instance_t Struct Reference L 1085
17.7.1 Detailed Description e e 1085
17.7.2 Field Documentation 1086

17.8 lin_product_id_t Struct Reference 1086
17.8.1 Detailed Description 1086
17.8.2 Field Documentation e e 1086

17.9 mpu_instance_t Struct Reference 1087
17.9.1 Detailed Description e e 1087
17.9.2 Field Documentation 1087
17.100c_instance_t Struct Reference e 1087

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

1832 SDK 1

17.10.1 Detailed Description e e 1087
17.10.2 Field Documentation 1088
17.110c_pal_state_t Struct Reference 1088
17.11.1 Detailed Description e 1088
17.12pwm_instance_t Struct Reference L 1088
17.12.1 Detailed Description 1088
17.12.2 Field Documentation L e 1088
17.13spi_instance_t Struct Reference L 1089
17.13.1 Detailed Description e 1089
17.13.2 Field Documentation 1089
17.14timer_chan_state_t Struct Reference 1089
17.14.1 Detailed Description e 1090
17.15timing_instance_t Struct Reference L L 1090
17.15.1 Detailed Description 1090
17.15.2 Field Documentation L 1090
17.16uart_instance_t Struct Reference L 1090
17.16.1 Detailed Description e e 1091
17.16.2 Field Documentation 1091
17.17wdg_instance_t Struct Reference 1091
17.17.1 Detailed Description 1091
17.17.2 Field Documentation 1091
Index 1093
1 S32SDK
Introduction

This topic provides an introduction to the S32 software development kit (S32 SDK), including intended audience,
purpose and scope, and detailed sections on technical considerations.

|
|l

Copyright © 2016 NXP Semiconductor

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

2 CONTENTS

Intended Audience

S32 SDK documentation is written for software developers and system engineers who have a technical background,
and a working knowledge of embedded programming. The audience for the S32 SDK are users of S32 Processors.

Purpose and Scope
The S32 SDK is a embedded oriented development kit. It allows users to

1. Evaluate and explore the features of the S32 processors; experience how they are supported by working "out
of the box" on NXP development boards.

2. Develop embedded solutions; the NXP SDK is thoroughly tested from development to production.

S32 SDK Architecture Overview

The S32 SDK is an extensive suite of robust hardware interface and hardware abstraction layers, peripheral drivers,
RTOS, stacks, and middleware designed to simplify and accelerate application development on NXP S32 SOCs.
The addition of Processor Expert technology for software and board configuration provides unmatched ease of use
and flexibility. Included in the S32 SDK is full source code under a permissive open-source license for all hardware
abstraction and peripheral driver software. See the Release Notes for details. The S32 SDK consists of the following
runtime software components written in C:

Applications

[Audio

Moior Control | Touch

NFC . Sensing |

CAN] | Security |

-
s
v
o
=
=

| | TCRIP | |

Comms

Low-level

[ssanvax | [ssamrv | [(soawrrn | [ssamams || wpcsr |

Hardware

2 Components

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

2 Components 3

Header file

The S32 SDK contains a device-specific header files which provide direct access to the peripheral registers. Each
supported device in S32 SDK has an overall System-on-Chip (SoC) memory-mapped header file. This header file
contains the memory map and register base address for each peripheral and the IRQ vector table with associated
vector numbers.

Feature Header File

The PAL is designed to be reusable regardless of the peripheral configuration differences from one SOC device
to another. An overall Peripheral Feature Header File is provided for device to define the feature or configuration
differences for each SOC sub-family device.

Peripheral Abstraction Layer

The PAL provides unified interfaces for families of peripherals, allowing for cross-platform compatibility of application
code. The main goal is to provide an application programming interface that is independent of the underlying
peripheral implementation.

The PAL supports all instances of each peripheral from a certain family instantiated on the SOC by using a simple
integer parameter for the peripheral instance number.

The PAL instances should be configured bearing in mind possible limitations of the underlying peripherals - some
features may not be supported on some hardware modules. It is the user's responsibility to correctly handle hard-
ware resources, especially when porting the application to a different platform.

The PAL drivers can be found in the platform/pal directory.

Peripheral Drivers

The Peripheral Drivers are high-level drivers that implement high-level logic transactions based on an internal reg-
ister access abstraction layer, other Peripheral Drivers, and/or System Services. For example, the UART register
access abstraction layer mainly focuses on byte-level basic functional primitives, while the UART Peripheral Driver
operates on an interrupt-driven level using data buffers to transfer a stream of bytes. In general, if a driver, that
is mainly based on one peripheral, interfaces with functions beyond the register access abstraction layer and/or
requires interrupt servicing, the driver is considered a high-level Peripheral Driver.

The Peripheral Drivers support all instances of each peripheral instantiated on the SOC by using a simple integer
parameter for the peripheral instance number.The user of the Peripheral Driver does not need to know the peripheral
memory-mapped base address.

The Peripheral Drivers operate on a high-level logic that requires data storage for internal operation context handling.
However, the Peripheral Drivers do not allocate this memory space. Rather, the user passes in the memory for the
driver internal operation through the driver initialization function.

The Peripheral Drivers are designed to handle the entire functionality for a targeted use-case. An application should
be able to use only the Peripheral Driver to accomplish its purpose.

The Peripheral Drivers can be found in the platform/drivers directory.

System Services

The System Services contain a set of software entities that can be used by the Peripheral Drivers. They may be
used with PAL Drivers to build the Peripheral Drivers or they can be used by an application directly. The following
sections describe each of the System Services software entities. These System Services are in the platform/drivers
directory.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

4 CONTENTS

Interrupt Manager

The Interrupt Manager provides functions to enable and disable individual interrupts within the Nested Vector In-
terrupt Controller (NVIC). It also provides functions to enable and disable the ARM core global interrupt (via the
CPSIE and CPSID instructions) for bare-metal critical section implementation. In addition to providing functions for
interrupt enabling and disabling, the Interrupt Manager provides Interrupt Service Routine (ISR) registration that
allows the application software to register or replace the interrupt handler for a specified IRQ vector. The drivers do
not set interrupt priorities. The interrupt priority scheme is entirely determined by the specific application logic and
its setting is handled by the user application. The user application manages the interrupt priorities.

Clock Manager

The Clock Manager provides centralized clock-related functions for the entire system. It can dynamically set the
system clock and perform clock gating/un-gating for specific peripherals. The Clock Manager also maintains knowl-
edge of the clock sources required for each peripheral and provides functions to obtain the clock frequency for each
supported clock used by the peripheral. The Clock Manager provides a notification framework which the software
components, such as drivers, uses to register callback functions and execute the predefined code flow during the
clock mode transition.

Power Manager

The Power Manager provides centralized power-related functions for the entire system. It dynamically sets the sys-
tem power mode. The Power Manager provides a notification framework which the software components, such as
drivers, uses to register callback functions and execute the predefined code flow during the power mode transition.

Examples

The examples provided show how to build user applications using the S32 SDK. The examples can be found in the
top-level example directory. For details please see Examples_and_Demos .

3 PAL vs PD usage

PAL - Peripheral Abstraction layer

+ Interface abstraction for a family of peripherals (E.g. LPUART + LINFlexD_UART + eSClI + FlexlO_UART +
etc.)

 Single layer per SDK

+ Same generic APl on multiple platforms

PD - Peripheral Drivers
* |P dedicated low-level drivers

+ Designed for efficiency and IP features set coverage

When to use the Peripheral Abstraction Layer (PAL)?

* Whenever an application needs a simplified, generic interface that abstracts as much as possible the under-
lying silicon features.

» Whenever developing portable higher level generic code that is meant to run on different NXP platforms. This
may include anything from low level console utility libraries to communication stacks like TCP/IP.

When to use Peripheral Drivers?

» Whenever developing for high efficiency (code size, execution speed, etc.) or planning to use specific periph-
eral features.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

4 Supported Platforms 5

4 Supported Platforms

Supported board and SoC versions can be found in the Release Notes. (SDK\ReleaseNotes.pdf)

5 Installation

Prerequisites

SDK can be used in two ways: bundled in S32 Design Studio and standalone.
S32 SDK is delivered bundled in the S32 Design Studio. In this case it’s already configured and ready to use.

S32 SDK is also delivered through a standalone installer. Using the standalone installer is recommended when
using a compiler which is not supported in S32 Design Studio or when the graphical interface is not required. In this
case the installer can configure an existing S32 Design Studio to use the configuration files delivered in the installer.

If the integration with the S32 Design Studio is not needed the path to S32 Design Studio can be left empty — and
in this case only the S32 SDK will be installed and configured.
Steps

1. Start the installer S32_SDK_ <ReleaseSpecifc>.exe

2. Set the destination folder for the SDK, give optional location of S32DS and install. Example of S32DS path:
C:\NXP\S32ARMv1.3

3. Start using the SDK by creating a new project or importing a project

Background
The installer does the following things in background:

+ Puts the SDK in the selected destination directory.
» Appends to S32SDK_PATH the path of the SDK.

— Note: Please make sure you uninstall previous SDK so that this variable will be empty.
» Copies necessary files into S32 Design Studio installation location.

+ Overwrites existing SDK from S32 Design Studio with the version from destination directory

Uninstaller

When the SDK is installed using the standalone the installer, the user can use "uninst.exe" from the root of the
destination to uninstall the SDK.

Note: If you want to reinstall the SDK please use a clean copy of S32DS. When you uninstall this does not delete
the copied files (ex: Config_01.pez), so a clean copy is needed.

6 Build Tools

Introduction

S32 SDK supports and is tested with multiple compiler toolchains.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

6 CONTENTS

Note

The toolchain list, versions and their options specific for the platform and release can be found in the Release
Notes. (SDK\ReleaseNotes.pdf)
Toolchain versions and options can be found in the Release Notes. (SDK\ReleaseNotes.pdf)

Compiler warnings disabled for S32 SDK

For Wind River DIAB Compiler the following warnings are not checked at S32 SDK build time:

» #1824: explicit cast discards volatile qualifier
Motivation: this warning has been deactivated because of false positive occurrences reported for Wind River
DIAB Compiler 5.9.4.8 under tickets TCDIAB-13994, TCDIAB-14098.

« #5387: explicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
Motivation: this warning has been disabled because it is reported for conversions required by the internal
SDK algorithms. Intermediary results requiring high precision are stored as uint64_t variables and converted
into uint32_t variables. Checks have been put in place to ensure that the cast is only done if the value to be
converted fits on 32 bits.

» #5388: conversion from pointer to same-sized integral type (potential portability problem)
Motivation: for S32 SDK conversions between uint32_t and memory addresses are made assuming that
pointers are stored on 32bits.

Makefiles

Multiple makefile projects are provided in the 'examples' folder, for all supported compilers. These projects can be
modified by adding application code, or the makefiles can be reused in different projects, after reconfiguring the
paths/variables. Please note that these projects require the designated compiler to be already installed on the host;
also, the makefile path to compiler executable must be updated before running make utility.

$32 Design Studio

S32 Design Studio is delivered with platform specific gcc cross compiler included ("{S32_Design_Studio_install_«
path}\Cross_Tools). Eclipse plugins for gcc are already installed in S32 Design Studio IDE, so new projects for this
toolchain can be created and built directly from the IDE. To add S32 SDK source files to a clean S32 Design Studio
project, eclipse "linked resources" feature can be used: project properties->New->Folder->Advanced->'Link to
alternate location' (e.g. "{S32_SDK_PATH}"). For S32 Design Studio project with Processor Expert support, please
import a project from "{S32_SDK_PATH} Name".

7 IDE Support

$32 Design Studio

» S32 Design Studio is delivered with Processor Expert support included. Please see Configuration chapter.

+ To configure the S32 SDK path of the project, eclipse "S32 SDK Specific" feature can be used: patch project
properties->Processor Expert->S32 SDK Specific->SDK path

* Processor Expert repositories and paths can be configured as it follows: Window -> Preferences -> Proces-
sor Expert -> Repositories and Paths.

» S32 Design Studio projects can be imported from S32 SDK package. Please see Examples_and_Demos
chapter.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

8 Configuration 7

IAR Embedded Workbench

» NOT applicable to platforms which do not support IAR compiler. Please see Release Notes.
« There is no configuration support for S32 SDK in IAR.

» |IAR Embedded Workbench projects can be imported from S32 SDK package. Please see Examples_and«
_Demos chapter.

8 Configuration

Processor Expert software allows generation of configuration structures for peripheral drivers from S32 SDK. With
the help of Eclipse based graphical interface where you can configure your driver and generate corresponding
configuration structure. This tool doesn't generate source code for S32 family, it only generates configurations data
structures.

Processor Expert generates configuration header files that are included by application source code. The configu-
ration data structures from these files are defined in S32 SDK. All these header files are generated by this tool in
${ProjName}/Generated_Code directory.

Peripheral drivers are not stored directly in the project directory, these drivers are stored in S32 SDK repository.
Shared peripheral drivers repository is advantageous when more projects should share the same version of pe-
ripheral drivers. In this case, peripheral drivers are not physically placed in the project directory but each project is
virtually linked with shared, common repository from S32 SDK. This way the management of the projects’ drivers
can be done in one place and any changes made in the shared repository is automatically distributed across all of
the linked projects, for example in case of bug fixing or library update and also backup or archiving of the peripheral
drivers versions is very simple.

9 Acronyms and Abbreviations

Acronym Description

CPSIE, CPSID Change Processor State Interrupt Enable / Disable
EAR Early Access Release

EVB Evaluation board

PAL Peripheral Abstraction Layer

IRQ Interrupt Request

ISR Interrupt Service Routine

LLWU Low Leakage Wakeup Unit

NVIC Nested Vector Interrupt Controller

RTOS Real Time Operating System

S32DS S32 Design Studio

SDK Software Development Kit

SOC System-on-Chip

UART Universal Asynchronous Receiver / Transmitter

10 MISRA Compliance

This section describes how the S32 SDK project addresses MISRA Compliance.

The S32 SDK SW components which are implemented to be compliant with MISRA C 2012 are:
+ all drivers & PALs
+ generated driver code (including Cpu.c & .h)

* main.c (generated via graphical configurator)

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

8 CONTENTS

Violations of MISRA C 2012 guidelines which remain not fixed, shall be documented as deviations at file level.

Other SW components included in the S32 SDK package which are not subject to MISRA C 2012 compliance:

» demo_apps & driver examples

* FreeRTOS

11

Development guidelines

Set of guidelines to improve the usability of the S32 SDK.

Some usual guidelines on SDK programming model:

1.

Driver state structures should be declared as global or static variables as they are used in the whole time
when the driver is used.

2. Driver state structures content should not be used or modified by the application code.

3. Peripheral drivers, PALs and Middleware code are not handling clock and pins initialization. Configuration of
the clock and pins driver has to be done by the application.To make sure these are properly initialized before
other modules are used, please call the corresponding initialization:

/* Initialize and configure clocks x/
CLOCK_SYS_Init (g_clockManConfigsArr, CLOCK_MANAGER_CONFIG_CNT,
g_clockManCallbacksArr, CLOCK_MANAGER_CALLBACK_CNT) ;
CLOCK_SYS_UpdateConfiguration (0U,
CLOCK_MANAGER_POLICY_AGREEMENT) ;
/+ Initialize pins */
PINS_DRV_Init (NUM_OF_CONFIGURED_PINS, g_pin_mux_InitConfigArr);
Note
The configuration structure names used in this example are the default names generated by Processor
Expert components for clock and pins. Applications not using Processor Expert might have different
names for these structures.

4. The recommended approach at development time is to add DEV_ERROR_DETECT symbol to the compiler
defines. This will enable DEV_ASSERT mechanism which can catch application code errors in the early
development stage.

5. High care should be taken to have a backup option when debug pins are routed to other functionalities.

12 Error detection and reporting

S32 SDK drivers can use a mechanism to validate data coming from upper software layers (application code) by
performing a number of checks on input parameters' range or other invariants that can be statically checked (not
dependent on runtime conditions). A failed validation is indicative of a software bug in application code, therefore it
is important to use this mechanism during development.

The

validation is performed by using DEV_ASSERT macro. A default implementation of this macro is provided

in this file. However, application developers can provide their own implementation in a custom file. This requires
defining the CUSTOM_DEVASSERT symbol with the specific file name in the project configuration (for example:
-DCUSTOM_DEVASSERT="custom_devassert.h")

The

default implementation accommodates two behaviors, based on DEV_ERROR_DETECT symbol:

* When DEV_ERROR_DETECT symbol is defined in the project configuration (for example: -DDEV_ER+«+
ROR_DETECT), the validation performed by the DEV_ASSERT macro is enabled, and a failed validation
triggers a software breakpoint and further execution is prevented (application spins in an infinite loop) This
configuration is recommended for development environments, as it prevents further execution and allows
investigating potential problems from the point of error detection.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13 Examples and Demos 9

* When DEV_ERROR_DETECT symbol is not defined, the DEV_ASSERT macro is implemented as no-op,
therefore disabling all validations. This configuration can be used to eliminate the overhead of development-
time checks.

It is the application developer's responsibility to decide the error detection strategy for production code: one can
opt to disable development-time checking altogether (by not defining DEV_ERROR_DETECT symbol), or one can
opt to keep the checks in place and implement a recovery mechanism in case of a failed validation, by defining
CUSTOM_DEVASSERT to point to the file containing the custom implementation.

13 Examples and Demos

Applications that show the user how to initialize the peripherals for the basic use cases

13.1 Introduction
S32 SDK examples structure:

» Demo Applications (SDK/examples/<CPU>/demo_apps), are demo applications for various IDEs and com-
pilers. Also this examples are using more advanced use-cases - FreeRTOS integration, LIN Stack, FlexCAN
usage and Clock Setup.

+ Driver Examples (SDK/examples/<CPU>/driver_examples), are simple applications which exemplify a basic
use-case for a specific driver.

13.2 Usage
13.2.1 How to build

For makefile project

There are makefile projects in all compilers supported. In order to used them:

+ Make utility (eg. GNU Make)
* Toolchain (eg. GCC Toolchain)

» Make sure the make and compiler are in Path (for Microsoft Windows : System -> Environmental
Variables)

* From command line execute the makefile: make all

The makefiles generate binary files for both RAM and FLASH configurations.
For IAR Embedded Workbench

From IAR Workbench for ARM use File > Open > Workspace and browse to the desired project. After the project
was opened you can see the files in "Workspace Files". Finally, the project can be executed from Project > Down-
load and Debug. Make sure that the debug probe you are using is selected and configured in Project options >
Debugger > Driver.

For S32 Design Studio

From S32 Design Studio (See Release notes for the S32 Design Studio version), go to File -> New -> New Project
from Example and select the example you wish to import. This will copy the example project into workspace. Next
steps:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

10 CONTENTS
» Examples will run without an active configuration, however if any changes are required, a configuration needs
to be generated. Use Open S32 Configuration button, make the desired changes (if any) then click on the
"Update Code" button.
» Use Project > Build to build the project
» Use Project > Debug and launch your preferred debug configuration
13.2.2 How to debug

This section explains how to upload and debug the binary files generated after build. This assumes that you have a
debug probe(see release notes for supported debug probes) and a debug software installed on the machine.

Generic steps:

1.
2.
3.

Launch the debug software
Load the binary file into the MCU

Execute the application

Loading with Segger JLink:

Download and install the latest drivers and GDB server, named Software and documentation pack, from their
site

Download your favorite GDB client (eg. arm-none-eabi-gdb)

Browse to JLink installation folder and launch JLinkGDBServer

Select the appropriate part from the device list and click on OK

Open the GDB client and connect to the configured port - by default localhost:2331

Upload the file and execute (see GDB client user manual for details regarding the commands used)

The following table is a small list of commands used in GNU ARM GDB with JLinkGDBServer to connect and run
the application:

Command Description

target remote:PortNumber Connect to the remote target at a specified port.

Please replace PortNumber with the port configured
in the GDB server.

monitor reset Reset the target MCU
monitor halt Halt the target MCU
file ApplicationName.elf Load the file and symbols. Please change

ApplicationName with your application name

load

Download the executable to the target MCU

continue Begin executing the application

Loading with PEmicro OpenSDA/MultiLink:

Download and install the latest drivers and GDB server, named P&E GDB Server for Kinetis with Windows
GUI, from their site

Download your favorite GDB client (eg. arm-none-eabi-gdb)

Browse to PEmicro GDB Server installation folder and launch P&E GDB Server for Kinetis
Select the appropriate part from the device list and click on Connect

Open the GDB client and connect to the configured port - by default localhost:7224

Upload the file and execute (see GDB client user manual for details regarding the commands used)

The following table is a small list of commands used in GNU ARM GDB with PEmicro GDB server to connect and
run the application:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

https://www.segger.com/jlink-software.html
https://www.pemicro.com

13.2 Usage 11

Command Description

target remote:PortNumber Connect to the remote target at a specified port.
Please replace PortNumber with the port configured
in the GDB server.

monitor reset Reset the target MCU

file ApplicationName.elf Load the file and symbols. Please change
ApplicationName with your application name

load Download the executable to the target MCU

continue Begin executing the application

13.2.3 Using terminal emulator

To run the examples that use LPUART to help you visualize data you must download a terminal emulator (eg. Putty,
Termite, TeraTerm) and configure it.

Unless otherwise noted the standard communication parameters are:
+ 115200 baud
» One stop bit
* No parity
* No flow control
Example configuration for Termite using OpenSDA
1) Download Termite from their site

2) Run the installer. Wait for the installation to be completed
3) Go to Start -> All Programs -> Termite and launch the program. The window from Fig.1 will appear ...

M Termite 3.2 (by CompuPhase : Lx

Disconnected - dick to connect] Clear | | About || Close |
Local % | Remote HE HE EE = = BEM

OTR CTS CER]

Failed to initialize the port.
FPlease werify the COM port settings.

window

4) Click on Settings
5) As seen in Fig.2, configure the following communication parameters:

+ Port(1) : COMXx - where x must be replaced with the COM port number

+ Baud Rate(2) : 115200

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

http://www.compuphase.com/software_termite.htm

12

CONTENTS

Data Bits(3) : 8
Stop Bits(4) : 1
Parity(5) : None
Flow Control(6) : None

Forward(7) : None

Serial port settings

Port configuration

Port coMiz - q
Baud rate 115200 - 2
Data bits 3

5

Flow control 6

Forward none - T

User interface language

Transmitted text
(7 Append nothing
(") Append CR.

i@ Append LF

(") Append CR-LF

[¥]Local echo
Received text
Poling | 100 ms

[word wrap

English (en)

Options

|:| Stay on top

Quit on Escape
Autocomplete edit line
Keep history

[] Close port when inactive

Plug-ins

[] Auto Reply
|:| Function Keys
[7] Hex view

[] Highlight

d [Cancel] [Ok

6) Click OK. Now the terminal should be configured

Note

For further help consult the terminal's documentation

13.3 Demo Applications

Applications that show more advanced use cases

Available demo applications:
Click on one of the project to see the corresponding documentation

Hello World

Hello World - IAR Embedded Workbench

* Hello World - Makefile

» FlexCAN Encrypted

CSEC BOOT PROTECTION

* FreeMASTER

Settings window

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications

13

* FreeRTOS

« ADC Low Power

+ AMMCLib

LIN MASTER

LIN SLAVE

« Structural Core Self Test Example

13.3.1 Hello World

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K144 platform,
using S32 SDK. The demo uses hardware abstraction layer primitives for PCC and PORT modules in order to toggle

two LEDs alternatively.

Prerequisites

To run the example you will need to have the following items:

« 1 S32K144 board

» 1 Power Adapter 12V (if the board cannot be powered from the USB port)

» 1 Personal Computer

» Debug probe (JLink, PEmicro, OpenSDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION

S32K144EVB-Q100

S32K144-MB

RED_LED (PTD15)

RGB_RED - wired on the board

J12.17 - J11.31

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

14 CONTENTS

’ GREEN_LED (PTD16) \ RGB_GREEN - wired on the board \ J12.16 - J11.30 ‘

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select hello_world_s32k144.
Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

hello_world_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

hello_world_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

hello_world_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

hello_world_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.2 Hello World - IAR Embedded Workbench

Basic application that presents the project scenarios for S32 SDK and integration with IAR Embedded Workbench
IDE

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K144 platform,
using S32 SDK. The demo uses Clock Manager and Pins Driver to toggle two LEDs alternately.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications 15

Note

For information about how to run IAR projects please refer to Usage
The default debug probe is "Simulator". Prior to running the project on the board, the desired debug probe
has to be configured in Project Options -> Debugger.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

+ 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30

13.3.3 Hello World - Makefile

Basic application that presents the project scenarios for S32 SDK using makefiles for various compilers

Application description

The purpose of this demo is to provide the user with an out-of-the box example application for S32K144 platform,
using S32 SDK. The demo uses Pins and Clock driver to initialize the MCU and to toggle two LEDs alternatively.

There are five projects delivered with this package:

» Makefile project (GCC compiler)
» Makefile project (GHS compiler)
» Makefile project (IAR compiler)

» Makefile project (DCC compiler)

» Makefile project (ARM compiler)

Note

For information about how to run the makefile please refer to Usage

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16

CONTENTS

Prerequisites

To run the example you will need to have the following items:

+ 1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» Debug probe (JLink, PEmicro, OpenSDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LED1 (PTD15/PTCO) RGB_RED - wired on the board J12.17 - J11.31
LED2 (PTD16/PTC1) RGB_GREEN - wired on the board | J12.16 - J11.30

13.3.4 FlexCAN Encrypted

Demo application showing the FlexCAN functionalities

Note

If running the encrypted communication: The encryption uses the first non-volatile user key, which needs
to be configured by running the CSEc Key Configuration in the driver examples folder.

Encrypted communication works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is
available on your device.

If one of the user keys was loaded using the CSEc Key Configuration, any further full erase of the Flash
requires a Challenge-Authentication process. This can be done by running the CSEc Key Configuration
example again and setting the ERASE_ALL_KEYS macro to 1.

Application description

The purpose of this demo application is to show you the usage of the FlexCAN module configured to use Flexible
Data Rate and the CSEc module from the S32K142 CPU using the S32 SDK API.

In the first part, the application will setup the board clocks, pins and other system functions such as SBC if
the board uses this module as a CAN transceiver.

Then it will configure the FlexCAN module features such as FD, Bitrate and Message buffers

The application will wait for frames to be received on the configured message buffer or for an event raised by
pressing one of the two buttons which will trigger a frame send to the recipient.

Pressing SW3 button of board 1 shall trigger a CAN transfer that results in toggling the RED led on board 2.

Pressing SW2 button of board 1 shall trigger a CAN transfer that results in toggling the GREEN led on board
2.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications 17

» Pressing both SW3 and SW2 buttons shall enable the encrypted communication. This event is signaled by
the BLUE led being ON.

» The frames are sent in plain text by default.

+ This demo application requires two boards, one configured as master and the other one configured as slave
(see MASTER/SLAVE defines in application code).

Prerequisites

To run the example you will need to have the following items:

2 S32K144 boards

» 1 Power Adapter 12V

+ 3 Dupont female to famale cables
» 1 Personal Computer

» 1 PEMicro Debugger / 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

CAN HIGH (x) CAN HIGH - J13.1 CAN HIGH - J60.2

CAN LOW (x) CAN LOW - J13.2 CAN LOW - J60.3

GND (GND) GND -J13.4 GND - J6

BUTTON 1 (PTC13) SW3 - wired on the board BTN2 - wired on the board
BUTTON 2 (PTC12) SW2 - wired on the board BTN3 - wired on the board
RED_LED (PTD15) RGB_RED - wired on the board LED3 - wired on the board
GREEN_LED (PTD16) RGB_GREEN - wired on the board | LED2 - wired on the board
BLUE_LED (PTDO) RGB_GREEN - wired on the board | LED1 - wired on the board

(x) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
CAN transceiver. The CAN transceiver should be in Forced Normal Mode operation (default mode). To
reset the CAN transceiver to default mode connect the SBC transceiver in next configuration with the board
S32K144EVB-Q100 power off : » pin RSTN from SBC is held LOW - CANH(J13.1) is pulled up to VBAT(J11.2)
« CANL(J13.2) is pulled down to GND(J13.4) Power on the board with external supply 12V (J16)

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flexcan_encrypted_+«
s32k144. Then click on Finish.
The project should now be copied into you current workspace.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

18 CONTENTS

2. Generating the S32CT configuration

First go to Project Explorer View in S32 DS and select the current project(flexcan_encrypted_s32k144). Then
go to Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

flexcan_encrypted_s32k144_debug_flash_« Debug the FLASH configuration using PEMicro

pemicro debuggers

flexcan_encrypted_s32k144_debug_ram_pemicro | Debug the RAM configuration using PEMicro
debuggers

flexcan_encrypted_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger J-Link
debuggers

flexcan_encrypted_s32k144_debug_ram_jlink Debug the RAM configuration using Segger J-Link
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.5 CSEC BOOT PROTECTION

Basic application that presents the boot protection functionality of the CSEc module

Note

This example works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is available on your
device.

The first time when running the example on the board, or after a key erase, this example should be ran
from RAM.

After the user key was loaded using this example, any further full erase of the Flash requires a
Challenge-Authentication process. This can be done by setting the FLASH_MODIFY macro to 1.

After partitioning Flash for CSEc operation, using the JLink Flash configuration of any other project
will not work anymore. Workaround:

* Run csec_boot_protection example with FLASH_MODIFY 1, using PEmicro Flash debug configuration

Application description

The purpose of this demo application is to show the user how to use the boot protection feature of the Cryptographic
Services Engine module from the S32K144 MCU with the S32 SDK API.

The implementation demonstrates the following:

+ the enablement of the CSEc module, by showing how the Flash should be partitioned (using the Flash driver);

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications 19

configuring the MASTER_ECU key;

configuring the first user key, using the MASTER_ECU key as an authorization with boot protection enabled;

configuring and enabling secure boot;

availability of the user key after a secure boot when the flash was modified or not.

Erasing all the configured keys (including the MASTER_ECU key) and disabling the secure boot can be done
by changing the value of the FLASH_MODIFY macro to 1. This will place the part back into factory status
(the partition command will need to be run again).

Here is a table describing the outcome based on the value of FLASH_MODIFY and if the FLASH_TARGET

is defined:
FLASH_MODIFY FLASH_TARGET Result
0 UNDEFINED Write initial code to flash
1 UNDEFINED Write modified code to flash
0 DEFINED Write keys and enable secure
boot
1 DEFINED Erase keys and partition flash

Application usage

1. The first step is to run the application from RAM having the FLASH_MODIFY macro set to 1 in order to
partition the flash. After this step, comment the #define INIT_PHASE line

2. Load the test program to it by setting the FLASH_MODIFY to 0 and running the application from FLASH.

3. Run the application from RAM with the FLASH_MODIFY macro set to 0 in order to load the keys necessary
for secure boot and the test key with boot protection enabled.

4. Run the application from FLASH with the FLASH_MODIFY macro set to 0 in order to test secure boot. The
secure boot process and the encryption using the test key should be successful.

5. Run the application from FLASH with the FLASH_MODIFY macro set to 1 this time in order to modify the
flash. This will result in the secure boot to fail and the test key will be unavailable so the encryption operation
will be unsuccessful.

6. Run the application from FLASH with the FLASH_MODIFY macro set to 0 in order to successfully secure
boot. The test key is available again and the encryption operation is successful.

7. Set the FLASH_MODIFY macro to 1 and run the application from RAM in order to erase the keys and flash.

Note

If the FLASH_MODIFY is set to 1 at step 2 then the secure boots after the step 3 will be successful only
if the FLASH_MODIFY macro is set to 1 and unsuccessful if it is set to 0.

If an assert fails at step 3, start over at step 1, decommenting the #define INIT_PHASE line and setting
FLASH_MODIFY to 1.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

20 CONTENTS

Prerequisites

To run the example you will need to have the following items:

» 1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

* 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From and select csec_boot_protection_«
s32k144. Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications 21

Configuration Name Description
csec_boot_protection_s32k144_debug_ram_« Debug the RAM configuration using PEMicro
pemicro debuggers
csec_boot_protection_s32k144_debug_flash_« Debug the FLASH configuration using PEMicro
pemicro debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.6 FreeMASTER

Example application showing FreeMASTER Serial Communication usage

Application description

The purpose of this demo application is to show you how to use the FreeMASTER serial communication using
S32K144 on OpenSDA with this SDK.

This demo uses the FreeMASTER Run-Time Debugging Tool to visualise ADC conversions and allows the user to
monitor the ADC sampling rate for different ADC configurations (ADC sampling time and resolution can be controlled
through FreeMASTER Application Commands).

The ADC is configured to perform continous conversions and generate an interrupt after each conversion. The
LPTMR is configured to generate a periodic interrupt at 10 ms which reads the number of ADC conversions.

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board

» 1 Power Adapter 12V

+ 1 Dupont male to male cable

» 1 Personal Computer

» Debug probe (JLink, PEmicro, OpenSDA)

» FreeMASTER host application

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

22 CONTENTS

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2

LPUART1 RX (PTC6) UART_RX - wired on the board J11.25-J20.5

ADCO Input 12 (PTC14) POT - wired on the board J21.1-J11.18
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select freemaster_s32k144.
Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

freemaster_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

freemaster_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

freemaster_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

freemaster_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Open the FreeMASTER project (freemaster_s32k144.pmp) and set the communication parameters:

» Go to Project -> Options -> Comm, choose Direct RS232 and set the COM port and speed 9600.
» Go to Project -> Options -> MAP Files and make sure the x*.elf file of your project's current Debug Config-

uration is selected and set file format to ELF/DWARF.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications 23

Notes

FreeMASTER host application can be downloaded from NXP's website. FreeMASTER Serial Communication is
included into the project (V2.0).

13.3.7 FreeRTOS

Demo application showing the integration of FreeRTOS and S32 SDK

Application description

The purpose of this demo application is to show you how to use the FreeRTOS with the S32 SDK for the S32K144
MCU.

This project defines a very simple demo that creates two tasks, one queue, and one timer. It also demonstrates
how Cortex-M4 interrupts can interact with FreeRTOS tasks/timers.

This simple demo project runs 'stand alone' (without the rest of the tower system) on the Freedom Board or Validation
Board, which is populated with a S32K144 Cortex-M4 microcontroller.

The idle hook function: The idle hook function demonstrates how to query the amount of FreeRTOS heap space
that is remaining (see vApplicationldleHook() defined in this file).

The main() Function: main() creates one software timer, one queue, and two tasks. It then starts the scheduler.

The Queue Send Task: The queue send task is implemented by the prvQueueSendTask() function in this file. prv«
QueueSendTask() sits in a loop that causes it to repeatedly block for 200 milliseconds, before sending the value 100
to the queue that was created within main(). Once the value is sent, the task loops back around to block for another
200 milliseconds.

The Queue Receive Task: The queue receive task is implemented by the prvQueueReceiveTask() function in this
file. prvQueueReceiveTask() sits in a loop that causes it to repeatedly attempt to read data from the queue that was
created within main(). When data is received, the task checks the value of the data, and if the value equals the
expected 100, toggles the green LED. The 'block time' parameter passed to the queue receive function specifies
that the task should be held in the Blocked state indefinitely to wait for data to be available on the queue. The queue
receive task will only leave the Blocked state when the queue send task writes to the queue. As the queue send task
writes to the queue every 200 milliseconds, the queue receive task leaves the Blocked state every 200 milliseconds,
and therefore toggles the green LED every 200 milliseconds.

The LED Software Timer and the Button Interrupt: The user button BTN1 is configured to generate an interrupt
each time it is pressed. The interrupt service routine switches the red LED on, and resets the LED software timer.
The LED timer has a 5000 millisecond (5 second) period, and uses a callback function that is defined to just turn
the LED off again. Therefore, pressing the user button will turn the LED on, and the LED will remain on until a full
five seconds pass without the button being pressed.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 2 Dupont male to male cable

» 1 Personal Computer

1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

24 CONTENTS

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30

BTN (PTC13) BTN1 - wired on the board BTN3 - wired on the board
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select freertos_s32k144. Then
click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration to be initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

freertos_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

freertos_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

freertos_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

freertos_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications 25

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.8 ADC Low Power

Demonstrates ADC trigger scheme using TRGMUX and LPIT, switches the power mode to stop and sends data
using LPUART and DMA

Application description

The purpose of this demo application is to show you the usage of a subset of the peripherals found on the S32K144
SoC.

» The application uses LPIT to trigger ADC conversions every 100ms via TRGMUX with the CPU in sleep
mode. The ADC is using Hardware Compare feature to validate an conversion only if the value is greater than
half of the reference voltage, in this case VDD/2. This way the CPU is woken up from sleep mode only if the
condition is met.

» When the conversion is complete the data is transformed into a bar graph and it is sent via LPUART using
DMA memory to peripheral transfer to the host PC. This way, the CPU can be put into a low power mode to
reduce the energy used.

How the example works:

» Connect to the serial port using settings found in Notes section

» The user should receive an information text on the terminal emulator

» The user must press "A" or "a" for the example to run

» The potentiometer must be rotated in order to generate valid ADC conversions

» Once a valid conversion is done then a bargraph will be printed on the terminal emulator

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board
+ 1 Power Adapter 12V
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

26 CONTENTS

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC®6) UART_RX - wired on the board J11.25-J20.5
ADCO Input 12 (PTC14) POT - wired on the board J21.1-J11.18
Make sure the following jumpers are set:
Jumper Name S32K144EVB-Q100
J10 Set jumper on position 2-3
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select adc_low_power_<«
s32k144. Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description

adc_low_power_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

adc_low_power_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

adc_low_power_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

adc_low_power_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.
Notes

For this example it is necessary to open a terminal emulator and configure it with:

+ 115200 baud

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications 27

» One stop bit

* No parity

* No flow control

13.3.9 AMM

Provides an

CLib

example of integration of AMMCLIib and S32 SDK

Application description

The purpose of this demo application is to show you how to integrate the S32 SDK with AMMCLib.

The application starts by sending a welcome message to the terminal with instructions regarding how to select
between the two parts:

1. Thefi

rst part:

The board sends a welcome message to the console with the supported operations and how to return
to the menu.

It uses LPUART to communicate with the user and get the simple mathematical expressions.

The received expression is then interpreted and the result is calculated using mathematical functions
from AMMCLIib and then sent back to the terminal as a floating point with a precision of 4.

2. The second part:

Note

The board sends a welcome message to the console with further instructions and how to return to the
menu.

It uses LPTMR to generate samples of a sinusoidal signal, once every 1 ms, using trigonometric func-
tions from the AMMCLib.

The sinusoidal signal can be seen using the FreeMASTER host application.

Calculated signal samples are then scaled to be in the range of the FTM PWM duty cycle and are used
to change the intensity of the RGB leds.

The frequency of each sine can be controlled with the command set_RGB_frequency() from FreeMA«
STER project. The frequency sent is in mHz and the default value is 0,25Hz.

Also, it implements an exponential moving average filter using the Potentiometer on ADC channel 12 as
input.

The output of the filter can be seen using the FreeMASTER host application.

The filter's smoothing factor (lambda) can be controlled using the command set_FilterMA_lambda() from
FreeMASTER project.

For more detailed information on the AMMCLIb's functions please consult the available documentation.

Prerequisites

To run the example, you will need to have the following items:

* 1 S32K144 board

+ 1 Power Adapter 12V (if the board cannot be powered from USB)

* 1 Per
» Debu

sonal Computer

g probe (JLink, PEmicro, OpenSDA)

* FreeMASTER host application

» UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Generated on Fi

ri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

28 CONTENTS

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FTMO Channel 0 (PTD15) RGB_RED - wired on the board J12.18 - J11.31
FTMO Channel 1 (PTD16) RGB_GREEN - wired on the board | J12.17 - J11.32
FTMO Channel 2 (PTDO) RGB_BLUE - wired on the board J12.31-J11.30
ADCO Input 12 (PTC14) POT - wired on the board J21.1-J11.18
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC®6) UART_RX - wired on the board J11.25-J20.5
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select ammclib_s32k144. Then
click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those

will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description

ammclib_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

ammclib_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

A terminal emulator configured with the following communication parameters is needed by this application:

* 9600 Baud rate

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications 29

+ 8 Data bits
+ 1 Stop bit
* No parity

* No flow control

For the first part of the application follow the instructions in the terminal.
For the second part of the application you need to:

1. exit the mathematical section by typing exit in the terminal
2. select second section by typing 2 in the terminal

3. disconnect the terminal and start FreeMASTER.
Open the FreeMASTER project (ammclib.pmp) and set the communication parameters:

+ Go to Project -> Options -> Comm, choose Direct RS232 and set the COM port and speed 9600.
+ Go to Project -> Options -> MAP Files and make sure the x.elf file of your project's current Debug Config-
uration is selected and set file format to ELF/DWARF.
Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

FreeMASTER host application can be downloaded from NXP's website.
FreeMASTER Serial Communication is included into the project (V2.0).

13.3.10 LIN MASTER

Example that shows the usage of the LIN driver in master mode

Application description

This example demonstrates the LIN communication between S32K144 Master and Slave using unconditional
frames.

» The Master SeatECU is in NormalTable schedule table and it uses the LIN frame Motor1State_Cycl to re-
ceive temperature signal Motor1Temp from Slave Motor1 and send selection signal Motor1Selection to Slave
Motor1 by frame Motor1Control. The first turn on GREEN_LED, then 5s GREEN_LED and BLUE_LED will
toggle alternately.

« If value of temperature signal is higher than MOTOR1_OVER_TEMP value, Master SeatECU will send STOP
command through Motor1Selection signal to stop motor and turn on RED_LED.

+ If value of temperature signal is in range from MOTOR1_MAX_TEMP value to MOTOR1_OVER_TEMP value,
master SeatECU will send DECREASE MOTOR SPEED command through Motor1Selection signal to reduce
motor speed and turn on BLUE_LED.

« If value of temperature signal is lower than MOTOR1_MAX_TEMP value, master will send INCREASE MO«
TOR SPEED command through Motor1Selection signal to increase motor speed and turn on GREEN_LED.

» When users press button BUTTON 0 on the Master board, the Master SeatECU switches its schedule table
to go-to-sleep table. So the Slave and Master enter sleep mode, RGB LEDS are off.

» When LIN cluster is in sleep mode, users press button BUTTON 1 on the Master board, the Master board
sends a wakeup signal to wakeup slave nodes, then switches its table to NormalTable.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

https://www.nxp.com

30 CONTENTS

Prerequisites

To run the example you will need to have the following items:

» 2 S32K144 boards

» 1 Power Adapter 12V

» 2 Dupont female to female cable
» 1 Personal Computer

1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

« S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100-Master S32K144EVB-Q100-Slave
BUTTON 0 (PTC12) SW2 - wired on the board SW2 - wired on the board
BUTTON 1 (PTC13) SW3 - wired on the board SW3 - wired on the board
RED_LED (PTD15) RGB_RED - wired on the board RGB_RED - wired on the board
GREEN_LED (PTD16) RGB_GREEN - wired on the board | RGB_GREEN - wired on the board
BLUE_LED (PTDO) RGB_BLUE - wired on the board RGB_BLUE - wired on the board
LIN (x) J11-1 - LIN J11-1-LIN

GND (GND) J11-4 - GND J11-4 - GND

(x) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_master_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(lin_master_s32k144). Select the "ConfigTools"
menu then click on the desired configuration (Pins, Clocks, Peripherals etc...). Clicking on any one of those will
generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications

31

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

32 CONTENTS
Configuration Name Description
lin_master_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro

debuggers
lin_master_s32k144_debug_flash_pemicro Debug the Flash configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.11

LIN SLAVE

Example that shows the usage of the LIN driver in slave mode

Application description

This example demonstrates the LIN communication between S32K144 Master and Slave using unconditional
frames.

The Master SeatECU is in NormalTable schedule table and it uses the LIN frame Motor1State_Cycl to re-
ceive temperature signal Motor1Temp from Slave Motor1 and send selection signal Motor1Selection to Slave
Motor1 by frame Motor1Control. The first turn on GREEN_LED, then 5s GREEN_LED and BLUE_LED will
toggle alternately.

When user press button BUTTON 0 on the Slave board, value of temperature signal (Motor1_temp) will be
increased 60 unit.

When user press button BUTTON 1 on the Slave board, value of temperature signal will be set to value which
is lower MOTOR1_MAX_TEMP value and turn on GREEN_LED.

If value of temperature signal is higher than MOTOR1_OVER_TEMP value, Master SeatECU will send STOP
command through Motor1Selection signal to stop motor and turn on RED_LED.

If value of temperature signal is in range from MOTOR1_MAX_TEMP value to MOTOR1_OVER_TEMP value,
master SeatECU will send DECREASE MOTOR SPEED command through Motor1Selection signal to reduce
motor speed and turn on BLUE_LED.

If value of temperature signal is lower than MOTOR1_MAX_TEMP value, master will send INCREASE MO«
TOR SPEED command through Motor1Selection signal to increase motor speed and turn on GREEN_LED.

When users press button BUTTON 0 on the Master board, the Master SeatECU switches its schedule table
to go-to-sleep table. So the Slave and Master enter sleep mode, all LEDs are off.

When LIN cluster is in sleep mode, users press button BUTTON 1 on the Master board, the Master board
sends a wakeup signal to wakeup slave nodes, then switches its table to NormalTable.

Prerequisites

To run the example you will need to have the following items:

2 S32K144 boards

1 Power Adapter 12V

2 Dupont female to female cable
1 Personal Computer

1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.3 Demo Applications

33

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION

S32K144EVB-Q100-Slave

S32K144EVB-Q100-Master

BUTTON 0 (PTC12)

SW2 - wired on the board

SW2 - wired on the board

BUTTON 1 (PTC13)

SWS3 - wired on the board

SWS3 - wired on the board

RED_LED (PTD15)

RGB_RED - wired on the board

RGB_RED - wired on the board

GREEN_LED (PTD16)

RGB_GREEN - wired on the board

RGB_GREEN - wired on the board

BLUE_LED (PTDO)

RGB_BLUE - wired on the board

RGB_BLUE - wired on the board

LIN (+) Ji1-1 - LIN
GND (GND) J11-4 - GND

(x) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

J11-1 - LIN
J11-4 - GND

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select lin_slave_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go
to Project Explorer View in S32 DS and select the current project(lin_slave_s32k144). Select the "ConfigTools"
menu then click on the desired configuration (Pins, Clocks, Peripherals etc...). Clicking on any one of those will
generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

lin_slave_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

lin_slave_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

34 CONTENTS

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.3.12 Structural Core Self Test Example

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo application is to show you how to integrate the S32 SDK with sCST.

« The application will run the core self tests from the Structural Core Self Test library and will report the result
using the user leds.
* Please consult the sCST manual for more information about the library.

Note

This application uses a modified version of the linker file which defines the section used by the library.
As a consequence, the application will only run in flash.

Prerequisites

The run the example you will need to have the following items:

+ 1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» Debug probe (JLink, PEmicro, OpenSDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select scst_s32k144. Then click
on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 35

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description

scst_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

scst_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4 Driver Examples

Applications that show the user how to initialize the peripherals for the basic use cases

There are currently examples for the following categories:
Click on one of the categories to see the available projects

+ Analog Driver Examples
« Communication Driver Examples
+ System Driver Examples

» Timer Driver Examples

13.4.1 Analog Driver Examples

Applications that show the user how to initialize the analog peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

« ADC Hardware Trigger

» ADC PAL example

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

36 CONTENTS

« ADC Software Trigger

+ CMP DAC

13.4.2 ADC Hardware Trigger

How to trigger the ADC by hardware

Application description

The purpose of this demo application is to show you the usage of the ADC module triggered in hardware by the
Programmable Delay Block from the S32K144 CPU using the S32 SDK API.

» The application uses PDB to trigger ADC conversions every 1s.

* When the conversion is complete the data is sent to the host PC using LPUART.

See also

PDB_Example_group
For alternate ADC Hardware triggering scheme see ADC_LOW_POWER_group

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board

» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

» UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported
The following boards are supported by this application:

» S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 37

LPUART1 RX (PTC6) UART_RX - wired on the board J11.25-J20.5
ADCO Input 12 (PTC14) POT - wired on the board J21.1-J11.18
Make sure the following jumpers are set:
Jumper Name S32K144EVB-Q100
J10 Set jumper on position 2-3
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select adc_hwtrigger_s32k144.
Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration to be initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4, Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

adc_hwtrigger_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

adc_hwtrigger_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

adc_hwtrigger_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

adc_hwtrigger_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

* 115200 baud

» One stop bit

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

38 CONTENTS

+ No parity

* No flow control

13.4.3 ADC PAL example

Example for ADC PAL usage

Application description

The purpose of this demo application is to present the basic functionality of the Analog to Digital Converter Periph-
eral Abstraction Layer (ADC PAL) on S32K14x MCU.

The application uses ADC PAL to trigger multiple executions of two groups of ADC conversions: first group con-
figured for SW triggering and second group for HW triggering. For each execution of a group of conversions, an
average conversion value is computed in SW, and the average value is printed on UART.

example is divided in 2 parts:

» Part 1: SW triggered group of conversions
After each complete execution of the group, results are read, the average value is calculated and printed to
console. A delay is inserted and then the SW group is triggered again. The process is repeated for a fixed
number of iterations.

» Part 2: HW triggered group of conversions
LPTMR is configured to provide a trigger event with a fixed periodicity. The selected HW group is enabled.
After each complete execution of the group, results are read, the average value is calculated and printed to
console. After a fixed number of iterations, the HW trigger group of conversions is disabled, and the LPTMR
is stopped.

Note: both HW and SW triggered groups are configured to run all conversions on a single ADC InputChannel,
because the development board contains only a single potentiometer connected to the MCU. However, the ADC

PAL supports different InputChannels to be used in the same group. For more details please refer to the ADC PAL
documentation.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board

» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

» UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 39

PIN FUNCTION S32K144EVB-Q100
LPUART1 TX (PTC7) UART_TX - wired on the board
LPUART1 RX (PTC®6) UART_RX - wired on the board
ADCO Input 12 (PTC14) POT - wired on the board
Make sure the following jumpers are set:
Jumper Name S32K144EVB-Q100
J10 Set jumper on position 2-3
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select adc_pal_s32k144. Then
click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration to be initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

adc_pal_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

adc_pal_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

adc_pal_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

adc_pal_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.
Notes

For this example it is necessary to open a terminal emulator and configure it with:

+ 115200 baud

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

40 CONTENTS

» One stop bit
+ No parity

* No flow control

13.44 ADC Software Trigger

How to trigger ADC by software

Application description

The purpose of this demo application is to show you the usage of the ADC module triggered by software from the
S32K144 CPU using the S32 SDK API.

» The application uses software to trigger ADC conversions every 1s.

* When the conversion is complete the data is sent to the host PC using LPUART.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board

» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

+ 1 Jlink Lite Debugger (optional, users can use Open SDA)

» UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

LPUART1 TX (PTC?7) UART_TX - wired on the board J11.26 - J20.2

LPUART1 RX (PTC®6) UART_RX - wired on the board J11.25-J20.5

ADCO Input 12 (PTC14) POT - wired on the board J21.1-J11.18
Make sure the following jumpers are set:

Jumper Name S32K144EVB-Q100

J10 Set jumper on position 2-3

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 41

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select adc_swtrigger_s32k144.
Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration to be initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

adc_swtrigger_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

adc_swtrigger_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

adc_swtrigger_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

adc_swtrigger_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

115200 baud

One stop bit
* No parity
* No flow control

13.45 CMPDAC

Driver examples showing the basic usage scenario of the CMP

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

42 CONTENTS

Application description

The purpose of this demo application is to show you how to use the Analog Comparator of the S32K144 MCU using
the S32 SDK API.

The Comparator is configured to compare analog input 0(AINO) with half the reference voltage generated with the
internal DAC. Based on the input from the potentiometer the LEDs light by the following rules:

* 1) Vin < DAC voltage : RED on, GREEN off
* 2) Vin > DAC voltage : RED off, GREEN on
» 3) Unknown state : RED on, GREEN on

Prerequisites

To run the example you will need to have the following items:

» 1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30

CMP Input 0 (PTAO) J4.14 - J5.7 J21.1 - J9.31
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select cmp_dac_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 Configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated.

The initial configuration will have the same settings as the default example settings. Right click on the current
project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar).

In S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one
of those will generate all the components.

Pay attention to any error and warning message. If any configured value is invalid, they will be shown for user.
Make the desired changes (if any) then click "Update Code".

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 43

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

cmp_dac_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

cmp_dac_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

cmp_dac_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

cmp_dac_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.6 Communication Driver Examples

Applications that show the user how to initialize the communication peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

« FLEXIO SPI

« LPUART Echo

« UART PAL ECHO

« CAN PAL

« LPSPI Transfer

« LPSPI DMA

« SPI PAL

« 12C PAL

+ 12S PAL MASTER

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

44 CONTENTS

+ 12S PAL SLAVE

« FLEXIO I12C

« FLEXIO 12S MASTER

« FLEXIO 12S SLAVE

« FLEXIO UART

+ LPI2C MASTER

« LPI2C SLAVE

« LIN MASTER BAREMETAL

« LIN SLAVE BAREMETAL

« SBC UJA116x

13.4.7 FLEXIO SPI

Example application showing FlexIO SPI driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexIO SPI driver found on the S32K144 SoC
using S32 SDK API.

The application uses FlexlO SPI driver to make a data transfer of a defined size. The slave device for this example
is a second FlexIO SPI driver using the same FlexIO instance, which is configured to act as a bus slave. The slave
and master buffers will be checked after each transfer by the application, user shall check isTransferOk variable
to see if the transmissions are successful(Green led will turn on), otherise red led will turn on. Note that with the
current EVB board, RGB_BLUE and PTDO pins are wired onboard together. So it will be turned n when a transfer
occurs. RGB_BLUE is not related to the transfer state and should be ignored

Prerequisites
To run the example you will need to have the following items:
+ 1 S32K144 board
» 1 Power Adapter 12V (if the board can't be powered from the USB)

* 4 Dupont male to male cable

» 1 Personal Computer

1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 45

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100 29248 PCB RevA SCH RevC

+ S32K144-MB

Hardware Wiring

On current EVB board, RED_LED, GREEN_LED and all CS, SCK, MOSI and MISO for both FLEXIO_SPI connec-
tions are wired on board, so wirings are not be needed.

NOTE: The following connections must be done on EVB which was used in the previous release (S32K144EVB-«
Q100 PCB RevX3 SCH RevB1):

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FLEXIO_MASTER CS (PTA1) J5.5-J6.19 J9.32 - J9.24
FLEXIO_MASTER SCK (PTAO0) J5.7 - J6.17 J9.31 - J9.23
FLEXIO_MASTER MOSI (PTDO) J2.6 - J1.1 J12.31-J9.32
FLEXIO_MASTER MISO (PTA11) | J1.2-J1.3 J9.22 - J9.30
FLEXIO_SLAVE SS (PTA9) J6.19-J5.5 J9.32 - J9.24
FLEXIO_SLAVE SCK (PTAS8) J6.17 - J5.7 J9.31 - J9.23
RED_LED (PTD15) RGB_RED - wired on board J12.18 - JP49.2
GREEN_LED (PTD16) RGB_GREEN - wired on board J12.15 - JP50.2
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select flexio_spi_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There are four debug configurations for this project:

Configuration Name Description
flexio_spi_s32k144_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

46 CONTENTS

flexio_spi_s32k144_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

flexio_spi_s32k144_debug_ram_jlink Debug the RAM configuration using Jlink debuggers

flexio_spi_s32k144_debug_flash_jlink Debug the FLASH configuration using Jlink debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.8 LPUART Echo

Example application using the LPUART driver

Application description

The purpose of this demo application is to show you how to use the Low Power UART from the S32K144 CPU using
the S32 SDK API.

» The welcome message is sent via UART: "This example is an simple echo using LPUART it will send back
any character you send to it. The board will greet you if you send 'Hello Board' Now you can begin typing:" -

User shall send "Hello Board" string. If the board receives the user's string, then the "Hello World" string shall
be sent again. User need to add EOL character to string which will be sent to board.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board

» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 PEmicro debugger

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC®6) UART_RX - wired on the board J11.25-J20.5

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 47

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select Ipuart_echo_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

Ipuart_echo_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

Ipuart_echo_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

Ipuart_echo_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

Ipuart_echo_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

+ 9600 baud

» One stop bit

* No parity

* No flow control

* \n' line ending

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

48 CONTENTS

13.49 UART PAL ECHO

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo is to show the user how UART PAL works over FLEXIO_UART or LPUART peripherals.
The user can choose whether to use FLEXIO_UART or LPUART (see USE_FLEXIO_UART define from The board
sends a welcome message to the console with further instructions.)

» The welcome message is sent via UART: "This example is an simple echo using uart_pal_echo it will send
back any character you send to it. The board will greet you if you send 'Hello!" Now you can begin typing:" -
User shall send "Hello!" string. If the board receives the user's string, then the "Hello World!" string shall be
sent again. User need to add EOL character to string which will be sent to board. Green led(devkit) or led
1(Motherboard) shall be turned on if the communication is done over FLEXIO_UART; similarly the led shall
be turned off if the communication is done over LPUART.

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board

» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 2 Dupont male to male cable

» 1 Personal Computer

» 1 PEmicro/Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
GREEN_LED (PTD16) RGB_GREEN - wired on the board
LED1 (PTC1) JP50 - jump 50 on motherboard
LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2
LPUART1 RX (PTC6) UART_RX - wired on the board J11.25-J20.5
FLEXIO_UART RX (PTA11) J1.2-J44 J9.22 - J20.5
FLEXIO_UART TX (PTAO) J5.7-J4.2 J9.31 - J20.2
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select hello_world_s32k144.
Then click on Finish.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 49

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

uart_pal_echo_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

uart_pal_echo_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

uart_pal_echo_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

uart_pal_echo_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes
For this example it is necessary to open a terminal emulator and configure it with:
+ 115200 baud
» One stop bit
* No parity
* No flow control

* \n'line ending

13.4.10 CAN PAL

Demo application showing the CAN PAL functionalities

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

50

CONTENTS

Application description

The purpose of this demo application is to show you the usage of the CAN PAL module configured to use Flexible
Data Rate from the S32K144 CPU using the S32 SDK API.

« In the first part, the application will setup the board clocks, pins and other system functions such as SBC if
the board uses this module as a CAN transceiver.

+ Then it will configure the CAN PAL module features such as FD, Bitrate and buffers

» The application will wait for frames to be received on the configured buffer or for an event raised by pressing
one of the two buttons which will trigger a frame send to the recipient.

+ Pressing SW3 button of board 1 shall trigger a CAN transfer that results in toggling the RED led\ on board 2.

» Pressing SW2 button of board 1 shall trigger a CAN transfer that results in toggling the GREEN led on board
2.

» This demo application requires two boards, one configured as master and the other one configured as slave

(see MASTER/SLAVE defines in application code).

Prerequisites

To run the example you will need to have the following items:

+ 1 S32K144 board
+ 2 Power Adapters 12V
+ 3 Dupont female to female cable

» 1 Personal Computer

+ 1 Jlink Lite Debugger/ PEMicro Debugger (optional, users can use Open SDA for S32K144EVB-Q100)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
CAN HIGH () CAN HIGH - J13.1 CAN HIGH - J60.2
CAN LOW (%) CAN LOW - J13.2 CAN LOW - J60.3
GND (GND) GND -J13.4 GND - J6

BUTTON 1 (PTC13)

SW3 - wired on the board

BTN2 - wired on the board

BUTTON 2 (PTC12)

SW2 - wired on the board

BTNS3 - wired on the board

RED_LED (PTD15)

RGB_RED - wired on the board

LEDS - wired on the board

GREEN_LED (PTD16)

RGB_GREEN - wired on the board

LED2 - wired on the board

(x) Those lines must be modulated using a transceiver, if it is not specified the boards already include the

CAN transceiver.

The CAN transceiver should be in Forced Normal Mode operation (default mode).
To reset the CAN transceiver to default mode connect the SBC transceiver in next configuration with the

board S32K144EVB-Q100 power off:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 51

- pin RSTN from SBC is held LOW
« CANH(J13.1) is pulled up to VBAT(J11.2)

« CANL(J13.2) is pulled down to GND(J13.4)

Power on the board with external supply 12V (J16)

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select can_pal_s32k144. Then
click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

can_pal_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

can_pal_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

can_pal_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

can_pal_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.11 LPSPI Transfer

Driver example that will show the LPSPI Master and Slave functionalities

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

52 CONTENTS

Application description

The purpose of this application is to show the user how to use the Low Power Serial Peripheral Interface on the
S32K144 using the S32 SDK API.

» The application uses two on board instances of LPSPI, one in master configuration and the other one is slave
to communicate data via the SPI bus. Data will be gathered periodically from the ADC input and will be sent
to the master device which transforms it into a PWM signal. In this way the potentiometer controls the LED
intensity.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
* 4(6) Dupont male to male cables

» 1 Personal Computer

1 Jlink Lite Debugger or 1 PEMicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

LPSPIO CS (PTBO) J4.5-J1.14 J10.31 -J12.30
LPSPIO SCK (PTB2) J2.11-J4.8 J10.29 - J12.31
LPSPIO MISO (PTE1) J5.14 - J6.3 J13.32 - J12.29
LPSPI0 MOSI (PTB4) J2.7-J6.2 J10.27 - J12.32
LPSPI1 CS (PTD3) J4.5-J1.14 J10.31 -J12.30
LPSPI1 SCK (PTB14) J2.11-J4.8 J10.29 - J12.31
LPSPI1 MISO (PTD2) J5.14 - J6.3 J13.32 - J12.29
LPSPI1 MOSI (PTD1) J2.7-J6.2 J10.27 - J12.32
ADCO Input 12 (PTC14) POT - wired on the board J21.1 - J11.17

LED (PTD15) LED - wired on the board J12.18 - J5.13

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select Ipspi_transfer_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 53

2. Generating the S32 Configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated.

The initial configuration will have the same settings as the default example settings. Right click on the current
project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar).

In S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one
of those will generate all the components.

Pay attention to any error and warning message. If any configured value is invalid, they will be shown for user.
Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

Ipspi_transfer_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

Ipspi_transfer_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

Ipspi_transfer_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

Ipspi_transfer_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

With 12V power supply, it is recommended to provide 3.3V to MCU. Jump J10.1 - J10.2 should be connected.

13.4.12 LPSPIDMA

Driver example that will show the LPSPI Master and Slave functionalities

Application description

The purpose of this application is to show you how to use the Low Power Serial Peripheral Interface on the S32K144
using the S32 SDK API.

The application uses two on board instances of LPSPI, one in master configuration and the other one is slave to
communicate data via the SPI bus using DMA.

To check if the transmission is successful the user has to verify that the data sent is the same as the received data.
If transfer is successful, RED led will be on, otherwise it will be off.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

54 CONTENTS

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
* 4 Dupont male to male cables

» 1 Personal Computer

1 Jlink Lite Debugger or 1 PEMicro Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

LPSPIO CS (PTBO) Ja.5-J1.14 J10.31 - J12.30
LPSPIO SCK (PTB2) J2.11-44.8 J10.29 - J12.31
LPSPIO MISO (PTE1) J5.14 - J6.3 J13.32 - J12.29
LPSPI0O MOSI (PTB4) J2.7-J6.2 J10.27 - J12.32
LPSPI1 CS (PTD3) Ja.5-J1.14 J10.31 -J12.30
LPSPI1 SCK (PTB14) J2.11-J4.8 J10.29 - J12.31
LPSPI1 MISO (PTD2) J5.14 - J6.3 J13.32 - J12.29
LPSPI1 MOSI (PTD1) J2.7-J6.2 J10.27 - J12.32
LED (PTD15) LED - wired on the board J12.18 - JP50.2

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select Ipspi_dma_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 Configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated.

The initial configuration will have the same settings as the default example settings. Right click on the current
project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar).

In S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one
of those will generate all the components.

Pay attention to any error and warning message. If any configured value is invalid, they will be shown for user.
Make the desired changes (if any) then click "Update Code".

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 55

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

Ipspi_dma_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

Ipspi_dma_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

Ipspi_dma_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

Ipspi_dma_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.13 SPIPAL

Driver example using SPI

Application description

The purpose of this application is to show you how to use the LPSPI and FLEXIO Interfaces on the S32K144 using
the S32 SDK API.

The application uses one board instance of LPSPI in slave configuration and one board instance of FLEXIO in
master configuration to communicate data via the SPI bus using interrupts. It also verifies that the data sent is the
same as the received data. If transfer is successful, RED led will be on, otherwise it will be off.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board

+ 1 Power Adapter 12V (if the board can't be powered from the USB)
» 1 Personal Computer

* 4 Dupont male to male cable

+ 1 Jlink Lite Debugger or 1 PEMicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

56

CONTENTS

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FLEXIO_MASTER CS (PTA1) J5.5-J44.5 PTA1 - PTBO
FLEXIO_MASTER SCK (PTAO0) J5.7 - J2.11 PTAO - PTB2
FLEXIO_MASTER MOSI (PTD1) J6.2-J2.9 PTD1 - PTB3
FLEXIO_MASTER MISO (PTA2) Ji1.1-J44.7 PTA2 - PTB1
LPSPI_SLAVE SS (PTBO) J5.5-J445 PTBO - PTA1
LPSPI_SLAVE SCK (PTB2) J5.7 - J2.11 PTB2 - PTAO
LPSPI_SLAVE MOSI (PTB3) J6.2-J2.9 PTB3 - PTD1
LPSPI_SLAVE MISO (PTB1) J1.1-447 PTB1 - PTA2
LED (PTD15) LED - wired on the board J12.18 - JP50.2

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select spi_pal_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 Configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated.

The initial configuration will have the same settings as the default example settings. Right click on the current
project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar).

In S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one
of those will generate all the components.

Pay attention to any error and warning message. If any configured value is invalid, they will be shown for user.
Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

spi_pal_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

spi_pal_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

spi_pal_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 57

spi_pal_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.14 12C PAL

Driver example using 12C

Application description

The purpose of this application is to show you how to use the LPI2C and FLEXIO Interfaces on the S32K144 using
the S32 SDK API.

The application uses one board instance of LPI2C in slave configuration and one board instance of FLEXIO in
master configuration to communicate data via the 12C bus using interrupts.

The RED or GREEN led will be turn on or turn off depending on the check result. Red led will turn on if data does
not match. Green led will turn on if then data is transfered correctly.

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board
+ 1 Power Adapter 12V (if the board can't be powered from the USB)
» 1 Personal Computer

* 4 Dupont male to male cable

1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

* S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FLEXIO SDA (PTDO) J1.1-J6.1 J9.29 - J12.31
FLEXIO SCL (PTA11) J1.3-J1.2 J9.30 - J9.22
LPI2C SDA (PTA2) J1.1-J6.1 J9.29 - J12.31
LPI2C SCL (PTA3) J1.3-J1.2 J9.30 - J9.22

The pull-up resistors should be connected one between VCC(J3.7) and SDA pin(J1.1) and the second one between
VCC(J3.7) and SCL pin(J1.3).

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

58 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select i2c_pal_s32k144. Then
click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There are four debug configurations for this project:

Configuration Name Description

i2c_pal_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

i2c_pal_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

i2c_pal_s32k144_debug_ram_jlink Debug the RAM configuration using Jlink debuggers

i2c_pal_s32k144_debug_flash_jlink Debug the FLASH configuration using Jlink debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.15 12S PAL MASTER

Driver example using 12S

Application description

The purpose of this application is to show you how to use the i2s_pal driver on the S32K144.

The application uses one instance of FLEXIO in slave board and one instance of FLEXIO in master board to
communicate data via the 12S bus using both of interrupts and DMA The application will work in conjunction with
the i2s_pal_slave demo on S32K1xx.

The application displays on the host PC terminal a menu in which the user can select to: For Slave board: "Press:
1) [Slave] Send data 2) [Slave] Received data Enter your input:"

For Master board: "Press: 1) [Master] Send data 2) [Master] Received data Enter your input:"

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 59

Select Send/Receive on Slave first. After that select Receive/Send on Master.

The master buffers and slave buffers will be checked after each transfer by the application, RED or GREEN led will
be lit depend on the check result. Red led will turn on if data does not match. Green led will turn on if then data is
transfered correctly.

Prerequisites
To run the example you will need to have the following items:
+ 2 S32K144 board
» 1 Personal Computer
* 4 male to male jump wires
» 2 J-link Lite Debugger (optional, users can use Open SDA)

+ 2 Power Adapter 12V (if the board can't be powered from the USB)

Boards supported

The following boards are supported by this application:

+ S32K144-EVB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144-EVB MASTER S32K144-EVB SLAVE
FLEXIO SCK J2.6 (PTDO) J1.1(PTA2)
FLEXIO WS J1.2 (PTA11) J1.3(PTA3)
FLEXIO MASTER TX - SLAVE RX | J5.7 (PTAOQ) J6.19(PTA9)
FLEXIO MASTER RX - SLAVE TX | J5.5 (PTA1) J6.17(PTAS8)
RED_LED (PTD15) RGB_RED - wired on board RGB_RED - wired on board
GREEN_LED (PTD16) RGB_GREEN - wired on board RGB_GREEN - wired on board
UART Wired on board Wired on board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select i2s_pal_master_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(i2s_pal_master_s32k144). Select the "Config«
Tools" menu then click on the desired configuration (Pins, Cocks, Peripherals etc...). Clicking on any one of those
will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

60 CONTENTS

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description

i2s_pal_master_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

i2s_pal_master_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

i2s_pal_master_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

i2s_pal_master_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes
For this example it is necessary to open a terminal emulator and configure it with:

* 9600 baud

» One stop bit

* No parity

* No flow control

* \n'line ending

13.4.16 12S PAL SLAVE

Driver example using 12S

Application description

The purpose of this application is to show you how to use the i2s_pal driver on the S32K144.

The application uses one instance of FLEXIO in slave board and one instance of FLEXIO in master board to
communicate data via the 12S bus using both of interrupts and DMA The application will work in conjunction with
the i2s_pal_master demo on S32K1xx.

The application displays on the host PC terminal a menu in which the user can select to: For Slave board: "Press:
1) [Slave] Send data 2) [Slave] Received data Enter your input:"

For Master board: "Press: 1) [Master] Send data 2) [Master] Received data Enter your input:"

Select Send/Receive on Slave first. After that select Receive/Send on Master.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 61

The master buffers and slave buffers will be checked after each transfer by the application, RED or GREEN led will
be lit depend on the check result. Red led will turn on if data does not match. Green led will turn on if then data is
transfered correctly.

Prerequisites

To run the example you will need to have the following items:

2 S32K144 board

» 1 Personal Computer

* 4 male to male jump wires

» 2 J-link Lite Debugger (optional, users can use Open SDA)

+ 2 Power Adapter 12V (if the board can't be powered from the USB)

Boards supported

The following boards are supported by this application:

+ S32K144-EVB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144-EVB MASTER S32K144-EVB SLAVE
FLEXIO SCK J2.6 (PTDO) J1.1(PTA2)
FLEXIO WS J1.2 (PTA11) J1.3(PTA3)
FLEXIO MASTER TX - SLAVE RX | J5.7 (PTAO0) J6.19(PTA9)
FLEXIO MASTER RX - SLAVE TX | J5.5 (PTA1) J6.17(PTAS8)
RED_LED (PTD15) RGB_RED - wired on board RGB_RED - wired on board
GREEN_LED (PTD16) RGB_GREEN - wired on board RGB_GREEN - wired on board
UART Wired on board Wired on board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select i2s_pal_slave_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(i2s_pal_slave_s32k144). Select the "ConfigTools"
menu then click on the desired configuration (Pins, Cocks, Peripherals etc...). Clicking on any one of those will
generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

62 CONTENTS

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description

i2s_pal_slave_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

i2s_pal_slave_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

i2s_pal_slave_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

i2s_pal_slave_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes
For this example it is necessary to open a terminal emulator and configure it with:

+ 9600 baud

» One stop bit

* No parity

+ No flow control

* \n'line ending

13.4.17 FLEXIO 12C

Example application showing FlexIO 12C driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexlO I12C driver found on the S32K144 SoC
using S32 SDK API.

The application uses FlexlO 12C driver as master to make a send and a receive data request. The slave device for
this example is the LPI2C instance, which is configured to act as a bus slave. The setup can't be changed to use
FlexIO 12C as slave because this mode is not supported by FlexlO module. The slave and master buffers will be
checked after each transfer by the application, user shall check isTransferOk variable to see if the transmissions
are successful. If transfers is Ok, the LED on board will turn Green, otherwise the LED will turn RED.

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144EVB-Q100 board

» 1 Power Adapter 12V (if the board can't be powered from the USB)

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples

63

» 1 Personal Computer
* 1 PEMicro Multilink Debugger

« 1 Jlink Lite Debugger

Boards supported

The following boards are supported by this application:

+ S32K14xCVD-Q064 with S32K-MB

+ S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FLEXIO SDA (PTA11) J1.2-J141 J9.22 - J9.29
FLEXIO SCL (PTAO0) J5.7-J1.3 J9.31 - J9.30
LPI2C SDA (PTA2) J1.1-J1.2 J9.29 - J9.22
LPI2C SCL (PTA3) J1.3-J5.7 J9.30 - J9.31

RED_LED (PTD15) RGB_RED - wired on board

GREEN_LED (PTD16) RGB_GREEN - wired on board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select flexio_i2c_s32k144.

Then click on Finish.

The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next

step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
flexio_i2c_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

64 CONTENTS

flexio_i2c_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

flexio_i2c_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

flexio_i2c_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.18 FLEXIO I2S MASTER

Example application showing FlexIO I2S driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexlO 12S driver found on the S32K144 SoC
using S32 SDK API.

The application uses FlexIO 12S driver to make a data transfer of a defined size. The application will work in
conjunction with the flexio_i2s_slave demo on S32K14x.

The application displays on the host PC terminal a menu in which the user can select to: For Slave board: "Press:
1) [Slave] Send data 2) [Slave] Received data Enter your input:"

For Master board: "Press: 1) [Master] Send data 2) [Master] Received data Enter your input:"
Select Send/Receive on Slave first. After that select Receive/Send on Master.

The slave buffers and master buffers will be checked after each transfer by the application, RED or GREEN led
will be lit depend on the check result. Red led will turn if data does not match. Green led will turn if then data is
transfered correctly.

The MASTER 128 driver is configured to use DMA for transfers.
Data size is configured by TRANSFER_SIZE define, by default is configured to be 64 Bytes.

Prerequisites

To run the example you will need to have the following items:

+ 2 S32K144 board

» 2 Power Adapter 12V (if the board can't be powered from the USB)
* 4 Dupont male to male cable

» 1 Personal Computer

» 2 PEMicro Multilink Debugger (optional, users can use J-link)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 65

Hardware Wiring

The following connections must be done to for this example application to work: Connect each FlexlO pin board
master to pin board slave.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

66 CONTENTS
PIN FUNCTION S32K144EVB-Q100 MASTER S32K144EVB-Q100 SLAVE
FLEXIO SCK J2.6 (PTDO) J1.1(PTA2)

FLEXIO WS J1.2 (PTAT1) J1.3(PTA3)
FLEXIO MASTER TX - SLAVE RX | J5.7 (PTAO0) J6.19(PTA9)
FLEXIO MASTER RX - SLAVE TX | J5.5 (PTA1) J6.17(PTAS8)

RED_LED (PTD15)

RGB_RED - wired on board

RGB_RED - wired on board

GREEN_LED (PTD16)

RGB_GREEN - wired on board

RGB_GREEN - wired on board

UART

Wired on board

Wired on board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select flexio_i2s_master_«
s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

flexio_i2s_master_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

flexio_i2s_master_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

flexio_i2s_master_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

flexio_i2s_master_s32k144_debug_flash_pemicro | Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.
Notes
For this example it is necessary to open a terminal emulator and configure it with:

+ 9600 baud

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 67

» One stop bit
* No parity
* No flow control

* \n'line ending

13.4.19 FLEXIO 12S SLAVE

Example application showing FlexIO 12S driver usage

Application description
The purpose of this demo application is to show you the usage of the FlexlO 12S driver found on the S32K144 SoC
using S32 SDK API.

The application uses FlexlO 12S driver to make a data transfer of a defined size. The application will work in
conjunction with the flexio_i2s_master demo on S32K14x.

The application displays on the host PC terminal a menu in which the user can select to: For Slave board: "Press:
1) [Slave] Send data 2) [Slave] Received data Enter your input:"

For Master board: "Press: 1) [Master] Send data 2) [Master] Received data Enter your input:"
Select Send/Receive on Slave first. After that select Receive/Send on Master.

The slave buffers and master buffers will be checked after each transfer by the application, RED or GREEN led
will be lit depend on the check result. Red led will turn if data does not match. Green led will turn if then data is
transfered correctly.

The SLAVE 128 driver is configured to use interrupt for transfers.
Data size is configured by TRANSFER_SIZE define, by default is configured to be 64 Bytes.

Prerequisites

To run the example you will need to have the following items:

2 S32K144 board

» 2 Power Adapter 12V (if the board can't be powered from the USB)
4 Dupont male to male cable

» 1 Personal Computer

» 2 PEMicro Multilink Debugger (optional, users can use J-link)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work: Connect each FlexlO pin board
master to pin board slave.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

68 CONTENTS
PIN FUNCTION S32K144EVB-Q100 MASTER S32K144EVB-Q100 SLAVE
FLEXIO SCK J2.6 (PTDO) J1.1(PTA2)

FLEXIO WS J1.2 (PTAT1) J1.3(PTA3)
FLEXIO MASTER TX - SLAVE RX | J5.7 (PTAO0) J6.19(PTA9)
FLEXIO MASTER RX - SLAVE TX | J5.5 (PTA1) J6.17(PTAS8)

RED_LED (PTD15)

RGB_RED - wired on board

RGB_RED - wired on board

GREEN_LED (PTD16)

RGB_GREEN - wired on board

RGB_GREEN - wired on board

UART

Wired on board

Wired on board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select flexio_i2s_slave_+«
s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

flexio_i2s_slave_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

flexio_i2s_slave_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

flexio_i2s_slave_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

flexio_i2s_slave_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.
Notes
For this example it is necessary to open a terminal emulator and configure it with:

+ 9600 baud

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 69

» One stop bit
* No parity
* No flow control

* \n'line ending

13.420 FLEXIO UART

Example application showing FlexIO UART driver usage

Application description

The purpose of this demo application is to show you the usage of the FlexlO UART driver found on the S32K144
SoC using S32 SDK API.

Two instances of the FlexlO UART driver are used to display a welcome message ("Hello World") and then echo
the data received from host.

User shall send a string. If the board receives the user's string, then the same string shall be sent again.

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board

» 1 Power Adapter 12V (if the board can't be powered from the USB)

» 2 Dupont female to female cable

» 1 Personal Computer

+ 1 Jlink Lite Debugger or 1 PEmicro Debugger (optional, users can use Open SDA)

» UART to USB converter if it is not included on the target board. (Please consult your boards documentation
to check if UART-USB converter is present).

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100
FLEXIO_UART RX (PTA11) J1.2-J4.4
FLEXIO_UART TX (PTAO) J5.7-J4.2

Note

The application uses on board USB - UART chips to transfer data from board to host PC. Use an USB type B
cable to connect to the J16 connector on the mainboard.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

70 CONTENTS

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select flexio_uart_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Debugging the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

flexio_uart_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

flexio_uart_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

flexio_uart_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

flexio_uart_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

For this example it is necessary to open a terminal emulator and configure it with:

115200 baud
» One stop bit
* No parity

* No flow control

13.4.21 LPI2C MASTER

Driver example that will show the LPI2C Master functionality

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 71

Application description

The purpose of this demo application is to show you the usage of the LPI2C module available on the S32K144 MCU
as a master using S32 SDK.

+ The application uses S32 SDK API to initialize the LPI2C module as a master node and in Fast operation
speed after configuring the clocks and pins needed to use the 12C. The example sends to requests to a slave,
found at the configured address, the first being a TX request, while the other being a RX request. Run Slave
first, after that Run Master. The master buffers will be checked after each transfer by the application, RED
or GREEN led will be turn on or turn off depending on the check result. Red led will turn on if data does not
match. Green led will turn on if then data is transfered correctly.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 3 Dupont cables (male to male or female to female depending on the boards)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

* S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

LPI2C SCL (PTA3) J1-3 - Slave SCL J9-30 - Slave SCL

LPI2C SDA (PTA2) J1-1 - Slave SDA J9-29 - Slave SDA

GND (GND) J3-11 - Slave GND J6 - Slave GND
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New -> S32DS Project From and select Ipi2c_master_s32k144.
Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

72 CONTENTS

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
Ipi2c_master_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers
Ipi2c_master_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers
Ipi2c_master_s32k144_debug_ram_jlink Debug the RAM configuration using Jlink debuggers
Ipi2c_master_s32k144_debug_flash_jlink Debug the FLASH configuration using Jlink debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.22 LPI2C SLAVE

Driver example that will show the LPI2C Slave functionality

Application description

The purpose of this demo application is to show you the usage of the LPI2C module available on the S32K144 MCU
as a slave using S32 SDK.

+ The application uses S32 SDK API to initialize the LPI2C module as a slave node and in Fast operation speed
after configuring the clocks and pins needed to use the 12C. example uses the LPI2C callback to respond to
requests such as:

— data receive
— data transmit

— buffer full or empty. Run Slave first, after that Run Master. The slave buffers will be checked after each
transfer by the application, RED or GREEN led will be turn on or turn off depending on the check result.
Red led will turn on if data does not match. Green led will turn on if then data is transfered correctly.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 3 Dupont cables (male to male or female to female depending on the boards)

» 1 Personal Computer

1 Jlink Lite Debugger (optional, users can use Open SDA)

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 73

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

LPI2C SCL (PTA3) J1-3 - Master SCL J9-30 - Master SCL

LPI2C SDA (PTA2) J1-1 - Master SDA J9-29 - Master SDA

GND (GND) J3-11 - Master GND J6 - Master GND
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New -> S32DS Project From and select Ipi2c_slave_s32k144.
Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

Ipi2c_slave_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

Ipi2c_slave_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Ipi2c_slave_s32k144_debug_ram_jlink
Ipi2c_slave_s32k144_debug_flash_jlink

Debug the RAM configuration using Jlink debuggers
Debug the FLASH configuration using Jlink debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective. Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

74 CONTENTS

13.4.23 LIN MASTER BAREMETAL

Example that shows the usage of the LIN driver in master mode

Application description

This example demonstrates the LIN communication between S32K144 EVB Master and Slave using LIN driver
without LIN Stack

» A frame contains header and data. The Master node can send header and data, but Slave node only can
send data. Base on header, Master node or Slave node will take corresponding action. On Master node:

e Press BUTTON 0:

— For the first time, Master node sends FRAME_MASTER_RECEIVE_DATA header and require slave
node responds by sending data (txBuff2).

— For the second time, Master sends FRAME_SLAVE_RECEIVE_DATA header, then continue sending
data (txBuff1) and slave node will receive the data.

— If node successful receives data, this node will turn on GREEN_LED, otherwise turn on RED_LED.
* Press BUTTON 1:
— Master node will check current node state. If the state is LIN_NODE_STATE_SLEEP_MODE, Master
node will send wakeup signal and BLUE_LED will be turned on both nodes, otherwise Master node

will send header to set Master node and Slave node to sleep mode and all LED will be turned off both
nodes.

Prerequisites

To run the example you will need to have the following items:
+ 1 S32K144 board
» 1 Power Adapter 12V

* 4 Dupont female to female cable

» 1 Personal Computer

1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 75

PIN FUNCTION S32K144EVB-Q100 S32K-MB

BUTTON 0 (PTC12) SW2 - wired on the board BTN2 - wired on the board
BUTTON 1 (PTC13) SW3 - wired on the board BTN3 - wired on the board
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30
BLUE_LED (PTDO) RGB_BLUE - wired on the board J12.31-J11.29

GND (GND) J11-4 - Slave GND J6 - Slave GND

LIN () J11-1 - Slave LIN J48.4 - Slave LIN

(x) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_master_baremetal«
_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go
to Project Explorer View in S32 DS and select the current project(lin_master_baremetal_s32k144). Select the
"ConfigTools" menu then click on the desired configuration (Pins, Clocks, Peripherals etc...). Clicking on any one of
those will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update
Code" button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lin_master_baremetal_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink

debuggers
lin_master_baremetal_s32k144_debug_flash_jlink | Debug the FLASH configuration using Segger Jlink

debuggers
lin_master_baremetal_s32k144_debug_ram_« Debug the RAM configuration using PEMicro
pemicro debuggers
lin_master_baremetal_s32k144_debug_flash_« Debug the FLASH configuration using PEMicro
pemicro debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.24 LIN SLAVE BAREMETAL

Example that shows the usage of the LIN driver in slave mode

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

76 CONTENTS

Application description

This example demonstrates the LIN communication between S32K144 EVB Master and Slave using LIN driver
without LIN Stack

» A frame contains header and data. The Master node can send header and data, but Slave node only can
send data. Base on header, Master node or Slave node will take corresponding action.

« If Slave node receives FRAME_MASTER_RECEIVE_DATA header, Slave node will respond by sending data
(txBuff2).

- If Slave node receives FRAME_SLAVE_RECEIVE_DATA header, Slave node will receive and check data. If
data is success, Slave node will turn on GREEN_LED, otherwise turn on RED_LED

« If Slave node receives FRAME_GO_TO_SLEEP header, Slave node will go to sleep mode and turn off all
led.

« If Slave node receives a wakeup signal, it will check current node state, if the node state is sleep mode, Slave
node will wakeup and turn on BLUE_LED, otherwise wakeup signal is aborted and keep the previous state.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board

» 1 Power Adapter 12V

+ 4 Dupont female to female cable
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K-MB

BUTTON 0 (PTC12) SW2 - wired on the board BTN2 - wired on the board
BUTTON 1 (PTC13) SW3 - wired on the board BTNS3 - wired on the board
RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31
GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30
BLUE_LED (PTDO) RGB_BLUE - wired on the board J12.31-J11.29

GND (GND) J11-4 - Master GND J6 - Master GND

LIN (x) J11-1 - Master LIN J48.4 - Master LIN

(x) Those lines must be modulated using a transceiver, if it is not specified the boards already include the
LIN transceiver

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 77

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select lin_slave_baremetal_«
s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(lin_slave_baremetal_s32k144). Select the "
ConfigTools" menu then click on the desired configuration (Pins, Clocks, Peripherals etc...). Clicking on any one of
those will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update
Code" button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
lin_slave_baremetal_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink

debuggers
lin_slave_baremetal_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink

debuggers
lin_slave_baremetal_s32k144_debug_ram_« Debug the RAM configuration using PEMicro
pemicro debuggers
lin_slave_baremetal_s32k144_debug_flash_« Debug the FLASH configuration using PEMicro
pemicro debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.25 SBC UJA116x

Example application using the SBC_UJA116x driver

Application description

The purpose of this demo application is to show you how to use Power modes of SBC_UJA116x. When application
starts SBC is in Normal mode. Press SW2 to change mode to StandBy and SW3 to move to Sleep. Use SW9
button for wake up SBC.

The state of the SBC can be determined based on LED color LED_GREEN is on in Normal mode otherwise is off.
LED_RED is on in StandBy mode LED_BLUE is toggle when MCU run and SBC_FeedWatchdog is called. All LEDs
off - SBC in Sleep mode and power supply is off.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

78 CONTENTS

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100

LPSPI1 CS (PTD3) on the board

LPSPI1 SCK (PTDO) on the board

LPSPI1 MOSI (PTD2) on the board

LPSPI1 MISO (PTD1) on the board

Power source J10 jumper on 1-2 when run application and J10 2-3
when load the application.

How to run

1. Move SBC in FNMC state
pin RSTN (TP24) is held LOW CANH is pulled up to Vbat CANL is pulled down to GND
2. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select sbc_uja116x_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

3. Generating the Processor Expert configuration

First go to Project Explorer View in S32 DS and select the current project(sbc_uja116x_s32k144). Then go to
Project and click on Generate Processor Expert Code
Wait for the code generation to be completed before continuing to the next step.

4, Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

5. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 79

Configuration Name Description

sbc_uja116x_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

sbc_uja116x_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

Test require correct factory settings for example. FNMC bit must be disabled, SBC_UJA_SBC_SDMC_DIS must be
disabled and slpc must be allowed. For running other applications is recommended to move the SBC in FNMC after
running this example, otherwise CAN transceiver can be disabled because SBC goes in LIMP mode due to lack of
watchdog feed.

13.4.26 System Driver Examples

Applications that show the user how to initialize the communication peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

* CRC Checksum

» CSEc key configuration

« EDMA transfer

* EWM Interrupt

* FLASH Partitioning

* MPU Memory Protect Unit

+ MPU PAL Memory Protection

« Power Mode Switch

* WDOG Interrupt

« EIM INJECTION

+ ERM REPORT

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

80 CONTENTS

+ WDG PAL Interrupt

+ Trigger MUX Control

« SECURITY PAL

13.4.27 CRC Checksum

Example application showing the usage of the CRC module

Application description
The purpose of this demo application is to show you how to use the Cyclic Redundancy Check of the S32K144 with
this SDK.

In this example, The CRC is configured to generate a configuration for CCITT standard following:

« CCITT 16 bits standard:

{
.crcWidth = CRC_BITS_16,
.seed = OxFFFFU,
.polynomial = 0x10210,
.writeTranspose = CRC_TRANSPOSE_NONE,
.readTranspose = CRC_TRANSPOSE_NONE,
.complementChecksum = false

The application:

1. After reset starts with both GREEN and RED LED turned off.
Initializes CRC module with the above CCITT 16 bits standard configuration.
Pressing the SW button CRC calculation is initialized with CRC_data array from input_data.c file.

If the result is correct GREEN LED is turned on. Otherwise RED LED will be turned on.

o 0D

The program stops.

Prerequisites

To run the example you will need to have the following items:

+ 1 S32K144 board

» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
+ 2 Dupont female to female cables

» 1 Personal Computer

» Debug probe (JLink, PEmicro, OpenSDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples

81

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

82 CONTENTS

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

LEDO (PTD15/PTCO) RGB_RED - wired on the board J12.17 - J11.31

LED1 (PTD16/PTC1) RGB_GREEN - wired on the board | J12.16 - J11.30

SW (PTC12/PTC12) SW2 - wired on the board BUTTON?2 - wired on the board
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From and select crc_checksum_s32k144.
Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

crc_checksum_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

crc_checksum_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

crc_checksum_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

crc_checksum_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Notes
The CRC module in S32K platform supports both big endian and little endian in source data.
Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.
13.4.28 CSEc key configuration

Basic application that presents basic usecases for the CSEc driver

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 83

Note
This example works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is available on your
device.
The first time when running the example on the board, or after a key erase, this example should be ran
from RAM.
The user keys are non-volatile. Once the key was loaded, in order to update it, the counter should be
increased.

After the user key was loaded using this example, any further full erase of the Flash requires a
Challenge-Authentication process. This can be done by setting the ERASE_ALL_KEYS macro to 1.

After partitioning Flash for CSEc operation, using the JLink Flash configuration of any other project
will not work anymore. Workaround:

* Run csec_keyconfig example with ERASE_ALL_KEYS 1, using PEmicro Flash debug configuration

Application description

The purpose of this demo application is to show the user how to use the Cryptographic Services Engine module
from the S32K144 MCU with the S32 SDK API.

The implementation demonstrates the following:
+ the enablement of the CSEc module, by showing how the Flash should be partitioned (using the Flash driver);
« configuring the MASTER_ECU key;
« configuring the first user key, using the MASTER_ECU key as an authorization;

+ using the user key for an encryption. In order to update the user key after they were configured using the
example, the user should increase the counter used for loading the key. Please note that user should increase
counter in order to keep the encryption take its place successfully for 2 cases:

» The user key was already loaded by previous run.

+ The example already ran from RAM for CSEc partition. Erasing all the configured keys (including the MA—
STER_ECU key) can be done by changing the value of the ERASE_ALL_KEYS macro to 1. This will place
the part back into factory status (the partition command will need to be run again). Please note that when
the Flash is partitioned (the first time running the example on the board, or after a key erase), the example
should not be run from Flash (please use the RAM configuration).

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

84 CONTENTS

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 85

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From and select csec_keyconfig_s32k144.
Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

csec_keyconfig_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

csec_keyconfig_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.
13.4.29 EDMA transfer

Example application showing the usage of the EDMA module

Application description

The purpose of this driver example is to show you how to use the eDMA in the following transfer scenarios for the
S32K144 MCU using the S32 SDK API.

+ Loop memory-to-memory transfer

If the application works correctly, the data shall be transfered correctly to destination memory and a transmission
complete interrupt shall be triggered. And the application will not jump to any DEV_ASSERT.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

86 CONTENTS

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
+ 1 Power Adapter 12V (if the board can't be powered from the USB)
» 1 Personal Computer

+ 1 Jlink Lite Debugger or 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select edma_transfer_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(edma_transfer_s32k144). Select the "Config«
Tools" menu then click on the desired configuration (Pins, Cocks, Peripherals etc...). Clicking on any one of those
will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

edma_transfer_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

edma_transfer_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

edma_transfer_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

edma_transfer_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 87

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.30 EWM Interrupt

Driver example that shows the user how to use the External Watchdog Monitor

Application description

The purpose of this driver application is to show the user how to use the EWM from the S32K144 using the S32
SDK API.
Run the code

1. Turn off LED_RED and LED_GREEN.

2. The examples uses the SysTick timer from the ARM core to refresh the EWM counter for 30 times. After
each refresh, LED_RED is also toggled. Within this interval the user can press the button associated with the
EWM input pin to assert the interrupt and output pin.

3. After the EWM counter is refreshed 30 times or the user presses the button before refreshing ends, the EWM
interrupt is triggered and both LED_RED and LED_GREEN are turned ON, then SysTick timer is disabled.

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board

+ 1 Power Adapter 12V

» 2 Dupont male to male cable
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

» S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

88 CONTENTS

PIN FUNCTION S32K144EVB-Q100

RED_LED (PTD15) RGB_RED - wired on the board

GREEN_LED (PTD16) RGB_GREEN - wired on the board

EWM INPUT (PTAS3) J1.3(EWM INPUT) - J2.10(SW2_BTNO)
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select ewm_interrupt_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

ewm_interrupt_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

ewm_interrupt_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

ewm_interrupt_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

ewm_interrupt_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.
13.4.31 FLASH Partitioning

Example application which shows the basic operations of the FLASH driver

Application description

The purpose of this demo application is to show you the usage of the FLASH driver with the S32 SDK API.

The examples does the following operations:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 89

+ Partitions the flash

+ Configures FlexNVM region as EEPROM
+ Erases flash

* Programs flash

» Write data to EEPROM. Check the status of API which confirms activities of flash module. In addition, user
can view value at memory from address 0x7F000 when erases or programs flash. Checks the value at
memory from address 0x14000000 when writes data to EEPROM.

Note

The FlexNVM memory is partitioned to EEPROM use and is blocked for some erase commands (Erase Sector
and Erase Block). As a consequence, loading the program to flash memory may fail on some debuggers.
Please perform a mass erase operation on Flash to remove this partitioning after running the example to be
able to update your application on target.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

No connections are required for this example.

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select flash_partitioning_«
s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

90 CONTENTS

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

flash_partitioning_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

flash_partitioning_s32k144_debug_flash_pemicro | Debug the FLASH configuration using PEMicro
debuggers

flash_partitioning_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

flash_partitioning_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.
13.4.32 MPU Memory Protect Unit

Basic application that presents the project scenarios for S32 SDK

Application description

The purpose of this demo application is to show you how to use the Memory Protection Unit of the S32K144 MCU
with this SDK. In this example, MPU regions are configured to have access rights as following:

Region Core Debugger DMA Address

0 — rwx rwx 0x00000000 -
OxFFFFFFFF

1 rwx rwx rwx 0x00000000 -
0x0007FEFF

2 -WX rwx rwx 0x0007FF00 -
0x0007FF1F

3 r— rwx rwx 0x0007FFO00 -
0x0007FF1F

4 rwx rwx rwx 0x0007FF20 -
OxFFFFFFFF

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Run the example

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 91

1. After reset, MPU will be initialized according to configuration above.
Read flash memory at address 0x0007FF04 is permitted.

Press button (SW) on the board to ignore read permission by disabling region 3.

P w@ D

Read flash memory at address 0x0007FF04 is violated.

5. MPU report the detail of error access on slave port 0 (Crossbar slave port 0 -> Flash Controller).
Verification

1. GREEN_LED on indicate that MPU initialization successful.

2. RED_LED on (GREEN_LED off) indicate that there is violated read access reported by MPU.

Prerequisites
To run the example you will need to have the following items:

1 S32K144 board

» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer
» 1 PEmicro Debugger

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30

SW (PTC12) SW2_BTNO - wired on the board BUTTON?2 - wired on the board

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select mpu_memory_<«
protection_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"."

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

92 CONTENTS

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 93

Configuration Name Description
mpu_memory_protection_s32k144_debug_ram«- Debug the RAM configuration using Segger Jlink
_jlink debuggers
mpu_memory_protection_s32k144_debug_flash«— | Debug the FLASH configuration using Segger Jlink
_jlink debuggers
mpu_memory_protection_s32k144_debug_ram« Debug the RAM configuration using PEMicro
_pemicro debuggers
mpu_memory_protection_s32k144_debug_flash« | Debug the FLASH configuration using PEMicro
_pemicro debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.33 MPU PAL Memory Protection

Example application that shows how to use the MPU PAL

Application description

The purpose of this demo application is to show you how to use the Memory Protection Unit PAL of the S32K144
MCU with this SDK.

In this example, MPU PAL regions are configured to have access rights as following:

Region Core Debugger DMA Address

0 — rwx rwx 0x00000000 -
OxFFFFFFFF

1 rwx rwx rwx 0x00000000 -
0x0007FEFF

2 -WX rwx rwx 0x0007FFO00 -
0x0007FF1F

3 r— rwx rwx 0x0007FFO00 -
0x0007FF1F

4 rwx rwx rwx 0x0007FF20 -
OxFFFFFFFF

Run the example

1. After reset, MPU PAL will be initialized according to configuration above.

2. Read flash memory at address 0x0007FF04 is permitted.

3. Press button (SW) on the board to ignore read permission by disabling region 3.
4. Read flash memory at address 0x0007FF04 is violated.

5. MPU PAL report the detail of error access on slave port 0 (Crossbar slave port 0 -> Flash Controller).
Verification

1. GREEN LED on indicate that MPU PAL initialization successful.

2. RED LED on (GREEN LED off) indicate that there is violated read access reported by MPU PAL.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

94 CONTENTS

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board

» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 PEmicro Debugger

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30

SW (PTC12) SW2_BTNO - wired on the board BUTTON?2 - wired on the board
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select mpu_pal_memory_«
protection_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"."

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 95

Configuration Name Description
mpu_pal_memory_protection_s32k144_debug_<- | Debug the RAM configuration using Segger Jlink
ram_jlink debuggers
mpu_pal_memory_protection_s32k144_debug_«— | Debug the FLASH configuration using Segger Jlink
flash_jlink debuggers
mpu_pal_memory_protection_s32k144_debug_« | Debug the RAM configuration using PEMicro
ram_pemicro debuggers
mpu_pal_memory_protection_s32k144_debug_«— | Debug the FLASH configuration using PEMicro
flash_pemicro debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.34 Power Mode Switch

Example application demonstrating S32K144 power modes

Application description
The purpose of the application is to show the user how to enter various power modes of the S32K144 SoC using
the S32 SDK API.

The application displays on the host PC terminal a menu in which the user can select to enter:

* High Speed Run (HSRUN)

* Normal Run (RUN)

+ Very Low Power Run (VLPR)
+ STOP mode 1 (STOP1)

+ STOP mode 2 (STOP2)

» Very Low Power Stop (VLPS)

When user selects a mode, PC terminal will show the following text:

Press:

1) for HSRUN

2) for RUN

3) for VLPR

4) for STOP1

5) for STOP2

6) for VLPS

—>Press SW3 to wake up the CPU from STOP1,STOP2 or VLPS mode
Enter your input:

- = 2

Expected Output:

» If STOP1, STOP2 or VLPS is selected by entering the character: '4','5' or '6' into PC terminal, LED_RED will
turn on, LED_GREEN will turn off and the PC terminal will show:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

96 CONTENTS

Mode The content informs

STOPH1 sxxkcrkkx CPU is going in STOP1 mode...
STOP2 wkxkxkkk CPU is going in STOP2 mode...
VLPS sk GPU is going in VLPS mode...

» The CPU can be woken up from sleep modes by pressing button SW3 in EVB board, then LED_RED turn
off, LED_GREEN turn on and PC terminal will show:

Mode The content informs

STOP1 CPU was entered STOP1 mode successfully and
then woke up to exit STOP1 mode.

STOP2 CPU was entered STOP2 mode successfully and
then woke up to exit STOP2 mode.

VLPS CPU was entered VLPS mode successfully and
then woke up to exit VLPS mode.

« If user selects HSRUN, RUN or VLPR, the PC terminal will show:

Mode The content informs

HSRUN sxxkkkkokokok kR kxkxkkkkokkk CPU is in HSRUN
mode

kR ok Core frequency:
112000000[Hz]

RUN sokokok kR okl kookk ook CPU IS in RUN
mode

sk ok Core frequency:
48000000[Hz]

VLPR okl ok ook okl kkokokokkxokk CPU is in VLPR
mode

sokcskokoRsokosokoRsokoRsokksokcksokk Core frequency:
4000000[HZz]

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

« S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 97

PIN FUNCTION S32K144EVB-Q100

LPUART1 TX (PTC7) UART_TX - wired on the board

LPUART1 RX (PTC6) UART_RX - wired on the board

BUTTON (PTC13) SW3 - wired on the board

LED O green led - wired on the board

LED_1 red led - wired on the board
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From and select power_mode_switch_«
s32k144. Then click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated.

The initial configuration will have the same settings as the default example settings. Left click on the current project,
then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar).

In S32 Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of
those will generate all the components.

Pay attention to any error and warning message. If any configured value is invalid, they will be shown for user. Make
the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built RAM (Debug_RAM) or FLASH (Debug_FLASH) by left clicking on the downward
arrow corresponding to the build button. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
power_mode_switch_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink

debuggers
power_mode_switch_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink

debuggers
power_mode_switch_s32k144_debug_ram_« Debug the RAM configuration using PEMicro
pemicro debuggers
power_mode_switch_s32k144_debug_flash_« Debug the FLASH configuration using PEMicro
pemicro debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.
Notes
For this example it is necessary to open a terminal emulator and configure it with:

+ 9600 baud

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

98 CONTENTS

» One stop bit
* No parity
* No flow control

* \n'line ending

Clock source is remained in SIRC (8 MHz) before MCU switches from RUN to VLP mode.
In order to set to default clock for RUN mode. User presses option for RUN or re-initializes clock configuration.

13.4.35 WDOG Interrupt

Example application that will show the usage of the Watchdog

Application description

The purpose of this driver application is to show the user how to use the WDOG from the S32K144 using the S32
SDK API.

The examples uses the SysTick timer from the ARM core to refresh the WDOG counter for 8 times. After this the
Watchdog counter will expire and the CPU will be reset. If the FLASH configuration will be used, then the code will
use the Reset Control Module to detect if the reset was caused by the Watchdog and will stop the execution of the
program.

Run the example on Devkit:

1. After reset, LED 0 and LED 1 is off.
2. Initialize WDOG Interrupt above then LED 0 is toggle 8 times(on 4 times and off 4 times).

3. Watchdog timeout happen then MCU reset and LED 0 and LED 1 is on and The program will stopped.

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board

« 1 Power Adapter 12V
» 1 Personal Computer
* 1 PEmicro

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

« S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 99

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select wdog_interrupt_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32CT configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"."

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Configuration Name Description

wdog_interrupt_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

wdog_interrupt_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.36 EIM INJECTION

Driver example that shows the user how to use the Error Injection Module

Application description
The EIM module enables the user to inject 1 bit error or 2 bit errors into bus data, when read from a designated

RAM area. The ECC module must correct all 1 bit errors. The ERM module reports any detected memory error.
The example runs only on FLASH.

Run the code

1. After reset, LED_RED is turned off, LED GREEN is turned on and the value of the test address is initialized.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

100 CONTENTS

2. Press button BUTTONO to initialize the ERM and EIM modules.

3. Read the initialized address; if the value read from the test address is the same as the initialized value, then
LED_GREEN will be turned off and LED_RED will be turned on.

If application runs success, LED_GREEN will be turned off and LED_RED will be turned on after press button 0.

Prerequisites
To run the example you will need to have the following items:

» 1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

+ 1 Jlink Lite Debugger or 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q144

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q144

RED_LED (PTD15) RGB_RED - wired on the board

GREEN_LED (PTD16) RGB_GREEN - wired on the board

SW (PTC12) SW2_BTNO - wired on the board
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select eim_injection_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be one debug configuration for this project:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 101

Configuration Name Description

eim_injection_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

eim_injection_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.37 ERM REPORT

Driver example that shows the user how to use the Error reporting module

Application description

The EIM module enables the user to inject 1 bit error or 2 bit errors into bus data, when read from a designated
RAM area. The ECC module must correct all 1 bit errors. The ERM module reports any detected memory error.
The example runs only on FLASH

Run the code

1. After reset, LED_RED is turned off, LED_GREEN is turned on and the value for address used to test is
initialized.

2. Press button SW2 to initialize ERM and EIM modules.

3. Read the address which was initialized, ERM will trigger an interrupt notification which also turns off LED_+«
GREEN, and turns on the LED_RED to report a single-bit correction event.

4. Error event details are reported by ERM.

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board
» 1 Power Adapter 12V
» 1 Personal Computer

+ 1 Jlink Lite Debugger or 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

102 CONTENTS

PIN FUNCTION S32K144EVB-Q100

RED_LED (PTD15) RGB_RED - wired on the board

GREEN_LED (PTD16) RGB_GREEN - wired on the board

SW (PTC12) SW2_BTNO - wired on the board
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select erm_report_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be one debug configuration for this project:

Configuration Name Description

erm_report_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

erm_report_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.
This Example only run on Flash

13.4.38 WDG PAL Interrupt

Example application that will show the usage of the Watchdog

Application description

The purpose of this driver application is to show the user how to use the WDG PAL from the S32K144 using the
S32 SDK API.

The example uses the SysTick timer from the ARM core to refresh the WDG PAL counter for 30 times. LEDO will
toggle when WDG PAL counter is refreshed. After this the WDG PAL counter will expire, WDG PAL interrupt will
happen and turn off LEDO, LED1. Then the CPU will be reset. If the FLASH configuration will be used, then the

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 103

program will use the Reset Control Module to detect if the reset was caused by the Watchdog and will stop the
execution of the program and turn on LEDO, LED1.

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board

« 1 Power Adapter 12V
» 1 Personal Computer
* 1 PEmicro Debugger

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

LEDO (PTD15) RGB_RED - wired on the boards J12.17 - J11.31

LED1 (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select wdg_pal_interrupt_«
s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Right click
on the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In
S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of
those will generate all the components. Pay attention to any error and warning message. If any configured value is
invalid, they will be shown for user. Make the desired changes (if any) then click "Update Code"." Wait for the code
generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There will be two debug configurations for this project:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

104 CONTENTS

Configuration Name Description
wdg_pal_interrupt_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink

debuggers
wdg_pal_interrupt_s32k144_debug_flash_« Debug the FLASH configuration using PEMicro
pemicro debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.39 Trigger MUX Control

Example application showing the usage of the TRGMUX module

Application description

The purpose of this demo application is to show you how to use the Trigger MUX Control of the S32K14x MCU with
this SDK.

The examples use TRGMUX to connect Pin Trigger Mux In10 and LPIT channel 0.

« Initialize TRGMUX with source trigger from TRGMUX_IN10 and target module is LPIT_CHO
« Initialize the LPIT Channel 0.
* LED RED on EVB board or LED ORANGE on Motherboard is used to blink led

» Each time when user presses button SW2 on EVB board or SW4 on Motherboard will generate a trigger
signal that actives LPIT channel 0 via TRGMUX. After 1ms, LPIT will create an event interrupt and toggle
LED

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 105

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
RED_LED(PTD15) RGB_RED -wired on the board LEDO (JP49-2 connect J12-18)
SW (PTC11) SW2_BTNO (J1-15 connect J2-10) | SW4 - (JP64-2 connect JP64-3;

JP63-1 connect JP63-2; JP36-1
connect JP11-22)

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select trgmux_Ipit_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Right click
on the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In
S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of
those will generate all the components. Pay attention to any error and warning message. If any configured value is
invalid, they will be shown for user. Make the desired changes (if any) then click "Update Code". Wait for the code
generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

trgmux_lpit_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

trgmux_lpit_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

trgmux_lpit_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

trgmux_lpit_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.
Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.

Notes

The TRGMUX module in S32K platform supports both big endian and little endian in source data.

13.4.40 SECURITY PAL

Basic application that presents basic usecases for the Security PAL.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

106 CONTENTS

Note

This example works only for CSEc enabled parts. SIM_SDID indicates whether CSEc is available on your
device.

The first time when running the example on the board, or after a key erase, this example should be ran
from RAM.

This example generates a random number.

This example demonstrates CBC Encryption/Decryption.

Application description

The purpose of this demo application is to show the user how to use the Security PAL in conjuction with Crypto-
graphic Services Engine module from the S32K14x MCU with the S32 SDK API.

The implementation demonstrates the following:

« the enablement of the Security PAL, used over CSEc module, by showing how the Flash should be partitioned
(using the Flash driver);

« initializing the Random Number Generator and generating a vector of 128 random bits;
+ configuring the RAM key, with a 128-bit plaintext;

« using the user key for a CBC encryption and a CBC decryption;

If no errors occur during the cryptographic operations, the green LED will be turned on upon completion; if the red
LED is lit, the program failed during one of the steps.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select security_pal. Select "Copy
projects into workspace" and then click on Finish.
The project should now be copied into you current workspace.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 107

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"."

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
security_pal_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
Debug_FLASH PEMicro debuggers
security_pal_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
Debug_RAM PEMicro debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.41 Timer Driver Examples

Applications that show the user how to initialize the timer peripherals

There are currently driver examples with the following modules:
Click on one of the module to see the available projects

« FTM Combined PWM

* FTM Periodic Interrupt

« FTM PWM

* FTM Signal Measurement

« IC PAL

* LPTMR Periodic Interrupt

* LPTMR Pulse Counter

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

108 CONTENTS

» PDB Periodic Interrupt

« RTC Alarm

TIMING PAL

« PWM PAL

OC PAL

» LPIT Periodic Interrupt

13.4.42 FTM Combined PWM

Example application showing the FTM's combined PWM functionality

Application description

The purpose of this demo application is to show you the usage of the Combined PWM mode of the FlexTimer
module on S32K144 using S32 SDK API

The example does the following operations:

 Increment or decrement duty cycle
» Update channel duty cycle

« Wait for a number of cycles to make the change visible
Run the example:

1. After run debug, the RED LED and GREEN LED of EVB board will increment or decrement light intensity

2. Use oscilloscope to verify the output signal

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 109

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

110

CONTENTS

PIN FUNCTION

S32K144EVB-Q100

S32K144-MB

FTMO Channel 0 (PTD15)

RGB_RED - wired on the board

J12.18 - J11.31

FTMO Channel 1 (PTD16)

RGB_GREEN - wired on the board

J12.15-J11.32

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_combined_pwm_+«
s32k144. Then click on Finish.
The project should now be copied into your current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(ftm_combined_pwm_s32k144). Right click on the
current project ->" S32 Configuration Tool" menu then click on the desired configuration (Pins, Cocks, Peripherals
etc...). Clicking on any one of those will generate all the components. Make the desired changes(if any) then click
on the "ConfigTools->Update Code" button.

3. Building the project

Select the configuration FLASH (Debug_FLASH) or RAM (Debug_RAM) to be built by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There are four debug configurations for this project:

Configuration Name Description
ftm_combined_pwm_s32k144_debug_ram_« Debug the RAM configuration using PEMicro
pemicro debugger
ftm_combined_pwm_s32k144_debug_flash_« Debug the FLASH configuration using PEMicro
pemicro debugger

ftm_combined_pwm_s32k144_debug_ram_jlink

Debug the RAM configuration using Segger Jlink
debugger

ftm_combined_pwm_s32k144_debug_flash_jlink

Debug the FLASH configuration using Segger Jlink
debugger

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-

spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.43 FTM Periodic Interrupt

Example application showing the FTM's Timer functionality

Application description

The purpose of this demo application is to show you the usage of the FlexTimer's Timer functionality on S32K144

using S32 SDK API

The example does the following operations:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 111

+ Configure FTMO to generate an interrupt periodically

» The interrupt will blink the LED wired on the board

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
GPIO PIN (PTD15) RGB_RED - wired on the | (PTCO) LEDO - wired on the board
board
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_periodic_interrupt«
_s832k144. Then click on Finish.
The project should now be copied into your current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(ftm_periodic_interrupt_s32k144). Right click
on the current project ->" S32 Configuration Tool" menu then click on the desired configuration (Pins, Cocks,
Peripherals etc...). Clicking on any one of those will generate all the components. Make the desired changes(if any)
then click on the "ConfigTools->Update Code" button.

3. Building the project

Select the configuration FLASH (Debug_FLASH) or RAM (Debug_RAM) to be built by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There are four debug configurations for this project:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

112 CONTENTS

Configuration Name Description
ftm_periodic_interrupt_s32k144_debug_ram_:- Debug the RAM configuration using PEMicro
pemicro debuggers
ftm_periodic_interrupt_s32k144_debug_flash_« Debug the FLASH configuration using PEMicro
pemicro debuggers
ftm_periodic_interrupt_s32k144_debug_ram_jlink | Debug the RAM configuration using Segger Jlink

debuggers
ftm_periodic_interrupt_s32k144_debug_flash_« Debug the FLASH configuration using Segger Jlink
jlink debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.44 FTM PWM

Example application showing the FTM's PWM functionality

Application description

The purpose of this demo application is to show you the usage of the PWM mode of the FlexTimer module on
S32K144 using S32 SDK API

The examples does the following operations:

* Increment or decrement duty cycle
» Update channel duty cycle

» Wait for a number of cycles to make the change visible
Run the example:

1. After run debug, the RED LED of EVB board will increment or decrement light intensity

2. Use oscilloscope to verify the output signal

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples

113

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

114 CONTENTS

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FTMO Channel 0 (PTD15) RGB_RED - wired on the board J11.31-J12.18
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File ->> New S32DS Project From... and select ftm_pwm_s32k144. Then
click on Finish.
The project should now be copied into your current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(ftm_pwm_s32k144). Right click on the current
project ->" S32 Configuration Tool" menu then click on the desired configuration (Pins, Cocks, Peripherals etc...).
Clicking on any one of those will generate all the components. Make the desired changes(if any) then click on the
"ConfigTools->Update Code" button.

3. Building the project

Select the configuration FLASH (Debug_FLASH) or RAM (Debug_RAM) to be built by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There are four debug configurations for this project:

Configuration Name Description

ftm_pwm_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debugger

ftm_pwm_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debugger

ftm_pwm_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debugger

ftm_pwm_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debugger

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.
13.4.45 FTM Signal Measurement

Example application showing the FTM's Signal Measurement functionality

Application description

The purpose of this demo application is to show you the usage of the FlexTimer's Signal Measurement functionality
on S32K144 using S32 SDK API

+ The application is configured to generate a PWM signal with a variable frequency which will be measured by
another FTM instance The frequency will range from 1000 Hz to 3000 Hz. Each step changes 100 Hz The

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples

measurement results will be sent to the host PC via LPUART User is able to compare pwm frequency and

measurement frequency

The pwm frequency must be in measurable frequency range of FTM_IC. For example, here are the measur-

able ranges corresponding to the clock source = System clock (48 MHz)

Clock source prescaler Maximum frequency (Hz) Minimum frequency (Hz)
1 48,000,000 732.42
2 24,000,000 366.21
4 12,000,000 183.10
8 6,000,000 91.55
16 3,000,000 45.77
32 1,500,000 22.88
64 750,000 11.44
128 375,000 5.72
Note

Due to limited RAM size, this example contains only one build configuration for target flash memory

(and the associated debug configuration)

Prerequisites

To run the example you will need to have the following items:

+ 1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)

» 1 Personal Computer

1 Jlink Lite Debugger (optional, users can use Open SDA)

* 1 microUSB cable

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

FTMO Out Channel 0 (PTCO) J4.11 - J2.11 J11.31-J10.29

FTM1 Input Channel 0 (PTB2) J2.11 - J4.11 J10.29 - J11.31

LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2

LPUART1 RX (PTC®6) UART_RX - wired on the board J11.25-J20.5
Notes

For this example it is necessary to open a terminal emulator and configure it with:

*+ 9600 baud

» One stop bit

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

116 CONTENTS

+ No parity
* No flow control

* "\n' line ending

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ftm_signal_«
measurement_s32k144. Then click on Finish.
The project should now be copied into your current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go
to Project Explorer View in S32 DS and select the current project(ftm_signal_measurement_s32k144). Right
click on the current project ->" S32 Configuration Tool" menu then click on the desired configuration (Pins, Cocks,
Peripherals etc...). Clicking on any one of those will generate all the components. Make the desired changes(if any)
then click on the "ConfigTools->Update Code" button.

3. Building the project

Select the configuration FLASH (Debug_FLASH) to be built by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There are two debug configurations for this project:

Configuration Name Description
ftm_signal_measurement_s32k144_debug_« Debug the FLASH configuration using PEMicro
flash_pemicro debugger
ftm_signal_measurement_s32k144_debug_<« Debug the FLASH configuration using Segger Jlink
flash_jlink debugger

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

5. Output display on Terminal

Welcome message:

This example will show you how to use FIM’s signal measurement feature.
To achieve that we will generate a modifiable frequency PWM and read
it with Input Capture

Press any key to initiate a new conversion...

Expected output:

PWM frequency: 1000 Measured frequency: 1000 [Hz]
PWM frequency: 1100 Measured frequency: 1100 [Hz]
PWM frequency: 1200 Measured frequency: 1200 [Hz]
PWM frequency: 1300 Measured frequency: 1300 [Hz]
PWM frequency: 1400 Measured frequency: 1400 [Hz]
PWM frequency: 1500 Measured frequency: 1500 [Hz]
PWM frequency: 1600 Measured frequency: 1600 [Hz]
PWM frequency: 1700 Measured frequency: 1700 [Hz]
PWM frequency: 1800 Measured frequency: 1800 [Hz]
PWM frequency: 1900 Measured frequency: 1900 [Hz]

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 117

PWM frequency: 2000 Measured frequency: 2000 [Hz]
PWM frequency: 2100 Measured frequency: 2100 [Hz]
PWM frequency: 2200 Measured frequency: 2200 [Hz]
PWM frequency: 2300 Measured frequency: 2300 [Hz]
PWM frequency: 2400 Measured frequency: 2400 [Hz]
PWM frequency: 2500 Measured frequency: 2500 [Hz]
PWM frequency: 2600 Measured frequency: 2600 [Hz]
PWM frequency: 2700 Measured frequency: 2700 [Hz]
PWM frequency: 2800 Measured frequency: 2800 [Hz]
PWM frequency: 2900 Measured frequency: 2900 [Hz]
PWM frequency: 3000 Measured frequency: 3000 [Hz]

Press any key to initiate a new conversion...
Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.
13.4.46 ICPAL

Example application showing the IC's Signal Measurement functionality

Application description

The purpose of this demo application is to show you the usage of the IC's Signal Measurement functionality on
S32K144 using S32 SDK API

» The application is configured to generate a PWM signal with a variable frequency which will be measured by
IC_PAL The frequency will range from 1000 Hz to 3000 Hz. Each step changes 100 Hz The measurement
result will be sent to the host PC via LPUART. User is able to compare pwm frequency and measurement
frequency

Note

Due to limited RAM size, this example contains only one build configuration for target flash memory (and the
associated debug configuration)

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board

» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

* 1 microUSB cable

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

118 CONTENTS

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

FTMO Out Channel 0 (PTCO) J4.11 - J2.11 J11.31-J10.29

FTM1 Input Channel 0 (PTB2) J4.11 - J2.11 J11.31-J10.29

LPUART1 TX (PTC7) UART_TX - wired on the board J11.26 - J20.2

LPUART1 RX (PTC6) UART_RX - wired on the board J11.25 - J20.5
Notes

For this example it is necessary to open a terminal emulator and configure it with:

+ 9600 baud

» One stop bit

* No parity

* No flow control

* \n'line ending

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select ic_pal_s32k144. Then
click on Finish.
The project should now be copied into your current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go
to Project Explorer View in S32 DS and select the current project(ic_pal_s32k144). Right click on the current
project ->" S32 Configuration Tool" menu then click on the desired configuration (Pins, Cocks, Peripherals etc...).
Clicking on any one of those will generate all the components. Make the desired changes(if any) then click on the
"ConfigTools->Update Code" button.

3. Building the project

Select the configuration FLASH (Debug_FLASH) to be built by left clicking on the downward arrow corresponding
to the build button(. Wait for the build action to be completed before continuing to the next step.

4. Running the project

Go to Run and select Debug Configurations. There are two debug configuration for this project:

Configuration Name Description

ic_pal_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debugger

ic_pal_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debugger

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

5. Output display on Terminal

Welcome message:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 119

This example will show you how to use IC’s signal measurement feature.
To achieve that we will generate a modifiable frequency PWM and read
it with Input Capture

Press any key to initiate a new conversion...

Expected output:

PWM frequency: 1000 Measured frequency: 1000 [Hz]
PWM frequency: 1100 Measured frequency: 1100 [Hz]
PWM frequency: 1200 Measured frequency: 1200 [Hz]
PWM frequency: 1300 Measured frequency: 1300 [Hz]
PWM frequency: 1400 Measured frequency: 1400 [Hz]
PWM frequency: 1500 Measured frequency: 1500 [Hz]
PWM frequency: 1600 Measured frequency: 1600 [Hz]
PWM frequency: 1700 Measured frequency: 1700 [Hz]
PWM frequency: 1800 Measured frequency: 1800 [Hz]
PWM frequency: 1900 Measured frequency: 1900 [Hz]
PWM frequency: 2000 Measured frequency: 2000 [Hz]
PWM frequency: 2100 Measured frequency: 2100 [Hz]
PWM frequency: 2200 Measured frequency: 2200 [Hz]
PWM frequency: 2300 Measured frequency: 2300 [Hz]
PWM frequency: 2400 Measured frequency: 2400 [Hz]
PWM frequency: 2500 Measured frequency: 2500 [Hz]
PWM frequency: 2600 Measured frequency: 2600 [Hz]
PWM frequency: 2700 Measured frequency: 2700 [Hz]
PWM frequency: 2800 Measured frequency: 2800 [Hz]
PWM frequency: 2900 Measured frequency: 2900 [Hz]
PWM frequency: 3000 Measured frequency: 3000 [Hz]

Press any key to initiate a new conversion...
Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.
13.4.47 LPTMR Periodic Interrupt

Example application that shows the LPTMR's Timer feature

Application description

The purpose of this demo application is to show you how to use the LPTMR's Timer functionality from the S32K144
using the S32 SDK API.

» The LPTMR is configured to generate a periodic interrupt at 1 seconds which toggles a LED.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board

* 1 Power Adapter 12V

» 1 Dupont male to male cable
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

120 CONTENTS

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100
GPIO PIN (PTDO) RGB_BLUE - wired on the board
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select Iptmr_periodic_«
interrupt_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(lptmr_periodic_interrupt_s32k144). Select the
"ConfigTools" menu then click on the desired configurator (Pins, Cocks, Peripherals etc...). Clicking on any one of
those will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update
Code" button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
Iptmr_periodic_interrupt_s32k144_debug_ram_:— | Debug the RAM configuration using Segger Jlink
jlink debuggers
Iptmr_periodic_interrupt_s32k144_debug_flash« Debug the FLASH configuration using Segger Jlink
_jlink debuggers
Iptmr_periodic_interrupt_s32k144_debug_ram_« Debug the RAM configuration using PEMicro
pemicro debuggers
Iptmr_periodic_interrupt_s32k144_debug_flash«— Debug the FLASH configuration using PEMicro
_pemicro debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.48 LPTMR Pulse Counter

Example application that shows the LPTMR's Pulse Counting feature

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 121

Application description

The purpose of this demo application is to show you how to use the Low Power Timer's Pulse Counter functionality
from the S32K144 using the S32 SDK API.

» The example is configured to trigger an interrupt after three pulses, sourced from one of the board's buttons.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
* 1(2) Dupont male to male cable

» 1 Personal Computer

1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

« S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100

GPIO PIN (PTDO) RGB_BLUE - wired on the board

BUTTON (PTC12) SW2 - J2.10 connect to J2.17
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select Iptmr_pulse_counter_«
s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(lptmr_pulse_counter_s32k144). Select the "
ConfigTools" menu then click on the desired configurator (Pins, Cocks, Peripherals etc...). Clicking on any one of
those will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update
Code" button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

122 CONTENTS

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 123

Configuration Name Description
Iptmr_pulse_counter_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink

debuggers
Iptmr_pulse_counter_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink

debuggers
Iptmr_pulse_counter_s32k144_debug_ram_«- Debug the RAM configuration using PEMicro
pemicro debuggers
Iptmr_pulse_counter_s32k144_debug_flash_« Debug the FLASH configuration using PEMicro
pemicro debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.49 PDB Periodic Interrupt

Driver example using PDB

Application description

The purpose of this demo application is to show you how to use the Programmable Delay Block from the S32K144
using the S32 SDK API.

The PDB is configured to generate a periodic interrupt which toggles a LED.
See also

adc_hwtrigger_group
Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V
» 1 Personal Computer

» 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

124 CONTENTS

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
GPIO Pin (PTD15) RGB_RED - wired on the board LEDO - J11.31 -J12.18
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select pdb_periodic_interrupt«
_s832k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Right click
on the current project, then click "Open S32 Configuration" (it has blue chip symbol on the top of the toolbar). In
S32 Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of
those will generate all the components. Pay attention to any error and warning message. If any configured value is
invalid, they will be shown for user. Make the desired changes (if any) then click "Update Code". Wait for the code
generation to be completed before continuing to the next step.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
pdb_periodic_interrupt_s32k144_debug_ram_« Debug the RAM configuration using PEMicro
pemicro debuggers
pdb_periodic_interrupt_s32k144_debug_flash_« Debug the FLASH configuration using PEMicro
pemicro debuggers
pdb_periodic_interrupt_s32k144_debug_ram_jlink | Debug the RAM configuration using Segger Jlink

debuggers
pdb_periodic_interrupt_s32k144_debug_flash_«~ Debug the FLASH configuration using Segger Jlink
jlink debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.4.50 RTC Alarm

Example application showing basic use cases for the RTC module

Application description

The purpose of this demo application is to show you how to use the Real Time Clock module from the S32K144
MCU with the S32 SDK API.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 125

The RTC is configured to generate an interrupt every 1 second toggling GREEN_LED. If the alarm button is pressed
an alarm interrupt toggles the alarm RED_LED after 5 seconds.

Prerequisites
To run the example you will need to have the following items:

+ 1 S32K144 board

» 1 Power Adapter 12V

» 2 Dupont female to female cable
» 1 Personal Computer

* 1 PEmicro

+ 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

RED_LED (PTD15) RGB_RED - wired on the board J12.17 - J11.31

GREEN_LED (PTD16) RGB_GREEN - wired on the board | J12.16 - J11.30

BUTTON (PTC13) SW3 - wired on the board SW?7 - wired on the board
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From and select rtc_alarm_s32k144. Then
click on Finish.

The project should now be copied into you current workspace. Wait for the S32 Configuration was initialized and
ready.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

126 CONTENTS

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 127

Configuration Name Description

rtc_alarm_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

rtc_alarm_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

rtc_alarm_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

rtc_alarm_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Notes

If the example doesn't work, please Flash the Debug_FLASH configuration and enforce a power on reset of the
board.
This is caused by the fact that the register which configures the RTC clock source can only be written once.

Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.
13.4.51 TIMING PAL

Driver example using TIMING PAL

Application description

The purpose of this application is to show you how to use the TIMING PAL over LPIT, LPTMR and FTM timers on
the S32K144 using the S32 SDK API.

The application uses one board instance of LPIT, LPTMR and FTM to periodically toggle 3 leds.

Prerequisites

To run the example you will need to have the following items:

+ 1 S32K144 board
+ 1 Power Adapter 12V (if the board can't be powered from the USB)
» 1 Personal Computer

1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

* S32K144EVB-Q100
+ S32K144-MB

Hardware Wiring

The following connections must be done to for this example application to work:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

128 CONTENTS

PIN FUNCTION S32K144EVB-Q100 S32K144-MB

BLUE_LED (PTDO) RGB_BLUE - wired on the board J11.31 -J12.31

RED_LED (PTD15) RGB_RED - wired on the board J11.32-J12.18

GREEN_LED (PTD16) RGB_GREEN - wired on the board | J11.29 - J12.15
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select timing_pal_s32k144.
Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go to
Project Explorer View in S32 DS and select the current project(timing_pal_s32k144). Select the "ConfigTools"
menu then click on the desired configurator (Pins, Cocks, Peripherals etc...). Clicking on any one of those will
generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update Code"
button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

timing_pal_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

timing_pal_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

timing_pal_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

timing_pal_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.
13.4.52 PWM PAL

Example application using the PWM PAL

Application description

The purpose of this demo application is to show you how to use the PWM PAL from the S32K144 CPU using the
S32 SDK API. The example will dim the GREEN LED on EVB or ORANGE LED on Motherboard by varying the
duty cycle of the PWM signal.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 129

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 PEmicro Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144-MB
+ S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100 S32K144-MB
FTMO Channel 0 (PTD16) RGB_GREEN - wired on the board | LED_ORANGE - Connected
J12.15to JP49.2

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select pwm_pal_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs to
be generated. The initial configuration will have the same settings as the default example settings. Right click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configuration (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code"."

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

| Configuration Name | Description

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

130 CONTENTS

pwm_pal_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

pwm_pal_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

pwm_pal_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

pwm_pal_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

13.453 OCPAL

Driver example using OC PAL

Application description

The purpose of this application is to show you how to use the OC PAL over FTM_OC on the S32K144 using the
S32 SDK API.

This application will toggle green led with period 2 second.

Prerequisites

To run the example you will need to have the following items:

1 S32K144 board
+ 1 Power Adapter 12V (if the board can't be powered from the USB)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported

The following boards are supported by this application:

+ S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100
FTMO Channel 0 (PTD16) RGB_GREEN - wired on the board

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

13.4 Driver Examples 131

How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select oc_pal_s32k144. Then
click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. Left click on
the current project, then click "Open S32 Configuration” (it has blue chip symbol on the top of the toolbar). In S32
Configuration menu, click on the desired configurator (Pins, Clock, Peripherals, etc.). Clicking on any one of those
will generate all the components. Pay attention to any error and warning message. If any configured value is invalid,
they will be shown for user. Make the desired changes (if any) then click "Update Code".

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description

oc_pal_s32k144_debug_ram_jlink Debug the RAM configuration using Segger Jlink
debuggers

oc_pal_s32k144_debug_flash_jlink Debug the FLASH configuration using Segger Jlink
debuggers

oc_pal_s32k144_debug_ram_pemicro Debug the RAM configuration using PEMicro
debuggers

oc_pal_s32k144_debug_flash_pemicro Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-
spective.
Use the controls to control the program flow.

Note
For more detailed information related to S32 Design Studio usage please consult the available documentation.
13.4.54 LPIT Periodic Interrupt

Driver example that will show the LPIT functionality

Application description

The purpose of this demo application is to show you how to use the Low Power Interrupt Timer from the S32K144
using the S32 SDK API.

» The example is configured to trigger an interrupt every second, which toggles a LED.

See also

For other LPIT usage scenario check: ADC_LOW_POWER_group

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

132 CONTENTS

Prerequisites

To run the example you will need to have the following items:

» 1 S32K144 board
» 1 Power Adapter 12V (if the board cannot be powered from the USB port)
» 1 Personal Computer

» 1 Jlink Lite Debugger (optional, users can use Open SDA)

Boards supported
The following boards are supported by this application:

+ S32K144EVB-Q100

Hardware Wiring

The following connections must be done to for this example application to work:

PIN FUNCTION S32K144EVB-Q100
GPIO PIN (PTDO) RGB_BLUE - wired on the board
How to run

1. Importing the project into the workspace

After opening S32 Design Studio, go to File -> New S32DS Project From... and select Ipit_periodic_interrupt—
_s32k144. Then click on Finish.
The project should now be copied into you current workspace.

2. Generating the S32 configuration

The example will run without an active configuration, however if any changes are required, a configuration needs
to be generated. The initial configuration will have the same settings as the default example settings. First go
to Project Explorer View in S32 DS and select the current project(lpit_periodic_interrupt_s32k144). Select the
"ConfigTools" menu then click on the desired configurator (Pins, Cocks, Peripherals etc...). Clicking on any one of
those will generate all the components. Make the desired changes(if any) then click on the "ConfigTools->Update
Code" button.

3. Building the project

Select the configuration to be built FLASH (Debug_FLASH) or RAM (Debug_RAM) by left clicking on the downward
arrow corresponding to the build button(. Wait for the build action to be completed before continuing to the next
step.

4. Running the project

Go to Run and select Debug Configurations. There will be four debug configurations for this project:

Configuration Name Description
Ipit_periodic_interrupt_s32k144_debug_ram_jlink | Debug the RAM configuration using Segger Jlink
debuggers

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

14 Module Index

133

Ipit_periodic_interrupt_s32k144_debug_flash_«

Debug the FLASH configuration using Segger Jlink

jlink debuggers
Ipit_periodic_interrupt_s32k144_debug_ram_« Debug the RAM configuration using PEMicro
pemicro debuggers

Ipit_periodic_interrupt_s32k144_debug_flash_«
pemicro

Debug the FLASH configuration using PEMicro
debuggers

Select the desired debug configuration and click on Launch. Now the perspective will change to the Debug Per-

spective.
Use the controls to control the program flow.

Note

For more detailed information related to S32 Design Studio usage please consult the available documentation.

14 Module Index

14.1 Modules

Here is a list of all modules:

ADC Driver

Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL)

Automotive Math and Motor Control Library
Clock
Clock Manager
Clock Manager Driver
Comparator (CMP)

Comparator Driver

Controller Area Network - Peripheral Abstraction Layer (CAN PAL)

Controller Area Network with Flexible Data Rate (FlexCAN)

FlexCAN Driver

Cryptographic Services Engine (CSEc)
CSEc Driver

Cyclic Redundancy Check (CRC)
CRC Driver

Enhanced Direct Memory Access (eDMA)
EDMA Driver

Error Injection Module (EIM)
EIM Driver

Error Reporting Module (ERM)

212

230

243

277

278

279

323

327

343

360

441

364

256

365

251

412

372

413

397

415

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

134 CONTENTS
ERM Driver 402
External Watchdog Monitor (EWM) 417
EWM Driver 407
Flash Memory (Flash) 438
Flash Memory (Flash) 418
FlexTimer (FTM) 516
FlexTimer Input Capture Driver (FTM_IC) 554
FlexTimer Module Counter Driver (FTM_MC) 562
FlexTimer Output Compare Driver (FTM_OC) 566
FlexTimer Pulse Width Modulation Driver (FTM_PWM) 572
FlexTimer Quadrature Decoder Driver (FTM_QD) 589
Flexible 1/O (FlexIO) 595
FlexlO Common Driver 463
FlexlO I12C Driver 466
FlexIO I2S Driver 475
FlexlO SPI Driver 493
FlexlO UART Driver 507
FreeRTOS 596
I12S - Peripheral Abstraction Layer (12S PAL) 603
Input Capture - Peripheral Abstraction Layer (IC PAL) 612
Inter Integrated Circuit - Peripheral Abstraction Layer(12C PAL) 621
Interrupt Manager (Interrupt) 638
Local Interconnect Network (LIN) 745
LIN Driver 649
LIN Stack 668
Diagnostic services 367

Node configuration 819

Node identification 824

LIN Core API 648
Common Core API. 317

Driver and cluster management 371

Interface management 636

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

14.1 Modules 135
Notification 825

Schedule management 933

Signal interaction 967

User provided call-outs 1061

J2602 Specific API 644

LIN 2.1 Specific API 646

Low level API 753
Transport layer API 1006
Common Transport Layer API 319

Cooked API 362

Initialization 611

Raw API 909

J2602 Transport Layer specific API 645

Node configuration 817

Low Power Inter-Integrated Circuit (LPI2C) 746
LPI2C Driver 671
Low Power Interrupt Timer (LPIT) 747
LPIT Driver 687
Low Power Serial Peripheral Interface (LPSPI) 748
LPSPI Driver 702
Low Power Timer (LPTMR) 751
LPTMR Driver 720
Low Power Universal Asynchronous Receiver-Transmitter (LPUART) 752
LPUART Driver 730
Memory Protection Unit (MPU) 810
MPU Driver 785
Memory Protection Unit Peripheral Abstraction Layer (MPU PAL) 812
MPU PAL 799
OS Interface (OSIF) 826
Output Compare - Peripheral Abstraction Layer (OC PAL) 835
Pins Driver (PINS) 864
PINS Driver 858

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

136 CONTENTS

Power Manager 866
Power Manager Driver 876
Power_s32k1xx 878

Programmable Delay Block (PDB) 884
PDB Driver 846

Pulse-width modulation - Peripheral Abstraction Layer (PWM PAL) 885

Real Time Clock Driver (RTC) 911
RTC Driver 894

Security Peripheral Abstraction Layer - SECURITY PAL 952
Security PAL 934

Serial Peripheral Interface - Peripheral Abstraction Layer(SPI PAL) 955

SoC Header file (SoC Header) 968
S32K144 SoC Header file 928

Backward Compatibility Symbols for S32K144 244
Interrupt vector numbers for S32K144 643
Peripheral access layer for S32K144 863

SoC Support 969
S32K144 System Files 929

Structural Core Self Test 974

System Basis Chip Driver (SBC) - UJA116xA Family 979
UJA116xA SBC Driver 1007

System Basis Chip library (SBC) - UJA113x Family 984
00. Library internals 138

Register address map 915
01. Primary control 162
01. Mode handling 160
02. Watchdog 175
03. Fail-safe configuration 179
04. Lock control 194
02. Supply control 174
01. Regulator configuration 163
02. Battery monitor configuration 166

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

15 Data Structure Index

137

03. SMPS configuration
03. Transceiver control
01. CAN & CAN partial networking configuration
02. LIN configuration
04. HVIO bank 0 & 1 control
05. Timer control
06. Interrupts
Bank N fail interrupt enable configuration options (0x38/0x48)
Bank N wake-up interrupt enable configuration options (0x37/0x47)
Supply interrupt enable configuration options (0x1C)
System interrupt enable configuration options (0x04)
Transceiver interrupt enable configuration options (0x23)
07. MTPNV and ID
HVIO high-side configuration options (0x71)
HVIO low-side configuration options (0x72)
SBC configuration control options (0x74)
Start-up control configuration options (0x73)
TRGMUX Driver
Timing - Peripheral Abstraction Layer (TIMING PAL)
Universal Asynchronous Receiver/Transmitter - Peripheral Abstraction Layer (UART PAL)
Watchdog Peripheral Abstraction Layer (WDG PAL)
WDG PAL
Watchdog timer (WDOG)

WDOG Driver

15 Data Structure Index

15.1 Data Structures

Here are the data structures with brief descriptions:

adc_callback_info_t
Defines a structure used to pass information to the ADC PAL callback

adc_instance t
Structure storing PAL instance information

183

186

151

170

187

197

201

245

248

976

985

1004

205

597

600

930

971

986

993

1048

1078

1062

1081

1069

1082

1082

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

138 CONTENTS

can_instance_t
Structure storing PAL instance information 1083

drv_config_t 1083

i2c_instance_t
Structure storing PAL instance information 1084

i2s_instance_t
Structure storing PAL instance information 1085

ic_instance_t
Structure storing PAL instance information 1085

lin_product_id_t
Product id structure Implements : lin_product_id_t_Class 1086

mpu_instance_t
Structure storing PAL instance information 1087

oc_instance_t
Structure storing PAL instance information 1087

oc_pal_state_t
The internal context structure 1088

pwm_instance_t
Structure storing PAL instance information 1088

spi_instance_t
Structure storing PAL instance information 1089

timer_chan_state_t
Runtime state of the Timer channel 1089

timing_instance_t
Structure storing PAL instance information 1090

uart_instance_t
Structure storing PAL instance information 1090

wdg_instance_t
Structure storing PAL instance information 1091

16 Module Documentation

16.1 00. Library internals

16.1.1 Detailed Description

16.1.2 Internals

This section describes the philosophy of the library, naming conventions and how to start using this library.

16.1.2.1 General description

The SBC incorporates several registers allowing the user to configure it's behaviour. Following the SBCs SP+«

| protocol, these registers can be read/written to get the status of the device or change the configuration. The
UJA113X_SbcTransfer() function is the foundation of this library, which can be used to read/write from/into the SBC.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.1 00. Library internals 139

Several functions are available to configure specific functionality of the SBC, however, these just wrap the UJA113«
X_SbcTransfer() function at the end. Advantage of these functions lies in just providing input parameters and the
function takes care of the address, frame length etc.

As it makes no sense to provide different functions just to read a specific register, the UJA113X_SbcTransfer()
function should be used in such a case.

Different SBC registers control specific functionality. The number of registers required to control each functionality
differs, e.g. the SBC mode is controlled by a single register but to configure CAN, several registers need to be
written. From this perspective dedicated functions are available to ease the configuration. Some of these functions
configure only one register (e.g. UJA113X_SetWatchdog(), UJA113X_SetMode()) and thus bring only little advan-
tage over UJA113X_SbcTransfer(), whereas other configure whole group (e.g. UJA113X_SetCan()). It's up to the
user which form to use. See the How to start subsection for details.

Although the library supports connection of multiple UJA113x units to one MCU, the SDK doesn't allow to manipulate
these from external user files. Thus the number of SBCs connected to the MCU is hardcoded to 2 in the source file.

Every SBC connected to the host MCU is represented by a structure (uja113x_driver_t) holding internal data by the
library. An array of such structures is defined in the source code hidden from the user and is used throughout the
library. Thus each SBC instance has to be registered to initialize the SBC internal data.

After an SBC has been registered, the user can configure each part of the SBC separately based on instance
number and input arguments provided to the UJA113X_SetXYZ functions. Configration of each functionality is
described in separate sections.

In case there is no dedicated function for reading/writing a register, the UJA113X_SbcTransfer() function can be
used.

16.1.2.2 Naming conventions

This section describes the naming conventions used in the library to ease the navigation in the source code. Al-
though effort has been put to obey these rules, it's not always possible or easy to follow them.

Functions

A general naming scheme is used for functions:

<sbc_family>_<action_name>(input_parameters)
For functions configuring specific functionality, the action name always starts with a Set keyword as follows:

<sbc_family>_Set<functionality> (e.g. UJA113X_SetCanPartNet())

Structures
A general naming scheme is used for configuration structure:

<sbc_family>_<reg_fce_acronym>_cfg_t

The functionality acronym is derived either from a register name or in case of multiple registers dedicated to one
functionality by the functionality.

Examples:

uja113x_fsc_cfg_t -> Fail-Safe Control congifuration structure

uja113x_cpnc_cfg_t -> CAN Partial Networking Control configuration structure

uja113x_dm_cfg_t -> Data Masks configuration structure

Enumerations
A general naming scheme is used for enumeration types:
<sbc_family>_<reg_acronym>_<reg_bit>_t

Examples:
uja113x_canc_csc_t - CAN Control register, bit CSC: CAN Shutdown Control

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

140 CONTENTS

Naming scheme for enum members:

<reg_bit>_<text>_<text>...

Examples:

CMC_TRANSCEIVER_OFF - CAN Mode Control: Transceiver offline

CSC_UNDERVOLTAGE - CAN Shutdown Control: Shutdown transceiver during undervoltage

Defines

16.1.2.3 How to start

The first step before the SBC can be used is to configure the LPSPI peripheral, as the library relies on it. Afterwards
the UJA113X_RegisterDevice() should be invoked for every SBC connected to the MCU. While registering a device,

important information about the SBC is stored internally. Once a device has been registered, the rest of the functions
can be invoked at will to configure the device, read status etc.

Step-by-step summary
+ 1. Initialize the LPSPI peripheral
» 2. Declare and set the uja113x_drv_cfg_t structure for every SBC
« 3. Invoke the UJA113X_RegisterDevice() for every SBC
» 4. Configure SBC using the UJA113X_SbcTransfer() function or other library functions
» 5. Change mode to Normal by invoking the UJA113X_SetMode() to run the SBC

» 6. Implement your logic for error/interrupt/status handling

Example:

#define LPSPI_INSTANCE_O 0U /* SPI instance */
#define LPSPI_TIMEOUT 100U /* 100 ms timeout =x/
#define SBCO 0U /+ SBC instance =/

void main (void)
{
/+ Init the MCU clock, system related stuff, peripherals etc %/

/+ 1. Initialize the LPSPI periheral«/

/* 2. Declare and set the ujall3x_drv_cfg_t structure for every SBC %/
ujall3x_drv_cfg_t sbcConfig =
{
UJA1131HW5VO,
LPSPI_INSTANCE_O,
LPSPI_TIMEOUT
Vi

/* 3. Invoke the UJA113X_RegisterDevice() for every SBC x/
UJA113X_RegisterDevice (SBCO, &sbcConfig); /* Mandatory =/

/* 4. Configure SBC using the UJA113X_SbcTransfer () function of other library functions x/

UJA113X_SetWatchdog(...); /+ Optional/application specific =/

UJA113X_SbcTransfer(...); /* read back the written register - Optional/application
specific */

UJA113X_SetCan(...); /* Optional/application specific */

UJA113X_SetMtpnv(...); /* Optional/application specific x/

/* 5. Change mode to Normal by invoking the UJA113X_SetMode () to run the SBC */
UJA113X_SetMode(...);

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.1 00. Library internals 141

Modules

* Register address map

Data Structures

« struct uja113x_drv_cfg_t

SBC driver configuration structure. More...
« struct uja113x_hvio_bank_cfg_t

HVIO bank configuration structure. More...
« struct uja113x_init_cfg_t

SBC global initialization structure. More...
« struct uja113x_driver_t

Internal SBC driver structure
Implements : uja113x_driver_t _Class. More...

Enumerations

» enum ujal13x_chip_t {
UJA1131HW5VO0 = 0x1100U, UJA1131HW3V3 = 0x1000U, UJA1132HW5VO0 = 0x0100U, UJA1132HW3V3 =
0x0000U,
UJA1135HW5V0 = 0x1101U, UJA1135HW3V3 = 0x1001U, UJA1136HW5VO0 = 0x0101U, UJA1136HW3V3 =
0x0001U,
UJA1131HWFD5V4 = 0x5100U, UJA1131HWFD3V4 = 0x5000U, UJA1131HWFD5V0 = 0x7100U, UJ«
A1131HWFD3V0 = 0x7000U,
UJA1132HWFD5V4 = 0x4100U, UJA1132HWFD3V4 = 0x4000U, UJA1132HWFD5V0 = 0x6100U, UJ«+
A1132HWFD3V0 = 0x6000U }

Driver types.

Functions

« status_t UJA113X_SbcTransfer (uint32_t instance, bool read, uint8_t xtxData, uint8_t xrxData, uint8_t size)
Initiates a write/read operation to/from SBC.

« status_t UJA113X_Init (uint32_t instance, const uja113x_init_cfg_t xconst deviceConfig, const uja113x_«
drv_cfg_t *xdrvConfig)

Initializes complete chip based on input parameters except MTPNV.
« status_t UJA113X_RegisterDevice (uint32_t instance, const uja113x_drv_cfg_t *xdrvConfig)

Registers SBC internal parameters.
Variables
« static uja113x_driver_t g_drivers [DRIVER_COUNT__]
Internal array of SBC units connected to MCU.

16.1.3 Data Structure Documentation

16.1.3.1 struct uja113x_drv_cfg_t

SBC driver configuration structure.

Every SBC is represented by an internal driver structure, which needs to be initialized first. This is achieved by
defining Based on this structure an UJA113X SBC has to be registered.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

142 CONTENTS

See also

UJA113X_RegisterDevice()

Implements : uja113x_drv_cfg_t Class

Definition at line 1782 of file sbc_uja113x.h.
Data Fields

* uja113x_chip_t chipType
Defines the SBC type used by this instance.
* uint32_t Ipspilnstance

Defines which LPSPI is used to communicate with this device.
e uint32_t timeout

Defines the SPI timeout for a single transaction.

Field Documentation
16.1.3.1.1 uja113x_chip_t chipType

Defines the SBC type used by this instance.
Definition at line 1787 of file sbc_uja113x.h.

16.1.3.1.2 uint32_t Ipspilnstance

Defines which LPSPI is used to communicate with this device.

Definition at line 1791 of file sbc_uja113x.h.
16.1.3.1.3 uint32_t timeout

Defines the SPI timeout for a single transaction.

Definition at line 1795 of file sbc_uja113x.h.
16.1.3.2 struct uja113x_hvio_bank_cfg_t

HVIO bank configuration structure.
Implements : uja113x_hvio_bank_cfg_t_Class

Definition at line 1805 of file sbc_uja113x.h.
Data Fields

- uja113x_hvio_cfg_t hvioConfig [BANK_HVIO_CNT]

Array of HVIO control register configuration structures (0x30 - 0x33; 0x40 - 0x44)
 uja113x_bwtc_bnwtc_t bankWupThr

Bank N wake-up threshold configuration options (0x34 / 0x44)
* uint8_t bankWupIntMask

Bank N wake-up interrupt masks (0x37 / 0x47)
« uint8_t bankFaillntMask

Bank N failure interrupt masks (0x38 / 0x48)
» uja113x_bscdt_cfg_t bscdtBankShortCirc

Bank N short-circuit detection threshold configuration structure (0x39 / 0x49)
+ uja113x_boldt_cfg_t boldtBankOpenLoad

Bank N open-load detection threshold configuration structure (0x3A / 0x4A)

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.1 00. Library internals

143

Field Documentation
16.1.3.2.1 uint8_t bankFaillntMask

Bank N failure interrupt masks (0x38 / 0x48)
Definition at line 1822 of file sbc_uja113x.h.

16.1.3.2.2 uint8_t bankWupintMask

Bank N wake-up interrupt masks (0x37 / 0x47)
Definition at line 1818 of file sbc_uja113x.h.

16.1.3.2.3 uja113x_bwtc_bnwtc_t bankWupThr

Bank N wake-up threshold configuration options (0x34 / 0x44)
Definition at line 1814 of file sbc_uja113x.h.

16.1.3.2.4 uja113x_boldt_cfg_t boldtBankOpenLoad

Bank N open-load detection threshold configuration structure (0x3A / 0x4A)

Definition at line 1830 of file sbc_uja113x.h.
16.1.3.2.5 uja113x_bscdt_cfg_t bscdtBankShoriCirc

Bank N short-circuit detection threshold configuration structure (0x39 / 0x49)

Definition at line 1826 of file sbc_uja113x.h.
16.1.3.2.6 uja113x_hvio_cfg_t hvioConfiglBANK_HVIO_CNT]

Array of HVIO control register configuration structures (0x30 - 0x33; 0x40 - 0x44)
Definition at line 1810 of file sbc_uja113x.h.

16.1.3.3 struct uja113x_init_cfg_t

SBC global initialization structure.

See also

UJAT13X_Init()

Implements : uja113x_init_cfg_t_Class

Definition at line 1841 of file sbc_uja113x.h.
Data Fields

 uja113x_wtdc_cfg_t wdcWatchdogCfg
Watchdog configuration.
 uja113x_mc_mc_t mcSbcMode
Desired mode after initialization.
» uja113x_fsc_cfg_t fscCfg
Fail-safe configuration.
* uint8_t sysieMask
Defines which system interrupts to enable.
» uja113x_rc_cfg_t rcRegulatorCfg
Regulator control configuration parameters (0x10)
+ uja113x_bmc_cfg_t bmcBatMonitorCfg

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

144

CONTENTS

Battery monitor configuration.
* uja113x_smpsc_cfg_t smpscSmpsCfg

SMPS output voltage control configuration parameter (0x1A)

+ uint8_t supieMask

Supply interrupt enable configuration parameters (0x1C)

» uja113x_canc_cfg_t cancCanCfg
CAN configuration.
» uja113x_linc_cfg_t linxLinCtrl
LIN 1 and 2 configuration.
 uja113x_cpnc_cfg_t cpncCanPartNetCfg
CAN partial networking configuration.
 uja113x_dm_cfg_t dmCanDataMaskCfg
Data mask configuration.
* uint8_t tieMask

Transceiver interrupt enable register configuration parameters (0x23)

 const uja113x_hvio_bank_cfg_t * hvioBank0Cfg

Configuration of HVIO bank 0 (HVIO 1 - 4)
+ const uja113x_hvio_bank_cfg_t * hvioBank1Cfg

Configuration of HVIO bank 1 (HVIO 5 - 8)
+ const ujal13x_timsc_cfg_t * timscTimer1Cfg

Configuration of timer 1.
+ const ujal13x_timsc_cfg_t * timscTimer2Cfg

Configuration of timer 2.
» const uja113x_timsc_cfg_t * timscTimer3Cfg

Configuration of timer 3.
» const uja113x_timsc_cfg_t *« timscTimer4Cfg

Configuration of timer 4.
» const uja113x_Ickec_cfg_t * IckcLockRegCfg

Configuration of register lock.

General purpose memory settings (0x06 - 0x09)
* uint8_t memory0
* uint8_t memory1

* uint8_t memory2
+ uint8_t memory3

Field Documentation
16.1.3.3.1 uja113x_bmc_cfg_t bmcBatMonitorCfg

Battery monitor configuration.

Definition at line 1874 of file sbc_uja113x.h.
16.1.3.3.2 uja113x_canc_cfg_t cancCanCfg

CAN configuration.
Definition at line 1886 of file sbc_uja113x.h.

16.1.3.3.3 uja113x_cpnc_cfg_t cpncCanPartNetCfg

CAN partial networking configuration.

Definition at line 1894 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.1 00. Library internals

145

16.1.3.3.4 uja113x_dm_cfg_t dmCanDataMaskCfg

Data mask configuration.

Definition at line 1898 of file sbc_uja113x.h.
16.1.3.3.5 uja113x_fsc_cfg_t fscCfg

Fail-safe configuration.

Definition at line 1854 of file sbc_uja113x.h.
16.1.3.3.6 const uja113x_hvio_bank_cfg_tx hvioBank0Cfg

Configuration of HVIO bank 0 (HVIO 1 - 4)
Definition at line 1906 of file sbc_uja113x.h.

16.1.3.3.7 const uja113x_hvio_bank_cfg_t« hvioBank1Cfg

Configuration of HVIO bank 1 (HVIO 5 - 8)
Definition at line 1910 of file sbc_uja113x.h.

16.1.3.3.8 const uja113x_Ilckc_cfg_tx IckcLockRegCfg

Configuration of register lock.

Definition at line 1930 of file sbc_uja113x.h.
16.1.3.3.9 uja113x_linc_cfg_t linxLinCtrl

LIN 1 and 2 configuration.

Definition at line 1890 of file sbc_uja113x.h.
16.1.3.3.10 uja113x_mc_mc_t mcShcMode

Desired mode after initialization.

Definition at line 1850 of file sbc_uja113x.h.
16.1.3.3.11 uint8_t memory0
Definition at line 1862 of file sbc_uja113x.h.
16.1.3.3.12 uint8_t memory1
Definition at line 1863 of file sbc_uja113x.h.
16.1.3.3.13 uint8_t memory2
Definition at line 1864 of file sbc_uja113x.h.
16.1.3.3.14 uint8_t memory3
Definition at line 1865 of file sbc_uja113x.h.
16.1.3.3.15 uja113x_rc_cfg_t rcRegulatorCfg

Regulator control configuration parameters (0x10)

Definition at line 1870 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

146

CONTENTS

16.1.3.3.16 uja113x_smpsc_cfg_t smpscSmpsCfg

SMPS output voltage control configuration parameter (0x1A)

Definition at line 1878 of file sbc_uja113x.h.
16.1.3.3.17 uint8_t supieMask

Supply interrupt enable configuration parameters (0x1C)

Definition at line 1882 of file sbc_uja113x.h.
16.1.3.3.18 uint8_t sysieMask

Defines which system interrupts to enable.

Definition at line 1858 of file sbc_uja113x.h.

16.1.3.3.19 uint8_t tieMask

Transceiver interrupt enable register configuration parameters (0x23)

Definition at line 1902 of file sbc_uja113x.h.
16.1.3.3.20 const uja113x_timsc_cfg_t« timscTimer1Cfg

Configuration of timer 1.

Definition at line 1914 of file sbc_uja113x.h.
16.1.3.3.21 const uja113x_timsc_cfg_tx timscTimer2Cfg

Configuration of timer 2.

Definition at line 1918 of file sbc_uja113x.h.
16.1.3.3.22 const uja113x_timsc_cfg_tx timscTimer3Cfg

Configuration of timer 3.

Definition at line 1922 of file sbc_uja113x.h.
16.1.3.3.23 const uja113x_timsc_cfg_tx timscTimer4Cfg

Configuration of timer 4.

Definition at line 1926 of file sbc_uja113x.h.
16.1.3.3.24 uja113x_wtdc_cfg_t wdcWatchdogCfg

Watchdog configuration.

Definition at line 1846 of file sbc_uja113x.h.
16.1.3.4 struct uja113x_driver_t

Internal SBC driver structure
Implements : uja113x_driver_t_Class.

Definition at line 64 of file sbc_uja113x.c.
Data Fields

+ uja113x_chip_t chipType
Chip ID.
* uint32_t Ipspilnstance

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.1 00. Library internals

147

LPSPI used to communicate with SBC.
* uint32_t timeout

SPI timeout.

Field Documentation
16.1.3.4.1 uja113x_chip_t chipType

Chip ID.

Definition at line 69 of file sbc_uja113x.c.
16.1.3.4.2 uint32_t Ipspilnstance

LPSPI used to communicate with SBC.

Definition at line 73 of file sbc_uja113x.c.
16.1.3.4.3 uint32_t timeout

SPI timeout.

Definition at line 77 of file sbc_uja113x.c.

16.1.4 Enumeration Type Documentation

16.1.41 enum uja113x_chip_t

Driver types.

Implements : uja113x_chip_t_Class

Enumerator
UJA1131HW5V0
UJA1131HW3V3
UJA1132HW5V0
UJA1132HW3V3
UJA1135HW5V0
UJA1135HW3V3
UJA1136HW5V0
UJA1136HW3V3
UJA1131HWFD5V4
UJA1131HWFD3V4
UJA1131HWFD5V0
UJA1131HWFD3V0
UJA1132HWFD5V4
UJA1132HWFD3V4
UJA1132HWFD5V0
UJA1132HWFD3V0

Definition at line 43 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

148 CONTENTS

16.1.5 Function Documentation

16.1.5.1 status_t UJA113X_Init (uint32_t instance, const uja113x_init_cfg_t xconst deviceConfig, const
uja113x_drv_cfg_t * drvConfig)

Initializes complete chip based on input parameters except MTPNV.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.1 00. Library internals 149

Parameters
in instance | Index of SBC to configure
in deviceConfig | SBC configuration structure
in drvConfig | Driver internal data

Returns

Error or success status returned by API

Definition at line 148 of file sbc_uja113x.c.
16.1.5.2 status_t UJA113X_RegisterDevice (uint32_t instance, const uja113x_drv_cfg_t * drvConfig)

Registers SBC internal parameters.

The library allows use of multiple UJA113X SBCs to be connected to an MCU. From this perspective every SBC
has a set of internal data necessary for proper functionality. This function should be used to set these parameters
for a single SBC based on input parameters.

Parameters
in instance | SBC index (must be lower than UJA113X_DRIVER_COUNT)
in drvConfig | SBC configuration structure

Returns

SBC_SUCCESS Configuration successful SBC_ERR_NA SBC instance out of range

Definition at line 366 of file sbc_uja113x.c.
16.1.5.3 status_t UJA113X_SbcTransfer (uint32_t instance, bool read, uint8_t txData, uint8_t * rxData, uint8_t size)

Initiates a write/read operation to/from SBC.

Based on input arguments the function initiates a data transfer with SBC. Although the function allows to transfer
any amount of data, the minimum number of bytes to transfer is 2 (address + 1 byte), maximum is 4 (address +
3 bytes) as defined by the SBCs SPI protocol. Otherwise the frame is considered as invalid and an SPI failure is
raised by the SBC. The read parameter defines, whether a read or write from/to SBC is requested.

The first byte of t xDat a must contain the address to read/write from/to.

Parameters
in instance | Index of SBC to configure
in read | Read operation is carried out on true, write otherwise
in txData | Buffer to write into SBC
out rxData | Buffer for received data
in size | Number of bytes to write/read
Returns

STATUS_SUCCESS Write/read successful STATUS_BUSY SPI periphral busy STATUS_TIMEOUT SP«
| communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match the
repeated address, configuration failed.

Warning

The first byte of txData must contain the register address to read/write from/to!
The function doesn't check the size of data. Make sure you write 2 - 4 bytes!

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

150 CONTENTS

Note
The LSB bit of the address in first byte is not taken into account. The read parameter determines, whether a
read/write will be performed.

See also

Register address map

Definition at line 106 of file sbc_uja113x.c.

16.1.6 Variable Documentation

16.1.6.1 uja113x_driver_t g_drivers[DRIVER_COUNT_] [static]

Internal array of SBC units connected to MCU.

The count of SBC units can be influenced by UJA113X_DRIVER_COUNT which can be defined by the user in
sbc_uja113x_usr.h file. If not defined, the default value is 1!

Implements : multiple_sbc_support_Class

Definition at line 101 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.2 01. CAN & CAN partial networking configuration 151

16.2 01. CAN & CAN partial networking configuration
16.2.1 Detailed Description
16.2.2 Introduction

Except configuring mode and shutdown control during over-/undervoltages, the transceiver also suports CAN partial
networking (CAN PN) (only devices with CAN partial networking feature). The PN feature allows to wake-up only
a single node connected to a bus. From this perspective, several parameters (ID, ID mask, data, data masks etc.)
need to be configured to be able to wake up on a dedicated CAN wake-up frame.

16.2.2.1 CAN Partial networking

To enable the CAN PN functionality and confirm it's configuration, the CPNC & PNCOK bit in 0x20 register has to be
written. The write of PNCOK bit should be done after the CAN PN registers were written, otherwise the PNCOK gets
cleared on any write access into registers related to the CAN PN. Thus it's advised to write the CAN PN registers
first (UJA113X_SetCanPartNet() & UJA113X_SetDataMasks()). The 0x20 register should be configured afterwards
(UJA113X_SetCan()).

In case the CAN PN wake-up frame should not rely on data, the CAN data masks configuration can be skipped.
Thus the CAN PN configuration is split in two parts.

Data Structures

« struct uja113x_canc_cfg_t

CAN control register configuration structure (0x20) More...
« struct uja113x_cpnc_cfg_t

CAN partial networking configuration structure (0x26 - 0x2F) More...
« struct uja113x_dm_cfg_t

CAN partial networking data mask registers configuration structure (0x68 - 0x6F) More...

Typedefs

+ typedef bool uja113x_canc_cfdc_t
CAN FD control (0x20:CFDC[6])
+ typedef bool uja113x_canc_cpnc_t
CAN partial networking control parameter (0x20:CPNC[4])
* typedef uint32_t uja113x_id_id_t
CAN partial networking ID (0x27 - 0x2A)
« typedef uint32_t uja113x_idm_idm_t
CAN partial networking ID mask (0x2B - 0x2E)
« typedef bool uja113x_fc_ide_t
CAN partial networking ID format options (Ox2F:IDE[7])
* typedef bool uja113x_fc_pndm_t
CAN partial networking data mask options (0x2F:PNDM][6])

Enumerations

» enum ujal13x_canc_csc_t { CSC_NONE = 0x00U, CSC_UNDRVOLTAGE = 0x04U, CSC_OVERVOLTAGE
= 0x08U, CSC_UNDRV_OVERYV = 0x0CU }
CAN shut-down control configuration options (0x20:CSC[3:2])
« enum uja113x_canc_cmc_t { CMC_TRANSCEIVER_OFF = 0x00U, CMC_TRANSCEIVER_ACTIVE =
0x01U, CMC_TRANSCEIVER_ACTIVE2 = 0x02U, CMC_TRANSCEIVER_LISTEN = 0x03U }

CAN transceiver operating mode configuration options (0x20:CMC[1:0])

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

152 CONTENTS

» enum ujal13x_dr_cdr_t{
CDR_DATA_RATE_50 = 0x00U, CDR_DATA_RATE_100 = 0x01U, CDR_DATA RATE_125 = 0x02U, C«
DR_DATA RATE_250 = 0x03U,

CDR_DATA_RATE_500a = 0x04U, CDR_DATA_RATE_500b = 0x05U, CDR_DATA_RATE_500c = 0x06U,
CDR_DATA RATE_1000 = 0x07U }

CAN data rate configuration options (0x26:CDR[2:0])
* enumujal13x_fc_dlc_t{
DLC_0 = 0x00U, DLC_1 =0x01U, DLC_2 = 0x02U, DLC_3 = 0x03U,
DLC_4 = 0x04U, DLC_5 = 0x05U, DLC_6 = 0x06U, DLC_7 = 0x07U,
DLC_8 = 0x08U }

Number of data bytes in a CAN wake-up frame options (0x2F:DLC[3:0])

Functions

« status_t UJA113X_SetCan (uint32_t instance, const ujal13x_canc_cfg_t xcancConfig)

Sets the CAN control register (0x20) based on input configuration object.
« status_t UJA113X_SetCanPartNet (uint32_t instance, const uja113x_cpnc_cfg_t «cpncConfig)

Sets the CAN partial networking control register (0x26 - 0x2F) based on input configuration object.
« status_t UJA113X_SetDataMasks (uint32_t instance, const uja113x_dm_cfg_t xdmConfig)

Sets the CAN partial networking data mask registers (0x68 - 0x6F) based on input configuration object.

16.2.3 Data Structure Documentation

16.2.3.1 struct ujal13x_canc_cfg_t

CAN control register configuration structure (0x20)
Implements : uja113x_canc_cfg_t_Class

Definition at line 1538 of file sbc_uja113x.h.
Data Fields

» uja113x_canc_cfdc_t canFDCirl

Configures whether CAN FD frames are tolerated or not (0x20:CFDCJ[6])
+ uja113x_canc_cpnc_t canPartNetCirl

Disables/enables CAN selective wake-up (0x20:CPNC[4])
» uja113x_canc_csc_t canShutdownCitrl

Configures CAN shut-down behaviour during battery over- or undervoltage (0x20:CSC[3:2])
* uja113x_canc_cmc_t canModeCirl

Selects the CAN transceiver operating mode (0x20:CMC[1:0])
Field Documentation
16.2.3.1.1 uja113x_canc_cfdc_t canFDCtrl

Configures whether CAN FD frames are tolerated or not (0x20:CFDCI[6])
Definition at line 1543 of file sbc_uja113x.h.

16.2.3.1.2 uja113x_canc_cmc_t canModeCirl

Selects the CAN transceiver operating mode (0x20:CMCJ1:0])
Definition at line 1555 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.2 01. CAN & CAN partial networking configuration

153

16.2.3.1.3 uja113x_canc_cpnc_t canPartNetCtrl

Disables/enables CAN selective wake-up (0x20:CPNC[4])
Definition at line 1547 of file sbc_uja113x.h.

16.2.3.1.4 uja113x_canc_csc_t canShutdownCtrl

Configures CAN shut-down behaviour during battery over- or undervoltage (0x20:CSC[3:2])

Definition at line 1551 of file sbc_uja113x.h.
16.2.3.2 struct ujal13x_cpnc_cfg_t

CAN partial networking configuration structure (0x26 - 0x2F)
Implements : uja113x_cpnc_cfg_t_Class

Definition at line 1592 of file sbc_uja113x.h.
Data Fields

» uja113x_dr_cdr_t canDataRate
Configures CAN data rate (0x26:CDR[2:0])
+ uja113x_id_id_tid
Configures CAN wake-up ID (0x27 - 0x2A)
* uja113x_idm_idm_t idMask
Configures CAN wake-up ID mask (0x2B - Ox2E)
» ujal13x_fc_ide_tide
Configures whether standard/extended ID is used for wake-up (0x2F:IDE[7])
» uja113x_fc_pndm_t partNetDataMask

Configures whether DLC and data are checked during wake-up (0x2F:PNDM[6])
» uja113x_fc_dlc_t dataLenCode

Configures the number of expected bytes during wake-up (0x2F:DLC[3:0])

Field Documentation
16.2.3.2.1 uja113x_dr_cdr_t canDataRate

Configures CAN data rate (0x26:CDR[2:0])
Definition at line 1597 of file sbc_uja113x.h.

16.2.3.2.2 uja113x_fc_dlc_t dataLenCode

Configures the number of expected bytes during wake-up (0x2F:DLC[3:0])
Definition at line 1617 of file sbc_uja113x.h.

16.2.3.2.3 uja113x_id_id_tid

Configures CAN wake-up ID (0x27 - 0x2A)
Definition at line 1601 of file sbc_uja113x.h.

16.2.3.2.4 uja113x_fc_ide_tide

Configures whether standard/extended ID is used for wake-up (0x2F:IDE[7])
Definition at line 1609 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

154

CONTENTS

162.325 uja113x_idm_idm_t idMask

Configures CAN wake-up ID mask (0x2B - 0x2E)

Definition at line 1605 of file sbc_uja113x.h.

16.2.3.2.6 uja113x_fc_pndm_t partNetDataMask

Configures whether DLC and data are checked during wake-up (0x2F:PNDM][6])

Definition at line 1613 of file sbc_uja113x.h.

16.2.3.3 struct uja113x_dm_cfg_t

CAN partial networking data mask registers configuration structure (0x68 - Ox6F)

Implements : uja113x_dm_cfg_t_Class

Definition at line 1627 of file sbc_uja113x.h.
Data Fields

e uint8_tdmo

Data mask 0 configuration (0x68:DMO0[7:0])

e uint8_t dm1

Data mask 1 configuration (0x69:DM1[7:0])

e uint8_tdm2

Data mask 2 configuration (0x6A:DMZ2[7:0])

e uint8_tdm3

Data mask 3 configuration (0x6B:DM3(7:0])

e uint8_tdm4

Data mask 4 configuration (0x6C:DMA4[7:0])

e uint8_t dmb5

Data mask 5 configuration (0x6D:DM5[7:0])

e uint8_t dm6

Data mask 6 configuration (Ox6E:DM6[7:0])

e uint8_tdm?7

Data mask 7 configuration (0x6F:DM7[7:0])

Field Documentation
16.2.3.3.1 uint8_t dmo0

Data mask 0 configuration (0x68:DMO[7:0])
Definition at line 1629 of file sbc_uja113x.h.

16.2.3.3.2 uint8_t dm1

Data mask 1 configuration (0x69:DM1[7:0])
Definition at line 1630 of file sbc_uja113x.h.

16.2.3.3.3 uint8_t dm2

Data mask 2 configuration (0x6A:DM2[7:0])
Definition at line 1631 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.2 01. CAN & CAN partial networking configuration

155

16.2.3.3.4 uint8_t dm3

Data mask 3 configuration (0x6B:DM3[7:0])
Definition at line 1632 of file sbc_uja113x.h.

16.2.3.3.5 uint8_t dm4

Data mask 4 configuration (0x6C:DM4[7:0])
Definition at line 1633 of file sbc_uja113x.h.

16.2.3.3.6 uint8_t dm5

Data mask 5 configuration (0x6D:DM5[7:0])
Definition at line 1634 of file sbc_uja113x.h.

16.2.3.3.7 uint8_t dmé

Data mask 6 configuration (OX6E:DM6[7:0])
Definition at line 1635 of file sbc_uja113x.h.

16.2.3.3.8 uint8_t dm7

Data mask 7 configuration (0x6F:DM7[7:0])
Definition at line 1636 of file sbc_uja113x.h.

16.2.4 Typedef Documentation

16.2.4.1 typedef bool uja113x_canc_cfdc_t

CAN FD control (0x20:CFDCI6])

false - CAN FD tolerance disabled, the CAN FD frames are detected as erroneous while in sleep with partial

networking enabled

true - CAN FD tolerance enabled, the can FD frames are ignored while in sleep with partial networking enabled

Implements : uja113x_canc_cfdc_t_Class

Definition at line 586 of file sbc_uja113x.h.
16.2.4.2 typedef bool uja113x_canc_cpnc_t

CAN partial networking control parameter (0x20:CPNC[4])

false - Disable CAN selective wake-up
true - Enable CAN selective wake-up

Implements : uja113x_canc_cpnc_t_Class

Definition at line 597 of file sbc_uja113x.h.
16.2.4.3 typedef bool uja113x_fc_ide_t

CAN partial networking ID format options (0x2F:IDE[7])

false - standard frame format (11-bit)
true - extended frame format (11-bit)

Implements : uja113x_fc_ide_t Class

Definition at line 799 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

156 CONTENTS

16.2.4.4 typedef bool uja113x_fc_pndm_t

CAN partial networking data mask options (Ox2F:PNDM][6])

false - data length code and data field are ignored for wake-up
true - data length code and data field are evaluated at wake-up

Implements : uja113x_fc_pndm_t_Class

Definition at line 810 of file sbc_uja113x.h.
16.2.4.5 typedef uint32_t uja113x_id_id_t

CAN partial networking ID (0x27 - 0x2A)
Implements : uja113x_id_id_t_Class

Definition at line 779 of file sbc_uja113x.h.
16.2.4.6 typedef uint32_t uja113x_idm_idm_t

CAN partial networking ID mask (0x2B - 0x2E)
Implements : ujal13x_idm_idm_t_Class

Definition at line 788 of file sbc_uja113x.h.

16.2.5 Enumeration Type Documentation

16.2.5.1 enum uja113x_canc_cmc_t

CAN transceiver operating mode configuration options (0x20:CMC[1:0])

Implements : uja113x_canc_cmc_t_Class

Enumerator

CMC_TRANSCEIVER_OFF Offline/Offline bias mode.
CMC_TRANSCEIVER_ACTIVE Active mode (when the SBC is in normal mode).

CMC_TRANSCEIVER_ACTIVE2 Active mode (when the SBC is in normal mode); VCAN undervoltage dis-
abled.

CMC_TRANSCEIVER_LISTEN Listen-only mode.

Definition at line 628 of file sbc_uja113x.h.
16.2.5.2 enumuja113x_canc_csc_t

CAN shut-down control configuration options (0x20:CSCI[3:2])

Implements : uja113x_canc_csc_t_Class

Enumerator
CSC_NONE CAN transceiver is not shut down when a battery monitor under- or overvoltage interrupt is
generated.

CSC_UNDRVOLTAGE CAN transceiver shuts down in response to a battery monitor undervoltage (BMUI)
interrupt (SBC in normal mode).

CSC_OVERVOLTAGE CAN transceiver shuts down in reponse to a battery monitor overvoltage (BMO+«
1) unterrupt (SBC in normal mode).

CSC_UNDRV_OVERV CAN transceiver shuts down in response to BMUI or BMOI interrupt (SBC in normal
mode).

Definition at line 606 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.2 01. CAN & CAN partial networking configuration 157

16.2.5.3 enum uja113x_dr_cdr_t

CAN data rate configuration options (0x26:CDR[2:0])

Implements : uja113x_dr_cdr_t_Class

Enumerator

CDR _DATA_RATE_50 50 kbit/s

CDR _DATA_RATE_100 100 kbit/s

CDR _DATA_RATE_125 125 kbit/s

CDR _DATA_RATE_250 250 kbit/s

CDR _DATA _RATE_500a reserved (intended for future use; currently selects 500 kbit/s)
CDR _DATA_RATE_500b 500 kbit/s

CDR_DATA RATE_500c reserved (intended for future use; currently selects 500 kbit/s)
CDR _DATA_RATE_1000 1000 kbit/s

Definition at line 758 of file sbc_uja113x.h.
16.2.5.4 enumujal13x_fc_dic_t

Number of data bytes in a CAN wake-up frame options (0x2F:DLCJ[3:0])

Implements : uja113x_fc_dlc_t_Class

Enumerator

DLC 0 0 bytes expected
DLC 1 1 bytes expected
DLC_2 2 bytes expected
DLC 3 3 bytes expected
DLC 4 4 bytes expected
DLC_5 5 bytes expected
DLC_6 6 bytes expected
DLC 7 7 bytes expected
DLC _8 8 bytes expected

Definition at line 819 of file sbc_uja113x.h.

16.2.6 Function Documentation

16.2.6.1 status_t UJA113X_SetCan (uint32_t instance, const uja113x_canc_cfg_t *« cancConfig)

Sets the CAN control register (0x20) based on input configuration object.

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the CAN control register has not
been written properly and the process has to be repeated.

This function configures the PNCOK bit based on CPNC bit. In case the CAN Partial Networking is enabled (CPNC
is set), this function automatically sets the PNCOK bit as well.

Parameters

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

158 CONTENTS

in instance | Index of SBC to configure
in cancConfig | CAN control configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Note
Part of the CAN control configuration is also the PNCOK setting. This bit confirms that CAN partial networking
configuration is valid, however, it is cleared after a write access to any of the CAN partial networking configu-
ration registers (0x26 - Ox2F, 0x68 - Ox6F).
To use the CAN partial networking but avoid unnecessary writes into the SBC the CAN partial networking
configuration prior to UJA113X_SetCan() call is recommended. Afterwards, this function can be called with
CPNC set which automatically sets the PNCOK.

Warning
The PNCOK bit is cleared after a write access to any of the CAN partial networking configuration registers
(0x26 - Ox2F, 0x68 - 0x6F)

See also

UJA113X_SetCanPartNet() UJA113X_SetDataMasks()

Definition at line 641 of file sbc_uja113x.c.
16.2.6.2 status_t UJA113X_SetCanPartNet (uint32_t instance, const uja113x_cpnc_cfg_t x cpncConfig)

Sets the CAN partial networking control register (0x26 - 0x2F) based on input configuration object.

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the CAN partial networking
control registers have not been written properly and the process has to be repeated.

Parameters

in instance | Index of SBC to configure

in cpncConfig | CAN partial networking configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Note
It's possible to wake up on ID reception only and not evaluate the DLC & data content. From this perspective
it would make no sense to configure data masks. Thus the data masks have to be configured with a separate
function.
As the SPI protocol allows only 16/24/32 bit writes, four subsequent SPI transfers are carried out!

See also

UJA113X_SetDataMasks()

Definition at line 746 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.2 01. CAN & CAN partial networking configuration 159

16.2.6.3 status_t UJA113X_SetDataMasks (uint32_t instance, const uja113x_dm_cfg_t « dmConfig)

Sets the CAN partial networking data mask registers (0x68 - 0x6F) based on input configuration object.

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the CAN partial networking data
mask registers have not been written properly and the process has to be repeated.

Parameters

in instance | Index of SBC to configure

in dmConfig | CAN partial networking data masks configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Note

This function configures all the data masks. In case the user is interested in configuring a single mask, a
general function for SBC register write can be used instead!
As the SPI protocol allows only 16/24/32 bit writes, three subsequent SPI transfers are carried out!

See also

UJA113X_WriteRegister()

Definition at line 827 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

160 CONTENTS

16.3 01. Mode handling

16.3.1 Detailed Description
16.3.2 Introduction

The SBC has two debug modes, the Forced Normal Mode (FNMC) and Software Development mode (SDMC).
These modes can be configured in the SBCs MTPNV memory and can be set using the UJA113X_SetMtpnv()
function. Be aware while writing the non-volatile memory, as these registers can't be rewritten again easily. Clearing
the non-volatile memory requires special treatment, see Restoring MTPNV factory preset values for details. These
modes influence the watchdog behaviour and the main purpose is to use them during development, although is not
limitted just for this use case.

Aditionally, the SBC has 3 operating modes the user can switch to (the Normal, Standby and Sleep mode) with
UJA113X_SetMode().

16.3.2.1 Sleep mode

To be able to switch to the Sleep mode, the MTPNV memory has to be set accordingly. In case the Sleep mode is
disabled, the request to switch to Sleep mode is ignored.

To enter the sleep mode, any pending interrupts or wake-up events need to be cleared and at least one regular
wake-up source has to be enabled. Otherwise a system reset is triggered and the Reset Source Status bit (RSS) is
set to 10100 (illegal Sleep mode command received).

16.3.2.2 Normal & Standby mode

There should be no limitation to switch into these two modes except constrains related to watchdog. As the watchdog
can be still running, make sure to handle the watchdog properly, otherwise a reset can occur.

Enumerations

» enum ujal13x_mc_mc_t { MC_SLEEP = 0x01U, MC_STANDBY = 0x04U, MC_NORMAL = 0x07U }
SBC mode configuration options (0x01:MC[2:0])

Functions

« status_t UJA113X_SetMode (uint32_t instance, uja113x_mc_mc_t modeConfig)

Sets the mode control register (0x01) to get the SBC into a new mode.

16.3.3 Enumeration Type Documentation

16.3.3.1 enumujai13x_mc_mc_t

SBC mode configuration options (0x01:MC[2:0])

Implements : uja113x_mc_mc_t_Class

Enumerator
MC_SLEEP Set SBC mode to Sleep.
MC_STANDBY Set SBC mode to Standby.
MC_NORMAL Set SBC mode to Normal.

Definition at line 257 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.3 01. Mode handling 161

16.3.4 Function Documentation

16.3.4.1 status_t UJA113X_SetMode (uint32_t instance, uja113x_mc_mc_t modeConfig)

Sets the mode control register (0x01) to get the SBC into a new mode.

The function prepares a frame based on input parameter and initiates SPI communication in blocking mode. On
successful transmission the first byte is verified. In case of a mismatch the watchdog register has not been written
and the process has to be repeated.

Parameters
in instance | Index of SBC to configure
in modeConfig | New mode

Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Note

The SBC can be set into three modes (Normal, Standby, Sleep) based on the input parameter.

Warning

Entering the Normal or Standby mode requires no special treatment. However entering a Sleep mode requires
to clear all pending interrupts/events (which would set the SBCs INTN1/INTN2 to high) and at least one wake-
up source to be enabled. Otherwise the SBC can get stuck at Sleep mode without a possibility to wake it

up!

Definition at line 411 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

162 CONTENTS

16.4 01. Primary control
16.4.1 Detailed Description
The primary control registers (0x00 - 0x1F) allow:

+ Configuring watchdog (0x00)

» Changing SBC mode (0x01)

+ Configuring Fail-safe behaviour (0x02)

* Read SBCs main status (0x03)

» Enable system interrupts (0x04)

» Read watchdog status (0x05)

» Access (read/write) general purpose memory 0 - 3 (0x06 - 0x09)

» Lock specific memory areas (0x0A)

Interrupts and interrupt status is described in 06. Interrupts.

Modules

+ 01. Mode handling

» 02. Watchdog

+ 083. Fail-safe configuration
» 04. Lock control

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.5 01. Regulator configuration 163

16.5 01. Regulator configuration
16.5.1 Detailed Description
16.5.2 Introduction

The SBC incorporates two voltage regulators. Configurations influencing behaviour during start-up are stored in
the MTPNV memory (see Start-up control configuration options (0x73) & SBC configuration control options (0x74)).
After successful start-up, the regulators can be configured by invoking the UJA113X_SetRegulator().

Data Structures

« struct uja113x_rc_cfg_t

Regulator control register configuration structure (0x10) More...

Enumerations

+ enum ujal13x_rc_v2sc_t { V2SC_NONE = 0x00U, V2SC_UNDRVOLTAGE = 0x10U, V2SC_OVERVOLT+-
AGE = 0x20U, V2SC_FULL = 0x30U }

V2 shut-down response to over- or undervoltage configuration options (0x10:V2SC[5:4])

» enum uja113x_rc_v2c_t { V2C_OFF = 0x00U, V2C_ON_N = 0x04U, V2C_ON_NSR = 0x08U, V2C_ON_N+
SSRF = 0x0CU }

V2 control configuration options (0x10:V2C[3:2])

« enum ujal13x_rc_virtc_t { VIRTC_90_NOMINAL_OUT = 0x00U, VIRTC_80_NOMINAL_OUT = 0x01U,
V1RTC_70_NOMINAL_OUT = 0x02U, V1IRTC_60_NOMINAL_OUT = 0x03U }

V1 undervoltage reset threshold configuration options (0x10:V1RTC[1:0])

Functions

« status_t UJA113X_SetRegulator (uint32_t instance, const uja113x_rc_cfg_t xrcConfig)

Sets the regulator control register (0x10) based on input configuration object.

16.5.3 Data Structure Documentation

16.5.3.1 struct uja113x_rc_cfg_t

Regulator control register configuration structure (0x10)
Implements : uja113x_rc_cfg_t_Class

Definition at line 1451 of file sbc_uja113x.h.
Data Fields

» uja113x_rc_v2sc_t v2ShutdownCtrl

Configures V2 shut-down response to a battery over- or undervoltage configuration (0x10:V2SC[5:4])
* ujal13x_rc_v2c_t v2Cirl

Configures output behavior on V2 (0x10:V2C[3:2])
» uja113x_rc_virtc_t viRstThrCitrl

Configures V1 undervoltage reset threshold (0x10:V1RTC[1:0])

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

164 CONTENTS

Field Documentation
16.5.3.1.1 uja113x_rc_v1rtc_t viRstThrCtrl

Configures V1 undervoltage reset threshold (0x10:V1RTC[1:0])
Definition at line 1464 of file sbc_uja113x.h.

16.5.3.1.2 uja113x_rc_v2c_t v2Cirl

Configures output behavior on V2 (0x10:V2C[3:2])
Definition at line 1460 of file sbc_uja113x.h.

16.5.3.1.3 uja113x_rc_v2sc_t v2ShutdownCtrl

Configures V2 shut-down response to a battery over- or undervoltage configuration (0x10:V2SC[5:4])

Definition at line 1456 of file sbc_uja113x.h.

16.5.4 Enumeration Type Documentation

16.5.4.1 enumuja113x_rc_v1iric_t

V1 undervoltage reset threshold configuration options (0x10:V1RTC[1:0])

Implements : uja113x_rc_virtc_t_Class

Enumerator

VIRTC_90 NOMINAL_OUT Reset threshold set to 90% of V1 nominal output voltage.
VIRTC_80_NOMINAL_OUT Reset threshold set to 80% of V1 nominal output voltage.
VIRTC_70_NOMINAL_OUT Reset threshold set to 70% of V1 nominal output voltage.
VIRTC_60_NOMINAL_OUT Reset threshold set to 60% of V1 nominal output voltage.

Definition at line 403 of file sbc_uja113x.h.
16.5.4.2 enumujal13x_rc_v2c_t

V2 control configuration options (0x10:V2C[3:2])

Implements : uja113x_rc_v2c_t_Class

Enumerator

V2C_OFF V2 off in all modes.

V2C_ON_N V2 on in Normal mode.

V2C_ON_NSR V2 onin Normal, Standby and Reset modes.
V2C_ON_NSSRF V2 on in Normal, Standby, Sleep, Reset and FSP mode.

Definition at line 388 of file sbc_uja113x.h.
16.5.4.3 enumuja113x_rc_v2sc_t

V2 shut-down response to over- or undervoltage configuration options (0x10:V2SCJ[5:4])

Implements : uja113x_rc_v2sc_t_Class

Enumerator

V2SC_NONE No shut-down in response to over- or undervoltage.
V2SC_UNDRVOLTAGE Shut-down in response to undervoltage.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.5 01. Regulator configuration 165

V2SC_OVERVOLTAGE Shut-down in response to overvoltage.

V2SC_FULL Shut-down in response to over- or undervoltage.

Definition at line 373 of file sbc_uja113x.h.

16.5.5 Function Documentation

16.5.5.1 status_t UJA113X_SetRegqulator (uint32_t instance, const uja113x_rc_cfg_t * rcConfig)

Sets the regulator control register (0x10) based on input configuration object.

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the regulator control register has
not been written and the process has to be repeated.

Parameters

in instance | Index of SBC to configure

in rcConfig | Regulator control configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Definition at line 519 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

166 CONTENTS

16.6 02. Battery monitor configuration
16.6.1 Detailed Description
16.6.2 Introduction

The battery monitor can measure the voltage either on BAT or BATSENSE pin and is able to generate an interrupt
in case of under-/overvoltage in Normal mode.

To read the content of the ADC, the UJA113X_SbcTransfer() function can be used. No dedicated function for
reading the ADC is available at the moment.

UJA113X_SetBatteryMonitor() can be used to configure the whole battery monitor except interrupts.

Data Structures

« struct uja113x_bmc_cfg_t

Battery monitor registers configuration structure (0x11 - 0x14) More...

Typedefs

« typedef bool uja113x_bmetsc_bmsc_t

Battery monitor event trigger source control (0x11:BMSC[0])
+ typedef uint8_t uja113x_bmutc_bmutc_t

Battery monitor undervoltage threshold control parameter (0x12:BMUTC(7:0])
« typedef uint8_t uja113x_bmotc_bmotc_t

Battery monitor overvoltage threshold control parameter (13:BMOTC[7:0])
« typedef uint8_t uja113x_bmhc_bmhoc_t

Battery monitor hysteresis for overvoltage control parameter (0x14:BMHOC/7:4])
+ typedef uint8_t uja113x_bmhc_bmhuc_t

Battery monitor hysteresis for undervoltage control parameter (0x14:BMHUC/3:0])

Enumerations

+ enum uja113x_bscdt_ionsctc_t { IONSCTC_30_MA = 0U, IONSCTC_45_MA = 1U, IONSCTC_60_MA = 2U,
IONSCTC_90_MA =3U}

Bank N short-circuit detection threshold configuration options (0x39 / 0x49)
» enum ujal13x_boldt_ionoltc_t { IONOLTC_2_MA = 0U, IONOLTC_5_MA = 1U, IONOLTC_10_MA = 2U, |~
ONOLTC_20_MA =3U}

Bank N open-load detection threshold configuration options (0x3A / 0x4A)
Functions

« status_t UJA113X_SetBatteryMonitor (uint32_t instance, const uja113x_bmc_cfg_t xbmcConfig)

Sets the Battery monitor control registers (0x11 - 0x14) based on input configuration object.

16.6.3 Data Structure Documentation

16.6.3.1 struct ujal13x_bmc_cfg_t

Battery monitor registers configuration structure (0x11 - 0x14)
Implements : uja113x_bmc_cfg_t Class

Definition at line 1474 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.6 02. Battery monitor configuration

167

Data Fields

» uja113x_bmetsc_bmsc_t bmSrcCitrl

Selects the battery monitor event trigger source (0x11:BMSCJ[0])
+ uja113x_bmutc_bmutc_t bmUndrVoltThr

Configures the battery monitor undervoltage threshold (0x12:BMUTC[7:0])
+ uja113x_bmotc_bmotc_t bmOverVoltThr

Configures the battery monitor overvotlage threshold (0x13:BMOTC[7:0])
* uja113x_bmhc_bmhoc_t bmOverVoltThrRel

Configures the battery monitor hysteresis for overvoltage (0x14:BMHOC/7:4])
» uja113x_bmhc_bmhuc_t bmUndrVoltThrRel

Configures the battery monitor hysteresis for undervoltage (0x14:BMHUC[3:0])

Field Documentation
16.6.3.1.1 uja113x_bmotc_bmotc_t bmOverVoltThr

Configures the battery monitor overvotlage threshold (0x13:BMOTCJ[7:0])

Threshold for triggering a battery overvoltage event and BMOI interrupt
threshold = BMOTCJ[7:0]/255 x 20V
Allowed range: 0 - 255

Definition at line 1491 of file sbc_uja113x.h.
16.6.3.1.2 uja113x_bmhc_bmhoc_t bmOverVoliThrRel

Configures the battery monitor hysteresis for overvoltage (0x14:BMHOC[7:4])

Battery monitor overvoltage threshold release level;
release level = BMHOC[7:4] x 4/255 x 20V below threshold defined by BMOTC

Warning

Only 4 Isb are used! The upper part of byte is truncated!

Definition at line 1498 of file sbc_uja113x.h.
16.6.3.1.3 uja113x_bmetsc_bmsc_t bmSrcCtrl

Selects the battery monitor event trigger source (0x11:BMSC[0])
Definition at line 1479 of file sbc_uja113x.h.

16.6.3.1.4 uja113x_bmutc_bmutc_t bmUndrVoltThr

Configures the battery monitor undervoltage threshold (0x12:BMUTCJ[7:0])

Threshold for triggering a battery undervoltage event and BMUI interrupt;
threshold = BMUTC[7:0]/255 x 20V.
Allowed range: 0 - 255

Definition at line 1485 of file sbc_uja113x.h.
16.6.3.1.5 uja113x_bmhc_bmhuc_t bmUndrVoltThrRel

Configures the battery monitor hysteresis for undervoltage (0x14:BMHUC[3:0])

Battery monitor undervoltage threshold release level;
release level = BMHUC[3:0] x 4/255 x 20V above threshold defined by BMUTC

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

168 CONTENTS

Warning

Only 4 Isb are used! The upper part of byte is truncated!

Definition at line 1505 of file sbc_uja113x.h.

16.6.4 Typedef Documentation

16.6.4.1 typedef bool uja113x_bmetsc_bmsc_t

Battery monitor event trigger source control (0x11:BMSC[0])

false - BAT pin is source of event triggers
true - BATSENSE pin is source of event triggers

Implements : uja113x_bmetsc_bmsc_t_Class

Definition at line 420 of file sbc_uja113x.h.
16.6.4.2 typedef uint8_t uja113x_bmhc_bmhoc_t

Battery monitor hysteresis for overvoltage control parameter (0x14:BMHOC[7:4])
Implements uja113x_bmhc_bmhoc_t_Class

Definition at line 447 of file sbc_uja113x.h.
16.6.4.3 typedef uint8_t uja113x_bmhc_bmhuc_t

Battery monitor hysteresis for undervoltage control parameter (0x14:BMHUC[3:0])
Implements uja113x_bmhc_bmhuc_t_Class

Definition at line 456 of file sbc_uja113x.h.
16.6.4.4 typedef uint8_t uja113x_bmotc_bmotc_t

Battery monitor overvoltage threshold control parameter (13:BMOTC[7:0])
Implements : uja113x_bmotc_bmotc_t ClassAllowed range: 0 - 255

Definition at line 438 of file sbc_uja113x.h.
16.6.4.5 typedef uint8_t uja113x_bmutc_bmutc_t

Battery monitor undervoltage threshold control parameter (0x12:BMUTC[7:0])
Implements : uja113x_bmutc_bmutc_t_ClassAllowed range: 0 - 255

Definition at line 429 of file sbc_uja113x.h.

16.6.5 Enumeration Type Documentation

16.6.5.1 enum uja113x_boldt_ionoltc_t
Bank N open-load detection threshold configuration options (0x3A / 0x4A)
Note
For details, consult the reference manual - "Static characteristics: Ith(det)open”
Implements : uja113x_boldt_ionoltc_t_Class

Enumerator

IONOLTC_2 MA HVIO N open-load detection threshold set to 2 mA.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.6 02. Battery monitor configuration 169

IONOLTC_5_MA HVIO N open-load detection threshold set to 5 mA.
IONOLTC_10_MA HVIO N open-load detection threshold set to 10 mA.
IONOLTC_20_MA HVIO N open-load detection threshold set to 20 mA.

Definition at line 1065 of file sbc_uja113x.h.
16.6.5.2 enum ujal13x_bscdt_ionsctc_t

Bank N short-circuit detection threshold configuration options (0x39 / 0x49)

Note

For details consult the reference manual - "Static characterisctis: lth(det)sc"

Implements : uja113x_bscdt_ionsctc_t_Class

Enumerator

IONSCTC_30_MA HVIO N short-circuit detection threshold set to 30 mA.
IONSCTC_45_MA HVIO N short-circuit detection threshold set to 45 mA.
IONSCTC_60_MA HVIO N short-circuit detection threshold set to 60 mA.
IONSCTC_90_MA HVIO N short-circuit detection threshold set to 90 mA.

Definition at line 1050 of file sbc_uja113x.h.

16.6.6 Function Documentation

16.6.6.1 status_t UJA113X_SetBatteryMonitor (uint32_t instance, const uja113x_bmc_cfg_t « bmcConfig)

Sets the Battery monitor control registers (0x11 - 0x14) based on input configuration object.

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the regulator control registers
were not written properly and the process has to be repeated.

Parameters

in instance | Index of SBC to configure

in bmcConfig | Battery monitor control configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Note

The function configures all the battery monitor features:
1. Battery monitor event trigger source (0x11)
2. Battery monitor undervoltage threshold (0x12)
3. Battery monitor overvoltage threshold (0x13)
4. Battery monitor hysteresis (0x14)

As the SPI protocol allows only 16/24/32 bit writes, two subsequent SPI transfers are carried out!

Definition at line 546 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

170 CONTENTS

16.7 02. LIN configuration
16.7.1 Detailed Description
16.7.2 Introduction

A UJA113x device can incorporate up to 2 LIN transceivers minimum of 1. Configurable LIN features are:

» LIN slope

* LIN mode
To configure the LIN transceiver, UJA113X_SetLin() function can be used.

Warning

In case the user decides to implement his own function or use the UJA113X_SbcTransfer(), to write the LIN
control register (0x21), make sure LIN2 bits are cleared for devices with a single LIN transceiver (see reference
manual, register 0x21 description, for details).

Data Structures

« struct uja113x_linc_cfg_t

LIN control register configuration structure (0x21) More...

Enumerations

« enum uja113x_linc_Isc2_t { LSC2_SLOPE_ACTIVE = 0x00U, LSC2_SLOPE_ACTIVE2 = 0x40U, LSC2_S+«
LOPE_ACTIVE_TXDL_TIMEOUT = 0x80U }

LINZ2 slope control configuration options (0x21:LSC2[7:6])
» enum ujal13x_linc_Imc2_t { LMC2_TRANSCEIVER_OFF = 0x00U, LMC2_TRANSCEIVER_ON = 0x10U,
LMC2_TRANSCEIVER_ON2 = 0x20U, LMC2_TRANSCEIVER_LISTEN = 0x30U }

LINZ2 transceiver operating mode configuration options (0x21:LMC2[5:4])
» enum ujal13x_linc_Isc1_t { LSC1_SLOPE_ACTIVE = 0x00U, LSC1_SLOPE_ACTIVEZ2 = 0x04U, LSC1_S«
LOPE_ACTIVE_TXDL_TIMEOUT = 0x08U }

LIN/LINT slope control configuration options (0x21:LSC1[3:2])
» enum ujal13x_linc_Imc1_t { LMC1_TRANSCEIVER_OFF = 0x00U, LMC1_TRANSCEIVER_ON = 0x01U,
LMC1_TRANSCEIVER_ON2 = 0x02U, LMC1_TRANSCEIVER_LISTEN = 0x03U }

LIN/LINT transceiver operating mode configuration options (0x21:LMC1[1:0])

Functions

« status_t UJA113X_SetLin (uint32_t instance, const uja113x_linc_cfg_t *lincConfig)

Sets the LIN control register (0x21) based on input configuration object.

16.7.3 Data Structure Documentation

16.7.3.1 struct uja113x_linc_cfg_t

LIN control register configuration structure (0x21)
Implements : uja113x_linc_cfg_t_Class

Definition at line 1565 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.7 02. LIN configuration

171

Data Fields

* uja113x_linc_lsc2_t lin2SlopeCirl

Configures LIN2 slope control behaviour (0x21:LSC2[7:6])
» uja113x_linc_Imc2_t lin2ModeCirl

Configures LIN2 transceiver operating mode (0x21:LMC2[5:4])
» uja113x_linc_Isc1_t lin1SlopeCirl

Configures LINT slope control behaviour (0x21:LSC1[3:2])
» uja113x_linc_Imc1_t lin1ModeCirl

Configures LINT transceiver operating mode (0x21:LMC1[1:0])
Field Documentation
16.7.3.1.1 uja113x_linc_Imc1_t liniModeCtrl

Configures LIN1 transceiver operating mode (0x21:LMC1[1:0])
Definition at line 1582 of file sbc_uja113x.h.

16.7.3.1.2 uja113x_linc_Isc1_t lin1SlopeCtrl

Configures LIN1 slope control behaviour (0x21:LSC1[3:2])
Definition at line 1578 of file sbc_uja113x.h.

16.7.3.1.3 uja113x_linc_Imc2_t lin2ModeCtrl

Configures LIN2 transceiver operating mode (0x21:LMC2[5:4])
Definition at line 1574 of file sbc_uja113x.h.

16.7.3.1.4 uja113x_linc_Isc2_t lin2SlopeCtrl

Configures LIN2 slope control behaviour (0x21:LSC2[7:6])
Definition at line 1570 of file sbc_uja113x.h.

16.7.4 Enumeration Type Documentation

16.7.4.1 enum uja113x_linc_Imc1_t

LIN/LIN1 transceiver operating mode configuration options (0x21:LMC1[1:0])

Implements : uja113x_linc_Imc1_t_Class

Enumerator

LMC1_TRANSCEIVER_OFF Offline.

LMC1_TRANSCEIVER_ON Active mode (when SBC in normal mode).
LMC1_TRANSCEIVER_ON2 Active mode (when SBC in normal mode).

LMC1_TRANSCEIVER_LISTEN Listen-only mode.

Definition at line 691 of file sbc_uja113x.h.

16.7.4.2 enum uja113x_linc_Imc2_t

LIN2 transceiver operating mode configuration options (0x21:LMC2[5:4])

Implements : uja113x_linc_Imc2_t_Class

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

172 CONTENTS

Enumerator

LMC2_TRANSCEIVER_OFF Offline.

LMC2_TRANSCEIVER_ON Active mode (when SBC in normal mode).
LMC2_TRANSCEIVER_ON2 Active mode (when SBC in normal mode).
LMC2_TRANSCEIVER_LISTEN Listen-only mode.

Definition at line 661 of file sbc_uja113x.h.
16.7.4.3 enumujal13x_linc_lIsc1_t

LIN/LIN1 slope control configuration options (0x21:LSC1[3:2])

Implements : uja113x_linc_lsc1_t_Class

Enumerator

LSC1_SLOPE_ACTIVE Slope control active.
LSC1_SLOPE_ACTIVE2 Slope control active.
LSC1_SLOPE_ACTIVE_TXDL_TIMEOUT Slope control active and TXDL dominant time-out deactivated.

Definition at line 676 of file sbc_uja113x.h.
16.7.4.4 enum ujal13x_linc_lsc2_t

LIN2 slope control configuration options (0x21:LSC2[7:6])

Implements : uja113x_linc_lsc2_t_Class

Enumerator
LSC2 SLOPE_ACTIVE Slope control active.
LSC2 SLOPE_ACTIVE2 Slope control active.
LSC2 SLOPE_ACTIVE_TXDL_TIMEOUT Slope control active and TXDL dominant time-out deactivated.

Definition at line 646 of file sbc_uja113x.h.

16.7.5 Function Documentation

16.7.5.1 status_t UJA113X_SetLin (uint32_t instance, const uja113x_linc_cfg_t * lincConfig)

Sets the LIN control register (0x21) based on input configuration object.

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the LIN control register has not
been written properly and the process has to be repeated.

Parameters

in instance | Index of SBC to configure

in lincConfig | LIN control configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.7 02. LIN configuration 173

Note

The reference manual states, that bits 7:4 (LIN2 configuration) of register 0x21 should remain cleared for
devices incorporating only LIN1. Therefore for these devices the function clears bits even when configured to
non-zero value!

Definition at line 675 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

174 CONTENTS

16.8 02. Supply control
16.8.1 Detailed Description
The supply control registers (0x10 - Ox1F) allow:

» Configuring voltage regulators (0x10)

+ Configuring battery monitor (Ox11 - 0x18)

» Configuring switched Mode Power Supply (0x19 - 0x1A)
» Read supply voltage status (0x1B)

» Enable supply interrupts (0x1C)

Interrupts and interrupt status is described in 06. Interrupts.

Modules

+ 01. Regulator configuration
+ 02. Battery monitor configuration
+ 03. SMPS configuration

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.9 02. Watchdog 175

16.9 02. Watchdog

16.9.1 Detailed Description
16.9.2 Introduction

The watchdog behaviour can be influenced by the debug modes (see mode Introduction for details) in combination
with the watchdog mode (window, timeout or autonomous mode). The watchdog period is adjustable ranging from
8 ms to 4094 ms.

16.9.2.1 Watchdog in FNMC

In Forced Normal Mode the Watchdog is completely disabled. Thus, configuring the watchdog mode has no influ-
ence on it's operation!

16.9.2.2 Watchdog in SDMC

In Software Development Mode the watchdog can be activated or disabled based on configured watchdog mode.
In case the timeout or window mode is selected, the watchdog is active independet from SDMC. For autonomous
mode, the watchdog is active (only timeout mode) while SDMC = 0. For SDMC = 1, the watchdog stays inactive in
autonomous mode!

Following table summarizes all the use cases.

SBC state Watchdog Configurations
SDMC = x SDMC = x SDMC =0 SDMC =1
WMC = 100 WMC =010 WMC = 001 WMC = 001
(Window) (Timeout) (Autonomous) (Autonomous

Normal mode Window Timeout Timeout Off

Standby mode Timeout Timeout Off Off

(INTN1 HIGH)

Standby mode Timeout Timeout Timeout Off

(INTN1 LOW)

Sleep mode Timeout Timeout Off Off

Forced Normal Off Off Off Off

mode

Other modes Off Off Off Off

Table 1: Summary of Watchdog settings

16.9.2.3 Watchdog mode configuration

The watchdog mode can be reconfigured only in Standby mode using the UJA113X_SetWatchdog(). Writes leading
to change the watchdog mode in other modes than Standby would cause a switch to reset mode and reset source
status (RSS) bit will be set to 10000 (illegal watchdog mode control access).

From this perspective it's the users responsibility to switch the SBC into Standby mode prior to watchdog mode
update.

16.9.2.4 Watchdog trigger

To reset the watchdog timer a successful write into the watchdog control register has to be performed. The UJ«
A113X_SetWatchdog() function can be used. If a new mode/period have changed as a result of the write access,
the new values are valid immediately.

Warning

Writing a different mode while resetting the watchdog timer can cause a reset in case the SBC is not in
Standby mode.

Writing a different period while resetting the watchdog timer can result in reset as a consequence of a watch-
dog counter overflow due to period change.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

176 CONTENTS

Data Structures

« struct uja113x_wtdc_cfg_t

Watchdog register configuration structure (reg 0x00) More...

Enumerations

« enum uja113x_wtdc_wmc_t { WMC_AUTONOMOUS = 0x20U, WMC_TIMEOUT = 0x40U, WMC_WINDOW
= 0x80U }

Watchdog mode configuration options (0x00:WMC[7:5])
* enum ujal13x_wtdc_nwp_t {
NWP_PERIOD_8 = 0x08U, NWP_PERIOD_16 = 0x01U, NWP_PERIOD_32 = 0x02U, NWP_PERIOD_64 =
0x0BU,
NWP_PERIOD_128 = 0x04U, NWP_PERIOD_256 = 0x0DU, NWP_PERIOD 1024 = OxOEU, NWP_PERI«+
OD_4096 = 0x07U }

Watchdog nominal period configuration options (0x00:NWP[3:0])

Functions

« status_t UJA113X_SetWatchdog (uint32_t instance, const uja113x_wtdc_cfg_t xwtdcConfig)

Sets the watchdog register (0x00) based on input configuration object.

16.9.3 Data Structure Documentation

16.9.3.1 struct ujal13x_wtdc_cfg_t

Watchdog register configuration structure (reg 0x00)
Implements : uja113x_wtdc_cfg_t_Class

Definition at line 1373 of file sbc_uja113x.h.

Data Fields

» uja113x_wtdc_wmc_t widModeCtrl

Configures the Watchdog Mode (0x00:WMC[7:5])
 uja113x_wtdc_nwp_t nomWtdPeriod

Configures the watchdog nominal period (0x00:NWP[3:0])

Field Documentation
16.9.3.1.1 uja113x_wtdc_nwp_t nomWidPeriod

Configures the watchdog nominal period (0x00:NWP[3:0])
Definition at line 1382 of file sbc_uja113x.h.

16.9.3.1.2 uja113x_wtdc_wmc_t widModeCtrl

Configures the Watchdog Mode (0x00:WMC[7:5])
Definition at line 1378 of file sbc_uja113x.h.
16.9.4 Enumeration Type Documentation

16.9.4.1 enum uja113x_wtdc_nwp_t

Watchdog nominal period configuration options (0x00:NWP[3:0])

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.9 02. Watchdog 177

Implements : uja113x_wtdc_nwp_t_Class

Enumerator
NWP_PERIOD_8 8 ms nominal period.
NWP_PERIOD 16 16 ms nominal watchdog period.
NWP_PERIOD_32 32 ms nominal watchdog period.
NWP_PERIOD 64 64 ms nominal watchdog period.
NWP_PERIOD_128 128 ms nominal watchdog period.
NWP_PERIOD_256 256 ms nominal watchdog period.
NWP_PERIOD_1024 1024 ms nominal watchdog period.
NWP_PERIOD_4096 4096 ms nominal watchdog period.

Definition at line 238 of file sbc_uja113x.h.
16.9.4.2 enumujal13x_wtdc_wmc_t

Watchdog mode configuration options (0x00:WMCJ[7:5])

Implements : ujal13x_wtdc_wmc_t_Class

Enumerator

WMC_AUTONOMOUS Watchdog autonomous mode
WMC_TIMEOUT Watchdog timeout mode.
WMC_WINDOW Watchdog window mode.

Definition at line 224 of file sbc_uja113x.h.

16.9.5 Function Documentation

16.9.5.1 status_t UJA113X_SetWatchdog (uint32_t instance, const uja113x_wtdc_cfg_t *« widcConfig)

Sets the watchdog register (0x00) based on input configuration object.

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the watchdog register has not
been written and the process has to be repeated.

Parameters

in instance | Index of SBC to configure

in wtdcConfig | Watchdog configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Warning

The watchdog mode can be re-configured in Standby mode only! Changing the watchdog mode in Normal
mode will cause the UJA113x to switch to Reset mode and the reset source status bits (RSS) will be set to
10000 (illegal watchdog mode control access). However writing the same values doesn't lead to SBC reset,
but a watchdog trigger which clears the watchdog counter!

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

178 CONTENTS

Note

To reset the watchdog counter, a successful write into the watchdog control register (0x00) has to be per-
formed. This function can be used to reset the counter, however keep in mind that updating mode in non-«
Standby modes leads to SBC reset!

Although updating the watchdog period is allowed, SBC reset due to an overflow can happen after configuring
a shorter period!

See also

UJA113X_SetMode()

Definition at line 385 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.10 03. Fail-safe configuration 179

16.10 03. Fail-safe configuration
16.10.1 Detailed Description
16.10.2 Introduction

The SBC incorporates following fail-safe features:

* EN pin

— can control an external hardware
— can operate as general purpose output when system is running properly

* LIMP pin
— enables "limp home" hardware in case of ECU failure

» Advanced LIMP home function via HVIO 4 - 2 configurabale in non-volatile memory (see MTPNV Introduction
for details)

» Register locking (see lock control Introduction for details)

» Reset counter
16.10.2.1 Reset mechanism

If the system resets, the SBC initiates a reset process, during which a reset counter is incremented. In case the
counter equals 3 when the UJA113x enters reset mode, the SBC assumes that a serious failure has occured and
switches to Forced Sleep mode (FSP), enabling the limp home function. A properly designed system should reset
this counter to avoid its overflow.

The UJA113X_SetFailSafe() function which configures the fail-safe functionality can be also used to update the
reset counter. However the parameters for EN pin and LIMP home pin should reflect the current configuration!

The reset counter can be (pre)configured to any value providing additional level of safety. For instance, setting
the counter to 3 would mean no errors allowed (in case an error occurs, the system would be forced to FSP
immediately)!

Data Structures

« struct uja113x_fsc_cfg_t

Fail-safe register configuration structure (reg 0x02) More...

Typedefs

« typedef bool uja113x_fsc_endc_t

EN high-side driver activation options (0x02:ENDC[5])
* typedef bool uja113x_fsc_lhc_t

LIMP output configuration options (0x02:LHC[2])
« typedef uint8_t uja113x_fsc_rcc_t

SBC reset counter configuration option (0x02:RCC[1:0])

Enumerations

» enum uja113x_fsc_ensc_t { ENSC_NONE = 0x00U, ENSC_UNDRVOLTAGE = 0x40U, ENSC_OVERVOL«
TAGE = 0x80U, ENSC_FULL = 0xC0OU }
EN pin shut-down control configuration options (0x02:ENSC(7:6])
» enum ujal13x_fsc_enc_t { ENC_LOW = 0x00U, ENC_HIGH_NRS = 0x08U, ENC_HIGH_N = 0x10U, ENC+«
_TIMER = 0x18U }

EN pin output control configuration options (0x02:ENC[4:3])

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

180

CONTENTS

Functions

« status_t UJA113X_SetFailSafe (uint32_t instance, const uja113x_fsc_cfg_t *fscConfig)

Sets the fail-safe register (0x02) based on input configuration object.

16.10.3 Data Structure Documentation

16.10.3.1 struct uja113x_fsc_cfg_t

Fail-safe register configuration structure (reg 0x02)
Implements : uja113x_fsc_cfg_t_Class

Definition at line 1392 of file sbc_uja113x.h.
Data Fields

» uja113x_fsc_ensc_t enShutdownCirl

Configures the behaviour of EN pin during battery over-/undervoltage (0x02:ENSC[7:6])
» uja113x_fsc_endc_t enDriverCtrl

Enables/disables the EN high-side driver (0x02:ENDC/5])
» uja113x_fsc_enc_t enCtrl

Configures the output level behaviour of EN pin (0x02:ENC[4:3])
» uja113x_fsc_lhc_t limpHomeCtrl

Configures the Limp pin output behaviour (0x02:LHC[2])
» uja113x_fsc_rcc_t resetCntCirl

Configures the Reset counter value (0x02:RCC[1:0])

Field Documentation
16.10.3.1.1 uja113x_fsc_enc_t enCtrl

Configures the output level behaviour of EN pin (0x02:ENC[4:3])
Definition at line 1405 of file sbc_uja113x.h.

16.10.3.1.2 uja113x_fsc_endc_t enDriverCirl

Enables/disables the EN high-side driver (0x02:ENDC[5])
Definition at line 1401 of file sbc_uja113x.h.

16.10.3.1.3 uja113x_fsc_ensc_t enShutdownCirl

Configures the behaviour of EN pin during battery over-/undervoltage (0x02:ENSCJ7:6])
Definition at line 1397 of file sbc_uja113x.h.

16.10.3.1.4 uja113x_fsc_Ihc_t limpHomeCtrl

Configures the Limp pin output behaviour (0x02:LHC[2])
Definition at line 1409 of file sbc_uja113x.h.

16.10.3.1.5 uja113x_fsc_rcc_t resetCntCtrl

Configures the Reset counter value (0x02:RCC[1:0])
Definition at line 1413 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.10 03. Fail-safe configuration

181

16.10.4 Typedef Documentation

16.10.4.1 typedef bool uja113x_fsc_endc_t

EN high-side driver activation options (0x02:ENDCJ[5])

false - EN high-side driver enabled; push-pull output
true - EN high-side driver disabled; open-drain low-side driver

Implements : uja113x_fsc_endc_t_Class

Definition at line 288 of file sbc_uja113x.h.
16.10.4.2 typedef bool uja113x_fsc_lhc_t

LIMP output configuration options (0x02:LHC[2])

false - LIMP pin is floating
true - LIMP pin is driven LOW

Implements : uja113x_fsc_lhc_t_Class

Definition at line 316 of file sbc_uja113x.h.
16.10.4.3 typedef uint8_t uja113x_fsc_rcc_t

SBC reset counter configuration option (0x02:RCCJ[1:0])
Implements : uja113x_fsc_rcc_t Class0 - 3

Definition at line 325 of file sbc_uja113x.h.

16.10.5 Enumeration Type Documentation

16.10.5.1 enum uja113x_fsc_enc_t

EN pin output control configuration options (0x02:ENCJ[4:3])

Implements : uja113x_fsc_enc_t_Class

Enumerator

ENC_LOW EN pin is driven permanently low.

ENC_HIGH_NRS EN pin is high (or floating if ENDC = 1) when SBC is in Normal, Reset or Standby mode.

ENC_HIGH_N EN pin is high (or floating if ENDC = 1) when SBC is in Normal mode.

ENC_TIMER EN pin is controller by Timer 2.

Definition at line 297 of file sbc_uja113x.h.

16.10.5.2 enum ujal13x_fsc_ensc_t

EN pin shut-down control configuration options (0x02:ENSC[7:6])

Implements : uja113x_fsc_ensc_t_Class

Enumerator

ENSC_NONE EN pin not influenced by battery over- or undervoltage.
ENSC_UNDRVOLTAGE EN pin driven LOW when battery undervoltage detected.
ENSC_OVERVOLTAGE EN pin driven LOW when battery overvoltage detected.
ENSC_FULL EN pin driven LOW when battery over- or undervoltage detected.

Definition at line 271 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

182

CONTENTS

16.10.6 Function Documentation

16.10.6.1

status_t UJA113X_SetFailSafe (uint32_t instance, const uja113x_fsc_cfg_t * fscConfig)

Sets the fail-safe register (0x02) based on input configuration object.

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the fail-safe control register has
not been written and the process has to be repeated.

Parameters
in instance | Index of SBC to configure
in fscConfig | Fail-safe configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Warning

Care has to be taken while configuring the reset counter (resetCntCitrl). In case the SBC reset counter is set to
3 and a reset occurs, the SBC will be switched into Forced Sleep Mode! This can be used as a safety measure,
which doesn't allow any SBC resets, however can lead to unexpected behavior if configured improperly! Read
the datasheet carefully to configure this parameter the right way.

Note

After every SBC reset the reset counter is incremented. To reset the counter, call this function with a requested
reset counter value.
Bear in mind that "clearing” the reset counter requires you to write the whole register. This can clear your
preconfigured values from SBC initialization step leading to unwanted behavior. So in case of reset counter
reset, the rest of parameters has to be configured as well!

Definition at line 435 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.11 03. SMPS configuration 183

16.11 03. SMPS configuration

16.11.1 Detailed Description
16.11.2 Introduction

The Switched Mode Power Supply (SMPS) can be configured by invoking the UJA113X_SetSmps() function.

Data Structures

« struct uja113x_smpsc_cfg_t

SMPS (buck-boost converter) registers configuration structure (0x19 - 0x1A) More...

Typedefs

« typedef bool uja113x_smpsc_smpsotc_t
SMPS overtemperature configuration options (0x19:SMPSOTC[3])

Enumerations

» enum ujal13x_smpsc_smpsc_t { SMPSC_ON_NSR = 0x00U, SMPSC_ON_NSRS = 0x01U, SMPSC_PA«~
SS_THROUGH_NSS = 0x03U }

SMPS on/off configuration options (0x19:SMPSC[1:0])
* enum ujal13x_smpsovc_smpsoc_t {
SMPSOC_50V = 0x00U, SMPSOC_52V = 0x01U, SMPSOC_54V = 0x02U, SMPSOC_56V = 0x03U,
SMPSOC_58V = 0x04U, SMPSOC_60V = 0x05U, SMPSOC_62V = 0x06U, SMPSOC_64V = 0x07U,
SMPSOC_66V = 0x08U, SMPSOC_68V = 0x09U, SMPSOC_70V = 0x0AU, SMPSOC_72V = 0x0BU,
SMPSOC_74V = 0x0CU, SMPSOC_76V = 0x0DU, SMPSOC_78V = 0x0EU, SMPSOC_80V = 0x0FU }

SMPS output voltage configuration options (0x1A:SMPSOC|3:0])

Functions

« status_t UJA113X_SetSmps (uint32_t instance, const ujal13x_smpsc_cfg_t xsmpscConfig)

Sets the SMPS control registers (0x19 - 0x1A) based on input configuration object.

16.11.3 Data Structure Documentation

16.11.3.1 struct uja113x_smpsc_cfg_t

SMPS (buck-boost converter) registers configuration structure (0x19 - 0x1A)
Implements : uja113x_smpsc_cfg_t_Class

Definition at line 1515 of file sbc_uja113x.h.
Data Fields

 uja113x_smpsc_smpsotc_t smpsOvertempCirl

Configures the behavior of Vvsmps voltage output during overtemperature (0x19:SMPSOTC/3])
* uja113x_smpsc_smpsc_t smpsCirl

Configures the SMPS on/off state in different modes (0x19:SMPSC[1:0])
* uja113x_smpsovc_smpsoc_t smpsOutVolt

Configures the SMPS output voltage level (0x1A:SMPSOC|3:0])

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

184 CONTENTS

Field Documentation
16.11.3.1.1 uja113x_smpsc_smpsc_t smpsCitrl

Configures the SMPS on/off state in different modes (0x19:SMPSCJ[1:0])
Definition at line 1524 of file sbc_uja113x.h.

16.11.3.1.2 ujal13x_smpsovc_smpsoc_t smpsOutVolt

Configures the SMPS output voltage level (0x1A:SMPSOC]3:0])
Definition at line 1528 of file sbc_uja113x.h.

16.11.3.1.3 uja113x_smpsc_smpsotc_t smpsOvertempCtrl

Configures the behavior of Vvsmps voltage output during overtemperature (0x19:SMPSOTCI[3])
Definition at line 1520 of file sbc_uja113x.h.

16.11.4 Typedef Documentation

16.11.4.1 typedef bool ujal13x_smpsc_smpsotc_t

SMPS overtemperature configuration options (0x19:SMPSOTCJ[3])

false - Vvsmps output not modified during overtemperature warning (OTWI interrupt)
true - Vvsmps output reduced to 5V when chip temperature is above the overtemperature warning threshold, T-
th(warn)otp

Implements : ujal13x_smpsc_smpsotc_t_Class

Definition at line 468 of file sbc_uja113x.h.

16.11.5 Enumeration Type Documentation

16.11.5.1 enum uja113x_smpsc_smpsc_t

SMPS on/off configuration options (0x19:SMPSCJ[1:0])

Implements : uja113x_smpsc_smpsc_t_Class

Enumerator

SMPSC_ON_NSR SMPS is on in Normal, Standby and Reset modes and shut-down in all other modes

SMPSC_ON_NSRS SMPS is on in Normal, Standby, Reset and Sleep modes nad shut-down in all other
modes

SMPSC_PASS_THROUGH_NSS Pass-through mode is requested in Normal, Standby and Sleep modes

Definition at line 477 of file sbc_uja113x.h.
16.11.5.2 enum uja113x_smpsovc_smpsoc_t

SMPS output voltage configuration options (0x1A:SMPSOC[3:0])

Implements : uja113x_smpsovc_smpsoc_t_Class

Enumerator
SMPSOC_50V SMPS output voltage 5.0 V
SMPSOC_52V SMPS output voltage 5.2 V
SMPSOC_54V SMPS output voltage 5.4 V

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.11 03. SMPS configuration

185

SMPSOC_56V
SMPSOC_58V
SMPSOC_60V
SMPSOC_62V
SMPSOC_64V
SMPSOC_66V
SMPSOC_68V
SMPSOC_70V
SMPSOC_72V
SMPSOC_74V
SMPSOC_76V
SMPSOC_78V
SMPSOC_80V

SMPS output voltage 5.6 V
SMPS output voltage 5.8 V
SMPS output voltage 6.0 V
SMPS output voltage 6.2 V
SMPS output voltage 6.4 V
SMPS output voltage 6.6 V
SMPS output voltage 6.8 V
SMPS output voltage 7.0 V
SMPS output voltage 7.2 V
SMPS output voltage 7.4 V
SMPS output voltage 7.6 V
SMPS output voltage 7.8 V
SMPS output voltage 8.0 V

Definition at line 494 of file sbc_uja113x.h.

16.11.6 Function Documentation

16.11.6.1 status_t UJA113X_SetSmps (uint32_t instance, const uja113x_smpsc_cfg_t = smpscConfig)

Sets the SMPS control registers (0x19 - 0x1A) based on input configuration object.

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the SMPS control registers were
not written properly and the process has to be repeated.

Parameters

in instance | Index of SBC to configure

in smpscConfig | SMPS control configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Note

The function configures all the SMPS features:

1. SMPS overtemperature control (0x19)
2. SMPS on/off control (0x19)
3. SMPS output voltage (0x1A)

Definition at line 589 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

186 CONTENTS

16.12 03. Transceiver control
16.12.1 Detailed Description
The transceiver control regisers (0x20 - 0x2F) allow:

« Configuring CAN (0x20)

+ Configuring LIN1/2 (0x21)

» Read transceiver status (0x22)

» Enable transceiver interrupts (0x23)

+ Configuring CAN partial networking

Data rate (0x26)
ID (0x27 - 0x2A)
ID mask (0x2B - 0x2E)

Frame control (0x2F)

Data masks (0x68 - Ox6F) (part of interrupt and status registers 0x60 - Ox6F)

Interrupts and interrupt status is described in 06. Interrupts.

Modules

« 01. CAN & CAN partial networking configuration
» 02. LIN configuration

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.13 04. HVIO bank 0 & 1 control 187

16.13 04. HVIO bank 0 & 1 control

16.13.1 Detailed Description

16.13.2 Introduction

The HVIO control registers (0x30 - 0x3A / 0x40 - 0x4A) allow:

» Configuring the HVIOn pin behaviour (0x30 - 0x33 / 0x40 - 0x43)
» Configuring the Bank N wake-up threshold (0x34 - 0x44)

* Read Bank N wake-up status (0x35 / 0x45)

» Read Bank N driver status (0x36 / 0x46)

» Configuring Bank N short-circuit detection threshold (0x39 / 0x49)
» Configuring Bank N open-load detection threshold (0x3A / 0x4A)

» Enabling/disabling HVIO N high-/low-side driver in non-volatile memory (0x71 / 0x72) (see HVIO high-side
configuration options (0x71) & HVIO low-side configuration options (0x72) for details)

Note

Please, consult the details of HVIO capabilities with the reference manual, as this is out of the scope of this
documentation.

16.13.2.1 Short-circuit handling

Every HVIO pin can be configured separately in it's dedicated HVIO control register (0x30 - 0x33 / 0x40 - 0x43)
by setting the IONCC (HVIOn configuration control) bit and IOnAC (HVIOn activation control). The HVIO can be
disabled by either setting the IOnAC bit to deactivated (see uja113x_hvion_ionac_t) or by IOnCC to HVIOn off state
(see uja113x_hvion_ioncc_t).

However, during short circuit, to reset the function of the HVIO pin, the IOnAC bit has to be set to deactivated and
afterwards a corresponding active mode set again. Resetting the HVIO pin by IOnCC will have no effect!

16.13.2.1.1 Example

/+ Configuring the HVIOn */

ujall3x_hvio_cfg_t hviolConfig;
hviolConfig.ionShutdownCtrl IONSC_OVERVOLTAGE;
hviolConfig.ionActivateCtrl IONAC_ENABLED;
hviolConfig.ionConfCtrl IONCC_HS_SLOPE;
UJA113X_SetHvio (SBC_INSTANCE_O, &hviolConfig, HVIO1);

/+ Short-circuit detected on HVIO 1 */
hviolConfig.ionActivateCtrl = IONAC_DEACTIVATED;
UJA113X_SetHvio (SBC_INSTANCE_O, &hviolConfig; HVIO1);
/* delay/manage short-circuit etc. if necessary =/

/+ Activate HVIO again */

hviolConfig.ionActivateCtrl = IONAC_ENABLED;
UJA113X_SetHvio (SBC_INSTANCE_O, &hviolConfig; HVIO1);

Data Structures

« struct uja113x_hvio_cfg_t

HVIOn control register configuration structure (0x3N; 0x4N; N = 0 - 3) More...
« struct uja113x_bscdt_cfg_t

Bank 0/1 short-circuit detection threshold configuration structure (0x39/0x49) More...
« struct uja113x_boldt_cfg_t

Bank 0/1 open-load detection threshold configuration structure (0x3A/0x4A) More...

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

188 CONTENTS

Typedefs

* typedef bool uja113x_bwtc_bnwtc_t
Bank N wake-up threshold configuration options (0x34 / 0x44)

Enumerations

+ enum uja113x_hvion_ionsc_t { IONSC_NONE = 0x00U, IONSC_UNDRVOLTAGE = 0x40U, IONSC_OVE«-
RVOLTAGE = 0x80U, IONSC_FULL = 0xCoOU }

HVIOn shut-down configuration options (0x3N:IOnSC[7:6], N = 0, 1, 2, 3)
* enum ujal13x_hvion_ionac_t {
IONAC_DEACTIVATED = 0x00U, IONAC_ENABLED = 0x08U, IONAC_TMR_1 = 0x10U, IONAC_TMR 2 =
0x18U,
IONAC_TMR_3 = 0x20U, IONAC_TMR_4 = 0x28U, IONAC_HVIO_INV = 0x30U, IONAC_HVIO = 0x38U }

HVIOn activation configuration options (0x3N:IOnAC[5:3]; N =0, 1, 2, 3)
» enum ujal13x_hvion_ioncc_t {
IONCC_OFF = 0x00U, IONCC_HS_SLOPE = 0x01U, IONCC_LS_SLOPE = 0x02U, IONCC_WUP = 0x03U,
IONCC_HS_WUP_SLOPE = 0x04U, IONCC_HS = 0x05U, IONCC_LS = 0x06U, IONCC_HS_WUP = 0x07U
1

HVIOn output configuration options (0x3N:IOnCC[2:0]; N =0, 1, 2, 3)

Functions

« status_t UJA113X_SetHvio (uint32_t instance, const uja113x_hvio_cfg_t xhvioConfig, uint8_t hviold)

Configures corresponding HVIO control register based on hviold (0x3N/0Ox4N; N = 0 - 3)

« status_t UJA113X_SetBankWupThr (uint32_t instance, uja113x_bwtc_bnwtc_t bankWupThrConfig, uint8_t
bankld)

Configures corresponfing bank wake-up control register based on bankld (0x34/0x44)

« status_t UJA113X_SetBankShortCircThr (uint32_t instance, const uja113x_bscdt_cfg_ t xbscdtConfig,
uint8_t bankld)

Configures all HVIO's short-circuit detection threshold level based on bankld (0x39/0x49)

« status_t UJA113X_SetBankOpenLoadThr (uint32_t instance, const ujal13x_boldt cfg_t sxboldtConfig,
uint8_t bankld)

Configures all HVIO's open-load detection threshold level based on bankid (0x3A/0x4A)

16.13.3 Data Structure Documentation

16.13.3.1 struct uja113x_hvio_cfg_t

HVIOn control register configuration structure (0x3N; 0x4N; N = 0 - 3)
Implements : uja113x_hvio_cfg_t Class

Definition at line 1646 of file sbc_uja113x.h.
Data Fields

+ uja113x_hvion_ionsc_t ionShutdownCtrl

Configures HVIOn shut-down behavior (0x3N/0x4N:IOnSC[7:6])
* uja113x_hvion_ionac_t ionActivateCirl

Configures HVIOn activation behavior (0x3N/0x4N:[IOnAC[5:3])
» uja113x_hvion_ioncc_t ionConfCirl

Configures HVIOn output behavior (0x3N/0x4N:[IOnCC[2:0])

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.13 04. HVIO bank 0 & 1 control

189

Field Documentation
16.13.3.1.1 uja113x_hvion_ionac_t ionActivateCtrl

Configures HVIOn activation behavior (0x3N/0x4N:[IOnACI[5:3])
Definition at line 1655 of file sbc_uja113x.h.

16.13.3.1.2 uja113x_hvion_ioncc_t ionConfCtrl

Configures HVIOnN output behavior (0x3N/0x4N:[IOnCCJ[2:0])
Definition at line 1659 of file sbc_uja113x.h.

16.13.3.1.3 uja113x_hvion_ionsc_t ionShutdownCirl

Configures HVIOn shut-down behavior (0x3N/0x4N:IOnSCJ[7:6])
Definition at line 1651 of file sbc_uja113x.h.

16.13.3.2 struct uja113x_bscdt_cfg_t

Bank 0/1 short-circuit detection threshold configuration structure (0x39/0x49)

Implements : uja113x_bscdt_cfg_t_Class

Definition at line 1669 of file sbc_uja113x.h.
Data Fields

» uja113x_bscdt_ionsctc_t io48ShortCircuitThrCirl

Configures HVI04(8) short-circuit detection threshold (0x39/0x49:104(8)SCTC[7:6])

 uja113x_bscdt_ionsctc_t io37ShortCircuitThrCirl

Configures HVIO3(7) short-circuit detection threshold (0x39/0x49:103(7)SCTC[5:4])

+ uja113x_bscdt_ionsctc_t i026ShortCircuitThrCirl

Configures HVIO2(6) short-circuit detection threshold (0x39/0x49:102(6)SCTC[3:2])

 uja113x_bscdt_ionsctc_t io15ShortCircuitThrCirl

Configures HVIO1(5) short-circuit detection threshold (0x39/0x49:101(5)SCTC[1:0])

Field Documentation

16.13.3.2.1 uja113x_bscdt_ionsctc_t io15ShortCircuitThrCtrl

Configures HVIO1(5) short-circuit detection threshold (0x39/0x49:101(5)SCTC[1:0])

Definition at line 1686 of file sbc_uja113x.h.

16.13.3.2.2 uja113x_bscdt_ionsctc_t i026ShortCircuitThrCtrl

Configures HVIO2(6) short-circuit detection threshold (0x39/0x49:102(6)SCTC[3:2])

Definition at line 1682 of file sbc_uja113x.h.

16.13.3.2.3 uja113x_bscdt_ionsctc_t io37ShortCircuitThrCtrl

Configures HVIO3(7) short-circuit detection threshold (0x39/0x49:103(7)SCTC[5:4])

Definition at line 1678 of file sbc_uja113x.h.

16.13.3.2.4 uja113x_bscdt_ionsctc_t io48ShortCircuitThrCtrl

Configures HVIO4(8) short-circuit detection threshold (0x39/0x49:104(8)SCTC[7:6])

Definition at line 1674 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

190 CONTENTS

16.13.3.3 struct uja113x_boldt_cfg_t

Bank 0/1 open-load detection threshold configuration structure (0x3A/0x4A)
Implements : uja113x_boldt_cfg_t_Class

Definition at line 1696 of file sbc_uja113x.h.

Data Fields

 uja113x_boldt_ionoltc_t io480penLoadThrCtrl

Configures HVIO4(8) open-load detection threshold (0x3A/4A:104(8)OLTC[7:6])
+ uja113x_boldt_ionoltc_t io370OpenLoadThrCtrl

Configures HVIO4(8) open-load detection threshold (0x3A/4A:103(7)OLTC[5:4])
* uja113x_boldt_ionoltc_t io260penLoadThrCtrl

Configures HVI04(8) open-load detection threshold (0x3A/4A:102(6)OLTC[3:2])
 uja113x_boldt_ionoltc_t io150penLoadThrCtrl

Configures HVI04(8) open-load detection threshold (0x3A/4A:101(5)OLTC[1:0])

Field Documentation
16.13.3.3.1 uja113x_boldt_ionoltc_t io150penLoadThrCitrl

Configures HVIO4(8) open-load detection threshold (0x3A/4A:101(5)OLTC[1:0])
Definition at line 1713 of file sbc_uja113x.h.

16.13.3.3.2 uja113x_boldt_ionoltc_t i0260penLoadThrCtrl

Configures HVIO4(8) open-load detection threshold (0x3A/4A:102(6)OLTC[3:2])
Definition at line 1709 of file sbc_uja113x.h.

16.13.3.3.3 uja113x_boldt_ionoltc_t i0370penLoadThrCitrl

Configures HVIO4(8) open-load detection threshold (0x3A/4A:103(7)OLTC[5:4])
Definition at line 1705 of file sbc_uja113x.h.

16.13.3.3.4 uja113x_boldt_ionoltc_t io480penLoadThrCtrl

Configures HVIO4(8) open-load detection threshold (0x3A/4A:104(8)OLTC[7:6])
Definition at line 1701 of file sbc_uja113x.h.

16.13.4 Typedef Documentation

16.13.4.1 typedef bool uja113x_bwtc_bnwtc_t

Bank N wake-up threshold configuration options (0x34 / 0x44)

false - threshold is ratiometric to Vbaths1
true - threshold is absolute

Implements : uja113x_bwtc_bnwtc_t_Class

Definition at line 894 of file sbc_uja113x.h.

16.13.5 Enumeration Type Documentation

16.13.5.1 enum uja113x_hvion_ionac_t

HVIOn activation configuration options (0x3N:IOnAC[5:3]; N =0, 1, 2, 3)

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.13 04. HVIO bank 0 & 1 control 191

Implements : uja113x_hvion_ionac_t_Class

Enumerator

IONAC_DEACTIVATED HVIOn is deactivated.

IONAC_ENABLED HVIOn is enabled.

IONAC_TMR_1 HVIOn is controlled by timer 1.

IONAC_TMR_2 HVIOn is controlled by timer 2.

IONAC_TMR_3 HVIOn is controlled by timer 3.

IONAC_TMR_4 HVIOn is controlled by timer 4.

IONAC_HVIO_INV HVIOn is controlled by HVIOn + 4 (inverted control;only available for bank 0)
IONAC_HVIO HVIOn is controlled by HVIOn + 4 (non-inverted control; only available for bank 0)

Definition at line 854 of file sbc_uja113x.h.

16.13.5.2

enum uja113x_hvion_ioncc_t

HVIOn output configuration options (0x3N:IOnCC[2:0]; N =0, 1, 2, 3)

Implements : uja113x_hvion_ioncc_t_Class

Enumerator

IONCC_OFF HVIOn is off.

IONCC_HS_SLOPE Configure HVIOn as high-side driver with slope control.

IONCC_LS_SLOPE Configure HVIOn as low-side driver with slope control.

IONCC_WUP Configure HVIOn as wake-up input.

IONCC_HS_WUP_SLOPE Configure HVIOn as high-side driver and wake-up input with slope control.
IONCC_HS Configure HVIOn as high-side driver without slope control.

IONCC_LS Configure HVIOn as low-side driver without slope control.

IONCC_HS_WUP Configure HVIOn as high-side driver and wake-up input without slope control.

Definition

16.13.5.3

at line 873 of file sbc_uja113x.h.

enum uja113x_hvion_ionsc_t

HVIOn shut-down configuration options (0x3N:IOnSC[7:6], N =0, 1, 2, 3)

Implements : uja113x_hvion_ionsc_t_Class

Enumerator

IONSC_NONE HVIOn doesn't respond to over- or undervoltage.

IONSC_UNDRVOLTAGE HVIOn shuts down when battery undervoltage is detected in normal mode.
IONSC_OVERVOLTAGE HVIOn shuts down when battery overvoltage is detected in normal mode.
IONSC_FULL HVIOn shuts down when battery over- or undervoltage is detected in normal mode.

Definition

at line 839 of file sbc_uja113x.h.

16.13.6 Function Documentation

16.13.6.1

status_t UJA113X_SetBankOpenLoadThr (uint32_t instance, const uja113x_boldt_cfg_t = boldtConfig, uint8_t
bankid)

Configures all HVIO's open-load detection threshold level based on bankld (0x3A/0x4A)

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the open-load detection threshold
control register identified by bankld has not been written properly and the process has to be repeated.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

192 CONTENTS

Parameters
in instance | Index of SBC to configure
in boldtConfig | Open-load threshold level configuration object
in bankld | Bank identifier (0 - 1)

Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI perihperal is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Note

The hviold parameter determines, which HVIO shall be configured.

Definition at line 1028 of file sbc_uja113x.c.

16.13.6.2 status_t UJA113X_SetBankShortCircThr (uint32_t instance, const uja113x_bscdt_cfg_t + bscdtConfig, uint8_t
bankld)

Configures all HVIO's short-circuit detection threshold level based on bankld (0x39/0x49)

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the short-circuit detection
threshold control register identified by bankld has not been written properly and the process has to be repeated.

Parameters
in instance | Index of SBC to configure
in bscdtConfig | Short-circuit threshold level configuration object
in bankld | Bank identifier (0 - 1)

Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI perihperal is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Note

The bankld parameter determines, which bank shall be configured.

Definition at line 996 of file sbc_uja113x.c.

16.13.6.3 status_t UJA113X_SetBankWupThr (uint32_t instance, uja113x_bwtc_bnwtc_t bankWupThrConfig, uint8_t
bankid)
Configures corresponfing bank wake-up control register based on bankld (0x34/0x44)

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the bank N wake-up control
register identified by bankld has not been written properly and the process has to be repeated.

Parameters

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.13 04. HVIO bank 0 & 1 control 193

in instance | Index of SBC to configure
in bankWupThr— | Bank N wake-up threshold configuration parameter
Config
in bankld | Bank identifier (0 - 1)
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI perihperal is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Warning

This function only checks the maximum number of HVIO banks, as write to "non-existing" registers are allowed.
Thus for devices without HVIO this function will perform an "empty" write.

Definition at line 914 of file sbc_uja113x.c.
16.13.6.4 status_t UJA113X_SetHvio (uint32_t instance, const uja113x_hvio_cfg_t « hvioConfig, uint8_t hviold)

Configures corresponding HVIO control register based on hviold (0x3N/0x4N; N = 0 - 3)

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the HVIO control register identified
by hviold has not been written properly and the process has to be repeated.

Parameters

in instance | Index of SBC to configure

in hvioConfig | HVIO configuration object

in hviold | HVIO identifier (0 = HVIO1 - 7 = HVIO8)
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI perihperal is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Note

The hviold parameter determines, which HVIO shall be configured.

Definition at line 877 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

194 CONTENTS

16.14 04. Lock control

16.14.1 Detailed Description

16.14.2 Introduction

The Lock control allows the user to write protect specific memory areas. This way the SBC is protected against

unintentional writes into the SBC registers providing additional level of safety/security.
An SPI failure interrupt is generated, if enabled (see 06. Interrupts). Othewise writes into locked areas are ignored.

* Lock 0: address area 0x06 - 0x09; general purpose memory
» Lock 1: address area 0x10 - 0x1F; supply control

» Lock 2: address area 0x20 - 0x2F; transceiver control
 Lock 3: address area 0x30 - 0x3F; HVIO1 - HVIO4 control

+ Lock 4: address area 0x40 - 0x4F; HVIOS - HVIOS8 control

« Lock 5: address area 0x50 - 0x5F; timer control

* Lock 6: address area 0x68 - 0x6F; data mask (FD versions only)

Data Structures

» struct uja113x_Ickc_cfg_t

Lock Control register configuration structure (reg 0x0A) More...

Typedefs

* typedef bool uja113x_Ickc_lkxc_t

Lock Control configuration options (0x0A)

Functions

« status_t UJA113X_SetLock (uint32_t instance, const uja113x_Ickc_cfg_t xlckcConfig)

Sets the lock control register (0x0A) based on input configuration object.

16.14.3 Data Structure Documentation

16.14.3.1 struct uja113x_Ickc_cfg_t

Lock Control register configuration structure (reg 0x0A)

The structure defines, which address areas should be SPI write (un)protected.

See also

UJA113X_SetLock()

Implements : uja113x_Ickc_cfg_ t Class

Definition at line 1426 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.14 04. Lock control

195

Data Fields

» uja113x_Ickc_lkxc_t lock6

Disables/enables SPI write access to address area 0x68 -

» uja113x_lIckc_lkxc_t lock5

Disables/enables SPI write access to address area 0x50 -

» uja113x_lIckc_lkxc_t lock4

Disables/enables SPI write access to address area 0x40 -

» uja113x_Ickc_lkxc_t lock3

Disables/enables SPI write access to address area 0x30 -

» uja113x_Ickc_lkxc_t lock2

Disables/enables SPI write access to address area 0x20 -

» uja113x_Ickc_lkxc_t lock1

Disables/enables SPI write access to address area 0x10 -

» uja113x_Ickc_lkxc_t lockO

Disables/enables SPI write access to address area 0x06 -

Field Documentation

16.14.3.1.1 uja113x_Icke_lkxc_t lock0

0x6F (FD version only) (0x0A:LK6C[6]).

0x55 (0x0A:LK5C[5]).

Ox4F (0x0A:LKAC[4]).

0x3F (0x0A:LK3C[3]).

Ox2F (0x0A:LK2C[2)).

Ox1F (0x0A:LK1C[1]).

0x09 (0x0A:LKOC[0)).

Disables/enables SPI write access to address area 0x06 - 0x09 (0x0A:LKOCJ[0]).

Definition at line 1440 of file sbc_uja113x.h.

16.14.3.1.2 uja113x_lckc_lkxc_t locki

Disables/enables SPI write access to address area 0x10 - Ox1F (0x0A:LK1C[1]).

Definition at line 1438 of file sbc_uja113x.h.

16.14.3.1.3 uja113x_lckc_lkxc_t lock2

Disables/enables SPI write access to address area 0x20 - Ox2F (0x0A:LK2CJ[2]).

Definition at line 1436 of file sbc_uja113x.h.

16.14.3.1.4 uja113x_lckc_lkxc_t lock3

Disables/enables SPI write access to address area 0x30 - 0x3F (0x0A:LK3C[3]).

Definition at line 1434 of file sbc_uja113x.h.

16.14.3.1.5 uja113x_Ickc_lkxc_t lock4

Disables/enables SPI write access to address area 0x40 - O0x4F (0x0A:LK4C[4]).

Definition at line 1432 of file sbc_uja113x.h.

16.14.3.1.6 uja113x_lckc_Ikxc_t locks

Disables/enables SPI write access to address area 0x50 - 0x55 (0x0A:LK5C[5]).

Definition at line 1430 of file sbc_uja113x.h.

16.14.3.1.7 uja113x_lckc_lkxc_t lock6é

Disables/enables SPI write access to address area 0x68 - 0x6F (FD version only) (0x0A:LK6C[6]).

Definition at line 1428 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

196

CONTENTS

16.14.4 Typedef Documentation

16.14.4.1

typedef bool uja113x_Ickec_lkxc_t

Lock Control configuration options (0x0A)

false - do not lock memory; SPI write access enabled
true - lock memory; SPI write access disabled

Implements : uja113x_Ickc_lkxc_t_Class

Definition at line 364 of file sbc_uja113x.h.

16.14.5 Function Documentation

16.14.5.1

status_t UJA113X_SetLock (uint32_t instance, const uja113x_Ickc_cfg_t * IckcConfig)

Sets the lock control register (0x0A) based on input configuration object.

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the lock control register has not
been written and the process has to be repeated.

Parameters

in instance | Index of SBC to configure

in IckeConfig | Lock control configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Note

This function sets a lock on certain memory areas to prevent unintented register modifications over SPI, thus
the function should be called after the whole SBC has been initialized!

Write accesses to locked memory areas can lead to SPI failure interrupt, if enabled.

The lock register is never locked, thus future (un)locking is possible.

Definition at line 488 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.15 05. Timer control 197

16.15 05. Timer control
16.15.1 Detailed Description
16.15.2 Introduction

Devices incorporating HVIOs functionality contain 4 timers. Up to four configuration options are available (see
uja113x_timxc_txmc_t). Configuring a single timer can be achievied by invoking UJA113X_SetTimer(). To change
just the duty cycle, the UJA113X_SbcTransfer() can be used.

For more details, consult the reference manual.

Data Structures

« struct uja113x_timsc_cfg_t

Single timer control registers configuration structure (0x5x - 0x5x + 1) More...

Typedefs

* typedef uint8_t uja113x_timxdcc_txdcc_t
Timer X duty cycle configuration options (0x5N:TDCCJ[7:0]); (N = 1, 3, 5, 7)

Enumerations

» enum ujal13x_timxc_txpc_t {
TXPC_4MS_PERIOD = 0x00U, TXPC_8MS_PERIOD = 0x04U, TXPC_20MS_PERIOD = 0x08U, TXPC_+
30MS_PERIOD = 0x0CU,
TXPC_50MS_PERIOD = 0x10U, TXPC_100MS_PERIOD = 0x14U, TXPC_200MS_PERIOD = 0x18U, TX«
PC_400MS_PERIOD = 0x1CU,
TXPC_800MS_PERIOD = 0x20U, TXPC_1000MS_PERIOD = 0x24U, TXPC_2000MS_PERIOD = 0x28U,
TXPC_4000MS_PERIOD = 0x2CU }

Timer X period configuration options (Ox5N:TXPC[5:2]); (N =0, 2, 4, 6)

« enum uja113x_timxc_txmc_t { TXMC_PWM = 0x00U, TXMC_TIM = 0x01U, TXMC_TRIG_START = 0x02U,
TXMC_TRIG_END = 0x03U }

Timer X mode control configuration options (0x5N:TXMCJ0]); (N = 0, 2, 4, 6)

Functions

« status_t UJA113X_SetTimer (uint32_t instance, const uja113x_timsc_cfg_t xtimscConfig)

Sets a single timer configuration registers (0x5N - 0x5M) based on input configuration object (N =0, 2, 4, 6; M =1, 3,
57)

16.15.3 Data Structure Documentation

16.15.3.1 struct uja113x_timsc_cfg_t

Single timer control registers configuration structure (0x5x - Ox5x + 1)
Implements : uja113x_timsc_cfg_t Class

Definition at line 1724 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

198 CONTENTS

Data Fields

» uint8_t nTimer

Timer to configure (0 - 3)
 uja113x_timxc_txpc_t timXPeriodCtrl

Configures Timer X period (reg 0x5N:TXPC[5:2]; N = 0, 2, 4, 6)
* uja113x_timxc_txmc_t timXModeCirl

Configures Timer X mode (reg 0x5N:TXMC[1:0]); N = 0, 2, 4, 6)
 uja113x_timxdcc_txdcc_t timXDutyCycleCirl

Configures Timer X duty cycle (reg 0x5N):TXDCC[7:0]; N =1, 3, 5, 7)

Field Documentation
16.15.3.1.1 uint8_t nTimer

Timer to configure (0 - 3)

Definition at line 1729 of file sbc_uja113x.h.
16.15.3.1.2 uja113x_timxdcc_txdcc_t timXDutyCycleCirl

Configures Timer X duty cycle (reg 0x5N):TXDCC[7:0]; N =1, 3, 5, 7)
duty cycle = TXDCC / 255 x 100 [%]
Definition at line 1742 of file sbc_uja113x.h.

16.15.3.1.3 uja113x_timxc_txmc_t timXModeCtrl

Configures Timer X mode (reg OxX5N:TXMCJ1:0]); N =0, 2, 4, 6)
Definition at line 1737 of file sbc_uja113x.h.

16.15.3.1.4 ujal13x_timxc_txpc_t timXPeriodCtrl

Configures Timer X period (reg OxX5N:TXPC[5:2]; N = 0, 2, 4, 6)
Definition at line 1733 of file sbc_uja113x.h.

16.15.4 Typedef Documentation

16.15.4.1 typedef uint8_t uja113x_timxdcc_txdcc_t

Timer X duty cycle configuration options (0x5N:TDCCJ[7:0]); (N =1, 3, 5, 7)

Implements : uja113x_timxdcc_txdcc_t_Class0 - 255;
duty cycle = TXDDC \ 255

Definition at line 1120 of file sbc_uja113x.h.
16.15.5 Enumeration Type Documentation

16.15.5.1 enum uja113x_timxc_txmc_t

Timer X mode control configuration options (OxX5N:TXMCJ0]); (N =0, 2, 4, 6)

Warning

Last two options (TXMC_TRIG_START and TXMC_TRIG_END) are not valid for Timer 1!

Implements : uja113x_timxc_txmc_t_Class

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.15 05. Timer control 199

Enumerator
TXMC_PWM Timer N is in PWM mode; on-time = TXDCC x TXPC / 255.
TXMC_TIM Timer N is in Timer mode; on-time = TXDCC x tw(base)tmr us.

TXMC_TRIG_START Timer N pulse is triggered at the start of Timer 1 pulse (master-slave mode); on-time =
TXDCC x tw(base)tmr us.

TXMC_TRIG_END Timer N pulse is triggered at the end of Timer 1 pulse (master-slave mode); on-time =
TXDCC x tw(base)tmr us.

Definition at line 1105 of file sbc_uja113x.h.
16.15.5.2 enum uja113x_timxc_txpc_t

Timer X period configuration options (0x5N:TXPC[5:2]); (N = 0, 2, 4, 6)

Implements : uja113x_timxc_txpc_t_Class

Enumerator

TXPC_4MS_PERIOD Timer period 4 ms
TXPC_8MS_PERIOD Timer period 8 ms
TXPC_20MS_PERIOD Timer period 20 ms
TXPC_30MS_PERIOD Timer period 30 ms
TXPC_50MS_PERIOD Timer period 50 ms
TXPC_100MS_PERIOD Timer period 100 ms
TXPC_200MS_PERIOD Timer period 200 ms
TXPC_400MS_PERIOD Timer period 400 ms
TXPC_800MS_PERIOD Timer period 800 ms
TXPC_1000MS_PERIOD Timer period 1 s
TXPC_2000MS_PERIOD Timer period 2 s
TXPC_4000MS_PERIOD Timer period 4 s

Definition at line 1080 of file sbc_uja113x.h.

16.15.6 Function Documentation

16.15.6.1 status_t UJA113X_SetTimer (uint32_t instance, const uja113x_timsc_cfg_t *x timscConfig)

Sets a single timer configuration registers (0x5N - 0x5M) based on input configuration object (N =0, 2,4, 6; M =1,
3,5,7)

The function prepares a frame based on input configuration object and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the timer configuration registers
have not been written properly and the process has to be repeated.

Parameters

in instance | Index of SBC to configure

in timscConfig | Single timer configuration object
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

200 CONTENTS

Return values

SBC_ERR_NA | Timer with provided index is not present on this device.

Note
This function configures a single timer. In case the user is interested in configuring the period or duty cycle
only, UJA113X_SbcTransfer() be used instead!

Warning
For Timer 1 the timXPeriodCtrl parameter is masked by 0x01! See ujal13x_timxc_txmc_t for details!
This function only checks the maximum number of timer channels, as write to "non-existing" registers are
allowed. Thus for devices without timers this function will perform an "empty" write.

See also

UJA113X_WriteRegister()

Definition at line 1059 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.16 06. Interrupts 201

16.16 06. Interrupts
16.16.1 Detailed Description
16.16.2 Introduction

The library provides one function for each interrupt group (UJA113X_SetSysteminterrupts(), UJA113X_SetSupply
Interrupts() etc.) to enable/disable required interrupts. On the other hand, handling the interrupt's is not supported
and it's the users responsiblity to provide his own logic.

16.16.2.1 Handling pending interrupts

After an event related to enabled interrupt occurs, the corresponding pin INTN1/INTN2 is set low. This can be
detected by the MCU and a pending interrupt can be processed.

The SBC provides a global interrupt status register (see Register address map). This should be read first, to identify
the interrupt group source. Afterwards a dedicated interrupt status register should be read to identify the interrupt
source. The UJA113X_SbcTransfer() function can be used.

Modules

» Bank N fail interrupt enable configuration options (0x38/0x48)

» Bank N wake-up interrupt enable configuration options (0x37/0x47)
» Supply interrupt enable configuration options (0x1C)

» System interrupt enable configuration options (0x04)

» Transceiver interrupt enable configuration options (0x23)

Functions

« status_t UJA113X_SetSystemInterrupts (uint32_t instance, uint8_t sysieMask)

Sets the system interrupt enable register (0x04) based on input configuration paramater.
« status_t UJA113X_SetSupplylnterrupts (uint32_t instance, uint8_t supieMask)

Sets the supply interrupt enable register (0x1C) based on input parameter.
« status_t UJA113X_SetTransceiverInterrupts (uint32_t instance, uint8_t tieMask)

Sets the transceiver interrupt enable register (0x23) based on input configuration parameter.
« status_t UJA113X_SetBankWuplnterrupts (uint32_t instance, uint8_t bankWuplIntMask, uint8_t bankld)

Configures corresponding bank wake-up interrupt enable register based on bankld (0x37 / 0x47)
« status_t UJA113X_SetBankFaillnterrupts (uint32_t instance, uint8_t bankFailintMask, uint8_t bankld)

Configures corresponding bank fail interrupt enable register based on bankld (0x38 / 0x48)

16.16.3 Function Documentation

16.16.3.1 status_t UJA113X_SetBankFailinterrupts (uint32_t instance, uint8_t bankFaillntMask, uint8_t bankid)

Configures corresponding bank fail interrupt enable register based on bankld (0x38 / 0x48)

The function prepares a frame based on input configuration parameter and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the bank N fail interrupt enable
register identified by bankld has not been written properly and the process has to be repeated.

Parameters

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

202 CONTENTS

in instance | Index of SBC to configure
in bankFaillntMask | Mask defining interrupts to be enabled
in bankld | Bank identifier (0 - 1)

Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI perihperal is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

See also

Bank N fail interrupt enable configuration options (0x38/0x48)

Definition at line 969 of file sbc_uja113x.c.
16.16.3.2 status_t UJA113X_SetBankWuplnterrupts (uint32_t instance, uint8_t bankWupintMask, uint8_t bankid)

Configures corresponding bank wake-up interrupt enable register based on bankld (0x37 / 0x47)

The function prepares a frame based on input configuration parameter and initiates SPl communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the bank N wake-up interrupt
enable register identified by bankld has not been written properly and the process has to be repeated.

Parameters
in instance | Index of SBC to configure
in bankWuplnt— | Mask defining interrupts to be enabled
Mask
in bankld | Bank identifier (0 - 1)
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI perihperal is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Warning

This function only checks the maximum number of HVIO banks, as write to "non-existing" registers are allowed.
Thus for devices without HVIO this function will perform an "empty" write.

See also

Bank N wake-up interrupt enable configuration options (0x37/0x47)

Definition at line 942 of file sbc_uja113x.c.
16.16.3.3 status_t UJA113X_SetSupplyInterrupts (uint32_t instance, uint8_t supieMask)

Sets the supply interrupt enable register (0x1C) based on input parameter.

The function prepares a frame based on input configuration parameter and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the supplie interrupt register has
not been written properly and the process has to be repeated.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.16 06. Interrupts 203

Parameters

in instance | Index of SBC to configure

in supieMask | Defines which supply interrupts to enable
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

See also

Supply interrupt enable configuration options (0x1C)

Definition at line 617 of file sbc_uja113x.c.
16.16.3.4 status_t UJA113X_SetSysteminterrupts (uint32_t instance, uint8_t sysieMask)

Sets the system interrupt enable register (0x04) based on input configuration paramater.

The function prepares a frame based on input configuration parameter and initiates SPI communcation in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the system interrupt enable
register has not been written and the process has to be repeated.

Bits 7 - 3 & 0 are cleared (reserved bits).

Parameters

in instance | Index of SBC to configure

in sysieMask | Defines which system interrupts to enable
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

See also

System interrupt enable configuration options (0x04)

Definition at line 464 of file sbc_uja113x.c.
16.16.3.5 status_t UJA113X_SetTransceiverinterrupts (uint32_t instance, uint8_t tieMask)

Sets the transceiver interrupt enable register (0x23) based on input configuration parameter.

The function prepares a frame based on input configuration parameter and initiates SPI communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the transceiver interrupt enable
register has not been written properly and the process has to be repeated.

Bits 7 - 5 are cleared (reserved bits).

Parameters

in instance | Index of SBC to configure

in tieMask | Defines which transceiver interrupts to enable
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI peripheral is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address, configuration failed.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

204 CONTENTS

See also

Transceiver interrupt enable configuration options (0x23)

Definition at line 722 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.17 07. MTPNV and ID 205

16.17 07. MTPNV and ID
16.17.1 Detailed Description

Integration guideline

Compilation units
The following files need to be compiled in the project:

${S32SDK_PATH}\middleware\sbc\sbc_ujall3x\source\sbc_ujall3x.c

Include path
The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\middleware\sbc\sbc_ujall3x\include
Compile symbols

No special symbols are required for this component
Dependencies

Low Power Serial Peripheral Interface (LPSPI) OS Interface (OSIF)

16.17.2 Introduction

The UJA113x devices incorporate non-volatile memory for SBC configuration. This memory is not reset during off
state and influences the chip behavior:

+ Register 0x71

— HVIOs high-side driver control
* Register 0x72

— HVIOs low-side driver control
* Register 0x73

— Reset pulse width
— V2 regulator start-up
— HVIO 4 - 2 mode

* Register 0x74

V1 reset threshold at start-up
FNMC mode/debug feature control
SDMC mode/debug feature control
VEXTAC pin

Sleep mode activation

During SW development, to simplify the application debugging, the FNMC and SDMC modes can be used to
(partially) disable the Watchdog. In production, the FNMC and SDMC should be disabled to have always full
Watchdog functionality present! However, it could be demanding to restore the MTPNV back to factory settings (F«
NMC enabled) and configure the MTPNV paramters again, but this time with SDMC mode enabled for diagnostics
purposes. Or simply enable debug feature by configuring the watchdog into autonomous mode.

Once a UJA113X device has been registered, the UJA113X_SetMtpnv() can be invoked. This function is called with
the parameter set of parameters to be programmed into the non-volatile memory.

This allows the user to define production parameters with FNMC & SDMC disabled and in case of need to enable it
again without the need of reflashing the host MCU with some debug firmware.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

206 CONTENTS

16.17.2.1 Restoring MTPNV factory preset values

The values are restored when following conditions apply for at least td(MTPNV) during power-up:

+ pin RSTN is held LOW
* CANH is pulled up to Vbat

» CANL is pulled down to GND

Warning

Restoring the devices MTPNV back to factory preset values is not supported by the library and it's the users
responsibility to implement this feature either in SW or HW.

16.17.2.2 MTPNV debug flow control

To have the possibility to enable debugging features (through SDMC mode and watchdog autonomous mod-
e) but keep the MCUs firmware untouched, an MTPNV control sequence depicted on the following figure is
recommended: This mechanism allows to partially or completely disable the watchdog if required without the need
of flashing a custom firmware into the host MCU. In case the MTPNV has been already programmed or it's not
allowed by the application to clear the MTPNYV, it's still possible to switch the watchdog mode into autonomous,
which keeps the watchdog enabled only in normal mode.

Note
If it's requested to set the SDMC mode, the MTPNV has to be restored prior to the above procedure (not
depicted in the diagram).

The idea is:

+ Reprogramming the MTPNV to enable SDMC

— 1. Restore factory settings of MTPNV (as described earlier)
2. Program the MTPVN with SDMC enabled

3. Depending on situation switch the watchdog mode to autonomous

— 4. The watchdog is disabled all the time
» Keep the MTPNV untouched (SDMC disabled) and partially disable watchdog

— 1. Switch the Watchdog mode to autonomous

— 2. Watchdog disabled in all other modes then normal (in case there are no pending interrupts)

Note

See 02. Watchdog section for more details on watchdog behaviour under different circumstances

16.17.2.3 Example

This example demonstrates one of many possible implemetnatations.

/+ Define the MTPNV parameters =*/
ujall3x_mtpnv_cfg_t mtpnvConfig =
{
/+ highSideCtrl x/
HHSDC_TIO8HOC_DISABLED | HHSDC_IO7HOC_DISABLED |
HHSDC_IO6HOC_DISABLED | HHSDC_IO5HOC_DISABLED |

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.17 07. MTPNV and ID

207

HHSDC_TO4HOC_DISABLED | HHSDC_TIO3HOC_DISABLED
HHSDC_TO2HOC_DISABLED |

/* lowSideCtrl =/

HLSDC_IO8LOC_DISABLED | HLSDC_IO7LOC_DISABLED
HLSDC_IO6LOC_DISABLED | HLSDC_IO5LOC_DISABLED

HLSDC_TIO4LOC_DISABLED | HLSDC_IO3LOC_DISABLED |
HLSDC_IO2LOC_DISABLED |

/+ startupCtrl =/
RLC_PULSE_WIDTH_10_12_MS |
IO4SFC_STD_IO |

V2SUC_ALWAYS_ON |
TO3SFC_STD_T0

/* sbcConfigCtrl =/
V1IRTSUC_90_NOM | FNMC_DISABLE |
VEXTAC_SENSOR_SUPPLY

SDMC_ENABLE |
SLPC_SLEEP_SUPPORTED

#define SBCO ou

void main

{

(void)
/+ Initialize the MCU - clock, peripherals etc.
/+ Initialize the SPI periheral for SBC =/

SBC «/
sbcConfig

/+ Initialize the
ujall3x_drv_cfg_t
{

UJA1132HW5VO0, /* chipType =/
ou, /+ SPI instance */
1000, /+ SPI timeout =/

}i
UJA113X_RegisterDevice (SBCO, &sbcConfig);

bool enable_debug_mode =
bool set_debug =

false;
false;

vhile
{

(10)

HHSDC_IO1HOC_DISABLED,

HLSDC_IO1LOC_DISABLED,

IO2SFC_LIMP_HOME,

*/

/*
* Set enable_debug_mode and set_debug using some event over
* CAN/LIN/USART etc. or GPIO inputs - application specific
*/

if (true == enable_debug_mode)

{

/* Read the NVMPS status bit — UJA113X_SbcTransfer (

(1U == NVMPS)

/+ Programm the MTPNV =/
UJA113X_SetMtpnv (SBCO, mtpnvConfig);

(true

set_debug)

can be used x/

/* Set Watchdog into autonomous mode - UJA113X_SetWatchdog ()

/* Set Watchdog into application defined mode - UJA113X_SetWatchdog ()

16.17.2.4 CRC calculation on MTPNV data

can be used */

can be usedx/

To confirm MTPNV write, last byte written into the SBC (register 0x75) has to be a CRC-8 computed over the written
bytes (4 bytes!). This is handled automatically by the UJA113X_SetMtpnv(). However if the user wants to implemet
his own programming procedure, the CRC function is available, see UJA113X_ComputeCrc8() for details.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

208 CONTENTS

Note

During CRC computation for devices with partial/none HVIO's the respective bits in registers 0x71 & 0x72
should be considered as 0 even when set by user to 1!

16.17.2.5 Device ID

Although, there is no dedicated function for reading the devices ID, the UJA113X_SbcTransfer() can be used to read
the ID registers (0x7E & Ox7F).

Modules

+ HVIO high-side configuration options (0x71)
» HVIO low-side configuration options (0x72)
» SBC configuration control options (0x74)

« Start-up control configuration options (0x73)

Data Structures

« struct uja113x_mtpnv_cfg_t

MTPNYV registers configuration structure (0x71 - 0x74) More...
« struct crc_spec_t

Defines the CRC8 algoritm to be used. More...

Functions

« status_t UJA113X_SetMtpnv (uint32_t instance, const uja113x_mtpnv_cfg_t xmtpnvConfig)

Writes the non-volitile memory parameters (0x71 - 0x75) of SBC.
 uint8_t UJA113X_ComputeCrc8 (const crc_spec_t xcrcDesc, const uint8_t «data, uint8_t size)

Generic function for CRC8 computation.

16.17.3 Data Structure Documentation

16.17.3.1 struct uja113x_mtpnv_cfg t

MTPNYV registers configuration structure (0x71 - 0x74)
Implements : uja113x_mtpnv_cfg_t Class

Definition at line 1752 of file sbc_uja113x.h.
Data Fields

« uint8_t highSideCtrl

Configures the HVIO high-side driver behavior (0x71); See HVIO high-side configuration options (0x71).
 uint8_t lowSideCitrl

Configures the HVIO low-side driver behavior (0x72); See HVIO low-side configuration options (0x72).
* uint8_t startupCtrl

Configures the start-up control register (0x73); See Start-up control configuration options (0x73).
* uint8_t sbcConfigCtrl

Configures the SBC configuration control register (0x74); See SBC configuration control options (0x74).

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.17 07. MTPNV and ID

209

Field Documentation

16.17.3.1.1 uint8_t highSideCtrl

Configures the HVIO high-side driver behavior (0x71); See HVIO high-side configuration options (0x71).

Definition at line 1757 of file sbc_uja113x.h.

16.17.3.1.2 uint8_t lowSideCtrl

Configures the HVIO low-side driver behavior (0x72); See HVIO low-side configuration options (0x72).

Definition at line 1761 of file sbc_uja113x.h.

16.17.3.1.3 uint8_t shcConfigCtrl

Configures the SBC configuration control register (0x74); See SBC configuration control options (0x74).

Definition at line 1769 of file sbc_uja113x.h.

16.17.3.1.4 uint8_t startupCtrl

Configures the start-up control register (0x73); See Start-up control configuration options (0x73).

Definition at line 1765 of file sbc_uja113x.h.
16.17.3.2 struct crc_spec_t

Defines the CRC8 algoritm to be used.

This structure describes the CRC algorithm. Based on this structure the UJA113X_ComputeCrc8(), knows, how to

compute the CRC value.
Implements : crc_spec_t_Class

Definition at line 2638 of file sbc_uja113x.h.
Data Fields

* uint8_t poly

Generating polynomial.
e uint8_t init

Initial value.
* bool refln

Reflect input data before computation.
* bool refOut

Reflect output data before computation.
* uint8_t xorOut

Output xored by this value.
Field Documentation
16.17.3.2.1 uint8_t init

Initial value.

Definition at line 2641 of file sbc_uja113x.h.
16.17.3.2.2 uint8_t poly

Generating polynomial.

Definition at line 2640 of file sbc_uja113x.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

210 CONTENTS

16.17.3.2.3 bool refin

Reflect input data before computation.

Definition at line 2642 of file sbc_uja113x.h.
16.17.3.2.4 bool refOut

Reflect output data before computation.

Definition at line 2643 of file sbc_uja113x.h.
16.17.3.2.5 uint8_t xorOut

Output xored by this value.
Definition at line 2644 of file sbc_uja113x.h.

16.17.4 Function Documentation

16.17.4.1 uint8_t UJA113X_ComputeCrc8 (const crc_spec_t x crcDesc, const uint8_t « data, uint8_t size)

Generic function for CRC8 computation.

The CRC algorithm is defined by crc__spec_t input parameter, which holds all the relevant information for CRC8
computation. A brute force mechanism is used instead of table driven.

Parameters
in crcDesc | Pointer to CRC8 algorithm description
in data | Array of data over which CRC should be calculated
in size | Size of array in bytes

Returns

Computed CRC8 over data described by crcDesc

Note

For subsequent calls the CRC from previous computation should be used as initial seed.

Warning

The refln and refOut values have no influence on the computation! The functionality is not implemented yet!

16.17.4.2 status_t UJA113X_SetMtpnv (uint32_t instance, const uja113x_mtpnv_cfg_t x mipnvConfig)

Writes the non-volitile memory parameters (0x71 - 0x75) of SBC.

The function prepares a frame based on input configuration parameters and initiates SPl| communication in blocking
mode. On successful transmission the first byte is verified. In case of a mismatch the MTPNV configuration
registers have not been written properly and the process has to be repeated. In case a mismatch happens on CRC
write, the outcome can be recognized by reading out the MTPNV registers, reading the MTPNV status bit and an
SBC reset in case of success.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.17 07. MTPNV and ID 211

Parameters

in instance | Index of SBC to configure

in mtpnvConfig | Parameters to be loaded into SBC
Returns

STATUS_SUCCESS Configuration successful STATUS_BUSY SPI perihperal is busy STATUS_TIMEOUT
SPI communication timed out, configuration aborted SBC_CMD_ERROR First received byte doesn't match
the repeated address,

Note

The CRC value is calculated by the function.

Warning

During CRC computation for devices with partial/none HVIO's the respective bits in registers 0x71 & 0x72
should be considered as 0 even when set by user to 1! The function checks the chipType registered with
UJA113X_RegisterDevice() and cleares these bits for the purpose of CRC computation.

Definition at line 1091 of file sbc_uja113x.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

212 CONTENTS

16.18 ADC Driver
16.18.1 Detailed Description

Analog to Digital Converter Peripheral Driver.

The ADC is a configurable 12-bit (selectable to between 8-bit, 10-bit and 12-bit resolution) single-ended SA«
R converter.

Features of the ADC include:

* up to 32 control channels (depending on the device variant), with configurable triggers

» up to 32 selectable external input sources (depending on the device variant) and multiple internal input
sources

» hardware compare and average functions

« auto-calibration feature

Hardware background

The ADC included in the S32K14x series is a selectable resolution (8, 10, 12-bit), single-ended, SAR converter.
Depending on the device variant, each ADC instance has up to 40 selectable input channels (up to 32 external and
up to 8 internal) and up to 32 control channels (each with a result register, an input channel selection register and
interrupt enable).

Sample time is configurable through selection of A/D clock and a configurable sample time (in A/D clocks).
Also provided are the Hardware Average and Hardware Compare Features.

Hardware Average will sample a selectable number of measurements and average them before signaling a Con-
version Complete.

Hardware Compare can be used to signal if an input channel goes outside (or inside) of a predefined range.

The Calibration features can be used to automatically calibrate or fine-tune the ADC before use.
Driver consideration

The ADC Driver provides access to all features, but not all need to be configured to use the ADC. The user appli-
cation can use the default for most settings, changing only what is necessary. For example, if Compare or Average
features are not used, the user does not need to configure them.

The Driver uses structures for configuration. Each structure contains members that are specific to its respective
functionality. There is a converter structure, a hardware compare structure, a hardware average structure and a
calibration structure. Each struct has a corresponding InitStruct () method that can be used to initialize the
members to reset values, so the user can change only the values that are specific to the application.

The Driver also includes support for configuring the Trigger Latching and Arbitration Unit controlled from a separate
hardware module - System Integration Module (SIM).

Interrupt handling

The ADC Driver in S32 SDK does not use interrupts internally. These can be defined by the user application. There
are two ways to add an ADC interrupt:

1. Using the weak symbols defined by start-up code. If the methods ADCx_Handler (void) (x denotes
instance number) are not defined, the linker uses a default ISR. An error will be generated if methods with
the same name are defined multiple times. This method works regardless of the placement of the interrupt
vector table (Flash or RAM).

2. Using the Interrupt Manager's INT_SYS_InstallHandler () method. This can be used to dynamically
change the ISR at run-time. This method works only if the interrupt vector table is located in RAM (S32 SDK
behavior). To get the ADC instance's interrupt number, use ADC_DRV_Get InterruptNumber ().

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.18 ADC Driver 213

Clocking and pin configuration

The ADC Driver does not handle clock setup (from PCC) or any kind of pin configuration (done by PORT module).
This is handled by the Clock Manager and PORT module, respectively. The driver assumes that correct clock
configurations have been made, so it is the user's responsibility to set up clocking and pin configurations correctly.

Triggering a conversion

There are two separate ways for triggering an ADC conversion from a control channel:

1. Software triggering Only conversion from first control channel may be triggered from software - must enabled
at converter configuration Initiated by writing a valid input channel ID to the first control channel - use ADC+«
_DRV_ConfigChan().

2. Hardware triggering Conversion from any control channel may be hardware triggered - however for first control
channel it must be enabled at converter configuration.

Integration guideline

Compilation units

The following files need to be compiled in the project:

* ${S32SDK_PATH}\platform\drivers\src\adc_driver.c

*

Include path

The following paths need to be added to the include path of the toolchain:

* ${S32SDK_PATH}\platform\drivers\inc\

*

Compile symbols
No special symbols are required for this component
Dependencies

Clock Manager

Data Structures

« struct adc_converter_config_t

Defines the converter configuration. More...
« struct adc_compare_config_t

Defines the hardware compare configuration. More...
« struct adc_average_config_t

Defines the hardware average configuration. More...
« struct adc_chan_config_t

Defines the control channel configuration. More...
 struct adc_calibration_t

Defines the user calibration configuration. More...

Enumerations

+ enum adc_clk_divide_t { ADC_CLK_DIVIDE_1 = 0x00U, ADC_CLK_DIVIDE_2 = 0x01U, ADC_CLK_DIVI«-
DE_4 = 0x02U, ADC_CLK_DIVIDE_8 = 0x03U }

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

214

CONTENTS

Clock Divider selection.
enum adc_resolution_t { ADC_RESOLUTION_8BIT = 0x00U, ADC_RESOLUTION_12BIT = 0x01U, ADC+«

_RESOLUTION_10BIT = 0x02U }

Conversion resolution selection.
enum adc_input_clock_t { ADC_CLK_ALT_1 = 0x00U, ADC_CLK_ALT_2 = 0x01U, ADC_CLK_ALT_3 =
0x02U, ADC_CLK_ALT_4 = 0x03U }

Input clock source selection.
enum adc_trigger_t { ADC_TRIGGER_SOFTWARE = 0x00U, ADC_TRIGGER_HARDWARE = 0x01U }

Trigger type selection.
enum adc_pretrigger_sel_t { ADC_PRETRIGGER_SEL_PDB = 0x00U, ADC_PRETRIGGER_SEL_TRGM«
UX = 0x01U, ADC_PRETRIGGER_SEL_SW = 0x02U }

Pretrigger types selectable from Trigger Latching and Arbitration Unit.
enum adc_trigger_sel_t { ADC_TRIGGER_SEL_PDB = 0x00U, ADC_TRIGGER_SEL_TRGMUX = 0x01U }

Trigger source selectable from Trigger Latching and Arbitration Unit.
enum adc_sw_pretrigger_t {
ADC_SW_PRETRIGGER_DISABLED = 0x00U, ADC_SW_PRETRIGGER_0 = 0x04U, ADC_SW_PRETR«
IGGER_1 = 0x05U, ADC_SW_PRETRIGGER_2 = 0x06U,
ADC_SW_PRETRIGGER_3 = 0x07U }

Software pretriggers which may be set from Trigger Latching and Arbitration Unit.
enum adc_voltage_reference_t { ADC_VOLTAGEREF_VREF = 0x00U, ADC_VOLTAGEREF_VALT =
0x01U }

Voltage reference selection.
enum adc_average_t { ADC_AVERAGE_4 = 0x00U, ADC_AVERAGE_8 = 0x01U, ADC_AVERAGE_16 =
0x02U, ADC_AVERAGE_32 = 0x03U }

Hardware average selection.
enum adc_inputchannel_t {
ADC_INPUTCHAN_EXTO0 = 0x00U, ADC_INPUTCHAN_EXT1 = 0x01U, ADC_INPUTCHAN_EXT3 = 0x03U,
ADC_INPUTCHAN_EXT4 = 0x04U,
ADC_INPUTCHAN_EXT5 = 0x05U, ADC_INPUTCHAN_EXT6 = 0x06U, ADC_INPUTCHAN_EXT7 = 0x07U,
ADC_INPUTCHAN_EXT9 = 0x09U,
ADC_INPUTCHAN_EXT10 = 0x0AU, ADC_INPUTCHAN_EXT11 = 0x0BU, ADC_INPUTCHAN_EXT12 =
0x0CU, ADC_INPUTCHAN_EXT13 = 0x0DU,
ADC_INPUTCHAN_EXT14 = 0xOEU, ADC_INPUTCHAN_DISABLED = ADC_SC1_ADCH_MASK, ADC_I«
NPUTCHAN_INTO = 0x15, ADC_INPUTCHAN_INT1 = 0x16,
ADC_INPUTCHAN_INT2 = 0x17, ADC_INPUTCHAN_INT3 = 0x1C, ADC_INPUTCHAN_TEMP = Ox1A, A~
DC_INPUTCHAN_BANDGAP = 0x1B,
ADC_INPUTCHAN_VREFSH = 0x1D, ADC_INPUTCHAN_VREFSL = 0x1E, ADC_INPUTCHAN_SUPPLY
_VDD = 0xFOOU, ADC_INPUTCHAN_SUPPLY_VDDA = 0xF01U,
ADC_INPUTCHAN_SUPPLY_VREFH = 0xF02U, ADC_INPUTCHAN_SUPPLY_VDD_3V = 0xFO3U, ADC+«
_INPUTCHAN_SUPPLY_VDD_FLASH_3V = 0xF04U, ADC_INPUTCHAN_SUPPLY_VDD_LV = 0xF05U }

Enumeration of input channels assignable to a control channel.
Note 0: entries in this enum are affected by ::FEATURE_ADC_NUM_EXT_CHANS, which is device dependent and
controlled from "device_name"_features.h file.

enum adc_latch_clear_t { ADC_LATCH_CLEAR_WAIT, ADC_LATCH_CLEAR_FORCE }

Defines the trigger latch clear method Implements : adc_latch_clear_t Class.

Converter

Converter specific methods. These are used to configure and use the A/D Converter specific functionality,
including:

« clock input and divider

« sample time in A/D clocks

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.18 ADC Driver 215

* resolution

« trigger source

« voltage reference
» enable DMA

« enable continuous conversion on one channel

To start a conversion, a control channel (see Channel Configuration) and a trigger source must be configured. Once
a conversion is started, the user application can wait for it to be finished by calling the ADC_DRV_WaitConvDone()
function.

Only the first control channel can be triggered by software. To start a conversion in this case, an input channel
must be written in the channel selection register using the ADC_DRV_ConfigChan() method. Writing a value to the
control channel while a conversion is being performed on that channel will start a new conversion.

+ void ADC_DRV_lInitConverterStruct (adc_converter_config_t xconst config)

Initializes the converter configuration structure.

» void ADC_DRV_ConfigConverter (const uint32_t instance, const adc_converter_config_t xconst config)

Configures the converter with the given configuration structure.
» void ADC_DRV_GetConverterConfig (const uint32_t instance, adc_converter_config_t xconst config)

Gets the current converter configuration.
 void ADC_DRV_Reset (const uint32_t instance)

Resets the converter (sets all configurations to reset values)
+ void ADC_DRV_WaitConvDone (const uint32_t instance)

Waits for a conversion/calibration to finish.
» bool ADC_DRV_GetConvCompleteFlag (const uint32_t instance, const uint8_t chanindex)

Gets the control channel Conversion Complete Flag state.

Hardware Compare

The Hardware Compare feature of the S32K144 ADC is a versatile mechanism that can be used to monitor that a
value is within certain values. Measurements can be monitored to be within certain ranges:

* less than/ greater than a fixed value

« inside or outside of a certain range

Two compare values can be configured (the second value is used only for range function mode). The compare
values must be written in 12-bit resolution mode regardless of the actual used resolution mode.

Once the hardware compare feature is enabled, a conversion is considered complete only when the measured value
is within the allowable range set by the configuration.

» void ADC_DRV_InitHwCompareStruct (adc_compare_config_t xconst config)

Initializes the Hardware Compare configuration structure.
» void ADC_DRV_ConfigHwCompare (const uint32_t instance, const adc_compare_config_t *const config)

Configures the Hardware Compare feature with the given configuration structure.
 void ADC_DRV_GetHwCompareConfig (const uint32_t instance, adc_compare_config_t *const config)

Gets the current Hardware Compare configuration.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

216 CONTENTS

Hardware Average

The Hardware Average feature of the S32K144 allows for a set of measurements to be averaged together as a
single conversion. The number of samples to be averaged is selectable (4, 8, 16 or 32 samples).

» void ADC_DRV_InitHwAverageStruct (adc_average_config_t xconst config)

Initializes the Hardware Average configuration structure.

» void ADC_DRV_ConfigHwAverage (const uint32_t instance, const adc_average_config_t *const config)

Configures the Hardware Average feature with the given configuration structure.
» void ADC_DRV_GetHwAverageConfig (const uint32_t instance, adc_average_config_t xconst config)

Gets the current Hardware Average configuration.

Channel configuration

Control register specific functions. These functions control configurations for each control channel (input channel
selection and interrupt enable).

When software triggering is enabled, calling the ADC_DRV_ConfigChan() method for control channel 0 starts a new
conversion.

After a conversion is finished, the result can be retrieved using the ADC_DRV_GetChanResult() method.

» void ADC_DRV_InitChanStruct (adc_chan_config_t xconst config)

Initializes the control channel configuration structure.

» void ADC_DRV_ConfigChan (const uint32_t instance, const uint8_t chanlndex, const adc_chan_config_«
t *const config)

Configures the selected control channel with the given configuration structure.

» void ADC_DRV_GetChanConfig (const uint32_t instance, const uint8_t chanindex, adc_chan_config_«
t xconst config)

Gets the current control channel configuration for the selected channel index.
+ void ADC_DRV_SetSwPretrigger (const uint32_t instance, const adc_sw_pretrigger_t swPretrigger)

This function sets the software pretrigger - affects only first 4 control channels.
» void ADC_DRV_GetChanResult (const uint32_t instance, const uint8_t chanindex, uint16_t xconst result)

Gets the last result for the selected control channel.

Automatic Calibration

These methods control the Calibration feature of the ADC.

The ADC_DRV_AutoCalibration() method can be called to execute a calibration sequence, or a calibration can be
retrieved with the ADC_DRV_GetUserCalibration() and saved to non-volatile storage, to avoid calibration on every
power-on. The calibration structure can be written with the ADC_DRV_ConfigUserCalibration() method.

» void ADC_DRV_AutoCalibration (const uint32_t instance)

Executes an Auto-Calibration.

» void ADC_DRV_InitUserCalibrationStruct (adc_calibration_t xconst config)

Initializes the User Calibration configuration structure.
» void ADC_DRV_ConfigUserCalibration (const uint32_t instance, const adc_calibration_t xconst config)

Configures the User Calibration feature with the given configuration structure.
+ void ADC_DRV_GetUserCalibration (const uint32_t instance, adc_calibration_t *const config)

Gets the current User Calibration configuration.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.18 ADC Driver 217

Interrupts

This method returns the interrupt number for an ADC instance, which can be used to configure the interrupt, like in
Interrupt Manager.

» IRQn_Type ADC_DRV_GetInterruptNumber (const uint32_t instance)

Returns the interrupt number for the ADC instance.

Latched triggers processing
These functions provide basic operations for using the trigger latch mechanism.

» void ADC_DRV_ClearLatchedTriggers (const uint32_t instance, const adc_latch_clear_t clearMode)

Clear latched triggers under processing.
» void ADC_DRV_ClearTriggerErrors (const uint32_t instance)

Clear all latch trigger error.
» uint32_t ADC_DRV_GetTriggerErrorFlags (const uint32_t instance)

Get the trigger error flags bits of the ADC instance.

16.18.2 Data Structure Documentation

16.18.2.1 struct adc_converter_config_t

Defines the converter configuration.
This structure is used to configure the ADC converter
Implements : adc_converter_config_t_Class

Definition at line 249 of file adc_driver.h.

Data Fields

« adc_clk_divide_t clockDivide

» uint8_t sampleTime

» adc_resolution_t resolution

+ adc_input_clock_t inputClock

« adc_trigger_t trigger

+ adc_pretrigger_sel_t pretriggerSel
+ adc_trigger_sel_t triggerSel

* bool dmaEnable

» adc_voltage_reference_t voltageRef
* bool continuousConvEnable

* bool supplyMonitoringEnable

Field Documentation
16.18.2.1.1 adc_clk_divide_t clockDivide

Divider of the input clock for the ADC

Definition at line 251 of file adc_driver.h.
16.18.2.1.2 bool continuousConvEnable

Enable Continuous conversions

Definition at line 260 of file adc_driver.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

218 CONTENTS

16.18.2.1.3 bool dmaEnable

Enable DMA for the ADC

Definition at line 258 of file adc_driver.h.
16.18.2.1.4 adc_input_clock_t inputClock

Input clock source

Definition at line 254 of file adc_driver.h.
16.18.2.1.5 adc_pretrigger_sel_t pretriggerSel

Pretrigger source selected from Trigger Latching and Arbitration Unit - affects only the first 4 control channels

Definition at line 256 of file adc_driver.h.
16.18.2.1.6 adc_resolution_t resolution

ADC resolution (8,10,12 bit)

Definition at line 253 of file adc_driver.h.
16.18.2.1.7 uint8_t sampleTime

Sample time in AD Clocks

Definition at line 252 of file adc_driver.h.
16.18.2.1.8 bool supplyMonitoringEnable

Only available for ADC 0. Enable internal supply monitoring - enables measurement of ADC_INPUTCHAN_SUP«
PLY_ sources.

Definition at line 261 of file adc_driver.h.
16.18.2.1.9 adc_trigger_t trigger

ADC trigger type (software, hardware) - affects only the first control channel

Definition at line 255 of file adc_driver.h.
16.18.2.1.10 adc_trigger_sel_t triggerSel

Trigger source selected from Trigger Latching and Arbitration Unit

Definition at line 257 of file adc_driver.h.
16.18.2.1.11 adc_voltage_reference_t voltageRef

Voltage reference used

Definition at line 259 of file adc_driver.h.
16.18.2.2 struct adc_compare_config_t

Defines the hardware compare configuration.

This structure is used to configure the hardware compare feature for the ADC
Implements : adc_compare_config_t_Class

Definition at line 272 of file adc_driver.h.

Data Fields

* bool compareEnable

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.18 ADC Driver

219

* bool compareGreaterThanEnable
* bool compareRangeFuncEnable
+ uint16_t compVali

* uint16_t compVal2

Field Documentation
16.18.2.2.1 bool compareEnable

Enable the compare feature

Definition at line 274 of file adc_driver.h.
16.18.2.2.2 bool compareGreaterThanEnable

Enable Greater-Than functionality

Definition at line 275 of file adc_driver.h.
16.18.2.2.3 bool compareRangeFuncEnable

Enable Range functionality

Definition at line 276 of file adc_driver.h.
16.18.2.2.4 uint16_t compVal1

First Compare Value

Definition at line 277 of file adc_driver.h.
16.18.2.2.5 uint16_t compVal2

Second Compare Value

Definition at line 278 of file adc_driver.h.
16.18.2.3 struct adc_average_config_t

Defines the hardware average configuration.
This structure is used to configure the hardware average feature for the ADC
Implements : adc_average_config_t_Class

Definition at line 289 of file adc_driver.h.
Data Fields

* bool hwAvgEnable
» adc_average_t hwAverage

Field Documentation
16.18.2.3.1 adc_average_t hwAverage

Selection for number of samples used for averaging

Definition at line 292 of file adc_driver.h.
16.18.2.3.2 bool hwAvgEnable

Enable averaging functionality

Definition at line 291 of file adc_driver.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

220

CONTENTS

16.18.2.4 struct adc_chan_config_t

Defines the control channel configuration.
This structure is used to configure a control channel of the ADC
Implements : adc_chan_config_t_Class

Definition at line 303 of file adc_driver.h.
Data Fields

* bool interruptEnable
+ adc_inputchannel_t channel

Field Documentation
16.18.2.4.1 adc_inputchannel_t channel

Selection of input channel for measurement

Definition at line 306 of file adc_driver.h.
16.18.2.4.2 bool interruptEnable

Enable interrupts for this channel

Definition at line 305 of file adc_driver.h.
16.18.2.5 struct adc_calibration_t

Defines the user calibration configuration.

This structure is used to configure the user calibration parameters of the ADC.

Implements : adc_calibration_t_Class

Definition at line 317 of file adc_driver.h.
Data Fields

e uint16_t userGain
» uint16_t userOffset

Field Documentation
16.18.2.5.1 uint16_t userGain

User-configurable gain

Definition at line 319 of file adc_driver.h.
16.18.2.5.2 uint16_t userOffset

User-configurable Offset (2's complement, subtracted from result)

Definition at line 320 of file adc_driver.h.

16.18.3 Enumeration Type Documentation

16.18.3.1 enum adc_average t

Hardware average selection.

Implements : adc_average_t_Class

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.18 ADC Driver 221

Enumerator

ADC_AVERAGE_4 Hardware average of 4 samples.
ADC_AVERAGE_8 Hardware average of 8 samples.
ADC _AVERAGE_16 Hardware average of 16 samples.
ADC _AVERAGE_32 Hardware average of 32 samples.

Definition at line 154 of file adc_driver.h.
16.18.3.2 enum adc_clk_divide_t

Clock Divider selection.

Implements : adc_clk_divide_t_Class

Enumerator
ADC_CLK_DIVIDE_1 Input clock divided by 1.
ADC_CLK_DIVIDE_2 Input clock divided by 2.
ADC _CLK_DIVIDE_4 Input clock divided by 4.
ADC_CLK_DIVIDE_8 Input clock divided by 8.

Definition at line 57 of file adc_driver.h.
16.18.3.3 enum adc_input_clock_t

Input clock source selection.

Implements : adc_input_clock_t_Class

Enumerator

ADC_CLK_ALT_1 Input clock alternative 1.
ADC CLK_ALT 2 Input clock alternative 2.
ADC CLK_ALT_3 Input clock alternative 3.
ADC _CLK_ALT 4 Input clock alternative 4.

Definition at line 82 of file adc_driver.h.
16.18.3.4 enum adc_inputchannel_t

Enumeration of input channels assignable to a control channel.
Note 0: entries in this enum are affected by ::FEATURE_ADC_NUM_EXT_CHANS, which is device dependent and
controlled from "device_name"_features.hfile.

Note 1: the actual number of external channels may differ between device packages and ADC instances. Reading
a channel that is not connected externally, will return a random value within the range. Please refer to the Reference
Manual for the maximum number of external channels for each device variant and ADC instance.

Note 2: ADC_INPUTCHAN_SUPPLY_ select which internal supply channel to be measured. They are only avail-
able for ADCO and measured internally via internal input channel 0. Please note that supply monitoring needs to be
enabled separately via dedicated flag in adc_converter_config_t.

Implements : adc_inputchannel_t_Class

Enumerator

ADC_INPUTCHAN_EXTO External input channel 0
ADC _INPUTCHAN_EXT1 External input channel 1

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

222

CONTENTS

ADC_INPUTCHAN_EXT3
ADC_INPUTCHAN_EXT4
ADC_INPUTCHAN_EXT5
ADC_INPUTCHAN_EXTé6
ADC_INPUTCHAN_EXT7
ADC_INPUTCHAN_EXT9
ADC_INPUTCHAN_EXT10
ADC_INPUTCHAN_EXT11
ADC_INPUTCHAN_EXT12
ADC_INPUTCHAN_EXT13
ADC_INPUTCHAN_EXT14

External input channel 3
External input channel 4
External input channel 5
External input channel 6
External input channel 7
External input channel 9
External input channel 10
External input channel 11
External input channel 12
External input channel 13
External input channel 14

ADC_INPUTCHAN_DISABLED Channel disabled

ADC _INPUTCHAN_INTO Internal input channel 0

ADC_INPUTCHAN_INT1 Internal input channel 1

ADC_INPUTCHAN_INT2 Internal input channel 2

ADC_INPUTCHAN_INT3 Internal input channel 3

ADC_INPUTCHAN_TEMP Temperature Sensor

ADC_INPUTCHAN_BANDGAP Band Gap

ADC _INPUTCHAN_VREFSH \oltage Reference Select High

ADC_INPUTCHAN_VREFSL \oltage Reference Select Low
ADC_INPUTCHAN_SUPPLY_VDD Monitor internal supply 5 V input VDD supply.

ADC _INPUTCHAN_SUPPLY_ VDDA Monitor internal supply 5 V input analog supply.
ADC_INPUTCHAN_SUPPLY_VREFH Monitor internal supply ADC reference supply.
ADC_INPUTCHAN_SUPPLY_VDD_3V Monitor internal supply 3.3 V oscillator regulator output.
ADC _INPUTCHAN_SUPPLY_VDD_FLASH_3V Monitor internal supply 3.3 V flash regulator output.
ADC_INPUTCHAN_SUPPLY_VDD LV Monitor internal supply 1.2 V core regulator output.

Definition at line 177 of file adc_driver.h.
16.18.3.5 enumadc_latch_clear t
Defines the trigger latch clear method Implements : adc_latch_clear_t_Class.

Enumerator

ADC LATCH _CLEAR_WAIT Clear by waiting all latched triggers to be processed
ADC_LATCH_CLEAR FORCE Process current trigger and clear all latched

Definition at line 327 of file adc_driver.h.
16.18.3.6 enum adc_pretrigger_sel_t

Pretrigger types selectable from Trigger Latching and Arbitration Unit.

Implements : adc_pretrigger_sel_t_Class

Enumerator

ADC_PRETRIGGER_SEL_PDB PDB pretrigger selected.
ADC_PRETRIGGER_SEL_TRGMUX TRGMUX pretrigger selected.
ADC _PRETRIGGER_SEL_SW Software pretrigger selected.

Definition at line 106 of file adc_driver.h.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.18 ADC Driver 223

16.18.3.7 enum adc_resolution_t

Conversion resolution selection.

Implements : adc_resolution_t_Class

Enumerator

ADC_RESOLUTION_8BIT 8-bit resolution mode
ADC_RESOLUTION_12BIT 12-bit resolution mode
ADC_RESOLUTION_10BIT 10-bit resolution mode
Definition at line 70 of file adc_driver.h.
16.18.3.8 enum adc_sw_pretrigger_t

Software pretriggers which may be set from Trigger Latching and Arbitration Unit.

Implements : adc_sw_pretrigger_t_Class

Enumerator
ADC_SW _PRETRIGGER_DISABLED SW pretrigger disabled.
ADC_SW_PRETRIGGER_0 SW pretrigger 0.
ADC _SW _PRETRIGGER 1 SW pretrigger 1.
ADC_SW_PRETRIGGER_2 SW pretrigger 2.
ADC_SW_PRETRIGGER_3 SW pretrigger 3.

Definition at line 129 of file adc_driver.h.
16.18.3.9 enum adc_trigger_sel_t

Trigger source selectable from Trigger Latching and Arbitration Unit.

Implements : adc_trigger_sel_t_Class

Enumerator

ADC _TRIGGER_SEL_PDB PDB trigger selected.
ADC_TRIGGER_SEL _TRGMUX TRGMUX trigger selected.

Definition at line 118 of file adc_driver.h.
16.18.3.10 enum adc_trigger_t

Trigger type selection.

Implements : adc_trigger_t_Class

Enumerator
ADC _TRIGGER_SOFTWARE Software trigger.
ADC _TRIGGER_HARDWARE Hardware trigger.

Definition at line 95 of file adc_driver.h.
16.18.3.11 enum adc_voltage_reference_t

Voltage reference selection.

Implements : adc_voltage_reference_t_Class

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

224 CONTENTS

Enumerator

ADC_VOLTAGEREF _VREF VrefH and VreflL as Voltage reference.
ADC _VOLTAGEREF_VALT ValtH and ValiL as Voltage reference.

Definition at line 143 of file adc_driver.h.

16.18.4 Function Documentation

16.18.4.1 void ADC_DRV_AutoCalibration (const uint32_t instance)

Executes an Auto-Calibration.

This functions executes an Auto-Calibration sequence. It is recommended to run this sequence before using the
ADC converter.

Parameters

in instance | instance number

Definition at line 555 of file adc_driver.c.
16.18.4.2 void ADC_DRV_ClearLatchedTriggers (const uint32_t instance, const adc_latch_clear_t clearMode)

Clear latched triggers under processing.

This function clears all trigger latched flags of the ADC instance. This function must be called after the hardware
trigger source for the ADC has been deactivated.

Parameters
in instance | instance number of the ADC
in clearMode | The clearing method for the latched triggers

+ ADC_LATCH_CLEAR_WAIT : Wait for all latched triggers to be pro-
cessed.

* ADC_LATCH_CLEAR_FORCE : Clear latched triggers and wait for trig-
ger being process to finish.

Definition at line 712 of file adc_driver.c.
16.18.4.3 void ADC_DRV_ClearTriggerErrors (const uint32_t instance)

Clear all latch trigger error.
This function clears all trigger error flags of the ADC instance.

Parameters

in instance \ instance number of the ADC

Definition at line 737 of file adc_driver.c.

16.18.4.4 void ADC_DRV_ConfigChan (const uint32_t instance, const uint8_t chanindex, const adc_chan_config_t xconst
config)
Configures the selected control channel with the given configuration structure.

When Software Trigger mode is enabled, configuring control channel index 0, implicitly triggers a new conversion
on the selected ADC input channel. Therefore, ADC_DRV_ConfigChan can be used for sw-triggering conversions.

Configuring any control channel while it is actively controlling a conversion (sw or hw triggered) will implicitly abort
the on-going conversion.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.18 ADC Driver

225

Parameters
in instance | instance number
in chanindex | the control channel index
in config | the configuration structure

Definition at line 381 of file adc_driver.c.

16.18.4.5 void ADC_DRV_ConfigConverter (const uint32_t instance, const adc_converter_config_t xxconst config)

Configures the converter with the given configuration structure.

This function configures the ADC converter with the options provided in the provided structure.

Parameters
in instance | instance number
in config | the configuration structure

Definition at line 94 of file adc_driver.c.

16.18.4.6 void ADC_DRV_ConfigHwAverage (const uint32_t instance, const adc_average_config_t xconst config)

Configures the Hardware Average feature with the given configuration structure.

This function sets the configuration for the Hardware Average feature.

Parameters
in instance | instance number
in config | the configuration structure

Definition at line 318 of file adc_driver.c.

16.18.4.7 void ADC_DRV_ConfigHwCompare (const uint32_t instance, const adc_compare_config_t xconst config)

Configures the Hardware Compare feature with the given configuration structure.

This functions sets the configuration for the Hardware Compare feature using the configuration structure.

Parameters
in instance | instance number
in config | the configuration structure

Definition at line 255 of file adc_driver.c.

16.18.4.8 void ADC_DRV_ConfigUserCalibration (const uint32_t instance, const adc_calibration_t xconst config)

Configures the User Calibration feature with the given configuration structure.

This function sets the configuration for the user calibration registers.

Parameters
in instance | instance number
in config | the configuration structure

Definition at line 658 of file adc_driver.c.

16.18.4.9 void ADC_DRV_GetChanConfig (const uint32_t instance, const uint8_t chanindex, adc_chan_config_t x«const

config)

Gets the current control channel configuration for the selected channel index.

This function returns the configuration for a control channel

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

226 CONTENTS

Parameters
in instance | instance number
in chanindex | the control channel index
out config | the configuration structure

Definition at line 406 of file adc_driver.c.
16.18.4.10 void ADC_DRV_GetChanResult (const uint32_t instance, const uint8_t chanindex, uint16_t xconst result)

Gets the last result for the selected control channel.

This function returns the conversion result from a control channel.

Parameters
in instance | instance number
in chanindex | the converter control channel index
out result | the result raw value

Definition at line 517 of file adc_driver.c.
16.18.4.11 bool ADC_DRV_GetConvCompleteFlag (const uint32_t instance, const uint8_t chanindex)

Gets the control channel Conversion Complete Flag state.

This function returns the state of the Conversion Complete flag for a control channel. This flag is set when a
conversion is complete or the condition generated by the Hardware Compare feature is evaluated to true.

Parameters

in instance | instance number

in chanindex | the adc control channel index
Returns

the Conversion Complete Flag state

Definition at line 490 of file adc_driver.c.
16.18.4.12 void ADC_DRV_GetConverterConfig (const uint32_t instance, adc_converter_config_t xconst config)

Gets the current converter configuration.

This functions returns the configuration for converter in the form of a configuration structure.

Parameters
in instance | instance number
out config | the configuration structure

Definition at line 140 of file adc_driver.c.
16.18.4.13 void ADC_DRV_GetHwAverageConfig (const uint32_t instance, adc_average_config_t xconst config)

Gets the current Hardware Average configuration.
This function returns the configuration for the Hardware Average feature.

Parameters

in instance | instance number

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.18 ADC Driver 227

out config | the configuration structure

Definition at line 337 of file adc_driver.c.
16.18.4.14 void ADC_DRV_GetHwCompareConfig (const uint32_t instance, adc_compare_config_t xconst config)

Gets the current Hardware Compare configuration.

This function returns the configuration for the Hardware Compare feature.

Parameters
in instance | instance number
out config | the configuration structure

Definition at line 277 of file adc_driver.c.
16.18.4.15 IRQn_Type ADC_DRV_GetinterruptNumber (const uint32_t instance)

Returns the interrupt number for the ADC instance.
This function returns the interrupt number for the specified ADC instance.

Parameters

in instance | instance number of the ADC

Returns

irg_number: the interrupt number (index) of the ADC instance, used to configure the interrupt

Definition at line 695 of file adc_driver.c.
16.18.4.16 uint32_t ADC_DRV_GetTriggerErrorFlags (const uint32_t instance)

Get the trigger error flags bits of the ADC instance.
This function returns the trigger error flags bits of the ADC instance.

Parameters

in instance | instance number of the ADC

Returns

trigErrorFlags The Trigger Error Flags bit-mask

Definition at line 753 of file adc_driver.c.
16.18.4.17 void ADC_DRV_GetUserCalibration (const uint32_t instance, adc_calibration_t xconst config)

Gets the current User Calibration configuration.

This function returns the current user calibration register values.

Parameters
in instance | instance number
out config | the configuration structure

Definition at line 677 of file adc_driver.c.
16.18.4.18 void ADC_DRV _InitChanStruct (adc_chan_config_t xconst config)

Initializes the control channel configuration structure.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

228 CONTENTS

This function initializes the control channel configuration structure to default values (Reference Manual resets). This
function should be called on a structure before using it to configure a channel (ADC_DRV_ConfigChan), otherwise
all members must be written by the caller. This function insures that all members are written with safe values, so
the user can modify only the desired members.

Parameters

out config \ the configuration structure

Definition at line 359 of file adc_driver.c.
16.18.4.19 void ADC_DRV _InitConverterStruct (adc_converter_config_t xconst config)

Initializes the converter configuration structure.

This function initializes the members of the adc_converter_config_t structure to default values (Reference Manual
resets). This function should be called on a structure before using it to configure the converter with ADC_DRV«
_ConfigConverter(), otherwise all members must be written (initialized) by the user. This function insures that all
members are written with safe values, so the user can modify only the desired members.

Parameters

out | config | the configuration structure

Definition at line 69 of file adc_driver.c.
16.18.4.20 void ADC_DRV_InitHwAverageStruct (adc_average_config_t xconst config)

Initializes the Hardware Average configuration structure.

This function initializes the Hardware Average configuration structure to default values (Reference Manual resets).
This function should be called before configuring the Hardware Average feature (ADC_DRV_ConfigHwAverage),
otherwise all members must be written by the caller. This function insures that all members are written with safe
values, so the user can modify the desired members.

Parameters

out config | the configuration structure

Definition at line 302 of file adc_driver.c.
16.18.4.21 void ADC_DRV_InitHwCompareStruct (adc_compare_config_t xconst config)

Initializes the Hardware Compare configuration structure.

This function initializes the Hardware Compare configuration structure to default values (Reference Manual resets).
This function should be called before configuring the Hardware Compare feature (ADC_DRV_ConfigHwCompare),
otherwise all members must be written by the caller. This function insures that all members are written with safe
values, so the user can modify the desired members.

Parameters

out config | the configuration structure

Definition at line 236 of file adc_driver.c.
16.18.4.22 void ADC_DRV _InitUserCalibrationStruct (adc_calibration_t xconst config)

Initializes the User Calibration configuration structure.

This function initializes the User Calibration configuration structure to default values (Reference Manual resets).
This function should be called on a structure before using it to configure the User Calibration feature (ADC_DRV_«
ConfigUserCalibration), otherwise all members must be written by the caller. This function insures that all members
are written with safe values, so the user can modify only the desired members. this function will check and reset
clock divide based the adc frequency. an error will be displayed if frequency is greater than required clock for
calibration.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.18 ADC Driver 229

Parameters

out config \ the configuration structure

Definition at line 642 of file adc_driver.c.
16.18.4.23 void ADC_DRV_Reset (const uint32_t instance)

Resets the converter (sets all configurations to reset values)
This function resets all the internal ADC registers to reset values.

Parameters

in instance | instance number

Definition at line 178 of file adc_driver.c.
16.18.4.24 void ADC_DRV_SetSwPretrigger (const uint32_t instance, const adc_sw_pretrigger_t swPretrigger)

This function sets the software pretrigger - affects only first 4 control channels.

Parameters
in instance | instance number
in swPretrigger | the swPretrigger to be enabled

Definition at line 426 of file adc_driver.c.
16.18.4.25 void ADC_DRV_WaitConvDone (const uint32_t instance)

Waits for a conversion/calibration to finish.
This functions waits for a conversion to complete by continuously polling the Conversion Active Flag.

Parameters

in instance | instance number

Definition at line 470 of file adc_driver.c.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

230 CONTENTS

16.19 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL)
16.19.1 Detailed Description

Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL).
ADC PAL general consideration

The ADC PAL is an interface abstraction layer for multiple Analog to Digital Converter peripherals.

The ADC PAL allows configuration of groups of successive conversions started by a single trigger event.

Each conversion in a group is mapped to an ADC input channel - the conversion group is actually defined by an
array of input channels, which is a member of the adc_group_config_t structure. The order of the input channels
will also give the order of execution of the conversions within the group.

Note: all conversion groups need to be configured at PAL initialization time.

The trigger event for a group can be SW or HW, and needs to be selected at configuration time.

1. Execution of SW triggered groups may be started/stopped by calling a dedicated function ADC_Start«
GroupConversion(), ADC_StopGroupConversion().

2. HW triggered groups need to be enabled for execution by calling a dedicated function - the actual execution
will be started by the occurrence of the selected hardware trigger event ADC_EnableHardwareTrigger(), A«
DC_DisableHardwareTrigger().

Note: for HW triggered groups the ADC PAL does not configure the peripherals which provide the triggering
events (timers, counters, etc.) - they will need to be configured separately by the ADC PAL user.

Each group needs to have associated a result buffer which needs to be allocated by the PAL user. The length of
the result buffer is defined by two configuration parameters:

* numChannels - defines also the size of the inputChannelArray

* numSetsResultBuffer - defines the number of sets of results which can be stored in the result buffer.

The length of the result buffer = numChannels x numSetsResultBuffer. Each time a group of conversions finishes
execution, a set of results for all conversions in the group will be copied by the PAL into the corresponding result
buffer. The PAL considers the result buffer as circular, with the length configured via previously described.

On some platforms, HW triggered groups may support delay(s) between the occurrence of the HW trigger event
and the actual start of conversions. This feature can be controlled for each HW triggered group via delay Type and
delayArray parameters in adc_group_config_t. For SW triggered groups, these parameters are ignored. For details
please refer to ADC PAL platform specific information.

Each group can also have associated a notification callback which will be executed when all conversions
finish execution. The callback shall receive as parameter a pointer to adc_callback_info_t containing the group
index for which the notification is called, and result buffer tail - offset of the most recent conversion result in the result
buffer. Notifications can be enabled and disabled using ADC_EnableNotification() and ADC_DisableNotification().
By default the notification is set to active when enabling a HW triggered group or starting a SW triggered group.
Note: The notification callback may be set to NULL and thus it will not be called.

For SW triggered groups, continuous mode can be enabled at configuration time.

E.g.: a group with 3 conversions InputChO, InputCh1, InputCh2 -> with continuous mode enabled will continuously
repeat the series of conversions until it is stopped: InputChO0, InputCh1, InputCh2, InputChO0, InputCh1, InputCh2,...
The user needs to dimension accordingly the result buffer, such that it has sufficient time to read the results before
they are overwritten.

For HW triggered groups, continuous mode parameter is not available.

The ADC PAL implicitly configures and uses other peripherals besides ADC - these resources should not be
used simultaneously from other parts of the application. For details please refer to the platform specific details.

The ADC PAL module needs to include a configuration file named adc_pal cfg.h, which defines which IPs
are used.

The ADC PAL allows configuration of platform specific parameters via a pointer to a platform specific structure,
following the naming convention: extension_adc_<platform>_t. E.g.: extension_adc_s32k1xx_t

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.19 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL) 231

Important note

The ADC PAL configuration structure passed via reference to ADC_Init(), including all arrays referenced by structure
members, must be persistent throughout the usage of the ADC PAL. Storing them to memory sections which get
freed or altered during ADC PAL usage, will lead to unpredictable behavior.

Platform specific details
S$32K1xx device family

On these platforms, each instance of ADC PAL uses:

+ one instance of PDB linked to the selected ADC (ADCn - PDBn) - used for both SW and HW triggered groups

» the TRGMUX_TARGET_MODULE_PDBn_TRG_IN targets from TRGMUX - used only for HW triggered
groups

These platforms are supported by the ADC PAL of type ADC_PAL_S32K1xx.

Important details:

1. The PAL supports configuring any number of conversion groups at PAL initialization time, but every time a
HW/SW triggered group is enabled/started, the underlying hardware peripherals are reconfigured.

2. The same input channel may appear multiple times in a group.
Group delay support:

* no delay between HW trigger event and conversions start:
delayType = ADC_DELAY_TYPE_NO_DELAY and delayArray = NULL

» group delay between HW trigger event and the start of the first conversion in the group - the rest of conversions
start right after the previous one
delayType = ADC_DELAY_TYPE_GROUP_DELAY and delayArray set to point to a single uint16_t variable
storing the delay value, expressed in PDB ticks (affected by PDB prescaler configurable via config extension)

« individual delays between HW trigger event and the start of each conversion in the group delay Type = ADC+
_DELAY_TYPE_INDIVIDUAL_DELAY and delayArray set to point to an uin16_t array with length equal with
the number of conversions in the group
Delays are expressed in PDB ticks (affected by PDB prescaler configurable via config extension). Delay
values are measured relative to the trigger event. When a delay expires, a PDB pretrigger is issued.

Note: the pretriggers must not occur while another conversion in the group is running, otherwise the ADC
freezes. It is the user's responsibility to make sure they do not overlap, i.e. delayN_plus_1 > (delayN +
conversion_duration).

MPC5746C and MPC5748G device families

On these platforms, each instance of ADC PAL uses:

« one instance of BCTU - used only for HW triggered groups

« all ADC instances connected to the selected BCTU instance. Please note that the ADC instances may have
different resolutions

These platforms are supported by the ADC PAL of type ADC_PAL_MPC574xC_G_R.

Group delay support:

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

232 CONTENTS

« groups do not support delays, so in adc_group_config_t structures delay Type must be set to ADC_DELAY «
_TYPE_NO_DELAY and delayArray to NULL, in adc_group_config_t.

Important details:

1. The PAL supports any number of SW triggered conversion groups at PAL initialization time. SW triggered
groups will be configured directly in ADC, each time ADC_StartGroupConversion() is called.

2. The maximum supported number of HW triggered conversion groups is expressed in two steps:

« for groups which include a minimum of 2 conversions: the total number of conversions within all these
groups shall be less than or equal with the number of BCTU LIST HW registers. (E.g. 1 group of 8
conversions & 1 group of 24 conversions: 8 + 24 <= 32)

« for groups which include a single conversion: the total number of such groups shall be less than or
equal with the total number of BCTU Triggers minus the number of configured groups with at least 2
conversions

3. Aninput channel may only appear once in the group, otherwise the last conversion result will appear for each
occurrence of the channel index in the group. This is a platform limitation: BCTU has only a single result
register per ADC instance, and the ADC has a single result register per channel.

4. A conversion group (SW and HW triggered) can target only conversions on a single ADC instance.
5. The same trigger source cannot be assigned to multiple HW triggered groups.

6. Multiple HW triggered groups may be enabled simultaneously.
However, the user must make sure that the actual HW trigger events do not occur simultaneously and that
conversions from multiple groups do not overlap in time. Otherwise hardware errors may occur and results
may be overwritten.

MPC574xP and S32Rx7x device families

On these platforms, each instance of ADC PAL uses:

 one instance of CTU - used only for HW triggered groups and statically configured to CTU triggered mode

« all ADC instances connected to the selected CTU instance
These platforms are supported by the ADC PAL of type ADC_PAL_SAR_CTU.
Group delay support:

* no delay between HW trigger event and conversions start:
delayType = ADC_DELAY_TYPE_NO_DELAY and delayArray = NULL

+ group delay between HW trigger event and the start of the first conversion in the group - the rest of conversions
start right after the previous one
delayType = ADC_DELAY_TYPE_GROUP_DELAY and delayArray set to point to a single uint16_t variable
storing the delay value, expressed in CTU ticks (affected by CTU prescaler)

Important details:

1. The PAL supports any number of SW triggered conversion groups at PAL initialization time. SW triggered
groups will be configured directly in ADC, each time ADC_StartGroupConversion() is called.

2. The maximum supported number of HW triggered conversion groups is equal with the number of CTU result
FIFOs - defined in platform header file as CTU_FR_COUNT. The total number of conversions in all HW
triggered groups must be <= the length of the CTU ADC command list - defined in platform header file as
CTU_CHANNEL_COUNT.

Generated on Fri Jun 11 2021 08:16:16 for S32SDK User Manual by Doxygen

16.19 Analog to Digital Converter - Peripheral Abstraction Layer (ADC PAL) 233

3. A conversion group (SW and HW triggered) can target only conversions on a single ADC instance.

4. An input channel may only appear once in a SW triggered group, otherwise the last conversion result will
appear for each occurrence of the channel index in the group. This is a platform limitation: the ADC has a
single result register per channel. For HW triggered groups this restriction doesn't apply.

5. All HW triggered groups can be enabled simultaneously.
However, the user must make sure that the actual HW trigger events do not occur simultaneously and that
conversions from multiple groups do not overlap in time. Otherwise hardware errors may occur and results
may be overwritten.

6. Each HW triggered group has assigned a CTU result FIFO. The number of channels in each group must be
less than the CTU result FIFO length - note that not all FIFOs have the same length. FIFOs are assigned in
the same order in which the HW triggered groups are configured in the PAL init state: FIFO#0 assigned to
first group, FIFO#1 to second, etc.

7. The trigger sources enabled for a group can implicitly start also the rest of the enabled HW triggered groups.
E.g. SourceX configured for group0, sourceY configured for group1. If both groups are enabled, when event
from sourceX occurs, both group0 and group1 will execute; the same when event from sourceY occurs.

Integration guideline

Compilation units
The following files need to be compiled in the project:

${S32SDK_PATH}\platform\pall\src\adc\adc_pal.c
${S32SDK_PATH}\platform\pallsrc\adc\adc_irqg.c

Additionally, it is required to compile also the .c files from the dependencies listed for each ADC PAL type (please
see Dependencies subsection below).

Include path
The following paths need to be added to the include path of the toolchain:

${S32SDK_PATH}\platform\pallinc\
${S32SDK_PATH}\platform\drivers\inc\

An additional file, named adc_pal_cfg.h, must be created by the user and added to one of the include paths. The
user has to add to the file the definitions of preprocessor symbols according to the ADC PAL type used. These
symbols are specified in the next subsection.

When using the S32 SDK configuration tool, the file is generated by the configurator.

The pal type ADC_PAL_S32K1xx also requires:

${S32SDK_PATH}\platform\drivers\src\adc\

Compile symbols
1. Define for selecting one of the ADC PAL type to be used:
ADC_PAL_S32K1lxx
ADC_PAL_MPC574xC_G_R
ADC_PAL_SAR_CTU

2. Define the maxim