
Introduction

STM32Cube is an STMicroelectronics original initiative to improve designer productivity significantly by reducing development
effort, time, and cost. STM32Cube covers the whole STM32 portfolio.
STM32Cube includes:
• A set of user-friendly software development tools to cover project development from conception to realization, among

which are:
– STM32CubeMX, a graphical software configuration tool that allows the automatic generation of C initialization code

using graphical wizards
– STM32CubeIDE, an all-in-one development tool with peripheral configuration, code generation, code compilation,

and debug features
– STM32CubeCLT, an all-in-one command-line development toolset with code compilation, board programming, and

debug features
– STM32CubeProgrammer (STM32CubeProg), a programming tool available in graphical and command-line

versions
– STM32CubeMonitor (STM32CubeMonitor, STM32CubeMonPwr, STM32CubeMonRF, STM32CubeMonUCPD),

powerful monitoring tools to fine-tune the behavior and performance of STM32 applications in real time
• STM32Cube MCU and MPU Packages, comprehensive embedded-software platforms specific to each microcontroller

and microprocessor series (such as STM32CubeH5 for the STM32H5 Series), which include:
– STM32Cube hardware abstraction layer (HAL), ensuring maximized portability across the STM32 portfolio
– STM32Cube low-layer APIs, ensuring the best performance and footprints with a high degree of user control over

hardware
– A consistent set of middleware components such as ThreadX, FileX / LevelX, NetX Duo, USBX, USB-PD, mbed-

crypto, secure manager API, MCUboot, and OpenBL
– All embedded software utilities with full sets of peripheral and applicative examples

• STM32Cube Expansion Packages, which contain embedded software components that complement the functionalities of
the STM32Cube MCU and MPU Packages with:
– Middleware extensions and applicative layers
– Examples running on some specific STMicroelectronics development boards

This user manual describes how to get started with the STM32CubeH5 MCU Package.
Section 2 describes the main features of the STM32CubeH5 MCU Package. Section 3 and Section 4 provide an overview of the
STM32CubeH5 architecture and MCU Package structure.

Getting started with STM32CubeH5 for STM32H5 Series

UM3065

User manual

UM3065 - Rev 1 - February 2023
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/stm32cube
https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubeclt?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubemonitor?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubemonpwr?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubemonrf?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubemonucpd?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/embedded-software/stm32cube-mcu-mpu-packages.html
https://www.st.com/en/embedded-software/stm32cube-expansion-packages.html
https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

1 General information

The STM32CubeH5 MCU Package runs on STM32 32-bit microcontrollers based on the Arm® Cortex®-M33
processor with Arm® TrustZone® and FPU.

Note: Arm and TrustZone are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

UM3065
General information

UM3065 - Rev 1 page 2/30

https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

2 STM32CubeH5 main features

The STM32CubeH5 MCU Package runs on STM32 32-bit microcontrollers based on the Arm® Cortex®-M33
processor with TrustZone® and FPU.
The STM32CubeH5 gathers, in a single package, all the generic embedded software components required to
develop an application for the STM32H5 Series microcontrollers. In line with the STM32Cube initiative, this set
of components is highly portable, not only within the STM32H5 Series microcontrollers but also to other STM32
series.
The STM32CubeH5 is fully compatible with the STM32CubeMX code generator for generating initialization code.
The package includes low-layer (LL) and hardware abstraction layer (HAL) APIs that cover the microcontroller
hardware, together with an extensive set of examples running on STMicroelectronics boards. The HAL and LL
APIs are available in open-source BSD license for user convenience.
The STM32CubeH5 MCU Package also contains a comprehensive middleware components constructed around
Microsoft® Azure® RTOS middleware and other in-house and open source stacks, with the corresponding
examples.
They come with free user-friendly license terms:
• Integrated and full featured RTOS: ThreadX
• CMSIS-RTOS implementation with ThreadX
• USB Host and Device stacks coming with many classes: USBX
• Advanced file system and flash translation layer: FileX / LevelX
• Industrial grade networking stack: optimized for performance coming with many IoT protocols: NetX Duo
• USB PD library
• OpenBootloader
• Secure manager API
• MCU boot
• mbed-crypto libraries
• STM32_Audio library
Several applications and demonstration implementing all these middleware components are also provided in the
STM32CubeH5 MCU Package.
The STM32CubeH5 MCU Package component layout is illustrated in the figure below.

Figure 1. STM32CubeH5 MCU Package components

D
T7

12
97

V1

Middleware level Utilities

Application-level demonstrations

HAL and LL APIs

User
application

Evaluation
boards

Discovery
boards

STM32 Nucleo
boards

Dedicated
boards

USB PD NetX
Duo

mbed-
crypto ThreadX

Hardware abstraction layer APIs (HAL)Board Support Package (BSP) Low-layer APIs (LL)

Utilities

CMSISsecure
manager APIUSBX FileX/

LevelX MCU boot OpenBL

UM3065
STM32CubeH5 main features

UM3065 - Rev 1 page 3/30

https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

3 STM32CubeH5 architecture overview

The STM32CubeH5 MCU Package solution is built around three independent levels that easily interact as
described in the figure below.

Figure 2. STM32CubeH5 MCU Package architecture

Library and protocol based components
(for example FS, RTOS™, USB PD)

Examples

BSP drivers

Core drivers (optional)

Hardware abstraction layer (HAL)

HAL

Level 0

Level 1

Level 2

Low-layer (LL)

Discovery kit demonstration

Applications

3.1 Level 0
This level is divided into three sub-layers:
• Board support package (BSP)
• Hardware abstraction layer (HAL)

– HAL peripheral drivers
– Low-layer drivers

• Basic peripheral usage examples

3.1.1 Board support package (BSP)
This layer offers a set of APIs relative to the hardware components in the hardware boards (such as LCD, Audio,
and microSD™ drivers). It is composed of two parts:
• Component

This is the driver relative to the external device on the board and not to the STM32. The component driver
provides specific APIs to the BSP driver external components and could be portable on any other board.

• BSP driver
It allows linking the component drivers to a specific board and provides a set of user-friendly APIs. The API
naming rule is BSP_FUNCT_Action().
Example: BSP_LED_Init(), BSP_LED_On()

The BSP is based on a modular architecture allowing an easy porting on any hardware by just implementing the
low-level routines.

UM3065
STM32CubeH5 architecture overview

UM3065 - Rev 1 page 4/30

https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

3.1.2 Hardware abstraction layer (HAL) and low-layer (LL)
The STM32CubeH5 HAL and LL are complementary and cover a wide range of applications requirements:
• The HAL drivers offer high-level function-oriented highly-portable APIs. They hide the MCU and peripheral

complexity to end user.
The HAL drivers provide generic multi-instance feature-oriented APIs which simplify user application
implementation by providing ready to use processes. As example, for the communication peripherals (I2S,
UART, and others), it provides APIs allowing initializing and configuring the peripheral, managing data
transfer based on polling, interrupt or DMA process, and handling communication errors that may raise
during communication. The HAL driver APIs are split in two categories:
– Generic APIs which provides common and generic functions to all the STM32 Series
– Extension APIs which provide specific and customized functions for a specific family or a specific part

number.
• The low-layer APIs provide low-level APIs at register level, with better optimization but less portability. They

require a deep knowledge of MCU and peripheral specifications.
The LL drivers are designed to offer a fast light-weight expert-oriented layer which is closer to the hardware
than the HAL. Contrary to the HAL, LL APIs are not provided for peripherals where optimized access is not
a key feature, or for those requiring heavy software configuration and/or complex upper-level stack.
The LL drivers feature:
– A set of functions to initialize peripheral main features according to the parameters specified in data

structures
– A set of functions used to fill initialization data structures with the reset values corresponding to each

field
– Function for peripheral de-initialization (peripheral registers restored to their default values)
– A set of inline functions for direct and atomic register access
– Full independence from HAL and capability to be used in standalone mode (without HAL drivers)
– Full coverage of the supported peripheral features

3.1.3 Basic peripheral usage examples
This layer encloses the examples built over the STM32 peripherals using only the HAL and BSP resources.

3.2 Level 1
This level is divided into two sub-layers:
• Middleware components
• Examples based on the middleware components

3.2.1 Middleware components
The middleware is a set of libraries constructed around Microsoft® Azure® RTOS middleware and other in-house
(such as OpenBL) and open source (such as mbed-crypto). All are integrated and customized for STM32 MCU
devices and enriched with corresponding application examples based on STM32 evaluation boards. Horizontal
interactions between the components of this layer are simply done by calling the feature APIs while the vertical
interaction with the low-layer drivers is done through specific callbacks and static macros implemented in the
library system call interface.
The main features of each middleware component are as follows:
• ThreadX:

A real-time operating system (RTOS), designed for embedded systems with two functional modes:
– Common mode: common RTOS functionalities such as thread management and synchronization,

memory pool management, messaging, and event handling
– Module mode: an advanced usage mode that allows loading and unloading of prelinked ThreadX

modules on-the-fly through a module manager.
• NetX Duo

Industrial grade networking stack: optimized for performance coming with many IoT protocols.
• FileX / LevelX

Advanced flash file system (FS) / flash translation layer (FTL): fully featured to support NAND/NOR flash
memories

UM3065
Level 1

UM3065 - Rev 1 page 5/30

https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

• USBX
USB Host and Device stacks coming with many classes

• USB PD Device and Core libraries
New USB Type-C® power delivery service. Implementing a dedicated protocol for the management of
power management in this evolution of the USB.org specification (refer to http://www.usb.org/developers/
powerdelivery/ for more details)
– PD3 specifications (support of source / sink / dual role)
– Fast role swap
– Dead battery
– Use of configuration files to change the core and the library configuration without changing the library

code (read only)
– RTOS and standalone operation.
– Link with low-level driver through an abstraction layer using the configuration file to avoid any

dependency between the library and the low-level drivers.
• OpenBootloader

This middleware component provides an open source bootloader with exactly the same features as STM32
system bootloader and with the same tools used for system bootloader

• Arm Trusted Firmware‑M (TF‑M): adapted version of Arm TF‑M to keep only the BL2 (bootloader second
stage) files required for OEM-iROT applications

• Secure manager API
This component enables STMicroelectronics installable services that provide callable standard PSA service
API for nonsecure application at runtime.
– PSA standard secure services:

◦ Firmware update
◦ Internal trusted storage
◦ Cryptography: AES, ECC, RSA, SHA, TRNG
◦ Initial attestation

– Software IP protection (PSA isolation level3)
◦ Sandbox secure services

• STM32_Audio: Software library to convert PDM data to PCM format
• MCU boot
• mbed-crypto

Open source cryptography library that supports a wide range of cryptographic operations, including:
– Key management
– Hashing
– Symmetric cryptography
– Asymmetric cryptography
– Message authentication (MAC)
– Key generation and derivation
– Authenticated encryption with associated data (AEAD).

3.2.2 Examples based on the middleware components
Each middleware component comes with one or more examples (called also applications) showing how to use it.
Integration examples that use several middleware components are provided as well.

3.3 Level 2
This level is composed of a single layer which consist in a global real-time and graphical demonstration based on
the middleware service layer, the low-level abstraction layer and the basic peripheral usage applications for board
based features.

UM3065
Level 2

UM3065 - Rev 1 page 6/30

3.4 Utilities
Alike all STM32Cube MCU Packages, the STM32CubeH5 provides a set of utilities that offer miscellaneous
software and additional system resources services that can be used by either the application or the different
STM32Cube Firmware intrinsic middleware and components.

UM3065
Utilities

UM3065 - Rev 1 page 7/30

https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

4 STM32CubeH5 MCU package overview

4.1 Supported STM32H5 Series devices and hardware
STM32Cube offers a highly portable hardware abstraction layer (HAL) built around a generic architecture. It
allows the build-upon layers principle, such as using the middleware layer to implement their functions without
knowing, in-depth, what MCU is used. This improves the library code re-usability and guarantees an easy
portability to other devices.
In addition, thanks to its layered architecture, the STM32CubeH5 offers full support of all STM32H5 Series. The
user has only to define the right macro in stm32h5xx.h.
Table 1 shows the macro to define depending on the STM32H5 Series device used. This macro must also be
defined in the compiler preprocessor.

Table 1. Macros for STM32H5 Series

Macro defined in
stm32h5xx.h STM32H5 part numbers

STM32H573xx
STM32H573AII6, STM32H573AII3Q, STM32H573IIT6, STM32H573IIT3Q, STM32H573IIK6,
STM32H573IIK3Q, STM32H573MIY3QTR, STM32H573RIT6, STM32H573RIV6, STM32H573VIT6,
STM32H573VIT3Q, STM32H573ZIT6, STM32H573ZIT3Q

STM32H563xx

STM32H563AGI6, STM32H563AII6, STM32H563AII3Q, STM32H563IGT6, STM32H563IGK6,
STM32H563IIT6, STM32H563IIT3Q, STM32H563IIK6, STM32H563IIK3Q, STM32H563MIY3QTR,
STM32H563RGT6,STM32H563RGV6, STM32H563RIT6, STM32H563RIV6, STM32H563VGT6,
STM32H563VIT6, STM32H563VIT3Q, STM32H563ZGT6, STM32H563ZIT6, STM32H563ZIT3Q

STM32H562xx
STM32H562AGI6, STM32H562AII6, STM32H562IGT6, STM32H562IGK6, STM32H562IIT6,
STM32H562IIK6, STM32H562RGT6, STM32H562RGV6, STM32H562RIT6, STM32H562RIV6,
STM32H562VGT6, STM32H562VIT6, STM32H562ZGT6, STM32H562ZIT6

STM32H503xx STM32H503EBY6TR, STM32H503KBU6, STM32H503CBU6, STM32H503CBT6,
STM32H503RBT6 STM32H562AGI6,

STM32H5 Series features a rich set of examples and applications at all levels making it easy to understand and
use any HAL driver and/or middleware components. These examples run on the STMicroelectronics boards listed
in Table 2.

Table 2. Boards for STM32H5 Series

Board Supported STM32H5 part numbers

NUCLEO-H563ZI STM32H563ZIT6

NUCLEO-H503RB STM32H503RBH6

STM32H573I-DK STM32H573IIK3Q

The STM32CubeH5 MCU Package is able to run on any compatible hardware. The user simply updates the BSP
drivers to port the provided examples on his own board, if the latter has the same hardware features (such as
LED, LCD display, buttons).

4.2 MCU Package overview
The STM32CubeH5 MCU Package solution is provided in one single zip package having the structure shown in
Figure 3.

UM3065
STM32CubeH5 MCU package overview

UM3065 - Rev 1 page 8/30

https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/nucleo-h563zi?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/nucleo-h503rb?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32h573i-dk?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

Figure 3. STM32CubeH5 MCU Package structure

D
T7

12
14

V1

BSP drivers for the supported boards:
 - Discovery kit
 - Nucleo kit

STM32H5xx HAL and LL
drivers

PDM-to-PCM library

Azure RTOS middleware

Open Source middleware

Project examples list per board

Miscellaneous utilities

1. The component files must not be modified by the user. Only the \Projects sources are editable by the user.

STM32CubeH5 firmware
package release note and
license

Set of examples,
applications, and
demonstrations organized
by board and provided with
preconfigured projects (user
modifiable files)

USB power delivery
libraries

Contains STM32H5xx
CMSIS files that define
peripheral register
declarations, bit definitions
and address mapping

Tool to configure Root of
Trust applications

For each board, a set of examples is provided with preconfigured projects for EWARM, MDK-ARM, and
STM32CubeIDE toolchains.
Figure 4 shows the project structure for the NUCLEO-H563ZI board.

UM3065
MCU Package overview

UM3065 - Rev 1 page 9/30

https://www.st.com/en/product/nucleo-h563zi?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

Figure 4. Overview of STM32CubeH5 examples

The examples are classified depending on the STM32Cube level they apply to, and are named as explained
below:
• Level 0 examples are called "Examples"," Examples_LL" and "Examples_MIX". They use respectively HAL

drivers, LL drivers and a mix of HAL and LL drivers without any middleware component.
• Level 1 examples are called Applications. They provide typical use cases of each middleware component.
Any firmware application for a given board can be quickly build thanks to template projects available in the
Templates and Templates_LL directories.

UM3065
MCU Package overview

UM3065 - Rev 1 page 10/30

4.2.1 TrustZone-enabled projects
TrustZone-enabled “Examples” names are prefixed with "_TrustZone".
TrustZone-enabled “Examples” and “Applications” are provided with a multiproject structure composed of secure
and nonsecure sub-projects as presented below in Figure 5.
TrustZone-enabled projects are developed according to CMSIS-5 device template extended to include the
system partitioning header file partition_<device>.h responsible for principally the setup of the secure attribute unit
(SAU), the FPU and the secure/nonsecure interrupts assignment in secure execution state.
This setup is performed in secure CMSIS SystemInit() function called at startup before entering the secure
application main() function (refer to Arm TrustZone-M documentation of software guidelines).

UM3065
MCU Package overview

UM3065 - Rev 1 page 11/30

Figure 5. Secure and nonsecure multiprojects structure

D
T7

12
16

V2Nonsecure project components
Secure project components

Nonsecure project configuration

Nonsecure project application include
and source files

Secure project configuration

Secure project application include and
source files

Nonsecure callable services

Nonsecure callable header file
(shared by secure project to
nonsecure project)

CMSIS device partition file for IDAU/
SAU, FPU, core and secure/
nonsecure interrupts configuration

The STM32CubeH5 firmware package provides default memory partitioning in the partition_<device>.h files
available under:
\Drivers\CMSIS\Device\ST\STM32H5xx\Include\Templates.
In these partition files, the SAU is disabled by default. Consequently, the IDAU memory mapping is used for
security attribution (refer to Figure 3 in Reference Manual)
If SAU is enabled by the user, a default SAU region configuration is predefined in partition files as follows:

UM3065
MCU Package overview

UM3065 - Rev 1 page 12/30

https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

• SAU region 0: 0x0C0FE000 - 0x0C0FFFFF (secure, nonsecure callable)
• SAU region 1: 0x08100000 - 0x081FFFFF (nonsecure flash memory Bank2 (1024 Kbytes))
• SAU region 2: 0x20050000 - 0x2009FFFF (nonsecure SRAM3 (320 Kbytes)))
• SAU region 3: 0x40000000-0x4FFFFFFF (nonsecure peripheral mapped memory)
• SAU region 4: 0x60000000-0x9FFFFFFF (nonsecure external memories)
• SAU region 5: 0x0BF90000-0x0BFA8FFF (nonsecure system memory)

To match the default partitioning, the STM32H5 Series devices must have the following user option bytes
set:

• TZEN = 0xB4 (TrustZone-enabled device)
• SECWM1_STRT=0x0 SECWM1_END = 0x7F (all 128 pages of flash memory Bank1 set as secure)
• SECWM2_STRT=0x1 SECWM2_END = 0x0 (no page of flash memory Bank2 set as secure, hence Bank2

is nonsecure).

Note: The internal flash memory is fully secure by default in TZEN = 0xB4 and user option bytes SECWM1_STRT/
SECWM1_END and SECWM2_STRT/SECWM2_END must be set according to the application memory
configuration (SAU regions (if SAU is enabled) and secure/nonsecure applications project linker files must be
aligned too).
All examples have the same structure:
• \Inc folder that contains all header files.
• \Src folder for the sources code.
• \EWARM, \MDK-ARM, and \STM32CubeIDE folders containing the preconfigured project for each

toolchain.
• readme.md describing the example behavior and needed environment to make it work
• *.ioc file that allows users to open most of firmware examples within STM32CubeMX
Table 3 gives the number of projects available for each board.

Table 3. Number of examples for each board

Level NUCLEO-H503RB NUCLEO-H563ZI STM32H573I-DK Total

Templates_LL 1 1 1 3

Templates 2 3 6 11

Examples_MIX 0 9 7 16

Examples_LL 36 31 0 67

Examples 48 68 24 140

Demonstrations 0 0 1 1

Applications 4 16 31 51

Total 98 128 63 289

UM3065
MCU Package overview

UM3065 - Rev 1 page 13/30

5 Getting started with STM32CubeH5

5.1 Running a first example
This section explains how simple it is to run a first example on an STM32H5 Series board. The program simply
toggles a LED on the NUCLEO-H563ZI board:
Download the STM32CubeH5 MCU Package. Unzip it into an appropriate directory. Make sure the package
structure shown in Figure 3. STM32CubeH5 MCU Package structure is not modified. Note that it is also
recommended to copy the package as close as possible to the root volume (for example C\ST or G:\Tests)
because some IDEs encounter problems when the path length is too long.

5.1.1 Running a first TrustZone-enabled example
Prior to loading and running a TrustZone-enabled example, it is mandatory to read the example readme file
for any specific configuration that insures that the security is enabled as described in Section 4.2.1 TrustZone-
enabled projects (TZEN = 0xB4 (user option byte)).
1. Browse to \Projects\NUCLEO-H563ZI\Examples.
2. Open \GPIO, then \GPIO_IoToggle_TrustZone folders.
3. Open the project with the preferred toolchain. A quick overview on how to open, build and run an example

with the supported toolchains is given below.
4. Rebuild in sequence all secure and nonsecure project files and load the secure and nonsecure images into

target memory.
5. Run the example: on a regular basis, the secure application toggles LED1 every second and nonsecure

application toggles LED2 twice as fast (for more details, refer to the example readme file).
To open, build and run an example with the supported toolchains, follow the steps below:
• EWARM

1. Under the example folder, open \EWARM sub-folder
2. Launch the Project.eww workspace
3. Set the "xxxxx_S" as active application (right click on xxxxx_S project Set as Active)
4. Rebuild the xxxxx_S secure project files: Project → Rebuild all
5. Rebuild the xxxxx_NS nonsecure project files: Right click on xxxxx_NS project → Rebuild all
6. Flash the secure and nonsecure binaries with Download and Debug button (Ctrl+D)
7. Run program: Debug → Go(F5)

• MDK-ARM
1. Open the MDK-ARM toolchain
2. Open Multi-projects workspace file Project.uvmpw
3. Select the xxxxx_s project as Active Project (Set as Active Project)
4. Build xxxxx_s project
5. Select the xxxxx_ns project as Active Project (Set as Active Project)
6. Build xxxxx_ns project
7. Load the nonsecure binary (F8)

(this downloads the \MDK-ARM\xxxxx_ns\Exe\xxxxx_ns.axf to flash memory)
8. Select the Project_s project as Active Project (Set as Active Project)
9. Load the secure binary (F8)

(this downloads the \MDK-ARM\xxxxx_s\Exe\xxxxx_s.axf to flash memory)
10. Run the example

UM3065
Getting started with STM32CubeH5

UM3065 - Rev 1 page 14/30

https://www.st.com/en/product/nucleo-h563zi?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

• STM32CubeIDE
1. Open the STM32CubeIDE toolchain
2. Open Multi-projects workspace file .project
3. Rebuild xxxxx_Secure project
4. Rebuild xxxxx_NonSecure project
5. Launch Debug as STM32 Cortex-M C/C++ Application for the secure project.
6. In the Edit configuration window, select the Startup panel, and add load image and symbols of the

nonsecure project.
7. Be careful, the nonsecure project has to be loaded before the secure project.
8. Then click "OK".
9. Run the example on debug perspective.

5.1.2 Running a first TrustZone-disabled example
Prior to loading and running a TrustZone-disabled example, it is mandatory to read the example readme file
for any specific configuration or if nothing is mentioned, ensure that the board device has the security disabled
(TZEN = 0xC3 (user option byte)). See FAQ for doing the optional regression to TZEN = 0xC3.
1. Browse to \Projects\NUCLEO-H563ZI\Examples.
2. Open \GPIO, then \GPIO_EXTI folders.
3. Open the project with a preferred toolchain. A quick overview on how to open, build and run an example

with the supported toolchains is given below.
4. Rebuild all files and load the image into target memory.
5. Run the example: each time the USER pushbutton is pressed, LED1 toggles (for more details, refer to the

example readme file).
To open, build and run an example with the supported toolchains, follow the steps below:
• EWARM

1. Under the example folder, open \EWARM sub-folder
2. Launch the Project.eww workspace

Note: The workspace name may change from one example to another.
3. Rebuild all files: Project → Rebuild all
4. Load project image: Project → Debug
5. Run program: Debug → Go(F5)

• MDK-ARM
1. Under the example folder, open \MDK-ARM sub-folder
2. Launch the Project.uvprojx workspace

Note: The workspace name may change from one example to another.
3. Rebuild all files: Project → Rebuild all target files
4. Load project image: Debug → Start/Stop Debug Session
5. Run program: Debug → Run (F5).

• STM32CubeIDE
1. Open the STM32CubeIDE toolchain
2. Click File → Switch Workspace → Other and browse to the STM32CubeIDE workspace directory
3. Click File → Import, select General → Existing Projects into Workspace and then click Next
4. Browse to the STM32CubeIDE workspace directory and select the project
5. Rebuild all project files: select the project in the Project explorer window then click the Project →

build project menu
6. Run program: Run → Debug (F11)

UM3065
Running a first example

UM3065 - Rev 1 page 15/30

5.1.3 Running a first Root of Trust (ROT) example

5.1.3.1 Bootpath overview
The STM32H5xx devices support temporal isolation through Hide Protection Level (HDPL).

Figure 6. Temporal isolation levels on STM32H5 series

D
T7

12
94

V1

ST RSS

iROT

uROT

Secure
user application

Nonsecure
user application

HDPL = 0

HDPL = 1

HDPL = 2

HDPL = 3

Te
m

po
ra

l i
so

la
tio

n

Temporal isolation levels

Several bootpaths are demonstrated on STM32H5xx devices. They consist of one or two boot stages provided by
STMicroelectronics or implemented by original equipment manufacturers (OEMs).

Figure 7. Security bootpath supported on STM32H5 Series

D
T7

12
95

V1

Nonsecure
User application

Legacy

Sy
st

em
 fl

as
h

m
em

or
y

U
se

r f
la

sh

m
em

or
y

STiROT

Debug authentification

Bootloader

RSS

Secure
User application

STiROT
-> Secure user

application

STiROT

Debug authentification

Bootloader

RSS

Secure
User application

STiROT ->
OEMuROT-> Secure

user application

STiROT

Debug authentification

Bootloader

RSS

Reset

OEMuROT

Nonsecure
User application

Secure
User application

OEMiROT
-> Secure user

application

STiROT

Debug authentification

Bootloader

RSS

OEMiROT

Nonsecure
User application

Reset

ResetReset

Secure
Manager

STiROT -> STuROT
-> Secure manager

STiROT

Debug authentification

Bootloader

RSS

STuROT

Nonsecure
User application

Reset

5.1.3.2 ROT applications
Prior to loading and running an ROT application, check the application readme file for any specific configuration
that ensures that the related bootpath is enabled.
The ROT applications can be found under \Projects\STM32H573I-DK\Applications\ROT, Projects\ NUCLEO-
H563ZI\Applications\ROT and Projects\ NUCLEO-H503RB\Applications\ROT. For STM32H573I-DK, they are
organized as shown in the figure below.

UM3065
Running a first example

UM3065 - Rev 1 page 16/30

https://www.st.com/en/product/stm32h573i-dk?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

Figure 8. ROT application structure

For Projects\ NUCLEO-H563ZI\Applications\ROT and Projects\ NUCLEO-H503RB\Applications\ROT, the ROT
application structure is similar except that STiROT and SMAK are not available.

5.1.3.3 OEMiROT, STiROT, and STiROT_OEMuROT bootpaths
To run the OEMiROT, STiROT, or STiROT_OEMuROT bootpath, proceed as follows:
1. First, configure the user environment using the env script available under the ROT_Provisionning folder.

Caution: Make sure the STM32TrustedPackageCreator option is selected during the STM32CubeProgrammer
installation, as it is used by the provisioning script.

2. Select the required bootpath, then launch the provisioning script located under each bootpath folder.
3. Once the provisioning script for the desired bootpath has started, follow the instructions displayed on the

terminal. They guide you through the following steps:
a. Configuration management: option byte key (OBK) generation (configuration and debug

authentication.
b. Image generation: image build (secure boot and application).
c. Provisioning: image programming and OBK provisioning.

UM3065
Running a first example

UM3065 - Rev 1 page 17/30

4. Once the steps above are executed, reset the target, and connect the terminal emulator via the ST-LINK
virtual communication port to get the application menu.

Caution: Do not change the product state from OPEN to a higher state without having provisioned the debug
authentication (certificate and permissions). Otherwise, the MCU becomes unusable. The provisioning
script ensures that the provisioning of the debug authentication is performed before modifying the product
state, so that the device can be reinitialized.

5.1.3.4 Secure manager access kit (SMAK) bootpath
To run the SMAK bootpath, proceed as follows:
1. Before using the SMAK application (SMAK_Appli), download the secure manager package from

www.st.com, and install it under STM32H573I-DK\Applications\ROT\SMAK_Appli\Binary.
2. First configure the user environment using the env script available under the ROT_Provisionning folder.

Caution: Make sure the STM32TrustedPackageCreator option is selected during the STM32CubeProgrammer
installation, as it is used by the provisioning script.

3. Then launch the provisioning script available under ROT_Provisionning\SMAK, and follow the instructions
displayed on the terminal. They guide you through the following steps:
a. Configuration:

◦ OBK generation (configuration, debug authentication) and OB generation
◦ SFI generation
◦ SMAK_Appli configuration

b. Installation: Secure manager programming and OBK provisioning through SFI.
Once the above steps are complete, the product state is TZ-CLOSED so that the MCU secure area is
closed.

4. Open the NonSecure SMAK_Appli project using your preferred toolchain, connect the terminal emulator via
the ST-LINK virtual port, build the project, then download it.

5. Follow the instructions displayed on the terminal to access the demonstrations on the internal trusted
storage, the cryptography, the initial attestation, and firmware update Platform Security Architecture (PSA)
services.

5.1.3.5 Debug authentication (DA) regression
After having run an ROT application, the device can be erased and reinitialized by erasing the flash memory and
by switching back the product to OPEN state. This can be done by running the regression script located in the
ROT_Provisioning/DA folder.

5.2 Developing a custom application
The instruction cache (ICACHE) must be enabled by software to get a 0 wait-state execution from flash memory
and external memories, and reach the maximum performance and a better power consumption.

5.2.1 Using STM32CubeMX to develop or update an application
In the STM32CubeH5 MCU Package, nearly all example projects are generated with the STM32CubeMX tool to
initialize the system, peripherals and middleware.
The direct use of an existing example project from the STM32CubeMX tool requires STM32CubeMX 6.8.0 or
higher:
• After the installation of STM32CubeMX, open and if necessary update a proposed project. The simplest

way to open an existing project is to double-click on the *.ioc file so that STM32CubeMX automatically
opens the project and its source files.

• The initialization source code of such projects is generated by STM32CubeMX; the main application source
code is contained by the comments “USER CODE BEGIN” and “USER CODE END”. In case the IP
selection and setting are modified, STM32CubeMX updates the initialization part of the code but preserves
the main application source code.

For developing a custom project in the STM32CubeMX, follow the step-by-step process:
1. Select the STM32 microcontroller that matches the required set of peripherals.

UM3065
Developing a custom application

UM3065 - Rev 1 page 18/30

http://www.st.com
https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

2. Configure all the required embedded software using a pinout-conflict solver, a clock-tree setting helper, a
power consumption calculator, and the utility performing MCU peripheral configuration (such as GPIO or
USART) and middleware stacks (such as USB).

3. Generate the initialization C code based on the selected configuration. This code is ready to use within
several development environments. The user code is kept at the next code generation.

For more information about STM32CubeMX, refer to STM32CubeMX for STM32 configuration and initialization C
code generation (UM1718).
For a list of the available example projects for the STM32CubeH5, refer to the STM32Cube firmware examples for
STM32CubeH5 application note.

5.2.2 HAL application
This section describes the steps required to create a custom HAL application using STM32CubeH5:
1. Create a project

To create a new project, start either from the Template project provided for each
board under \Projects\<STM32xxx_yyy>\Templates or from any available project under
\Projects\<STM32xxy_yyy>\Examples or \Projects\<STM32xx_yyy>\Applications (where <STM32xxx_yyy>
refers to the board name, such as STM32CubeH5).
The Template project provides an empty main loop function, however it is a good starting point to
understand the STM32CubeH5 project settings. The template has the following characteristics:
– It contains the HAL source code, CMSIS and BSP drivers which are the minimum set of components

required to develop a code on a given board.
– It contains the include paths for all the firmware components.
– It defines the supported STM32H5 Series devices, allowing the CMSIS and HAL drivers to be

configured correctly.
– It provides read-to-use user files preconfigured as shown below:

HAL initialized with default time base with Arm core SysTick.
SysTick ISR implemented for HAL_Delay() purpose.

Note: When copying an existing project to another location, make sure all the include paths are updated.
2. Add the necessary middleware to user project (optional)

To identify the source files to be added to the project file list, refer to the documentation provided for each
middleware. Refer to the applications under \Projects\STM32xxx_yyy\Applications\<MW_Stack> (where
<MW_Stack> refers to the middleware stack, such as USBX) to know which source files and which include
paths must be added.

3. Configure the firmware components
The HAL and middleware components offer a set of build time configuration options using macros
#define declared in a header file. A template configuration file is provided within each component which
has to be copied to the project folder (usually the configuration file is named xxx_conf_template.h, the
word ‘_template’ needs to be removed when copying it to the project folder). The configuration file provides
enough information to understand the impact of each configuration option. More detailed information is
available in the documentation provided for each component.

4. Start the HAL Library
After jumping to the main program, the application code must call HAL_Init() API to initialize the HAL
Library, which carries out the following tasks:
a. Configuration of the flash memory prefetch and SysTick interrupt priority (through macros defined in

stm32h5xx_hal_conf.h).
b. Configuration of the SysTick to generate an interrupt every millisecond at the SysTick interrupt

priority TICK_INT_PRIO defined in stm32h5xx_hal_conf.h, which is clocked by the CSI (at this
stage, the clock is not yet configured and thus the system is running from the 4 MHz CSI).

c. Setting of NVIC group priority to 0.
d. Call of HAL_MspInit() callback function defined in stm32h5xx_hal_msp.c user file to perform

global low-level hardware initializations.

UM3065
Developing a custom application

UM3065 - Rev 1 page 19/30

https://www.st.com/resource/en/user_manual/dm00104712.pdf
https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

5. Configure the system clock
The system clock configuration is done by calling the two APIs described below:
– HAL_RCC_OscConfig(): this API configures the internal and/or external oscillators, as well as the

PLL source and factors. The user chooses to configure one oscillator or all oscillators. The PLL
configuration can be skipped if there is no need to run the system at high frequency.

– HAL_RCC_ClockConfig(): this API configures the system clock source, the flash memory latency
and AHB and APB prescalers.

Initialize the peripheral
a. First write the peripheral HAL_PPP_MspInit function. Proceed as follows:

◦ Enable the peripheral clock.
◦ Configure the peripheral GPIOs.
◦ Configure the DMA channel and enable DMA interrupt (if needed).
◦ Enable peripheral interrupt (if needed).

b. Edit the stm32xxx_it.c to call the required interrupt handlers (peripheral and DMA), if needed.
c. Write process complete callback functions if peripheral interrupt or DMA is planned to be used.
d. In user main.c file, initialize the peripheral handle structure then call the function HAL_PPP_Init()

to initialize the peripheral.
6. Develop an application

At this stage, the system is ready and user application code development can start.
a. The HAL provides intuitive and ready-to-use APIs to configure the peripheral. It supports polling,

interrupts and a DMA programming model, to accommodate any application requirements. For more
details on how to use each peripheral, refer to the rich example set provided in the STM32CubeH5
MCU Package.

Caution: In the default HAL implementation, SysTick timer is used as timebase: it generates interrupts at regular time
intervals. If HAL_Delay() is called from peripheral ISR process, make sure that the SysTick interrupt has
higher priority (numerically lower) than the peripheral interrupt. Otherwise, the caller ISR process is blocked.
Functions affecting timebase configurations are declared as __weak to make override possible in case of other
implementations in user file (using a general purpose timer for example or other time source). For more details,
refer to HAL_TimeBase example.

UM3065
Developing a custom application

UM3065 - Rev 1 page 20/30

5.2.3 LL application
This section describes the steps needed to create a custom LL application using STM32CubeH5.
1. Create a project

To create a new project, either start from the Templates_LL project provided for each
board under \Projects\<STM32xxx_yyy>\Templates_LL or from any available project under
\Projects\<STM32xxy_yyy>\Examples_LL (<STM32xxx_yyy> refers to the board name, such as NUCLEO-
H563ZI).
The template project provides an empty main loop function, which is a good starting point to understand
the project settings for STM32CubeH5. Template main characteristics are the following:
– It contains the source codes of the LL and CMSIS drivers which are the minimum set of components

needed to develop code on a given board.
– It contains the include paths for all the required firmware components.
– It selects the supported STM32H5 device and allows the correct configuration of the CMSIS and LL

drivers.
– It provides ready-to-use user files, that are preconfigured as follows:

◦ main.h: LED & USER_BUTTON definition abstraction layer.
◦ main.c: system clock configuration for maximum frequency.

2. Port an existing project to another board
To port an existing project to another target board, start from the Templates_LL project provided for each
board and available under \Projects\<STM32xxx_yyy>\Templates_LL:
a. Select a LL example

To find the board on which LL examples are deployed, refer to the list of LL examples
STM32CubeProjectsList.html.

3. Port the LL example
– Copy/paste the Templates_LL folder - to keep the initial source - or directly update existing

Templates_LL project.
– Then porting consists principally in replacing Templates_LL files by the Examples_LL targeted

project.
– Keep all board specific parts. For reasons of clarity, board specific parts have been flagged with

specific tags:
/* ============== BOARD SPECIFIC CONFIGURATION CODE BEGIN ============== */
/* ============== BOARD SPECIFIC CONFIGURATION CODE END ============== */

Thus the main porting steps are the following:
◦ Replace the stm32h5xx_it.h file
◦ Replace the stm32h5xx_it.c file
◦ Replace the main.h file and update it: keep the LED and user button definition of the LL

template under ‘BOARD SPECIFIC CONFIGURATION’ tags.
◦ Replace the main.c file and update it:

Keep the clock configuration of the SystemClock_Config() LL template function under
‘BOARD SPECIFIC CONFIGURATION’ tags.
Depending on LED definition, replace each LEDx occurrence with another LEDy available in
main.h.

With these modifications, the example now runs on the targeted board.

5.3 Getting STM32CubeH5 release updates
The new STM32CubeH5 MCU Package releases and patches are available from www.st.com/stm32h5. They
may be retrieved from the "CHECK FOR UPDATE" button in STM32CubeMX. For more details, refer to section 3
of STM32CubeMX for STM32 configuration and initialization C code generation (UM1718).

UM3065
Getting STM32CubeH5 release updates

UM3065 - Rev 1 page 21/30

https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/nucleo-h563zi?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/nucleo-h563zi?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/resource/en/user_manual/dm00104712.pdf

6 FAQ

6.1 What is the license scheme for the STM32CubeH5 MCU Package?
The HAL is distributed under a non-restrictive BSD (berkeley software distribution) license.
The middleware stacks made by STMicroelectronics (ex: USBPD library) come with a licensing model allowing
easy reuse, provided it runs on an STMicroelectronics device.
The middleware based on well-known open-source solutions (TFM) have user-friendly license terms. For more
details, refer to the appropriate middleware license agreement.

6.2 What boards are supported by the STM32CubeH5 MCU Package?
The STM32CubeH5 MCU Package provides BSP drivers and ready-to-use examples for the following STM32H5
Series boards:
• NUCLEO-H563ZI
• NUCLEO-H503RB
• STM32H573I-DK

6.3 Are any examples provided with the ready-to-use toolset projects?
Yes. STM32CubeH5 provides a rich set of examples and applications. They come with the preconfigured projects
for IAR Embedded Workbench®, Keil® and STM32CubeIDE.

6.4 How to enable TrustZone® on STM32H5 Series devices?
All STM32H5 Series devices support TrustZone®. Factory default state is TrustZone® disabled. The TrustZone®

security is activated with the TZEN option bit in the FLASH_OPTR register. The user option bytes configuration
may be done with STM32CubeProgrammer (STM32CubeProg).

6.5 How to disable TrustZone® on STM32H5 Series devices?
The TrustZone® security can be disabled through the STM32CubeProgrammer by following the sequence below:
1. Set the TZEN bit to 0xC3.
2. Click Apply.

6.6 How to update the secure / nonsecure memory mapping
In case of memory isolation for secure and nonsecure applications, the secure and nonsecure applications share
the same internal flash memory and embedded SRAMs.
The STM32CubeH5 MCU Package provides default memory partitioning in the partition_<device>.h files available
under:
\Drivers\CMSIS\Device\ST\STM32H5xx\Include\Templates (see Section 4.2.1 TrustZone-enabled projects).
Any memory map partitioning change between secure and nonsecure applications requires the following updates
and alignments (without overlap between secure and nonsecure memory space and using secure and non-
secure memory address aliases):
• If SAU is enabled, nonsecure area update (internal flash and SRAMs) (see partition_stm32h5xx.h file).
• Secure and nonsecure linker files update to correctly locate the secure and nonsecure code and data.
• Update the nonsecure address to jump to (in secure main.c and nonsecure reset handler in nonsecure

linker file)
• Update the flash watermark option bytes (SEC_WMx_STRT/SEC_WMx_END) to define the secure/non-

secure flash memory areas (with STM32CubeProgrammer).

6.7 How to set up interrupts for secure and nonsecure applications
At MCU core level, all interrupts are set to secure at system reset. This default state is visible in the
partition_<device>.h files available under:

UM3065
FAQ

UM3065 - Rev 1 page 22/30

https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/nucleo-h563zi?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/nucleo-h503rb?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32h573i-dk?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065
https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

\Drivers\CMSIS\Device\ST\STM32H5xx\Include\Templates (see Section 4.2.1 TrustZone-enabled projects).
One of these template files is intended to be copied in the secure application for the selected device. This is
to set the interrupt line targets by modifying the partition_<device>.h file: either to target the secure (default) or
nonsecure application vector table. This insures that interrupts are set up when the application enters the secure
main().

6.8 Why does the system enter in SecureFault_Handler()?
SecureFault_Handler() is reachable if the SecureFault handler is enabled by the secure code with SCB-
>SHCSR |= SCB_SHCSR_SECUREFAULTENA_Msk;
Any jump to SecureFault_Handler() during the application execution is the result of a security violation
detected at IDAU/SAU level such as a fetch of a nonsecure application to secure address.
If SecureFault handler is not enabled, the security violation is escalated to the HardFault handler.

6.9 Are there any links with standard peripheral libraries?
The STM32CubeH5 HAL and LL drivers are the replacement of the standard peripheral library:
• The HAL drivers offer a higher abstraction level compared to the standard peripheral APIs. They focus on

the features that are common to the peripherals rather than hardware. A set of user-friendly APIs allows a
higher abstraction level which in turn makes them easily portable from one product to another.

• The LL drivers offer low-layer registers level APIs. They are organized in a simpler and clearer way
avoiding direct register accesses. LL drivers also include peripheral initialization APIs, which are more
optimized compared to what is offered by the SPL, while being functionally similar. Compared to HAL
drivers, these LL initialization APIs allows an easier migration from the SPL to the STM32CubeH5 LL
drivers, since each SPL API has its equivalent LL API(s).

6.10 Does the HAL layer take advantage of interrupts or DMA? How can this be
controlled?
Yes. The HAL layer supports three API programming models: polling, interrupt and DMA (with or without interrupt
generation).

6.11 How are the product/peripheral specific features managed?
The HAL drivers offer extended APIs, which are specific functions provided as add-ons to the common API to
support features available on some products/lines only.

6.12 When should the HAL be used versus LL drivers?
HAL drivers offer high-level and function-oriented APIs, with a high level of portability. Product/IPs complexity is
hidden for end users.
LL drivers offer low-layer register level APIs, with a better optimization but less portable. They require in depth
knowledge of product/IPs specifications.

6.13 How can LL drivers be included in an existing environment? Is there any LL
configuration file as for HAL?
There is no configuration file. Source code shall directly include the necessary stm32h5xx_ll_ppp.h file(s).

6.14 Can HAL and LL drivers be used together? If yes, what are the constraints?
It is possible to use both HAL and LL drivers. Use the HAL for the IP initialization phase and then manage the I/O
operations with LL drivers.
The major difference between HAL and LL is that HAL drivers require to create and use handles for operation
management while LL drivers operates directly on peripheral registers. Mixing HAL and LL is illustrated in the
"Examples_MIX" example.

UM3065
Why does the system enter in SecureFault_Handler()?

UM3065 - Rev 1 page 23/30

https://www.st.com/en/product/stm32cubeh5?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM3065

6.15 Are there any LL APIs which are not available with HAL?
Yes, there are. A few Cortex® APIs have been added in stm32h5xx_ll_cortex.h, for instance for accessing SCB or
SysTick registers.

6.16 Why are SysTick interrupts not enabled on LL drivers?
When using LL drivers in standalone mode, there is no need to enable SysTick interrupts because they are not
used in LL APIs, while HAL functions require SysTick interrupts to manage timeouts.

6.17 How are LL initialization APIs enabled?
The definition of LL initialization APIs and associated resources (structures, literals and prototypes) is conditioned
by the USE_FULL_LL_DRIVER compilation switch.
To be able to use LL initialization APIs, add this switch in the toolchain compiler preprocessor.

6.18 How can STM32CubeMX generate code based on embedded software?
STM32CubeMX has a built-in knowledge of STM32 microcontrollers, including their peripherals and software, that
allows to provide a graphical representation to the user and generate *.h/*.c files based on user configuration.

6.19 How to get regular updates on the latest STM32CubeH5 MCU Package
releases?
Refer to Section 5.3 Getting STM32CubeH5 release updates.

UM3065
Are there any LL APIs which are not available with HAL?

UM3065 - Rev 1 page 24/30

Revision history

Table 4. Document revision history

Date Revision Changes

06-Feb-2023 1 Initial release.

UM3065

UM3065 - Rev 1 page 25/30

Contents

1 General information .2
2 STM32CubeH5 main features .3
3 STM32CubeH5 architecture overview .4

3.1 Level 0 . 4
3.1.1 Board support package (BSP). 4

3.1.2 Hardware abstraction layer (HAL) and low-layer (LL) . 5

3.1.3 Basic peripheral usage examples . 5

3.2 Level 1 . 5
3.2.1 Middleware components . 5

3.2.2 Examples based on the middleware components . 6

3.3 Level 2 . 6

3.4 Utilities . 7

4 STM32CubeH5 MCU package overview. .8
4.1 Supported STM32H5 Series devices and hardware. 8

4.2 MCU Package overview . 8
4.2.1 TrustZone-enabled projects . 11

5 Getting started with STM32CubeH5 .14
5.1 Running a first example . 14

5.1.1 Running a first TrustZone-enabled example . 14

5.1.2 Running a first TrustZone-disabled example . 15

5.1.3 Running a first Root of Trust (ROT) example . 16

5.2 Developing a custom application. 18
5.2.1 Using STM32CubeMX to develop or update an application. 18

5.2.2 HAL application. 19

5.2.3 LL application . 21

5.3 Getting STM32CubeH5 release updates . 21

6 FAQ .22
6.1 What is the license scheme for the STM32CubeH5 MCU Package? 22

6.2 What boards are supported by the STM32CubeH5 MCU Package? 22

6.3 Are any examples provided with the ready-to-use toolset projects?. 22

6.4 How to enable TrustZone® on STM32H5 Series devices? . 22

6.5 How to disable TrustZone® on STM32H5 Series devices? . 22

6.6 How to update the secure / nonsecure memory mapping . 22

6.7 How to set up interrupts for secure and nonsecure applications 22

UM3065
Contents

UM3065 - Rev 1 page 26/30

6.8 Why does the system enter in SecureFault_Handler()?. 23

6.9 Are there any links with standard peripheral libraries? . 23

6.10 Does the HAL layer take advantage of interrupts or DMA? How can this be
controlled? . 23

6.11 How are the product/peripheral specific features managed?. 23

6.12 When should the HAL be used versus LL drivers?. 23

6.13 How can LL drivers be included in an existing environment? Is there any LL configuration
file as for HAL? . 23

6.14 Can HAL and LL drivers be used together? If yes, what are the constraints? 23

6.15 Are there any LL APIs which are not available with HAL? . 24

6.16 Why are SysTick interrupts not enabled on LL drivers? . 24

6.17 How are LL initialization APIs enabled? . 24

6.18 How can STM32CubeMX generate code based on embedded software? 24

6.19 How to get regular updates on the latest STM32CubeH5 MCU Package releases? 24

Revision history .25
List of tables .28
List of figures. .29

UM3065
Contents

UM3065 - Rev 1 page 27/30

List of tables
Table 1. Macros for STM32H5 Series . 8
Table 2. Boards for STM32H5 Series . 8
Table 3. Number of examples for each board. 13
Table 4. Document revision history . 25

UM3065
List of tables

UM3065 - Rev 1 page 28/30

List of figures
Figure 1. STM32CubeH5 MCU Package components . 3
Figure 2. STM32CubeH5 MCU Package architecture . 4
Figure 3. STM32CubeH5 MCU Package structure . 9
Figure 4. Overview of STM32CubeH5 examples. 10
Figure 5. Secure and nonsecure multiprojects structure. 12
Figure 6. Temporal isolation levels on STM32H5 series . 16
Figure 7. Security bootpath supported on STM32H5 Series . 16
Figure 8. ROT application structure. 17

UM3065
List of figures

UM3065 - Rev 1 page 29/30

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

UM3065

UM3065 - Rev 1 page 30/30

http://www.st.com/trademarks

	 Introduction
	1 General information
	2 STM32CubeH5 main features
	3 STM32CubeH5 architecture overview
	3.1 Level 0
	3.1.1 Board support package (BSP)
	3.1.2 Hardware abstraction layer (HAL) and low-layer (LL)
	3.1.3 Basic peripheral usage examples

	3.2 Level 1
	3.2.1 Middleware components
	3.2.2 Examples based on the middleware components

	3.3 Level 2
	3.4 Utilities

	4 STM32CubeH5 MCU package overview
	4.1 Supported STM32H5 Series devices and hardware
	4.2 MCU Package overview
	4.2.1 TrustZone-enabled projects

	5 Getting started with STM32CubeH5
	5.1 Running a first example
	5.1.1 Running a first TrustZone-enabled example
	5.1.2 Running a first TrustZone-disabled example
	5.1.3 Running a first Root of Trust (ROT) example
	5.1.3.1 Bootpath overview
	5.1.3.2 ROT applications
	5.1.3.3 OEMiROT, STiROT, and STiROT_OEMuROT bootpaths
	5.1.3.4 Secure manager access kit (SMAK) bootpath
	5.1.3.5 Debug authentication (DA) regression

	5.2 Developing a custom application
	5.2.1 Using STM32CubeMX to develop or update an application
	5.2.2 HAL application
	5.2.3 LL application

	5.3 Getting STM32CubeH5 release updates

	6 FAQ
	6.1 What is the license scheme for the STM32CubeH5 MCU Package?
	6.2 What boards are supported by the STM32CubeH5 MCU Package?
	6.3 Are any examples provided with the ready-to-use toolset projects?
	6.4 How to enable TrustZone(R) on STM32H5 Series devices?
	6.5 How to disable TrustZone(R) on STM32H5 Series devices?
	6.6 How to update the secure / nonsecure memory mapping
	6.7 How to set up interrupts for secure and nonsecure applications
	6.8 Why does the system enter in SecureFault_Handler()?
	6.9 Are there any links with standard peripheral libraries?
	6.10 Does the HAL layer take advantage of interrupts or DMA? How can this be controlled?
	6.11 How are the product/peripheral specific features managed?
	6.12 When should the HAL be used versus LL drivers?
	6.13 How can LL drivers be included in an existing environment? Is there any LL configuration file as for HAL?
	6.14 Can HAL and LL drivers be used together? If yes, what are the constraints?
	6.15 Are there any LL APIs which are not available with HAL?
	6.16 Why are SysTick interrupts not enabled on LL drivers?
	6.17 How are LL initialization APIs enabled?
	6.18 How can STM32CubeMX generate code based on embedded software?
	6.19 How to get regular updates on the latest STM32CubeH5 MCU Package releases?

	 Revision history
	Contents
	List of tables
	List of figures

